
Information Systems 128 (2025) 102472

A
0
n

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Runtime integration of machine learning and simulation for business
processes: Time and decision mining predictions✩

Francesca Meneghello a,b,∗, Chiara Di Francescomarino c, Chiara Ghidini d,
Massimiliano Ronzani b

a Sapienza University of Rome, Rome, Italy
b Fondazione Bruno Kessler, Trento, Italy
c University of Trento, Trento, Italy
d Free University of Bolzano, Bolzano, Italy

A R T I C L E I N F O

Keywords:
Business process simulation
Deep learning
Hybrid simulation
Decision mining

A B S T R A C T

Recent research in Computer Science has investigated the use of Deep Learning (DL) techniques to complement
outcomes or decisions within a Discrete Event Simulation (DES) model. The main idea of this combination
is to maintain a white box simulation model complement it with information provided by DL models to
overcome the unrealistic or oversimplified assumptions of traditional DESs. State-of-the-art techniques in BPM
combine Deep Learning and Discrete Event Simulation in a post-integration fashion: first an entire simulation
is performed, and then a DL model is used to add waiting times and processing times to the events produced
by the simulation model.

In this paper, we aim at taking a step further by introducing Rims (Runtime Integration of Machine
Learning and Simulation). Instead of complementing the outcome of a complete simulation with the results of
predictions a posteriori, Rims provides a tight integration of the predictions of the DL model at runtime during
the simulation. This runtime-integration enables us to fully exploit the specific predictions while respecting
simulation execution, thus enhancing the performance of the overall system both w.r.t. the single techniques
(Business Process Simulation and DL) separately and the post-integration approach. In particular, the runtime
integration ensures the accuracy of intercase features for time prediction, such as the number of ongoing traces
at a given time, by calculating them during directly the simulation, where all traces are executed in parallel.
Additionally, it allows for the incorporation of online queue information in the DL model and enables the
integration of other predictive models into the simulator to enhance decision point management within the
process model. These enhancements improve the performance of Rims in accurately simulating the real process
in terms of control flow, as well as in terms of time and congestion dimensions. Especially in process scenarios
with significant congestion – when a limited availability of resources leads to significant event queues for
their allocation – the ability of Rims to use queue features to predict waiting times allows it to surpass the
state-of-the-art. We evaluated our approach with real-world and synthetic event logs, using various metrics to
assess the simulation model’s quality in terms of control-flow, time, and congestion dimensions.
1. Introduction

Business process simulation (BPS) [1] provides a widely used and
flexible approach to analyze and improve business processes. It ex-
ploits a process simulation model, that is, a process model extended
with additional information for a probabilistic characterisation of the
different run-time aspects such as case arrival rate, task durations,
routing probabilities, resource utilization, and so on, to produce a

✩ We acknowledge the support of the PNRR project FAIR - Future AI Research (PE00000013), under the NRRP MUR program funded by the NextGenerationEU.
∗ Corresponding author at: Sapienza University of Rome, Rome, Italy.
E-mail addresses: fmeneghello@fbk.eu (F. Meneghello), c.difrancescomarino@unitn.it (C.D. Francescomarino), Chiara.Ghidini@unibz.it (C. Ghidini),

mronzani@fbk.eu (M. Ronzani).

significantly large number of process runs. Statistics over these runs
are then collected to gain insight into the process, and to determine the
possible issues such as bottlenecks, wastes, or costs. Through simulation
experiments, also, various ‘what if’ questions can be answered, and
different process redesign alternatives can be compared with respect
to the key performance indicators of interest.

Building simulation models is a costly task that often requires great
expertise and knowledge of the domain at hand. To overcome this
https://doi.org/10.1016/j.is.2024.102472
Received 4 April 2024; Received in revised form 26 September 2024; Accepted 1 O
vailable online 9 October 2024
306-4379/© 2024 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).
ctober 2024

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/is
https://www.elsevier.com/locate/is
mailto:fmeneghello@fbk.eu
mailto:c.difrancescomarino@unitn.it
mailto:Chiara.Ghidini@unibz.it
mailto:mronzani@fbk.eu
https://doi.org/10.1016/j.is.2024.102472
https://doi.org/10.1016/j.is.2024.102472
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

F. Meneghello et al.

[

r

a

d
a
a

t
‘
v
t
i

u
o

c
(
s
D
p
e
t
t
E
a

t

t
d

m

a

f

d

t
r

Information Systems 128 (2025) 102472
problem Data-Driven Process Simulation (DDPS) approaches have been
introduced in literature [2–7]. The main idea of DDPS is to build a
simulation model by using the knowledge contained in process execu-
tion data (i.e., event logs). For this purpose, event logs can provide
process analysts with the knowledge needed to manually construct
a simulation model by defining the process model and tuning the
simulation parameters. Alternatively, event logs can be exploited to
directly discover the simulation model in a fully automated manner [2].

However, when building simulation-ready models from an event
log, many unrealistic or oversimplifying assumptions are usually made
8], such as the absence of resource constraints [4] or waiting times

that are generated only by resource contention. Moreover, the direct
discovery of simulation models often does not take into account be-
haviors such as multitasking, batching, fatigue effects, and inter-process
esource sharing, among others [2,9].1

Another significant limitation usually affecting existing DDPS mod-
els concerns the implementation of process decision points in the
simulation model. Indeed, decision points are usually determined us-
ing branching probabilities computed on the event log [2,5,10]. This
pproach can result in infeasible and unrealistic process behaviors, as

the sequence of activities executed in the traces is determined indepen-
ently of any trace-specific properties, such as previously performed
ctivities, assigned resources, current timestamp, and/or other event
ttributes.

The recent development of Deep Learning (DL) techniques applied
o Predictive Process Monitoring [11] offers an alternative way to
‘create’’ hypothetical process runs, either by completing trace prefixes
ia the prediction of next activities or by complementing an existing
race with predicted attributes such as the duration time of an activ-
ty [12,13]. Unlike simulation models, which are widely used for the

analysis and improvement of business processes due to their properties,
DL models pose challenges when applied for the same purpose. Indeed,
DL models cannot transparently expose an explicit process model that
can be leveraged to understand the behavior of the process or readily
adjusted to simulate the impact of modifications on the simulation
output. However, DL models are extremely powerful in learning the
patterns characterizing the precise relationship between the different
trace elements generating a high-quality distribution of predicted val-
es that can, in turn, lead to the production of high-quality simulation
utputs.

Starting from these observations, recent research in Computer Sci-
ence has investigated the use of Deep Learning (DL) techniques to
omplement outcomes or decisions within a Discrete Event Simulation
DES) model [14–17]. The main idea here is to maintain a white box
imulation model but to complement it with information provided by
L models. As mentioned above, these models are indeed extremely
owerful in learning the true relationship among trace elements as
xpressed by the covariates and the distribution of the output variables,
hus avoiding the oversimplifications of the simulation model men-
ioned above. A first attempt to combine Deep Learning and Discrete
vent Simulation with the goal of achieving accurate simulations from
 temporal perspective is presented in [10], where the Dsim tool is used

in a post-integration fashion: first an entire simulation is performed,
and then a DL model is used to add waiting times and processing times
to the events produced by the simulation model.

As a consequence of the post-integration, the features used for the
temporal predictive models become inaccurate, especially the inter-case
features, and the queue order for resource allocation is not always
respected, as shown in Section 3. Furthermore, the post-integration
approach does not allow for the integration of predictive models at
process decision points, as this would require potentially to alterate the

1 While these problems are particularly noticeable in automatic approaches
hey can also apply to the manual construction if a deep knowledge of the

domain at hand is not present.
2
control flow of traces defined during the simulation phase with each
prediction. de Leoni et al. [18], instead, proposed a simulation model
that integrates a logistic regression model to predict the next activity at
each decision point based on the process state. However, the evaluation
of the simulation model proposed in [18] focuses solely on the control
flow perspective, without considering other perspectives, such as the
ime perspective. These perspectives can be deeply interconnected, as
emonstrated in Section 7.

By introducing Rims (Runtime Integration of Machine Learning and
Simulation) [19] we aim to overcome these issues. Instead of comple-

enting the outcome of a complete simulation ‘‘a posteriori’’ with the
predictions of a DL model as in [10], Rims provides a tight integration of
the predictions of the DL model at runtime during the simulation. The
runtime-integration, in fact, enables us to fully exploit the predictions
related to the time perspective, that is waiting time and processing time, at
simulation time, thus enhancing the performance of the overall system
both with respect to the single techniques (BPS, and DL) separately and
the post-integration approach of Dsim. The runtime-integration enables us
lso to leverage information related to the queue e.g., the time an event

spends waiting for a resource and/or the number of events competing
for that resource, as an intercase feature in the DL model, and to obtain
an augmented version of Rims which further improves its performance
in process scenarios where the queue plays an important role. Besides
time-related predictions, Rims also targets the control-flow dimension,
by integrating predictions related to the next activity at decision points,
thus addressing the limitations of DDPS in terms of decision point
implementations. The next activity prediction at decision points allows
for a more accurate identification of the branch and hence of the control
flow of the simulated trace. In particular, for time prediction, we use a
Long Short-Term Memory (LSTM) model, a type of DL model suitable
for handling sequences of elements, while for the prediction at decision
points, we employ a Decision Tree classifier, as in [20,21].

This paper is an extended and revised version of our previous con-
erence paper [19]. The advancements primarily focus on the following

aspects:

• We present a new augmented version of Rims, which integrates
predictive models for the control-flow perspective, specifically to
predict the next activity from a decision point (Section 4.3). This
aims to address the issue of generating infeasible and unrealistic
traces, during the simulation.

• We extend the running example (Section 3) to motivate the
introduction of predictive models for the control-flow perspective.

• We explore the use of different encodings to train the control-
flow predictive models, considering both intra-case features and
inter-case features, along with the type of predictions, single class
or probability distribution over classes.

• We expand the evaluation of all proposed baselines and all vari-
ants of RIMS by introducing several metrics that comprehensively
assess the quality of the simulation model, including control flow,
time, and congestion perspectives (Section 6).

The remainder of the paper is structured as follows, we first intro-
uce the main background concepts in Section 2. We elaborate on the

motivation using the running example in Section 3. Section 4 describes
and formalizes the Rims simulation approach while in Section 5 we posi-
tion it with existing state-of-the-art techniques. Section 6 we present an
evaluation setting in which our approach is compared with the single
echniques (BPS, and DL) separately, as well as with Dsim, in several
eal-world and synthetic logs. Finally, Section 7 discusses the results of

the evaluation, and Section 8 concludes the paper.

2. Background

In this section we provide the background knowledge necessary to
understand the rest of the paper.

F. Meneghello et al. Information Systems 128 (2025) 102472
Fig. 1. Rims system. The DDPS elements are represented by the Petri net model and the simulation parameters for the resources, which are indicated above each activity, as well
as the probability for the first decision point 𝑑 𝑝1. The DL elements are 𝑆𝑚 , 𝑃 𝑇𝑚 , 𝑊𝑚 and 𝐷 𝑇𝑚, and the points 1, 2, 4, 5 and 6 represent moments in the process execution where
these DL elements are used. Instead, the probabilities defined by the DDPS model are used to determine the branch from 𝑑 𝑝1, as indicated by point 3. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
2.1. Event log

An event log  records the executions of a business process, that is
the execution traces of the process. A trace, in turn, is a sequence of or-
dered events 𝜎 = ⟨𝑒1, 𝑒2,… , 𝑒𝑚⟩, which may also contain trace attributes
𝑝1, 𝑝2,… , 𝑝𝑛. These are attributes whose values remain the same for all
the events in the sequence. An event 𝑒𝑖 = (𝛼 , 𝑡, 𝑟, 𝑑1,… , 𝑑𝑞) is a complex
structure that includes, besides other event attributes, 𝑑1,… , 𝑑𝑞 , the
activity label 𝛼 = 𝑒𝑖.𝑎𝑐 𝑡, its timestamp 𝑡 = 𝑒𝑖.𝑡𝑖𝑚𝑒, indicating when the
event occurred, and 𝑟 = 𝑒𝑖.𝑟 representing the resource(s) involved in
the activity execution. Non-instantaneous events can be characterized
by both the start (𝑒𝑖.𝑡𝑠𝑡𝑎𝑟𝑡) and the end (𝑒𝑖.𝑡𝑒𝑛𝑑) timestamps, denoting the
time in which the activity starts and ends, respectively. In particular,
we can denote the processing time of an activity as 𝑒𝑖.𝑡𝑝 = 𝑒𝑖.𝑡𝑒𝑛𝑑−𝑒𝑖.𝑡𝑠𝑡𝑎𝑟𝑡
and the waiting time as 𝑒𝑖.𝑡𝑤 = 𝑒𝑖.𝑡𝑠𝑡𝑎𝑟𝑡 − 𝑒𝑖−1.𝑡𝑒𝑛𝑑 .

2.2. Simulation model

A BPS model is a tuple  = ( ,) composed of a business
process model  (e.g., a Petri net [22]), and a set  of parameters
needed to define the simulation specifications for the different process
perspectives, such as the control-flow (𝐶), the resource (𝑅), as well as
the time (𝑇) perspective. For instance, case inter-arrival time, activity
durations, routing probabilities, resource allocation, and utilization are
all examples of simulation model parameters. The simulation model is
used to generate the traces composing a simulated log. BPS models
are Discrete Event Simulation (DES) models that are stochastically
executed by creating new cases according to the inter-arrival time, and
by simulating the execution of each case constrained to the control-
flow semantics of the process model and according to the allocation of
resources. Therefore, an activity is executed only if it is enabled and if
there is a resource available that can perform it. Otherwise, the activity
waits for another one to release the requested resource and, when it is
allocated, it immediately starts. In this way, the DES models assume
that waiting times are caused exclusively by resource contention.

2.3. Decision mining

A decision point 𝑑 𝑝 in  represents any point of the process in
which a main path splits into multiple paths. For instance, 𝑑 𝑝1 in the
process model in Fig. 1 divides the traces into the ones performing B
and those performing C. Decision mining (DM), also known as decision
point analysis, aims to identify data dependencies influencing trace
routing and to associate decision rules with each 𝑑 𝑝 in  . In particular,
DM is capable of discovering decision rules from the properties defined
over the traces and their events in , such as trace attributes or events
executed before 𝑑 𝑝 in the trace. In BPS, the decision rules discovered by
DM techniques can be used as simulation parameters in  to simulate
the paths followed by the traces.
3
Table 1
Example of a simple event log.

