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Context: In high-stakes assessments, such as court cases or managerial evaluations, decision-makers heavily rely on psychological
testing. These assessments often play a crucial role in determining important decisions that affect a person’s life and have a
significant impact on society.
Problem Statement: Research indicates that many psychological assessments are compromised by respondents’ deliberate
distortions and inaccurate self-presentations. Among these sources of bias, socially desirable responding (SDR) describes the
tendency to provide overly positive self-descriptions. This positive response bias can invalidate test results and lead to
inaccurate assessments.
Objectives: The present study is aimed at investigating the utility of mouse- and eye-tracking technologies for detecting SDR in
psychological assessments. By integrating these technologies, the study sought to develop more effective methods for identifying
when respondents are presenting themselves in a favorable light.
Methods: Eighty-five participants completed the Lie (L) and Correction (K) scales of the Minnesota Multiphasic Personality
Inventory-2 (MMPI-2) twice: once answering honestly and once presenting themselves in a favorable light, with the order of
conditions balanced. Repeated measures univariate analyses were conducted on L and K scale T-scores, as well as on mouse-
and eye-tracking features, to compare the honest and instructed SDR conditions. Additionally, machine learning models were
developed to integrate T-scores, kinematic indicators, and eye movements for predicting SDR.
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Results: The results showed that participants in the SDR condition recorded significantly higher T-scores, longer response times,
wider mouse trajectories, and avoided looking at the answers they intended to fake, compared to participants in the honest
condition. Machine learning algorithms predicted SDR with 70%–78% accuracy.
Conclusion: New assessment strategies using mouse- and eye-tracking can help practitioners identify whether data is genuine or
fabricated, potentially enhancing decision-making accuracy.
Implications: Combining self-report measures with implicit data can improve SDR detection, particularly in managerial,
organizational, and forensic contexts where precise assessments are crucial.

1. Introduction

In high-stakes situations, such as legal or managerial evalua-
tions where outcomes can significantly affect individuals and
those around them, decision-makers often rely heavily on psy-
chological testing. Unfortunately, research has shown that
many psychological assessments are compromised by respon-
dents’ deception, distortions, and acquiescent response styles.
The tendency to present oneself in an overly favorable light
is known as socially desirable responding (SDR) [1]. Due to
the social and economic consequences of SDR, detecting it is
a critical area of research. Identifying valid predictors and
implicit behavioral measures of SDR is particularly useful
because they can provide practitioners with information about
target behaviors independently of the subject’s test responses,
be used to validate self-report data, and are often difficult to
manipulate intentionally. Furthermore, as the number of
behavioral parameters increases, subjects’ ability to monitor
their response behavior decreases.

The present study is aimed at investigating the combined
utility of mouse- and eye-tracking for SDR identification. A
simulation design was employed in which each participant
completed the experimental task under two sets of instruc-
tions, with the order balanced according to the group to
which participants were randomly assigned. Participants
either first responded honestly and then presented them-
selves as having perfect psychological health, omitting any
criticality and impairment in psychological and behavioral
functioning, or first responded in a favorable light and then
responded honestly.

The research examined eye movements by comparing
the areas of interest (AOIs) of selected versus unselected
responses, providing insights into differences in visual explo-
ration between SDR and honest conditions based on partic-
ipants’ actual responses rather than item content. The
analysis also considered the Lie (L) and Correction (K) scales
from the Minnesota Multiphasic Personality Inventory-2
(MMPI-2) as outcome measures. Building on the literature
(see Section 2), the hypotheses were the following:

• H1: Participants in the SDR condition would score
significantly higher on the L and K scales than those
in the honest condition.

• H2: Participants in the SDR condition would have
significantly slower mouse movements than those in
the honest condition.

• H3: Participants in the SDR condition would have
significantly wider and less stable mouse trajectories
than those in the honest condition.

• H4: Eye movements would differ between the honest
and SDR conditions. Due to conflicting findings from
previous studies, no specific direction was defined for
the effects.

The ultimate goal of the study was to use machine learn-
ing (ML) models to create an integrated model capable of
accurately detecting SDR. This model would be based on
explicit scale scores, temporal and spatial kinematic indica-
tors, and eye movement data.

2. Literature Review

2.1. SDR. SDR is one of the most common and pervasive
sources of bias in high-stakes evaluative settings, such as
parenting skills evaluations, driving exams, and personnel
selection. In fact, it is estimated that SDR occurs in approx-
imately 30%–50% of personnel selection processes [2, 3] and
20%–74% of forensic settings, including child custody evalu-
ations [4]. Despite its significant practical impact, the litera-
ture on SDR is not as extensive as it should be, and the
instruments available to identify SDR are limited.

The Marlowe–Crowne Social Desirability Scale (MCSDS)
[5] and the Balanced Inventory of Desirable Responding
(BIDR), also known as the Paulhus Deception Scales (PDS)
[6], are the most commonly used stand-alone scales for detect-
ing SDR. In the context of personality inventories, the primary
tools for identifying SDR are “embedded” validity scales or
indicators. These are designed to assess the validity and inter-
pretability of self-report questionnaires and help interpret test
scores by accounting for SDR [7–11].

Traditionally, the key measures used to detect SDR, specif-
ically “faking good” or underreporting on personality ques-
tionnaires, include the L and K scales of the MMPI-2 [12],
the Virtuous Responding (VR) scale of the Psychopathic
Personality Inventory-Revised (PPI-R) [13], and the Positive
Impression (PIM) scale of the Personality Assessment Inven-
tory (PAI) [14]. However, personality questionnaires often
have high transparency, allowing subjects to easily discern
what constructs a test or item is measuring and adjust their
responses accordingly [15]. To address this issue, researchers
have sought alternative, indirect methods for detecting SDR
[16, 17], including reaction time (RT) [18–22], time pressure
[15, 20, 23, 24], and mouse tracking [19, 25–28]. Many studies
suggest that SDR takes longer to endorse because it is either
more cognitively demanding [18, 20, 29] or because it
increases arousal due to the fear of detection [22].

2.2. Detecting Socially Desirable Responses Using Kinematic
Indicators. Recently, mouse tracking has emerged as a
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valuable technique for detecting socially SDR [25, 28, 30]. This
method involves capturing both the temporal and spatial
aspects of mouse movement by recording cursor location at
a high frequency (i.e., 60–75 times per second) [31]. Mouse
trajectories provide insights into real-time mental processes
during decision-making tasks, such as completing a personal-
ity questionnaire, because motor movements are continuously
influenced by underlying cognitive processes [26, 32–36].

Mazza et al. [25] demonstrated that participants engaged
in SDR exhibit longer RTs and greater maximum deviation
(MD) times than honest respondents. The MD time refers
to the time taken to reach the point of MD between the
actual and ideal response trajectory using the mouse cursor.
Additionally, SDR participants show wider mouse trajecto-
ries when responding to L scale items.

2.3. Eye Movements in SDR. Researchers have recently begun
exploring the potential of eye-tracking to identify feigned
responses, given that eye movements are physiological and
not entirely under conscious control [37–43]. Eye-tracking
technology records gaze location and eye movements over
time and across tasks. For instance, during activities like
reading or viewing images, eyes may fixate on specific AOIs
or move rapidly in a motion known as saccades [44]. Visual
fixations involve maintaining gaze on a target for approxi-
mately 130