Caseid Activity Arrival Start End Role

1 A 24-05-23 08:00 24-05-23 08:00 24-05-23 08:06 Role0
2 A 24-05-23 08:01 24-05-23 08:01 24-05-23 08:07 Role0
3 A 24-05-23 08:01 24-05-23 08:01 24-05-23 08:05 Role0
3 B 24-05-23 08:05 24-05-23 08:05 24-05-23 08:11 Role1
2 C 24-05-23 08:07 24-05-23 08:07 24-05-23 08:14 Role1
1 B 24-05-23 08:08 24-05-23 08:11 24-05-23 08:14 Role1
1 E 24-05-23 08:14 24-05-23 08:14 24-05-23 08:30 Role2
2 D 24-05-23 08:14 24-05-23 08:30 24-05-23 08:40 Role2

2.4. Predictive process monitoring

Predictive Process Monitoring (PPM) [11] is a branch of process
mining that aims at predicting the future of an ongoing (uncompleted)
process execution. Within PPM, there are several different prediction
tasks that one could aim to solve: predicting the fulfillment of a
predicate [23], predicting the time to complete a task or the time
until the completion of a case [24], predicting the next activity or the
continuation of a running incomplete case [12] or entire traces [25].

In this work, we focus on predicting timestamps and the next event
from a process decision point. For the first type of prediction, we adopt
a Long Short-Term Memory (LSTM) model, a DL model widely applied
in this field due to its ability to deal with sequences of elements, as
in the case of traces. For the second type of prediction, we adopt
the decision tree classifier, as in [20,21], due to its white-box nature.
Indeed, the individual predictions of a decision tree can be easily
explained, i.e., by following the path of the tree constructed according
to the rules defined on the features. This also makes it suitable for the
development of what-if scenarios, as it is possible to evaluate the impact
of changing rules on the nodes of the tree in terms of classification
outcome.

3. Running example

Consider the simple event log in Table 1, which contains, for each
event, the activity name, the start and end timestamps, as well as the
role that has performed the activity.Assume that we are interested in
simulating the behavior of the log and that, to this aim, we leverage a
DDPS simulation model, as the one reported in Fig. 1. This model has
four activities (A,B,C,D) and two XOR splits—one between the activi-
ties B and C and one before D. Regarding the resource perspective the
model contains three roles: Role0 with 3 resources available, Role1 with
2 resources available and Role2 with 1 resource available. The simula-
tion model, by using a probability distribution at each decision point of
the model, would generate the traces reported in the column Traces of

F. Meneghello et al. Information Systems 128 (2025) 102472
Table 2
Traces generated by the DDPS simulation model, and timestamps predicted by using
DL models.

Caseid Traces Predicted
processing times

Predicted
waiting times

1 ⟨(𝖠, 𝑅𝑜𝑙 𝑒0), (𝖡, 𝑅𝑜𝑙 𝑒1)⟩ ⟨8, 4⟩ ⟨1⟩
2 ⟨(𝖠, 𝑅𝑜𝑙 𝑒0), (𝖢, 𝑅𝑜𝑙 𝑒1), (𝖣, 𝑅𝑜𝑙 𝑒2)⟩ ⟨5, 7, 8⟩ ⟨1, 6⟩
3 ⟨(𝖠, 𝑅𝑜𝑙 𝑒0), (𝖡, 𝑅𝑜𝑙 𝑒1)⟩ ⟨5, 5⟩ ⟨0⟩

Table 3
Simulated log generated by Dsim.

Caseid Activity Arrival Start End Role

1 A 24-05-23 08:00 24-05-23 08:00 24-05-23 08:08 Role0
1 B 24-05-23 08:09 24-05-23 08:09 24-05-23 08:13 Role1
2 A 24-05-23 08:01 24-05-23 08:01 24-05-23 08:06 Role0
2 C 24-05-23 08:07 24-05-23 08:07 24-05-23 08:14 Role1
2 D 24-05-23 08:14 24-05-23 08:20 24-05-23 08:28 Role2
3 A 24-05-23 08:01 24-05-23 08:01 24-05-23 08:06 Role0
3 B 24-05-23 08:06 24-05-23 08:13 24-05-23 08:18 Role1

Table 2. However, the traces generated by a DDPS model could present
two problems. First of all they might be non-accurate in terms of control-
flow. For instance, the simulation model, by leveraging the probability
distribution, could generate a trace ⟨(𝖠, 𝑅𝑜𝑙 𝑒0), (𝖡, 𝑅𝑜𝑙 𝑒0), (𝖣, 𝑅𝑜𝑙 𝑒2)⟩,
which could result to be infeasible because, for instance, in the real
system activity D can be executed only when the last role involved is
Role1 and the previous activity is C. This type of relationship cannot be
captured by a pure DDPS model. The second issue of traces generated
by DDPS is that the processing and the waiting time in DDPS are
typically approximated with fixed times or probability distributions
(e.g., exponential, normal), instead of considering also previously per-
formed activities, assigned resources, the current timestamp, and/or
other event attributes, thus resulting in non-accurate traces in terms of
timing.

In order to get accurate simulations in terms of time perspective,
state-of-the-art hybrid approaches, such as Dsim, combine simulated
traces and predicted times that are generated by DL models a-posteriori:
predicted times are associated one by one to the traces generated by
the DDPS model, ensuring compliance in terms of resource allocation.
Thus, let us assume we have trained a good DL model that gives us the
predicted processing time – one for each event in the trace – and the
predicted waiting time, i.e., the waiting time before the next event in
the trace, as reported in Table 2 in minutes. The event log generated
by the Dsim approach combining the simulated traces and the predicted
times would be the one reported in Table 3.2

Thus, for example, case 1 starts with activity A and it can immedi-
ately start because Role0 has 3 available resources. It ends 8 min later
as this is the predicted processing time for that event (see Table 2).
Activity B arrives 1 min later (as this is the predicted waiting time
between A and B in that trace): it can immediately start as Role1 has 2
available resources, and it ends 4 min later, as this is the predicted pro-
cessing time for that event. Finally, the trace ends without performing
D. One important aspect to note is that these hybrid approaches do not
only leverage the predicted times, as pure generative approaches do,
but they also take into account the resource availability. For instance,
although activity B of case 3 would be enabled at time 08:06, the start
time is set to 08:13, since only two resources are available for the role
Role1 – one performing activity C of case 2 and the other one activity
B of case 1 – and the first one to be freed is released at time 08:13. The
resulting handling of the queue requests related to Role1 is hence the
one depicted in Fig. 2(a): first B of case 1, then C of case 2 and, finally,
B of case 3. However, this does not reflect the queue order of the real
log. Indeed, by looking at Table 1, we can see that resources with Role1

2 Assuming given arrival times.
4
Fig. 2. Queues generated after the simulation with the Dsim and Rims approaches.

execute first activity B of case 3, then activity C of case 2 and, finally,
activity B of case 1, that is the queue situation reported in Fig. 2(b).
This limitation of Dsim, which does not allow the approach to have a
simulation as close as possible to the reality, is due to the insertion
of the predicted times trace by trace and not per event, hampering to
leverage the full potential of the combination of simulation models and
predicted times.

The approach presented in this paper, by taking into account pre-
dicted times at each step of the simulation rather than once at the end
of the trace simulation, is able to overcome this issue. By leveraging
processing and waiting time predictions at each step of the simulation,
Rims is indeed able to detect that, although case 1 is the first to start
among the three traces, cases 2 and 3 complete their first activity A
earlier, so that the two resources of Role1 should be first assigned to
the activity B and C of these two cases—which is indeed what happens
in reality (see Table 1). Table 4 shows the log generated by the Rims
approach and Fig. 2(b) shows the queue of the log on role Role1, that is
inline with the arrival times of events in reality (see Table 1). Moreover,
as the predicted times are added during the simulation, they affect
all other running traces and, as a result, the intercase features, as the
resource occupation, are more accurate. For example, in case of the
runtime-integration method (Table 4), at time 08:08, both resources for
Role1 result busy (one with the activity B of case 3 and the other with
the activity C of case 2). In contrast, in the case of the post-integration
method (Table 3), at time 08:08 Role1 appears to have all resources
free, as although one resource of it will be busy in activity C of case
2, Dsim is not able to detect it as it only considers resource occupation
related to traces started before the current trace.

Taking into account predicted times – even at each step of the
simulation –, however, does not solve the limitation related to the
generation of infeasible simulated traces raised at the beginning of
the section. Indeed, since activity D has 1∕3 of probability to occur,
the simulation model could still produce incorrect traces, such as
⟨(𝖠, 𝑅𝑜𝑙 𝑒0), (𝖡, 𝑅𝑜𝑙 𝑒0), (𝖣, 𝑅𝑜𝑙 𝑒2)⟩, as mentioned above. To obtain traces
close to reality, Rims considers also the history of the trace. The relations
between events can be used to build a predictive model for predicting
the next activity at each decision point in the process, such as 𝑑 𝑝1 and
𝑑 𝑝2 in Fig. 1. Table 4 shows indeed that in the event log generated with
Rims the activity D is performed only under the conditions explained
above. In contrast, in Table 3 the generation of activity D for case 2
occurs solely due to a lucky draw from the probability associated with
the decision point.

Although the limitations (and corresponding solutions proposed by
Rims) described in this section refer to a small example log with few
traces and to a simple simulation model, these issues (and solutions)
can be easily generalized to more complex scenarios.

4. The rims system

In this section we describe the runtime-integration approach Rims
(Section 4.1) and its two variants: Rims+ (Section 4.2), which takes into
account also the effect of queues in the simulated log; and Rims𝐷 𝑇 (Sec-
tion 4.3), which enhances Rims/Rims+ with a decision mining approach.

F. Meneghello et al.

.

Information Systems 128 (2025) 102472
Table 4
Simulated log generated by the Rims approach. Differences between start and end
timestamps with respect to the log produced by the Dsim approach are shown in bold

Caseid Activity Arrival Start End Role

1 A 24-05-23 08:00 24-05-23 08:00 24-05-23 08:08 Role0
2 A 24-05-23 08:01 24-05-23 08:01 24-05-23 08:06 Role0
3 A 24-05-23 08:01 24-05-23 08:01 24-05-23 08:06 Role0
3 B 24-05-23 08:06 24-05-23 08:06 24-05-23 08:11 Role1
2 C 24-05-23 08:07 24-05-23 08:07 24-05-23 08:14 Role1
1 B 24-05-23 08:08 24-05-23 08:11 24-05-23 08:15 Role1
2 D 24-05-23 08:14 24-05-23 08:20 24-05-23 08:28 Role2

4.1. Runtime integration approach

As mentioned before, runtime-integration is able to incorporate DL
models into a DES model, so that the resulting simulation model is an
extension of the BPS model defined as a tuple ∗ = ( ,¬𝑇 , 𝑆𝑚, 𝑊𝑚,
𝑃 𝑇𝑚) where:

•  is the Petri net model;
• ¬𝑇 is the subset of the simulation parameters that excludes the

parameters related to the time perspective, i.e., ¬𝑇 =  ⧵ 𝑇
• 𝑆𝑚 is a predictive model that generates the start time of each

trace;
• 𝑊𝑚 is a predictive model that predicts the waiting time between

an event and the next one;
• 𝑃 𝑇𝑚 is a predictive model that predicts the processing time of a

given event.

Rims defines ∗ in three main steps: (i) definition of the DDPS
elements, (ii) training of the models for the time perspective and,
finally, (iii) definition of a simulator able to integrate all the elements.

4.1.1. Definition of the DDPS elements
In this step, we define  , that is the process model and the set

of the control-flow and resource simulation parameters ¬𝑇 over it.
𝐶 includes branching probabilities for each decision point in  and
𝑅 the resource allocation for activities. In particular, a resource pool,
namely a role, is assigned to each activity within the process model.
In Fig. 1, the elements reported in orange represent possible instances
of the simulation parameters in ¬𝑇 . Each activity is associated with a
role and a probability is defined for the two branches of the gateway.

4.1.2. Training of the models
Differently from classical DDPS models, which define trace start

times, event processing times, and event waiting times as distribution
functions, ∗ uses predictions returned by the predictive models, as
in [10].

In particular, for the generation of start times, instead of fitting
an inter-arrival distribution as classical DDPS models, RIMS involves a
time series forecasting model, 𝑆𝑚, developed by Facebook and called
Prophet [26] with the same configuration used in [10]. This model
is capable of handling time series data that exhibit non-linear trends,
seasonality, and other complex patterns.

For the prediction of the waiting and the processing times, Rims
uses two LSTM models with the same architecture used in previous
works [10,25,27]. The LSTM architecture is shown in Fig. 3: it is
composed of two stacked LSTM layers and a dense output. 𝑊𝑚 and 𝑃 𝑇𝑚
differ only in the features used to train each model.

To predict the waiting time, 𝑊𝑚 requires the next activity’s label,
the end timestamp of the current activity, the day of the week, and
intercase features such as the work-in-progress and the resources’ oc-
cupation. Specifically, the work-in-progress 𝑤𝑖𝑝𝜏 represents the number
of ongoing traces in the event log or in the simulation at a given
time 𝜏. The resources’ occupation 𝑟𝑜𝜏 provides instead the occupancy
percentage in terms of resources in use for each role specified in  at
¬𝑇

5
Fig. 3. LSTM architecture from [10] used to train 𝑊𝑚 and 𝑃 𝑇𝑚. Different intercase
features are used in Rims and Rims+ than those used in [10].

a given time 𝜏. As the predicted times are added during the simulation,
they affect all other running traces and, as a result, the intercase fea-
tures are more accurate. For example, in case of the runtime-integration
method (Table 4), the intercase features used to predict the waiting
time between the activities A and B of case 1 would be such that
𝑟𝑜08∶08 = [0, 1, 0], where 1 refers to the occupancy percentage of Role1
at time 08:08 (both resources of Role1 are busy, one with the activity
B of case 3 and one with the activity C of case 2).

For predicting the processing time, the input features of 𝑃 𝑇𝑚 are
the same ones of 𝑊𝑚, except for the activity label, which is the one of
the current event, and the time, which is its start timestamp. Finally,
to encode the features we implemented the same pipeline as in [10],
i.e., using embeddings for the activity label and extracting n-grams of
fixed size for each trace as input sequences.

4.1.3. Integration
To integrate all the elements defined in the previous steps, we define

a Rims simulator able to interact with 𝑆𝑚, 𝑊𝑚 and 𝑃 𝑇𝑚.
The pseudocode of Algorithm 1 illustrates the proposed method. It

starts by generating the start times of all the new traces (Line 19) and,
once they have been sorted, the 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐 𝑒 function is used to generate
the new traces, starting from the first one (Line 21) and proceeding
with the others (Lines 22–24), as soon as the time between one trace
and another is passed (Line 23).

The 𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒 function, indeed, interrupts the simulation, even if the
clock time is running, thus allowing to simulate the correct inter-arrival
time among traces. Indeed, although the traces are independent one
from the other, they compete for the same resources and refer to the
same simulator clock time. The function 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐 𝑒 simulates a given
trace over  from start to end. To this aim, the function 𝑛𝑒𝑥𝑡_𝑎𝑐 𝑡𝑖𝑣𝑖𝑡𝑦
returns, at each step, the next activity in the model chosen by the model
simulator according to 𝐶 . For example, in Fig. 1, the orange point
represents a decision point where 𝑛𝑒𝑥𝑡_𝑎𝑐 𝑡𝑖𝑣𝑖𝑡𝑦 chooses to perform B
rather than C, according to 𝐶 . For each activity 𝛼, the event executing
the activity is created. The role in charge of executing the activity is
also associated to the event (Line 5). If the activity is the first one in
the model, the starting time of the event is set to the starting time of
the trace 𝑠 (Line 7), otherwise the waiting time required for executing
the event 𝑒 is computed (Lines 9–11). To this aim, the features of 𝑒
(activity name, current time 𝜏, and the value intercase features at time
𝜏) are extracted and encoded, the 𝑊𝑚 model queried and the waiting
time 𝑡𝑤 predicted (Line 9). Leveraging the 𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒 function, the event
𝑒 is enabled after 𝑡𝑤 clock times (Line 10). The processing time spent
by 𝑒 is also predicted by querying the 𝑃 𝑇𝑚 model by leveraging some
features computed on 𝑒 (Line 12). Before the event can be executed,

F. Meneghello et al. Information Systems 128 (2025) 102472
Algorithm 1 Runtime Integration Algorithm
Input : [ ,𝐶 ,𝑅, 𝑆𝑚, 𝑃 𝑇𝑚, 𝑊𝑚] ← ∗

Input: Number of traces to generate, 𝑂
Input: 𝑆𝑚, 𝑃 𝑇𝑚 and 𝑊𝑚: the predictive models that predict the trace start
time, the event processing time and the inter-event waiting time, respectively
Input: 𝜏 global simulation time
1: function 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐 𝑒( ,𝐶 , 𝑃 𝑇𝑚, 𝑊𝑚, 𝑠)
2: 𝜎 ← ⟨⟩

3: for 𝛼 in 𝑛𝑒𝑥𝑡_𝑎𝑐 𝑡𝑖𝑣𝑖𝑡𝑦( ,𝐶 , 𝜎) do
4: 𝑒 ← {}
5: 𝑒.𝑎𝑐 𝑡 ← 𝛼, 𝑒.𝑟𝑜𝑙 𝑒 ← 𝑔 𝑒𝑡_𝑟𝑜𝑙 𝑒(𝑒.𝑎𝑐 𝑡,𝑅)
6: if 𝑒.𝑎𝑐 𝑡 = 𝑠𝑡𝑎𝑟𝑡 then
7: 𝑒.𝑡𝑠 ← 𝑠
8: else
9: 𝑒.𝑡𝑤 ← 𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡(𝑊𝑚, [𝑒.𝑎𝑐 𝑡, 𝜏 , 𝑤𝑖𝑝𝜏 , 𝑟𝑜𝜏])

10: 𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒(𝑒.𝑡𝑤), 𝑒.𝑡𝑠 ← 𝜏
11: end if
12: 𝑒.𝑡𝑝 ← 𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡(𝑃 𝑇𝑚, [𝑒.𝑎𝑐 𝑡, 𝑒.𝑡𝑠, 𝑤𝑖𝑝𝜏 , 𝑟𝑜𝜏])
13: 𝑒.𝑟 ← 𝑤𝑎𝑖𝑡_𝑟𝑒𝑠𝑜𝑢𝑟𝑐 𝑒(𝑒.𝑟𝑜𝑙 𝑒), 𝑒.𝑡𝑠 ← 𝜏
14: 𝜎 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝜎 , 𝑒𝑥𝑒𝑐 𝑢𝑡𝑒(𝑒, 𝑒.𝑡𝑝))
15: end for
16: return 𝜎
17: end function
18:
19: 𝑆 𝑇 ← 𝑠𝑜𝑟𝑡(𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡(𝑆𝑚, 𝑂))
20: 𝑠𝑖𝑚 ← ∅
21: 𝑠𝑖𝑚 ← 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐 𝑒( ,𝐶 , 𝑃 𝑇𝑚, 𝑊𝑚, 𝑆 𝑇 [0])
22: for 𝑗 = 1 𝑡𝑜 𝑂 − 1 do
23: 𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒(𝑆 𝑇 [𝑗] − 𝑆 𝑇 [𝑗 − 1])
24: 𝑠𝑖𝑚 ← 𝑠𝑖𝑚 ∪ {𝑛𝑒𝑤_𝑡𝑟𝑎𝑐 𝑒( ,𝐶 , 𝑃 𝑇𝑚, 𝑊𝑚, 𝑆 𝑇 [𝑗])}
25: end for

we have to ensure that an available resource from the assigned role
can be allocated, otherwise, the activity has to wait in queue until a
resource is available (Line 13). The function 𝑤𝑎𝑖𝑡_𝑟𝑒𝑠𝑜𝑢𝑟𝑐 𝑒 returns the
first available resource, potentially waiting the proper time if none of
them is immediately available. The event can hence be executed and
its execution added to the generated trace 𝜎 (Line 14). The procedure
is then iterated on the next activity. When the end is reached, the
simulated trace is returned. Fig. 1 illustrates an example of runtime-
integration, showing the 𝑆𝑚, 𝑃 𝑇𝑚, and 𝑊𝑚 models through green, purple
and blue points, respectively.

4.2. Rims+: Enhancing rims with queue discovery

In many processes, traces do not operate independently but rather
compete for scarce resources [28]. The resource competition among
traces generates queues and side-effects on traces’ cycle times, namely
waiting times. Therefore, to obtain a more accurate prediction of the
waiting time between two events, we enrich the set of intercase features
with a further one (𝑞 𝑢𝑒𝑢𝑒) measuring the length of the queue for the
required resource (see Fig. 3). Typically, queue mining approaches rely
on event logs containing information on queueing dynamics. However,
queueing information, such as the time an event spends waiting for
a resource and/or the number of events competing for that resource,
is often unavailable. Hence, before training the waiting time model
enriched with the queue feature, 𝑊 𝑞

𝑚 , it is necessary to extract the 𝑞 𝑢𝑒𝑢𝑒
features from the event log.

The idea is to leverage the simulation to exactly replay the log
and retrieve the queue length value at each specific time 𝜏. Given the
absence of further information, we make the assumption that resources
are requested immediately after the completion of the previous activity,
i.e., that resources are always available, if they are not busy with other
cases. To this aim, Algorithm 2 takes as input , i.e., an event log
sorted by start times and returns a log 𝑞 where each event of each
trace is enriched with a feature 𝑞 𝑢𝑒𝑢𝑒 with the length of the queue
6
Fig. 4. Example of queue discovery. Algorithm 2 takes as input the three traces
from Table 1 and leveraging the simulation returns the same traces enriched with
the attribute 𝑞 𝑢𝑒𝑢𝑒.

Algorithm 2 Queue Discovery
Input :  sorted event log, 𝑅

1: function 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐 𝑒_𝑞 𝑢𝑒𝑢𝑒(𝜎)
2: 𝜎∗ ← ⟨⟩

3: for 𝑒𝑖 in 𝜎 do
4: 𝑒𝑖.𝑞 𝑢𝑒𝑢𝑒 ← 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒_𝑞 𝑢𝑒𝑢𝑒(𝑒𝑖.𝑟, 𝜏)
5: 𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒(𝑒𝑖.𝑡𝑠𝑡𝑎𝑟𝑡 − 𝑒𝑖−1.𝑡𝑒𝑛𝑑)
6: 𝑒𝑥𝑒𝑐 𝑢𝑡𝑒(𝑒𝑖, 𝑒𝑖.𝑡𝑝)
7: 𝜎∗ ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝜎∗, 𝑒𝑖)
8: end for
9: return 𝜎∗

10: end function
11:
12: 𝑞 ← ∅
13: for 𝜎 ∈  do
14: 𝑞 ← 𝑞 ∪ 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐 𝑒_𝑞 𝑢𝑒𝑢𝑒(𝜎)
15: end for

at the time of the execution of the event. For each trace 𝜎 in , the
function 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐 𝑒_𝑞 𝑢𝑒𝑢𝑒 replays the given trace, event by event. First,
the function 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒_𝑞 𝑢𝑒𝑢𝑒 computes the value of the length of the
queue at time 𝜏 (Line 4), then the elapsed time between the current
event and the previous one (i.e., the waiting time) is waited (Line 5),
and, in the end, the event 𝑒𝑖 is executed (Line 6). Finally, 𝜎∗ records
the event with the new attribute 𝑒𝑖.𝑞 𝑢𝑒𝑢𝑒 (Line 7). Once 𝑞 is obtained,
𝑊 𝑞

𝑚 is trained for the waiting time prediction (including also the queue
length in the encoding). Rims+ leverages 𝑊 𝑞

𝑚 to obtain the simulation
model ∗

𝑞 = ( , , 𝑆𝑚, 𝑊 𝑞
𝑚 , 𝑃 𝑇𝑚) through Algorithm 1. Fig. 4 describes

an example of queue discovery related to the activity B for case 1 and
2 of the log in Table 1.

4.3. Enhancing rims/rims+ with decision mining

As shown in Section 3, using branching probability to define the
control-flow of a simulation model could produce unrealistic process
behaviors. The paths of the traces may depend on their attributes
and/or the state of the process. Therefore, to enhance the quality of
the entire simulation, we rely on predictions that learn the more likely
next activity or the branching probability at a decision point from data
by taking into account data attributes and the events occurred up to
that point in the trace. More specifically, we define Rims𝐷 𝑇 that, for
each decision point in the process model, may employ a next activity
prediction model that at runtime provides predictions on the next
activity or the probability distribution.

In the following, we introduce the new simulation parameters of
Rims𝐷 𝑇 (Section 4.3.1), the training of the predictive models used for
the decision points (Section 4.3.2) and, finally, their integration into
the simulation (Section 4.3.3).

4.3.1. Redefinition of DDPS elements
Rims𝐷 𝑇 defines ∗

𝑑 𝑝 as a variation of the ∗ simulation model,
particularly by redefining ∗ =  ∪ ∗ ∪ ∗ as the subset of sim-
¬𝑇 𝑅 𝐴 𝐶

F. Meneghello et al.

T

h
a
u
o
s

w
o
a
c

p

t

w
T
e
e

p
s
i
m

n
𝑘
t
t
𝑟
e
l
p
t
e
n

e
p
m

Information Systems 128 (2025) 102472
Algorithm 3 Decision Mining
Input : 𝑟 aligned log,  , {𝑑 𝑝1, ...𝑑 𝑝𝑛} ∈  , 𝑡 and 𝐶

1: function 𝑚𝑖𝑛𝑖𝑛𝑔_𝑑 𝑒𝑐 𝑖𝑠𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡(𝑑 𝑝, 𝐶)
2: 𝑟

𝑑 𝑝 ← 𝑓 𝑖𝑙 𝑡𝑒𝑟_𝑙 𝑜𝑔_𝑑 𝑒𝑐 𝑖𝑠𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡(𝑟, 𝑑 𝑝)
3: 𝑑 𝑝 ← 𝑒𝑛𝑐 𝑜𝑑 𝑖𝑛𝑔_𝑝𝑟𝑒𝑓 𝑖𝑥(𝑟

𝑑 𝑝)
4:  𝑡𝑟𝑎𝑖𝑛

𝑑 𝑝 ,  𝑡𝑒𝑠𝑡
𝑑 𝑝 ← 𝑠𝑝𝑙 𝑖𝑡_𝑙 𝑜𝑔(𝑑 𝑝)

5: 𝐷 𝑇 𝑑 𝑝
𝑚 ← 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑 𝑡( 𝑡𝑟𝑎𝑖𝑛

𝑑 𝑝)
6: if 𝑒𝑣𝑎𝑙 𝑢𝑎𝑡𝑖𝑜𝑛(𝐷 𝑇 𝑑 𝑝

𝑚 ,  𝑡𝑒𝑠𝑡
𝑑 𝑝) > 𝑡 then

7: return 𝐷 𝑇 𝑑 𝑝
𝑚

8: else
9: return 𝑑 𝑝

𝐶
10: end if
11: end function
12: for 𝑑 𝑝 ∈  do
13: ∗

𝐶 ← ∗
𝐶 ∪ 𝑚𝑖𝑛𝑖𝑛𝑔_𝑑 𝑒𝑐 𝑖𝑠𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡(𝑑 𝑝,𝑑 𝑝

𝐶)
14: end for

ulation parameters that excludes those related to the time perspective.
he resource allocation 𝑅 is defined as in ¬𝑇 , while ∗

𝐴 represents the
simulation parameters for generating the trace attributes, 𝑝1,… , 𝑝𝑛, of
each simulated trace. As shown in [18,20,21], the use of data attributes
as a significant impact on the discovery and prediction of the next
ctivity from a decision point. Therefore, if the traces in , which are
sed to construct ∗

𝑑 𝑝, include data attributes, we define ∗
𝐴 as a set

f probability functions capable of estimating each attribute during the
imulation.

For each decision point 𝑑 𝑝𝑖 in  , we train a predictive model 𝐷 𝑇 𝑖
𝑚,

hich is included into ∗
𝐶 if its accuracy is higher than a certain thresh-

ld; otherwise, the probabilities  𝑖
𝐶 are used to determine the next

ctivity from the decision point. Hence, ∗
𝐶 = {∗1

𝐶 ,… ,∗𝑛
𝐶 }, is a set

ontaining ∗𝑖
𝐶 for each 𝑑 𝑝𝑖 in  , with 𝑛 = |𝑑 𝑝|, which can be either

the predictive model predicting the next activity (when its accuracy is
higher than the threshold) or alternatively the corresponding branching
robability.

The predictive model is defined as a classifier that estimates the next
activity, as in [20,21]. The input is represented by features related to
he current trace, as well as other simulation state features, while all

possible activities occurring directly after the decision point are desig-
nated as labels. As predictive model we used the Decision Tree, 𝐷 𝑇𝑚

hich is capable of predicting the next activity in a white-box manner.
his allows us to observe the reasons for routing, and furthermore,
nables the definition of what-if scenarios based on it. Rims integrates
ach 𝐷 𝑇𝑚 at runtime so as to exploit the data attributes and trace

history for selecting the next activity to perform.

4.3.2. Data preprocessing and training
In order to train a predictive model 𝐷 𝑇𝑚 with real data and get

redictions for simulated data, we have to align the real data to the
imulated one. To this aim, before training 𝐷 𝑇𝑚, each trace of 
s aligned with the given process model  through the alignment
ethod [29,30] and transformed into a format that is compliant to

the simulation model. An aligned trace can contain three symbols:
SM (Synchronous Move), MM (Model Move) and LM (Log Move).
SM denotes a perfect alignment between the trace and the model on
the current activity. MM is a deviation between the trace and the
execution sequence of  , meaning that the execution of an activity
has been skipped in the trace. LM represents that an activity has been
executed in the trace, though there is no corresponding activity on the
model. Differently from conformance checking approaches, here MMs
also include the invisible transitions.3 Finally, each aligned trace is

3 The Petri net model may include invisible transitions, namely transitions
with no associated label that do not represent an actual activity and are hence
considered as instantaneous during the simulation of the corresponding process
model  , as they are required for the simulation.
 e

7
transformed into a trace compliant to the simulation model through
two actions: (i) LM moves are removed; (ii) MMs are added as events
with event attributes (e.g., timestamp, resource) set to null. Therefore,
for each original trace 𝜎 ∈ , a version of the trace 𝜎𝑟 ∈ 𝑟 compliant
to the simulation model is obtained by aligning 𝜎 to the process model
 . Fig. 5 illustrates the alignment and transformation preprocessing
for case 1 from Table 1. The trace is first aligned to the process model
in Fig. 1 and then transformed into a compliant trace. The SMs concern
the activities A, B and D, the MMs are I1 and I3 and, finally, E is an LM
move since the activity is only present in the log.

The model-compliant traces are then used as starting point to train
the predictive model 𝐷 𝑇𝑚. Specifically, for each decision point 𝑑 𝑝𝑖 and
for each model-compliant trace 𝜎𝑟, we use the trace prefix up to the
decision point as training data and the activity immediately following
the decision point as class label. For instance, considering the decision
point 𝑑 𝑝2 of  in Fig. 1 and the model-compliant trace 𝜎𝑟 in Fig. 5,
the prefix ⟨𝖠,𝖡, I1⟩ is used as training trace, while activity D serves as
class label.

To train the Decision Tree model we apply two different types
of encoding: the last payload intra-case and the last payload inter-case
encoding. While the former only includes control flow information of
the trace under analysis and data payload information related to its last
event, the latter also takes into account concurrent traces. The analysis
of both these encodings allows us to understand whether the path of
a trace in the process is influenced by other traces. Moreover, the last
payload allows us to take into account also the data payloads, while
preventing the creation of long and redundant encodings in traces that
contain a large number of events.

More specifically, given a decision point 𝑑 𝑝, a model-compliant
trace 𝜎𝑟 ∈ 𝑟 of length 𝑚 and its prefix 𝜎𝑟𝑘, assuming that the first event
on-related to an invisible transition that precedes 𝑑 𝑝 occurs at position
 < 𝑚, the last payload intra-case encoding is obtained by concatenating
he following features: (i) the prefix ⟨𝑒𝑟1.𝑎𝑐 𝑡,… , 𝑒𝑟𝑘.𝑎𝑐 𝑡⟩ where 𝑘 < 𝑚,
hat is the sequence of activities up to the last activity before 𝑑 𝑝, (ii)
𝑜𝑙 𝑒(𝑒𝑟𝑘.𝑟), that is the last role of the resource 𝑟 involved in the last
vent; and finally (iii) ⟨𝜎𝑟.𝑝1,… , 𝜎𝑟.𝑝𝑛⟩, that are the trace attributes. The
ast payload inter-case encoding adds time and inter-case features to the
revious encoding, that is 𝑒𝑟𝑘.𝑡𝑐 𝑜𝑚𝑝𝑙 𝑒𝑡𝑒, 𝑤𝑖𝑝𝜏𝑘 , 𝑟𝑜𝜏𝑘 , 𝑞𝜏𝑘 . For instance, given
he decision point 𝑑 𝑝2 in Fig. 1 and the model-compliant trace of the
xample in Fig. 5, the last event preceding the decision point that is
ot an invisible transition is the second event. The considered prefix

is therefore ⟨𝐴, 𝐵⟩ and the last event role and timestamp are the ones
related to the second event.

The pseudocode of Algorithm 3 describes how ∗
𝐶 is defined: it takes

as input 𝑟 a log compliant to the simulation model, 𝐶 and  as
defined in Section 4.1.1. For each decision point 𝑑 𝑝𝑖 in the process
model  the function 𝑚𝑖𝑛𝑖𝑛𝑔_𝑑 𝑒𝑐 𝑖𝑠𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡 builds the corresponding
𝐷 𝑇 𝑖

𝑚 and determines whether ∗𝑖
𝐶 corresponds to the branching prob-

ability of the decision point 𝑑 𝑝𝑖, or to the predictive model 𝐷 𝑇 𝑖
𝑚. The

function, first of all, uses the 𝑓 𝑖𝑙 𝑡𝑒𝑟_𝑙 𝑜𝑔_𝑑 𝑒𝑐 𝑖𝑠𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡 to retrieve from
𝑟 only the traces that pass though 𝑑 𝑝𝑖 (Line 2). Then 𝑒𝑛𝑐 𝑜𝑑 𝑖𝑛𝑔 function
encodes the filtered log 𝑟

𝑑 𝑝𝑖 , according to the specific type of encoding
for training 𝐷 𝑇 𝑖

𝑚 (Line 3). The function 𝑠𝑝𝑙 𝑖𝑡_𝑙 𝑜𝑔, is used to obtain
 𝑡𝑟𝑎𝑖𝑛
𝑑 𝑝𝑖 ,  𝑡𝑒𝑠𝑡

𝑑 𝑝𝑖 (Line 4), then 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑 𝑡 uses  𝑡𝑟𝑎𝑖𝑛
𝑑 𝑝𝑖 to train the Decision

Tree model 𝐷 𝑇 𝑖
𝑚 (Line 5). Finally, the discovered model is evaluated

with  𝑡𝑒𝑠𝑡
𝑑 𝑝𝑖 in order to understand whether its accuracy is higher than a

certain threshold and hence the predictive model can be used to predict
the next activity after the decision point 𝑑 𝑝𝑖. If the accuracy is not high
nough, the branching probability 𝑑 𝑝

𝐶 is returned. The accuracy of the
redictions in the function 𝑒𝑣𝑎𝑙 𝑢𝑎𝑡𝑖𝑜𝑛 is measured in terms of F-score
acro-average.4

4 The metrics 𝑚𝑎𝑐 𝑟𝑜_𝑓1_𝑠𝑐 𝑜𝑟𝑒 = 1
𝑙

∑𝑙
𝑗=1 𝑓1_𝑠𝑐 𝑜𝑟𝑒𝑗 , where 𝑙 represents the

total number of class labels in 𝐷 𝑇 𝑖
𝑚. We used the 𝑚𝑎𝑐 𝑟𝑜_𝑓1_𝑠𝑐 𝑜𝑟𝑒 to evaluate

each 𝐷 𝑇 𝑖
𝑚 to prevent predictions that exclude certain labels due to imbalanced

vents distribution across possible activities from a decision point 𝑑 𝑝 .
𝑖

F. Meneghello et al. Information Systems 128 (2025) 102472
Algorithm 4 Next activity
Input :  process model, ∗

𝐶 , 𝜎
1: function 𝑛𝑒𝑥𝑡_𝑎𝑐 𝑡𝑖𝑣𝑖𝑡𝑦( , ∗

𝐶 , 𝜎)
2: 𝑝𝑎𝑐 𝑡 ← 𝑎𝑐 𝑡𝑢𝑎𝑙_𝑝𝑙 𝑎𝑐 𝑒_𝑚𝑜𝑑 𝑒𝑙( , 𝜎)
3:  ← 𝑒𝑥𝑡𝑟𝑎𝑐 𝑡_𝑑 𝑒𝑐 𝑖𝑑 𝑒𝑟(∗

𝐶 , 𝑝𝑎𝑐 𝑡)
4: if 𝑡𝑦𝑝𝑒() = 𝐷 𝑇𝑚 then
5: 𝜖 ← 𝑒𝑛𝑐 𝑜𝑑 𝑖𝑛𝑔(𝜎)
6: 𝑛𝑒𝑥𝑡 ← 𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡(, 𝜖)
7: else
8: 𝑛𝑒𝑥𝑡 ← 𝑎𝑝𝑝𝑙 𝑦_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙 𝑖𝑡𝑦(, 𝑝𝑎𝑐 𝑡)
9: end if

10: return 𝑛𝑒𝑥𝑡
11: end function

Fig. 5. The color green represents SM moves instead with yellow and purple we have
the MM and LM moves, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

4.3.3. Integration of decision mining

Once 𝑃 ∗
𝐶 is defined, it is integrated into Rims𝐷 𝑇 by redefining the

𝑛𝑒𝑥𝑡_𝑎𝑐 𝑡𝑖𝑣𝑖𝑡𝑦 function of Algorithm 1. This function applies the corre-
sponding probability or predictive model, as detailed in Algorithm 4.
The 𝑛𝑒𝑥𝑡_𝑎𝑐 𝑡𝑖𝑣𝑖𝑡𝑦 function takes the same inputs as the previous defini-
tion, except 𝑃 ∗

𝐶 . First of all, 𝑎𝑐 𝑡𝑢𝑎𝑙_𝑝𝑙 𝑎𝑐 𝑒_𝑚𝑜𝑑 𝑒𝑙 determines the current
position of the running trace 𝜎 within the process model by identifying
the place (Line 2). Then the function 𝑒𝑥𝑡𝑟𝑎𝑐 𝑡_𝑑 𝑒𝑐 𝑖𝑑 𝑒𝑟 retrieves from 𝑃 ∗

𝐶
the corresponding method for 𝑝𝑎𝑐 𝑡 (Line 3). If  is a 𝐷 𝑇𝑚 model, the
trace is processed by the encoder and used as input for the predictive
model (Line 5–6). Otherwise, the 𝑎𝑝𝑝𝑙 𝑦_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙 𝑖𝑡𝑦 function determines
the next activity based on probabilities (Line 8).

In particular, each 𝐷 𝑇 𝑖
𝑚 ∈ 𝑃 ∗

𝐶 is capable of returning either the
predicted class, namely 𝑛𝑒𝑥𝑡, or the probability distribution of classes.
In this latter case the class probability distribution is used by the
function 𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡 (Line 6) to define 𝑛𝑒𝑥𝑡 as the next activity to per-
form. The use of predictive probability distributions could prevent
unbalanced outcomes, especially when probabilities are close to each
other. For instance, Table 5 reports the output (class label and related
probabilities) of the Decision Tree 𝐷 𝑇 2

𝑚 related to 𝑑 𝑝2 for a certain trace
history and last data payload (e.g., ⟨𝐴, 𝐵 , 𝑅𝑜𝑙 𝑒1⟩). In this example, the
probabilities related to the two class labels 𝐼2 and D are very close,
thus revealing that the prediction with the highest probability could
not always be correct. If 𝐷 𝑇 2

𝑚 always predicts only the most probable
class, the prediction returned by the Decision Tree will prevent the
simulation of traces in which the specific trace history and data payload
is followed by the activity 𝐼2 (traces that represent almost half of the
traces with the same trace history and data payload in the training set).
Leveraging the probability distribution as branching conditions for the
choice of the next activity would instead guarantee the simulation of
these slightly infrequent cases as well as of infrequent class labels.
8
Table 5
Output of the Decision Tree 𝐷 𝑇 2

𝑚 for a given trace
history and data payload.
Class label Probability

D 0.55
𝐼2 0.45

5. Related work

We can roughly classify the existing literature related to BPS applied
to PPM into three groups: DDPS (Data-Driven Process Simulation), DL
(Deep Learning) and hybrid approaches. In the next subsection we
describe the first two groups, while in the next one we focus on hybrid
approaches.

5.1. DDPS and DL simulation models

The first group, namely DDPS, can discover the simulation model
from the event log, with an automated [2–5] or semi-automated [6,7]
extraction. Typically, a DDPS model is created through two main
steps. First, the process model is discovered from the event log, then
various parameters are adjusted to optimize the similarity between
traces generated by the DDPS model and a subset of traces in the event
log (test set). The second group of approaches leverages DL models,
widely used in predictive process monitoring, to generate the most
likely remaining sequence of events of an ongoing case, as in [13],
or to generate the entire trace from scratch [25]. Camargo et al. [27]
compare the two different groups of approaches and highlight their
strengths and weaknesses. In particular, the DDPSs are suitable to
capture the sequence of activities of a process and to define what-
if scenarios. Whereas, DL models outperform the former in capturing
the time perspective, particularly the waiting times between activities.
Hybrid simulation models, as Rims, aim to leverage the advantages and
avoid the weaknesses of the two methods, thereby creating a more
accurate simulation model that represents the real process.

5.2. Hybrid simulation models

Recent research has investigated the use of machine learning or
neural networks to predict outcomes or decisions within a DES model in
different fields [14–17]. Bergmann et al. [15] propose the use of neural
networks and conventional simulation methods to improve decision-
making when system knowledge is insufficient. De la Fuente et al. [17]
use ANN (Artificial Neural Networks) inside a DES model to simulate
a simple banking process in which a customer’s loan application is
accepted or rejected based on the ANN model. Pender et al. [16]
propose combining simulation and machine learning techniques to pre-
dict response times for processor sharing queues, which are queueing
systems where multiple jobs share a common processing resource.
Specifically, the proposed approach uses the data generated by the Dis-
crete Event Simulation to train several machine learning methods that
are then compared. The integration of predictive models in these works
shows how to overcome the unrealistic and oversimplified assumptions
typically adopted in DES simulators and/or how to represent complex
behaviors that are difficult to capture with simulation parameters.

Although the integration of DDPS and DL methods has been studied
in several research areas only Camargo et al. [10] apply it to discover a
BPS model from a log. Specifically, the framework called Dsim applies
process mining techniques to uncover a stochastic process model from
a log and then a DL model is employed to assign timestamps to the
events generated by the stochastic model. However this method applies
the DL model after the DES simulator has generated all the traces, and
the consequence of this is, as shown in Section 3, that the order of
the queue is not always respected. Our approach aims at overcoming
this issue by integrating the DL model inside the DES simulator, so
as to return runtime predictions, i.e., predictions provided during the
simulation of the case.

F. Meneghello et al.

t
m

t

f

f
m

Information Systems 128 (2025) 102472
Table 6
Event log and queue statistics. The highlighted logs are those considered for Rims+.

Log Type #Traces #Events #Activity Queue mean Avg. trace length

BPI17W real 30 276 240 854 8 1646 7.96
BPI12W real 8616 59 302 6 1115 6.88
Cvs Pharmacy syn 10 000 103 906 15 59 10.39
Confidential 1000 syn 800 21 221 29 9.91 26.53
SynLoan syn 2000 43 164 25 68.89 39
Confidential 2000 syn 1670 44 373 29 2.37 26.57
ConsultaDataMining real 954 4962 16 0 5.2
Production real 225 4503 24 1.17 20
PurchasingExample syn 608 9119 21 0.30 15
D

s

s
t
e
s
q

e
6

d
n

In this paper, Rims provides a tight integration of the predictions of
he DL model at runtime during the simulation, thus enabling a correct
anagement of the queue. de Leoni et al. [18] propose a simulation

model that incorporates a logistic regression model that from a process
state predicts the next activity of each decision point. However, the
simulation model is only evaluated in terms of control flow without
considering and simulating the other perspectives, which, as we show
in Section 7, are interconnected. In addition, the approach requires
Data Petri Nets (DPNs), which makes a direct comparison with other
methods difficult.5 In contrast, Rims takes into account in an integrated
way the control flow, resource, time and data perspective and can be
used also on event logs without data attributes.

6. Evaluation setting

In this section we introduce the research questions, the datasets and
he experimental setting (including the metrics) used in the evaluation.

6.1. Research questions

We aim at investigating the following research questions:

RQ1 How does Rims and its variants perform in terms of simulation
quality compared to the other state-of-the-art approaches?

RQ2 Which variant of Rims is best suited for event logs based on the
queue information present in them?

RQ1 aims to compare all the variants of Rims with state-of-the-art
i.e. the single approaches (DDPS and DL) and the hybrid one, post-
integration. RQ2 aims to identify the best Rims variant and assess the
impact of the queue feature on the quality of the time and control
perspectives in the simulation, as well as the impact of introducing
predictive models for the control flow.

6.2. Datasets

For the evaluation we considered nine event logs – four real-life and
ive synthetic logs obtained by simulating real-life processes – contain-

ing both start and end timestamps, as this information is necessary to
define the predictive models used as simulation time parameters.

Table 6 reports the number of traces, events, activities, and the
mean value of queue calculated by Algorithm 2.

Additionally, we consider six different semi-synthetic logs, denoted
as 𝑖

𝑠𝑦𝑛, 𝑖 = 1,… , 6, to properly analyze the impact of Rims+ with dif-
erent levels of queuing. To generate the logs, we define the simulation
odel 𝑠𝑦𝑛 inspired by the BPIC2012 [31] process. Each 𝑖

𝑠𝑦𝑛 log con-
tains 4 000 traces and utilize the same 𝑠𝑦𝑛 and simulation parameters
with the exception of 𝑠𝑦𝑛

𝑅 i.e., a special resource configuration for
creating different levels of queues.6

5 A DPN is a Petri net in which transitions can write variables. A transition
might have a data-dependent guard and execute write operations on a specified
collection of variables, which necessarily need data attributes.
 a

9
Table 7
Hyperparameters used to optimize the Decision Tree models of Rims𝐷 𝑇 .

Parameter Distribution Value

𝑐 𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝐶 𝑎𝑡𝑒𝑔 𝑜𝑟𝑖𝑎𝑙 {𝑔 𝑖𝑛𝑖, 𝑒𝑛𝑡𝑟𝑜𝑝𝑦, 𝑙 𝑜𝑔_𝑙 𝑜𝑠𝑠}
𝑚𝑎𝑥_𝑑 𝑒𝑝𝑡ℎ 𝑈 𝑛𝑖𝑓 𝑜𝑟𝑚 [1,… ., 21]
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙 𝑒𝑠_𝑠𝑝𝑙 𝑖𝑡 𝑈 𝑛𝑖𝑓 𝑜𝑟𝑚 [2,… ., 11]
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙 𝑒𝑠_𝑙 𝑒𝑎𝑓 𝑈 𝑛𝑖𝑓 𝑜𝑟𝑚 [3,… ., 26]

6.3. Experiment setup

We aim to evaluate the performance of DDPS, generative DL models,
sim, Rims, Rims+ and Rims𝐷 𝑇 .

To evaluate the DDPS models we used the Simod tool [2], which
is able to create a BPS model in a fully automated way. For the
DL approach, we exploit the DeepGenerator tool [25], which is able,
through an LSTM model, to generate complete event logs from zero-
ize prefixes. The tool Dsim [10] is used as post-integration approach. In

order to carry out a fair comparison, the Petri net model,7  , and the
imulation parameters, ¬𝑇 , are the same for all methods that require
hem. In addition, Rims used the same LSTM models as Dsim to properly
valuate the effect of different ways of integrating predictions in the
imulation. Rims+ is applied only to event logs that exhibit significant
ueues, as highlighted in Table 6. The level of queue for each log in

Table 6 was determined by applying Algorithm 3, as this information
is not already included in the logs. Specifically, a log is considered to
have significant queue if the average queue mean reaches at least 10%
of the average trace length.

To train the LSTM and the Decision Tree 𝐷 𝑇𝑚 models, we split each
vent log using the hold-out method and a time split criterion, into a
0%–20%–20% partitioning for training, validation and testing, respec-

tively. The 𝐷 𝑇𝑚 models are hyperparameter-optimized using Hyperopt,8
across the parameter ranges given in Table 7. The LSTM models are
instead optimized using the same hyperparameter optimization used
in [10].

The 𝐷 𝑇𝑚 models involved in Rims𝐷 𝑇 also use trace attributes in
both the last payload intra-case and last payload inter-case encoding.
The simulation parameters ∗

𝐴 of ∗
𝑑 𝑝 are therefore also needed for

the event logs containing trace attributes i.e., BPI12W, SynLoan, and
BPI17W. Table 8 describes the random distribution associated with the
trace attributes for these three logs.

For each event log in Table 6, we define ∗ (Rims) and ∗
𝑑 𝑝

(Rims𝐷 𝑇). Moreover, for the logs with a significant level of queueing we

6 The logs 𝑖
𝑠𝑦𝑛 and the simulation models 𝑖

𝑠𝑦𝑛 = ( 𝑖
𝑠𝑦𝑛 ,𝑖

𝑠𝑦𝑛) used to
generate these logs are available, together with the code and all the material
used in the evaluation at https://github.com/francescameneghello/RIMS/tree/
RIMS_decision_points.

7 Simod and Dsim approaches use BPMN as the process model. Thus, before
efining  for Rims, we first translate the BPMN into the corresponding Petri
et.

8 Hyperopt is a Python library for serial and parallel optimization over
wkward search spaces, https://hyperopt.github.io/hyperopt/.

https://github.com/francescameneghello/RIMS/tree/RIMS_decision_points
https://github.com/francescameneghello/RIMS/tree/RIMS_decision_points
https://hyperopt.github.io/hyperopt/

F. Meneghello et al.

u

f
o
c
p

i

E

r

m
o

Information Systems 128 (2025) 102472
Table 8
Data payloads attributes. The non-uniform random variate generation involves generating random variables with specific distributions. For the generation of trace attributes, we
se the probability distributions mined from the event log.
Log Trace attributes Type Distribution

BPI12W Loan amount requested Continuous 𝐸 𝑥𝑝(𝜆 = 14451.153)
SynLoan Loan amount requested Continuous 𝑁 𝑜𝑟𝑚(𝜇 = 15163.62, 𝜎 = 12325.49)

BPI17W
Loan amount requested Continuous 𝐸 𝑥𝑝(𝜆 = 16224.34)
Loan Goal Discrete Non-uniform random variate generation
TypeApplication Discrete Non-uniform random variate generation.
l
D
e
a

a
C
C
s
i
v

o

r

r
f

Table 9
Summary of all RIMS variants indicating the perspectives of the process in which the
predictive models are used, the optional feature considered (with ✓ and 𝑥 indicating
their presence or absence) and the prediction type.

Time predictive models Decision point predictive models

Rims Included Queue Included Intracase Intercase Prediction
variant feature feature feature type

Rims ✓ 𝑥 𝑥 𝑥 𝑥 𝑥

Rims+ ✓ ✓ 𝑥 𝑥 𝑥 𝑥

Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 ✓ 𝑥 ✓ ✓ 𝑥 𝐷 𝐸 𝑇
Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 ✓ 𝑥 ✓ ✓ 𝑥 𝑃 𝑅𝑂 𝐵
Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 ✓ 𝑥 ✓ 𝑥 ✓ 𝐷 𝐸 𝑇
Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 ✓ 𝑥 ✓ 𝑥 ✓ 𝑃 𝑅𝑂 𝐵
Rims+𝑖𝑛𝑡𝑒𝑟

𝐷 𝐸 𝑇 ✓ ✓ ✓ 𝑥 ✓ 𝐷 𝐸 𝑇
Rims+𝑖𝑛𝑡𝑒𝑟

𝑃 𝑅𝑂 𝐵 ✓ ✓ ✓ 𝑥 ✓ 𝑃 𝑅𝑂 𝐵

also define ∗
𝑞 (Rims+) and ∗

𝑞 ,𝑑 𝑝 (Rims+𝐷 𝑇). In particular, we evaluate
our variants of Rims𝐷 𝑇 , each representing a unique combination of
ne encoding type – either last payload intra-case or last payload inter-
ase – and one 𝐷 𝑇𝑚 model prediction type: either single class or
robability distribution over classes. We denote these four variants with

the following names: Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 , Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 , Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 and Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 , where
intra and inter refer to the use of last payload intra-case and last payload
inter-case encoding, respectively. DET and PROB indicate single class
and probability distribution over classes predictions, respectively.

For Rims+𝐷 𝑇 , we exclusively conduct the evaluation with the last
nter-case payload encoding (Rims+𝑖𝑛𝑡𝑒𝑟

𝐷 𝐸 𝑇 and Rims+𝑖𝑛𝑡𝑒𝑟
𝑃 𝑅𝑂 𝐵), because of the

significant impact of inter-case features on the logs used for Rims+ and
the absence of additional insights gained from using the last payload
intra-case encoding.

Table 9 includes all the variations of Rims applied to event logs,
along with details of the respective predictive models integrated for
both the time and control-flow perspectives.

Rims is developed with the SimPy9 library, a process-based Discrete
vent Simulation framework in Python.

6.4. Evaluation metrics

To assess the ability of the approaches proposed in Section 6.3 to
eplicate the observed behavior of a process, we employed metrics

outlined in the paper by Chapela et al. [32]. In particular, they propose
multiple metrics to evaluate the quality of simulation models across
control flow, temporal, and congestion dimensions. The metrics are
calculated by comparing the log 𝑠𝑖𝑚 generated by each model with
a ground-truth log 𝑡𝑒𝑠𝑡, i.e., a testing subset of the event log.

For evaluating the control-flow dimension of the simulation, we
employ the following metrics: Control-flow Log Distance (CFLD) which

inimizes the sum of the distances calculated by pairing the traces
f 𝑠𝑖𝑚 and 𝑡𝑒𝑠𝑡 using the Hungarian algorithm [33], and N-Gram

Distance (NGD), which compares the Directly-Follows Graph (DFG)

9 https://simpy.readthedocs.io/en/latest/
10
of 𝑠𝑖𝑚 and 𝑡𝑒𝑠𝑡 represented by two histograms, respectively. For
the NGD metric, we set the dimension of 𝑁 to 2 and 3 (2-Gram
and 3-Gram), meaning that the metrics evaluates pairs and triplets of
activities present in 𝑠𝑖𝑚 and 𝑡𝑒𝑠𝑡. For all control-flow metrics, the
ower the value, the closer the simulated log is to the real one. Since
DPS, Dsim, Rims, and Rims+ utilize the same  process model, to
valuate the control-flow, we compute the metrics only on LSTM, Rims,
nd Rims𝐷 𝑇 with its variants.

The evaluation of the temporal dimension includes three metrics:
Absolute Event Distribution (AED) for analyzing the trend of the distri-
bution of all events over time; Circadian Event Distribution (CED) for
comparing seasonality, particularly the distribution of events by day of
the week; and finally, Relative Event Distribution (RED) for analyzing
the temporal distribution of events with respect to the origin of the case
(i.e., the case arrival).

Finally, the congestion dimension is captured by two metrics that
ssess the simulation model’s ability to replicate process congestion: the
ase Arrival Rate (CAR) and the Cycle Time Distribution (CTD) metrics.
AR compares case arrival patterns and the number of arrivals over a
et of process timestamps, while CTD compares the cycle times of traces
n 𝑠𝑖𝑚 and 𝑡𝑒𝑠𝑡. Even for time and congestion metrics, the lower the
alue, the closer the simulated log is to the real one.

While AED and CTD are general metrics – the former captures
differences in the distribution of events across the entire time spectrum
f 𝑡𝑒𝑠𝑡 and 𝑠𝑖𝑚, while the latter considers the entire cycle time of

traces – CED, RED and CAR are metrics that focus on specific aspects
of the simulated traces (e.g., seasonality, arrival rate). The first group
of metrics is hence more suitable for providing an overall evaluation
of the simulated traces, while the second group, investigating specific
aspects of the simulation, results to be very useful in identifying the
easons for the differences observed in AED and CTD.

For all the time and congestion metrics, the analyzed events of 𝑠𝑖𝑚
and 𝑡𝑒𝑠𝑡 are represented by two histograms. The latter are then trans-
formed into two distribution functions to compute the 1st Wasserstein
Distance (1WD) [34], which is a computationally efficient variation of
the Earth Mover’s Distance (EMD) [35].

Finally, we define 𝐿𝑡𝑟𝑎𝑐 𝑒𝑠, which compares the length between traces
in 𝑠𝑖𝑚 and 𝑡𝑒𝑠𝑡, since time metrics, especially those concerning con-
gestion, are also influenced by the number of simulated events. 𝐿𝑡𝑟𝑎𝑐 𝑒𝑠 is
calculated as the average of the absolute errors between the lengths of
the traces in 𝑠𝑖𝑚 and 𝑡𝑒𝑠𝑡, paired using the Hungarian algorithm [33].

For each method 25 simulations are performed while 10 simulations
are computed for each 𝑖

𝑠𝑦𝑛 in Fig. 8.

7. Evaluation results

In this section we report the results of the evaluation and answer the
esearch questions of Section 6.1. We divide the analysis of the results
or the two research questions, RQ1 and RQ2, based on the presence of

queue information in the logs, as this allows for the application of the
Rims+ and Rims+𝐷 𝑇 variants. We begin with an analysis of the general
metrics—L𝑡𝑟𝑎𝑐 𝑒𝑠, CLFD for the control flow, and AED, CTD for the time
perspective. This provides an initial overview of the results, enabling a
broad comparison of the different methods’ performance. We then use
specific metrics to delve deeper into the general findings (Figs. A.9,
A.11, A.10, A.12).

https://simpy.readthedocs.io/en/latest/

F. Meneghello et al.

t

m
a
m
d
0

a
a
t
a

t
(
p
w

i
o

Information Systems 128 (2025) 102472
Table 10
Rankings for the CLFD and L𝑡𝑟𝑎𝑐 𝑒𝑠 metrics are defined by calculating p-values on the simulation results across all methods. Table includes the average values obtained in all logs
and the corresponding positions in the rankings. The best method(s) are indicated in boldface.

Method Confidential 2000 Rank Purchasing example Rank Production Rank Consulta DataMining Rank

DDPS 0.2576 5 0.1874 1 0.7549 6 0.1973 2
LSTM 0.2307 4 0.4492 8 0.6784 1 0.1919 2
Dsim 0.2576 5 0.1874 1 0.7549 6 0.1973 2
Rims 0.2576 5 0.1874 1 0.7549 6 0.1973 2
Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 0.2856 8 0.1880 1 0.7241 2 0.1876 2

Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 0.2031 1 0.1870 1 0.7566 4 0.1959 2

Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 0.2053 1 0.1852 1 0.7339 3 0.1719 1

CLFD

Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 0.2049 1 0.1856 1 0.7507 4 0.1959 2

DDPS 4.5528 2 1.6935 5 0.1832 2 1.1081 3
LSTM 2.2426 1 5.7648 8 0.6616 7 0.6813 1
Dsim 4.5528 2 1.6935 5 0.1832 2 1.1081 3
Rims 4.5528 2 1.6935 5 0.1832 2 1.1081 3
Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 5.8212 8 1.2626 1 2.0448 8 1.0301 3

Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 5.4767 5 1.5323 3 0.2191 2 1.1344 3

Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 5.5879 5 1.2475 1 0.3680 6 0.8888 2

𝐿𝑡𝑟𝑎𝑐 𝑒𝑠

Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 5.5754 5 1.6063 3 0.1693 1 1.1341 3
Table 11
Rankings for the AED and CTD metrics are defined by calculating p-values on the simulation results across all methods. Table includes the average values obtained in all logs and
he corresponding positions in the rankings. The best method(s) are indicated in boldface.

Method Confidential 2000 Rank Purchasing example Rank Production Rank Consulta DataMining Rank

DDPS 400.4493 2 655.5610 1 1302.7195 8 665.1526 8
LSTM 780.2948 8 1161.3856 2 164.8390 7 561.9059 7
Dsim 616.7942 3 1223.9957 3 123.7305 1 257.8716 6
Rims 618.6753 3 1265.7655 5 137.4757 3 238.1313 1
Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 316.4249 1 1254.4631 5 137.4701 3 240.3870 1

Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 615.9303 3 1265.0231 5 138.3194 3 239.8577 1

Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 616.0715 3 1242.9644 4 123.6104 1 242.2535 1

AED

Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 616.4784 3 1265.6600 5 145.3603 6 238.5318 1

DDPS 65.1559 7 590.9271 3 86.2018 7 76.2188 7
LSTM 10.3649 6 638.7778 8 35.7244 5 95.4625 8
Dsim 2.2354 1 633.5232 7 23.1680 1 64.1207 6
Rims 2.0388 1 584.6206 3 29.3849 4 43.2875 1
Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 1076.3854 8 576.3109 1 188.9627 8 43.1478 1

Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 1.9731 1 585.6424 3 28.6498 3 44.4243 1

Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 3.0153 1 574.2618 1 25.9467 2 41.4484 1

CTD

Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 2.1393 1 583.1438 3 36.1742 5 41.3704 1
a
i
m
I
o
v
p
i
A
t
t
o
f

Tables 10 and 12 show the comparison between the different simu-
lation models with respect to the control-flow perspective.

In particular, for each log, the methods are ranked based on the
ean values of the two metrics, L𝑡𝑟𝑎𝑐 𝑒𝑠 and CLFD, calculated across

ll the simulated logs. Ties in the rankings between two or more
ethods indicate that the differences are not statistically significant, as
etermined by a pairwise comparison t-test where the 𝑝-value exceeds
.05. Regarding Rims, DDPS, Dsim methods in Table 10, like Rims+ in

Table 12, report identical values, as all share the same process model
nd therefore they produce traces with the same control-flow.10 Rims𝐷 𝑇
lso shares the same process model as the others, but it also leverages
he DT models in decision points, and it can hence produce traces with
n improved control-flow quality.

In summary this evaluation compares three different techniques for
he generation of traces’ control flow: a pure DL generative technique
LSTM), a process model with fixed probability transition on decision
oints (DDPS, Dsim, Rims, Rims+) and the integration of a process model
ith white-box predictive models (Rims𝐷 𝑇 , Rims+𝐷 𝑇).

10 Even though Rims, DDPS, Dsim and Rims+ report the same values, we
nclude them in Tables 10 and 12, respectively, to ensure accurate computation
f the rankings.
11
Tables 11 and 13 report the comparison of the approach by taking
into account the time and the congestion dimension, without and with
 significant level of queue, respectively. The rankings are computed
n the same manner as with the control flow metrics. For these di-
ensions, each simulation method reports, in general, different results.

ndeed, LSTM and DDPS, during the simulation, employ different meth-
ds to estimate processing and waiting times than Dsim, Rims and its
ariants. On the other hand, Dsim, Rims and Rims𝐷 𝑇 utilize the same
redictive models, but they differ for the type of integration: post-
ntegration for the first one and runtime-integration for the last two.
dditionally, Rims𝐷 𝑇 produces variations in the control-flow, as men-

ioned before, which in turn affect the time and congestion metrics of
he entire process. Finally, Rims+ and Rims+𝐷 𝑇 utilize a different version
f predictive model for the waiting time by incorporating the queue
eature and apply the runtime-integration method.

Fig. 6 summarizes the ranking of the methods across all
perspectives – time, congestion and control-flow – for all the event logs
used in the evaluations. In terms of time and congestion dimension,
AED and CTD are general metrics suitable to provide an overall eval-
uation of the simulated traces. The former captures differences in the
distribution of events across the entire time spectrum of 𝑡𝑒𝑠𝑡 and 𝑠𝑖𝑚,
while the latter considers the entire cycle time of traces. We consider
AED and CTD together to define the optimal method(s) in Fig. 6 and, for

F. Meneghello et al.

a

t

Information Systems 128 (2025) 102472
Table 12
Rankings for the CLFD and L𝑡𝑟𝑎𝑐 𝑒 metrics are defined by calculating p-values on the simulation results across all methods. Table includes the average values obtained in all logs
nd the corresponding positions in the rankings. The best method(s) are indicated in boldface.

Method BPI17W Rank BPI12W Rank Cvs Pharmacy Rank Confidentia 1000 Rank SynLoan Rank

DDPS 0.4735 8 0.4310 2 0.2602 7 0.2261 6 0.5865 8
LSTM 0.3970 7 0.2944 1 0.2715 11 0.2519 10 0.3699 1
Dsim 0.4735 8 0.4310 2 0.2602 7 0.2261 6 0.5865 8
Rims 0.4735 8 0.4310 2 0.2602 7 0.2261 6 0.5865 8
Rims+ 0.4735 8 0.4310 2 0.2602 7 0.2261 6 0.5865 8
Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 0.3368 3 0.4944 11 0.2212 1 0.3351 11 0.3952 2

Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 0.3562 4 0.4320 2 0.2197 1 0.2018 3 0.4240 5

Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 0.3302 1 0.4799 10 0.2225 1 0.1410 1 0.3950 2

Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 0.3563 4 0.4294 2 0.2211 1 0.2002 3 0.4226 2

Rims+𝑖𝑛𝑡𝑒𝑟
𝐷 𝐸 𝑇 0.3298 1 0.4514 9 0.2218 1 0.1376 1 0.3939 5

CLFD

Rims+𝑖𝑛𝑡𝑒𝑟
𝑃 𝑅𝑂 𝐵 0.3555 4 0.4304 2 0.2196 1 0.2005 3 0.4223 2

DDPS 2.4658 7 1.3736 1 1.1055 1 3.0221 1 9.8572 8
LSTM 2.5365 11 1.8841 10 1.9512 11 2.9801 1 9.1857 4
Dsim 2.4658 7 1.3736 1 1.1055 1 3.0221 1 9.8572 8
Rims 2.4658 7 1.3736 1 1.1055 1 3.0221 1 9.8572 8
Rims+ 2.4658 7 1.3736 1 1.1055 1 3.0221 1 9.8572 8
Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 0.9366 1 2.6258 11 1.8064 5 11.2853 11 8.0797 1

Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 2.0698 5 1.3590 1 1.8022 5 4.8503 6 9.6933 5

Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 1.7046 2 1.6681 8 1.8215 8 4.8025 6 8.2381 1

Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 2.0787 5 1.3594 1 1.8131 8 4.8689 6 9.6753 5

Rims+𝑖𝑛𝑡𝑒𝑟
𝐷 𝐸 𝑇 1.7006 2 1.6806 8 1.8101 8 4.4989 6 8.0765 1

𝐿𝑡𝑟𝑎𝑐 𝑒𝑠

Rims+𝑖𝑛𝑡𝑒𝑟
𝑃 𝑅𝑂 𝐵 2.0506 4 1.3878 1 1.7908 4 4.7492 6 9.6920 5
Table 13
Rankings for the AED and CTD metrics are defined by calculating p-values on the simulation results across all methods. Table includes the average values obtained in all logs and
he corresponding positions in the rankings. The best method(s) are indicated in boldface.

Method BPI17W Rank BPI12W* Rank Cvs Pharmacy Rank Confidential 1000 Rank SynLoan Rank

DDPS 4806.0569 10 580 .3735 11 3737.1714 10 395.6612 11 285.4581 1
LSTM 36 435.5005 11 182.1496 10 7490.0252 11 358.2496 10 915.9726 11
Dsim 46.7428 6 22.9616 1 25.9934 2 244.7479 1 429.8132 3
Rims 28.2686 1 37.9309 4 59.2486 5 243.7857 1 371.7824 2
Rims+ 106.7241 7 39.7040 4 14.5868 1 238.4793 1 565.4652 7
Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 33.4366 4 28.8331 2 75.9279 6 236.6897 1 521.1241 4

Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 29.2353 1 41.8716 4 75.6858 6 245.1454 1 578.5477 4

Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 37.8911 5 27.8342 2 75.9129 6 243.7821 1 528.0596 4

Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 29.5144 1 40.8339 4 75.8363 6 245.4279 1 580.2814 8

Rims+𝑖𝑛𝑡𝑒𝑟
𝐷 𝐸 𝑇 136.5987 9 49.4703 9 26.5468 2 239.6343 1 718.0791 9

AED

Rims+𝑖𝑛𝑡𝑒𝑟
𝑃 𝑅𝑂 𝐵 110.5644 7 40.2435 4 26.5468 2 240.8168 1 752.6821 10

DDPS 264.4673 11 192.7671 11 294.9016 11 15.4111 11 637.7109 11
LSTM 212.4001 10 87.9155 3 177.4086 10 9.0599 8 404.1028 7
Dsim 115.9858 9 83.6518 1 38.2325 3 10.0581 10 465.2910 9
Rims 86.1195 6 100.0458 6 28.6076 2 7.4579 7 355.2428 6
Rims+ 37.8205 1 84.4962 1 12.7126 1 4.3004 1 229.9056 3
Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 69.5044 4 108.5267 10 98.5730 6 5.0931 1 215.6133 1

Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 86.8038 6 101.9591 3 98.2224 6 9.3278 6 302.1341 4

Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 84.9552 5 100.0842 6 98.4561 6 6.7263 5 223.5069 2

Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 86.9323 6 100.7581 6 98.2924 6 9.3248 8 300.9623 4

Rims+𝑖𝑛𝑡𝑒𝑟
𝐷 𝐸 𝑇 65.5271 3 85.2291 3 52.2997 4 4.1326 1 454.4386 8

CTD

Rims+𝑖𝑛𝑡𝑒𝑟
𝑃 𝑅𝑂 𝐵 38.7520 1 86.0765 3 50.5428 4 4.9638 1 515.8558 10
a

t
b

simplicity, refer to them collectively as time perspectives. The points in
Fig. 6 represent the sum of the rankings obtained by various simulation
methods across different logs and metrics (AED, CTD, CLFD, and L𝑡𝑟𝑎𝑐 𝑒𝑠)
for the corresponding perspectives. The best simulation method(s) are
those closest to the origin of axes, indicating that they achieved low
cumulative rankings and consistently top positions.

7.1. Answering RQ1

RQ1 wants to evaluate how Rims and its variants perform compared
with the other state-of-the-art techniques, i.e., DL and DDPS.
12
We start by considering the control-flow perspective. Since DDPS
nd Dsim share the same process model of Rims and Rims+, to answer
RQ1 we only need to compare Rims and Rims𝐷 𝑇 with the DL technique,
hat is LSTM. By looking Table 10, Rims𝐷 𝑇 outperforms the other
aselines in terms of CLFD, except for the Production log where LSTM

is the best method, despite being one of the worst for L𝑡𝑟𝑎𝑐 𝑒𝑠. This
suggests that while the generative model captures the sequences of
events within the traces well – as indicated by the lower 2-Gram and
3-Gram metric values in Fig. A.9 – it may not capture the overall
process effectively. For PurchasingExample log we can observe that the
introduction of the 𝐷 𝑇 predictive models on the simulation model do
𝑚

F. Meneghello et al. Information Systems 128 (2025) 102472
Fig. 6. Pareto front of all baselines and Rims variations considering both time and control-flow perspectives, based on the rankings reported in Tables 10, 11, 12 and 13. Circle
symbols indicate the variants of Rims, while plus symbols represent the variants of Rims+.
not affect the results. This can be attributed to the fact that in synthetic
logs, the paths of the traces are typically independent of their history
or attributes and are generated by applying branching probability. As a
result, the predictive models are not able to learn anything additional.
Indeed, for ConsultaDataMining, which is a real log, only Rims+𝑖𝑛𝑡𝑒𝑟

𝐷 𝐸 𝑇
differs statistically from the other methods.

Concerning the L𝑡𝑟𝑎𝑐 𝑒𝑠 metric in Table 10, half of logs performed
well with LSTM method while the other half with a variants of Rims𝐷 𝑇 .
These results highlight the potential limitations of the process models
used by DDPS, Dsim, Rims/+ in accurately representing the event fre-
quency in the traces as exhibited in the logs. Limitations that can be
partially adjusted by the introduction of 𝐷 𝑇𝑚 models, as shown with
PurchasingExample and Production logs.

Focusing on the logs with a significant level of queues (Table 12), in
terms of CLFD, Rims and its variants outperforms LSTM in the majority
of logs with the exception for BPI12W and SynLoan. In the case of
BPI12W this is due to the fact that the log is real and with a large
number of traces, which ensures an efficient learning of the control
flow by the LSTM method. BPI17W behaves similarly, as it shares the
same characteristics in the log, but in this case the introduction of
𝐷 𝑇𝑚 is sufficient to overcome the generative method. For SynLoan, the
explanation is similar to the one given for real logs. This synthetic log,
indeed, is built so that at decision points the future path of a trace
depend on its history up to that point, and this behavior is not well
reproduced by the trivial implementation of decision points in DDPS
and Rims.

Nonetheless, for both logs, Rims and its variants closely follow
the LSTM approach, demonstrating their effectiveness as a good so-
lution. The only exceptions are Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 and Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 in BPI12W and
Confidential 1000, where single class prediction (𝐷 𝐸 𝑇) disadvantage
the infrequent behaviors and generate a large number of events, as
indicated by the L𝑡𝑟𝑎𝑐 𝑒𝑠. Also for L𝑡𝑟𝑎𝑐 𝑒𝑠 metrics, we can observe a
similar pattern based on the nature of the logs – real or synthetic –
where the introduction of 𝐷 𝑇 models improves the performance of the
𝑚

13
simulation model for the real and SynLoan logs, but not for the other
synthetic logs (Table 12).

Fig. 6 summarizes the rankings obtained by various methods across
different logs for the general metrics, CLFD and L𝑡𝑟𝑎𝑐 𝑒𝑠. Specifically,
regarding the logs without queue, Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 and Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 emerge as the
two tied winners. From Fig. 6 it is evident that the introduction of 𝐷 𝑇𝑚
models improves performance, as the Rims𝐷 𝑇 methods are positioned on
the left side of the graph. Overall Rims and its variants outperform LSTM
in the control-flow perspective RQ1. The only exception is Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 ,
which as mentioned earlier, is impacted by the main class prediction
(𝐷 𝐸 𝑇). When the logs contain a significant level of queuing, the best
overall method is Rims+𝑖𝑛𝑡𝑒𝑟

𝑃 𝑅𝑂 𝐵 , as shown in Fig. 6. Additionally, in this
scenario, all Rims variants outperform the LSTM baseline

We now analyze the time dimension by looking Tables 11 and 13.
Focusing on the logs without a significant level of queues (Table 11),
Rims and its variants in terms of AED outperform the baselines with
Confidential 2000 and ConsultaDataMining. Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 is tied with Dsim
for the Production log, as shown by AED, CED, and RED metrics in
Fig. A.10, confirming the AED results. Conversely, for PurchasingExam-
ple log, while DDPS is the best at distributing events over time (AED),
it performs worse than Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 in the specific metrics CED, RED, and
CAR (Fig. A.10). Indeed, in terms of CTD, which also incorporates
simulation aspects captured by the specific metrics, Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 surpasses
the DDPS method.

By examining the results of Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 with Confidential 2000, we
observe a unique behavior: this approach performs the best in terms
of AED, but is the worst in terms of CTD, with a significant difference
from the other methods. The reason is attributable to the number of
events generated by Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 and the way AED metric is calculated.
Indeed, for L𝑡𝑟𝑎𝑐 𝑒𝑠, Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 is the worst method, as it generates about
30% more events on average for each trace. AED is computed by use
of 1WD measure which compares empirical distribution functions using
histograms – one for 𝑡𝑒𝑠𝑡 and one for 𝑠𝑖𝑚 – where the sum of all bins
equals 1. This normalization can offset frequency differences between
events in  and  while rewarding the capability of reproducing
𝑡𝑒𝑠𝑡 𝑠𝑖𝑚

F. Meneghello et al. Information Systems 128 (2025) 102472
Fig. 7. Comparison of Rims and its variants with respect to the nature of the logs and the presence or absence of significant queue levels. If a box contains only one method, it
indicates that a single optimal solution exists; otherwise, all solutions on the Pareto front are included. The lower the value on the axes (𝑥, 𝑦), the closer the simulated log is to
the real one in terms of control-flow and time perspectives, respectively.
the trend and the seasonality of the process (namely AED, CED and
CAR).11

Regarding the CTD metrics in Table 11, Rims and its variants out-
performs the other approaches for the ConsultaDataMining log while for
Confidential 2000 and PurchasingExample at least two variants achieve
the top ranking. For the Production log, Dsim is the best method, with
Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 following closely behind.

Moving to the logs with queues (Table 13), Rims and its variants
consistently outperform DDPS and LSTM in terms of AED, with the
only exception being the SynLoan log. In this case, DDPS performs best,
followed by Rims, which, in terms of CED and RED (Fig. A.12), more
accurately represents the seasonal aspects and the distribution of events
over time within each case, respectively. Compared to the baseline
Dsim, Rims and its variants are competitive across most logs, with the
exception of BPI12 W, where Dsim outperforms, and Confidential 1000,
where Rims+ demonstrates the impact of queue features. Additionally,
for CTD metrics, Rims+ ranks at the top in four out of five logs
(Table 13), underlines the importance of queue features. In general,
most Rims variants achieve top positions in the rankings across the logs
and perform well or are competitive in other specific metrics, as shown
in Fig. A.12.

Fig. 6 provides an overview of the results. In particular, we ob-
serve that, apart Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 and Rims+𝑖𝑛𝑡𝑒𝑟

𝐷 𝐸 𝑇 , the Rims variants dominate
the other baselines in terms of time perspective, achieving the best
performance across all logs with varying characteristics and considering
both metrics, AED and CTD.

Finally, examining Fig. 6 allows us to address RQ1 by considering
both aspects of our analysis: time and control-flow perspectives. We
begin by noting that, in both cases – logs with and without significant
queue levels – the Pareto fronts, which correspond to the sets of un-
dominated methods in both time and control-flow perspectives, consist
solely of Rims variants, highlighting the method’s overall advantage
compared to the current state-of-the-art. For logs without queues,

11 Let us consider having the histogram 𝐻 𝑡𝑒𝑠𝑡 = ⟨(𝑡1, 2), (𝑡2, 6), (𝑡3, 4), (𝑡4, 8)⟩
representing test, consisting of bins for each timestamp 𝑡𝑖 and
the corresponding number of events contained in it. While
⟨(𝑡1, 300), (𝑡2, 900), (𝑡3, 600), (𝑡4, 1200)⟩ represents the 𝐻𝑠𝑖𝑚 histogram of 𝑠𝑖𝑚. To
compute 1WD measure, the two histograms are converted in a probability
distribution where the sum of all bin values is equal to 1. In this case we
obtain the same probability distribution, ⟨(𝑡1, 0.1), (𝑡2, 0.3), (𝑡3, 0.2), (𝑡4, 0.4)⟩, and
hence 1WD between the two normalized histograms results in 0, despite the
huge difference in the number of events in  and  .
𝑡𝑒𝑠𝑡 𝑠𝑖𝑚

14
there is a clear winner represented by Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 , and only one method,
Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 , is dominated by Dsim baseline. The reason for this is related
to the type of prediction used by 𝐷 𝑇𝑚 predictive models involved
in the simulation model, which can sometimes yield worse results,
as previously mentioned. For logs with a significant level of queues,
Dsim outperforms Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 and Rims+𝑖𝑛𝑡𝑟𝑎

𝐷 𝐸 𝑇 in terms of the time perspec-
tive but not for the control-flow perspective, while Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 exhibits
the same behavior as with logs without queues. Instead, Rims+𝑖𝑛𝑡𝑟𝑎

𝐷 𝐸 𝑇
is strongly penalized by the results obtained with SynLoan log. How-
ever, all other Rims variants outperform the baselines in logs with a
significant presence of queues.

7.2. Answering RQ2

To address RQ2, we focus on Rims and its variants, analyzing their
performance in relation to different logs and their properties.

Starting with the control-flow perspective, we compare Rims and
Rims𝐷 𝑇 , as Rims+ shares the same process model as the former. This
allows us to assess the impact of introducing 𝐷 𝑇𝑚 on the simulation
quality. Fig. 6 illustrates how the introduction of predictive models
at decision points within  improves the accuracy of the simulation
model. This is evidenced by the points representing Rims𝐷 𝑇 in Fig. 6
shifting to the left, closer to the origin, indicating lower values com-
pared to Rims. The only exception is Rims𝑖𝑛𝑡𝑟𝑎𝐷 𝐸 𝑇 , which is either the worst
or among the worst for both logs without queue and with queue,
respectively. The 𝐷 𝐸 𝑇 prediction type in Rims𝐷 𝑇 achieves both the best
and worst results, while the 𝑃 𝑅𝑂 𝐵 one is more consistent and reliable.
Conversely, neither intra-case nor inter-case features consistently outper-
form the other. Overall, Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 and Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 are the best methods
for the control-flow perspective, with Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 also performing best for
the time perspective with logs that have no significant level of queues.
Instead, for logs with queue, Rims𝑖𝑛𝑡𝑒𝑟𝑃 𝑅𝑂 𝐵 is the top performer.

Regarding the time perspective, we compare all the variants of Rims.
In the case of queuing in logs, Rims+ proves to be the best method,
demonstrating how the introduction of the queuing feature in 𝑊 𝑇𝑚
improves results. On the other hand, Rims𝐷 𝑇 produces slightly worse
results than Rims. For the log without queues, only two variants of
Rims𝐷 𝑇 – Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 and Rims𝑖𝑛𝑡𝑟𝑎𝑃 𝑅𝑂 𝐵 – exhibit improved results (Fig. 6).

Tables 10, 12, 11 and 13 suggest that the results depend critically
on two main factors: the presence of a significant level of queues and
the nature of the logs, whenever they are real or synthetic. In order to
identify a unique optimal Rims variant based on the characteristics of
logs, we computed the rankings as the one used to generate Fig. 6 but

F. Meneghello et al. Information Systems 128 (2025) 102472
Fig. 8. Comparison of Rims+ and Rims with different queuing levels related to the same process through time and congestion metrics. The improvement is expressed as a percentage.
A positive value indicates that the distance of the metrics has been reduced by Rims+, while a negative value indicates the opposite.
only with Rims variants. A qualitative representation of the outcome of
this analysis is displayed in Fig. 7, it indicates that in absence of a sig-
nificant presence of queue Rims𝑖𝑛𝑡𝑒𝑟𝐷 𝐸 𝑇 is the optimal solution considering
time and control-flow perspective. In the presence of queues in logs, we
identify Rims+𝑖𝑛𝑡𝑒𝑟

𝑃 𝑅𝑂 𝐵 as the optimal solution for real logs. In contrast, for
synthetic logs, there are three optimal solutions. Therefore, the choice
depends on whether one wants to prioritize the time or the control-flow
perspective. In general, we can note that for all the four categories in
Fig. 7 the optimal solutions are represented by Rims𝐷 𝑇 variants with the
only exception of Rims+. This result highlights the characteristics of syn-
thetic logs, where the control flow typically does not rely on historical
data or other attributes. As a result, the introduction of 𝐷 𝑇𝑚 provides
only a partial improvement, unlike the more significant enhancement
achieved by incorporating queue features for time predictions.

To better understand the benefits of Rims+, especially in case of logs
with queues, we analyze the six semi-synthetic log 𝑠𝑦𝑛 with increasing
queueing levels, as illustrated in the graph Distribution of queue of
Fig. 8, that shows the length of the queue that each event in the log
has to wait for the assigned resource. The rest of Fig. 8 shows the
percentage improvement between Rims+ and Rims (if positive Rims+
outperforms Rims) on logs with increasing queueing levels, for all the
time metrics. We can observe that the introduction of the queue feature
has a high positive impact in terms of CTD – particularly for 3

𝑠𝑦𝑛 -
-while, although positive, the improvement decreases for higher values
of queueing levels. In terms of AED and RED, we can observe a slight
decrease in the performance of Rims+ for 1

𝑠𝑦𝑛, 2
𝑠𝑦𝑛, and 6

𝑠𝑦𝑛, while the
results are consistently worse in terms of distribution of events over the
week (CED metrics). The decrease in the Rims+ performance in terms of
time metrics (especially CED) could be likely due to the LSTM models
used for predicting the waiting times, which learn more from the queue
features than from the time-related ones, such as the day of the week
and the hour of the day.

Summing up, we can state that, although Rims+ is less accurate than
Rims in terms of seasonality and weekday distribution, it consistently
outperforms Rims in terms of overall cycle time accuracy (CTD) and in
many of the cases it is able to improve or have similar performance as
Rims in terms of event distribution (AED).

8. Conclusion

In this paper, we presented and discussed Rims, a runtime-integration
technique capable of successfully integrating DDPS and DL approaches.
15
This runtime-integration enables us to fully exploit the specific DL
predictions thus enhancing the performance of the overall system both
with respect to the single DDPS and DL techniques separately and the
post-integration approach. Moreover, Rims+ enables us also to incorpo-
rate the queue as an intercase feature in the DL model.

In particular, we integrated predictive models to improve the time
and decision mining perspectives of the process, with the aim of
avoiding the unrealistic or oversimplified assumptions of DDPS models
while preserving the advantages of a white-box simulation model.
Specifically, Rims has been enhanced with models predicting the trace
arrival rate, the processing times of activities, as well as the waiting
times among them. Besides, Rims𝐷 𝑇 have further enhanced Rims with
models predicting the next activity from the decision points of the
process model.

We evaluated Rims and its variants using both real-world and syn-
thetic event logs and leveraging several metrics to assess the quality of
the simulated log in terms of control-flow, time and congestion.

The results show how Rims and its variants outperform the state-
of-the-art in terms of time, congestion, and control-flow perspectives,
representing the optimal solutions for logs both with and without a
significant level of queuing. In particular, we prove the advantages
of runtime-integration over post-integration and how features dependent
on the simulation itself, such as queue features can be leveraged in
the integrated predictive models. Finally, the evaluation reveals how
the introduction of 𝐷 𝑇𝑚 predictive models at decision points improves
the simulation quality from all perspectives, as shown in Figs. 6 and
7, where the optimal solutions are predominantly Rims𝐷 𝑇 . Overall,
the evaluation results indicate that Rims and its variants consistently
produce more accurate simulations across all analyzed event logs, both
real and synthetic.

In the future, we aim at extending predictive models to also include
the resource perspective that would allow to discover the allocation
of real processes and possibly optimizing it. For the evaluation, we
used only logs that contain both start and end timestamps, as these
are crucial for accurately estimating processing and waiting times.
We plan to explore methods for estimating start timestamps in logs
where they are missing, thereby expanding the applicability of the
proposed approach. Additionally, we intend to investigate other types
of predictive decision mining models, such as black-box predictive
models. Indeed, although black-box, these models could enhance the
quality of the simulated trace control flow and consequently improve

F. Meneghello et al.

c
i

l

w

Information Systems 128 (2025) 102472
the entire simulation. Finally, we plan to explore the possibility to
replace the discovered process model  with a sequence of activities
predicted by a predictive process model, in particular in special cases
as the one of the Production event log, where the DL approach still
performs better than the Rims𝐷 𝑇 approach in terms of control flow.

CRediT authorship contribution statement

Francesca Meneghello: Writing – review & editing, Writing –
original draft, Methodology, Investigation, Conceptualization. Chiara
Di Francescomarino: Writing – review & editing, Validation, Supervi-
sion, Conceptualization. Chiara Ghidini: Supervision, Conceptualiza-
tion. Massimiliano Ronzani: Writing – review & editing, Writing –
original draft, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Appendix. Boxplot visualizations

In this appendix, we present the detailed boxplot analysis for all the
ogs listed in Table 6 and for all the metrics described in Section 6.4.

Figs. A.9 and A.11 display the control-flow metrics for logs without and
ith queue, respectively. Figs. A.10 and A.12 display the time metrics

for logs without and with queue, respectively. Each boxplot shows the
results across all the logs generated by the corresponding method.

Data availability

Data will be made available on request.

References

[1] M. Dumas, M. La Rosa, J. Mendling, H. A Reijers, Fundamentals of Business
Process Management, Springer, 2013.

[2] M. Camargo, M. Dumas, O. González, Automated discovery of business process
simulation models from event logs, Decis. Support Syst. 134 (2020) 113284.

[3] A. Rozinat, R.S. Mans, M. Song, W.M.P. van der Aalst, Discovering simulation
models, Inf. Syst. 34 (2009) 305–327.

[4] I. Khodyrev, S. Popova, Discrete modeling and simulation of business processes
using event logs, in: Proc. of the Int. Conference on Computational Science, ICCS
2014, in: Procedia Computer Science, vol. 29, Elsevier, 2014, pp. 322–331.

[5] M. Pourbafrani, S.J. van Zelst, W.M.P. van der Aalst, Supporting automatic
system dynamics model generation for simulation in the context of process
mining, in: Business Information Systems - BIS 2020, Proc., in: LNBIP, vol. 389,
Springer, 2020, pp. 249–263.

[6] N. Martin, B. Depaire, A. Caris, The use of process mining in business process
simulation model construction - structuring the field, Bus. Inf. Syst. Eng. 58 (1)
(2016) 73–87.

[7] M.T. Wynn, M. Dumas, C.J. Fidge, A.H.M. ter Hofstede, W.M.P. van der Aalst,
Business process simulation for operational decision support, in: Business Process
Management Workshops, BPM 2007, in: LNCS, vol. 4928, Springer, 2007, pp.
66–77.

[8] W.M. Van Der Aalst, Business process simulation survival guide, in: Handbook
on Business Process Management 1: Introduction, Methods, and Information
Systems, Springer, 2014, pp. 337–370.

[9] B. Estrada-Torres, M. Camargo, M. Dumas, L. García-Bañuelos, I. Mahdy, M.
Yerokhin, Discovering business process simulation models in the presence of
multitasking and availability constraints, Data Knowl. Eng. 134 (2021) 101897.

[10] M. Camargo, M. Dumas, O.G. Rojas, Learning accurate business process simula-
tion models from event logs via automated process discovery and deep learning,
in: Advanced Information Systems Engineering - 34th International Conference,
CAiSE 2022, Proceedings, in: LNCS, vol. 13295, Springer, 2022, pp. 55–71.

[11] C. Di Francescomarino, C. Ghidini, Predictive process monitoring, in: Process
Mining Handbook, in: LNBIP, vol. 448, Springer, 2022, pp. 320–346.
16
[12] N. Tax, I. Verenich, M.L. Rosa, M. Dumas, Predictive business process monitoring
with LSTM neural networks, in: Advanced Information Systems Engineering,
CAiSE 2017, Proc., in: LNCS, vol. 10253, Springer, 2017, pp. 477–492.

[13] J. Evermann, J. Rehse, P. Fettke, Predicting process behaviour using deep
learning, Decis. Support Syst. 100 (2017) 129–140.

[14] W.J. Chang, Y.H. Chang, Design of a patient-centered appointment scheduling
with artificial neural network and discrete event simulation, J. Serv. Sci. Manag.
11 (01) (2018).

[15] S. Bergmann, S. Stelzer, S. Straßburger, On the use of artificial neural networks
in simulation-based manufacturing control, J. Simul. 8 (1) (2014) 76–90.

[16] J. Pender, E. Zhang, Uniting simulation and machine learning for response time
prediction in processor sharing queues, in: Winter Simulation Conference, WSC,
IEEE, 2021, pp. 1–12.

[17] R.D.L. Fuente, I. Erazo, R.L. Smith, Enabling intelligent processes in simula-
tion utilizing the TensorFlow deep learning resources, in: Winter Simulation
Conference, WSC, IEEE, 2018, pp. 1108–1119.

[18] M. de Leoni, F. Vinci, S.J.J. Leemans, F. Mannhardt, Investigating the influence
of data-aware process states on activity probabilities in simulation models: Does
accuracy improve? in: Business Process Management - 21st International Confer-
ence, BPM 2023, Utrecht, the Netherlands, September 11-15, 2023, Proceedings,
in: Lecture Notes in Computer Science, vol. 14159, Springer, 2023, pp. 129–145,
http://dx.doi.org/10.1007/978-3-031-41620-0_8.

[19] F. Meneghello, C. Di Francescomarino, C. Ghidini, Runtime integration of
machine learning and simulation for business processes, in: 5th International
Conference on Process Mining, ICPM 2023, Rome, Italy, October 23-27, 2023,
IEEE, 2023, pp. 9–16, http://dx.doi.org/10.1109/ICPM60904.2023.10271993.

[20] A. Rozinat, W.M. van der Aalst, Decision mining in ProM, in: Business Pro-
cess Management: 4th International Conference, BPM 2006, Vienna, Austria,
September 5-7, 2006. Proceedings 4, Springer, 2006, pp. 420–425.

[21] M. De Leoni, W.M. Van Der Aalst, Data-aware process mining: Discovering
decisions in processes using alignments, in: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, 2013, pp. 1454–1461.

[22] W.M.P. van der Aalst, Foundations of process discovery, in: W.M.P. van der Aalst,
J. Carmona (Eds.), Process Mining Handbook, in: LNBIP, vol. 448, Springer,
2022, pp. 37–75.

[23] C. Di Francescomarino, M. Dumas, F.M. Maggi, I. Teinemaa, Clustering-based
predictive process monitoring, IEEE Trans. Serv. Comput. 12 (6) (2019) 896–909.

[24] B.F. van Dongen, R.A. Crooy, W.M.P. van der Aalst, Cycle time prediction:
When will this case finally be finished? in: On the Move To Meaningful Internet
Systems: OTM 2008, Proceedings, Part I, in: LNCS, vol. 5331, Springer, 2008,
pp. 319–336.

[25] M. Camargo, M. Dumas, O.G. Rojas, Learning accurate LSTM models of business
processes, in: Business Process Management - 17th International Conference,
BPM, Proceedings, in: LNCS, vol. 11675, Springer, 2019, pp. 286–302.

[26] S.J. Taylor, B. Letham, Forecasting at scale, Amer. Statist. 72 (2018) 37–45.
[27] M. Camargo, M. Dumas, O.G. Rojas, Discovering generative models from event

logs: Data-driven simulation vs deep learning, PeerJ Comput. Sci. 7 (2021) e577.
[28] A. Senderovich, C. Di Francescomarino, F.M. Maggi, From knowledge-driven to

data-driven inter-case feature encoding in predictive process monitoring, Inf.
Syst. 84 (2019) 255–264.

[29] W. Van der Aalst, A. Adriansyah, B. Van Dongen, Replaying history on process
models for conformance checking and performance analysis, Wiley Interdisc.
Rev.: Data Min. Knowl. Discov. 2 (2) (2012) 182–192.

[30] J. Carmona, B. van Dongen, A. Solti, M. Weidlich, Conformance Checking, vol.
56, Springer,[Google Scholar], Switzerland, 2018, p. 12.

[31] B. van Dongen, BPI Challenge 2012, 4TU.ResearchData, 2012.
[32] D. Chapela-Campa, I. Benchekroun, O. Baron, M. Dumas, D. Krass, A.

Senderovich, Can I trust my simulation model? Measuring the quality of
business process simulation models, in: Business Process Management - 21st
International Conference, BPM 2023, Utrecht, the Netherlands, September 11-15,
2023, Proceedings, in: Lecture Notes in Computer Science, vol. 14159, Springer,
2023, pp. 20–37, http://dx.doi.org/10.1007/978-3-031-41620-0_2.

[33] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Res.
Logistics Q. 2 (1–2) (1955) 83–97.

[34] S.J.J. Leemans, W.M.P. van der Aalst, T. Brockhoff, A. Polyvyanyy, Stochastic
process mining: Earth movers’ stochastic conformance, Inf. Syst. 102 (2021)
101724.

[35] E. Levina, P.J. Bickel, The earth mover’s distance is the mallows distance: Some
insights from statistics, in: Proceedings of the Eighth International Conference
on Computer Vision (ICCV-01), Vancouver, British Columbia, Canada, July 7-14,
2001 - Volume 2, IEEE Computer Society, 2001, pp. 251–256.

http://refhub.elsevier.com/S0306-4379(24)00130-3/sb1
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb1
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb1
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb2
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb2
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb2
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb3
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb3
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb3
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb4
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb4
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb4
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb4
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb4
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb5
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb5
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb5
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb5
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb5
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb5
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb5
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb6
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb6
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb6
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb6
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb6
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb9
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb9
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb9
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb9
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb9
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb10
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb10
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb10
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb10
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb10
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb10
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb10
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb11
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb11
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb11
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb12
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb12
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb12
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb12
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb12
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb13
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb13
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb13
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb14
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb14
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb14
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb14
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb14
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb15
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb15
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb15
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb16
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb16
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb16
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb16
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb16
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb17
http://dx.doi.org/10.1007/978-3-031-41620-0_8
http://dx.doi.org/10.1109/ICPM60904.2023.10271993
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb22
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb22
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb22
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb22
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb22
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb23
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb23
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb23
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb25
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb25
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb25
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb25
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb25
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb26
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb27
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb27
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb27
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb28
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb28
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb28
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb28
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb28
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb29
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb29
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb29
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb29
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb29
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb30
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb30
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb30
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb31
http://dx.doi.org/10.1007/978-3-031-41620-0_2
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb33
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb33
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb33
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb34
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb34
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb34
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb34
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb34
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb35
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb35
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb35
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb35
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb35
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb35
http://refhub.elsevier.com/S0306-4379(24)00130-3/sb35

F. Meneghello et al.

Fig. A.9. Control-flow analysis for logs without a significant level of queue.

Information Systems 128 (2025) 102472

17

F. Meneghello et al.

Fig. A.10. Time analysis for logs without a significant level of queue.

Information Systems 128 (2025) 102472

18

F. Meneghello et al.

Fig. A.11. Control-flow analysis for logs with a significant level of queue.

Information Systems 128 (2025) 102472

19

F. Meneghello et al. Information Systems 128 (2025) 102472
Fig. A.12. Time analysis for logs with a significant level of queue.
20

	Runtime integration of machine learning and simulation for business processes: Time and decision mining predictions
	Introduction
	Background
	Event Log
	Simulation Model
	Decision Mining
	Predictive Process Monitoring

	Running Example
	The Rims system
	Runtime integration approach
	Definition of the DDPS elements
	Training of the models
	Integration

	Rims+: Enhancing Rims with queue discovery
	Enhancing Rims/Rims+ with decision mining
	Redefinition of DDPS elements
	Data preprocessing and training
	Integration of Decision mining

	Related work
	DDPS and DL simulation models
	Hybrid Simulation Models

	Evaluation setting
	Research questions
	Datasets
	Experiment setup
	Evaluation Metrics

	Evaluation results
	Answering ??
	Answering ??

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Boxplot Visualizations
	Appendix. Boxplot Visualizations
	Data availability
	Appendix . Data availability
	References

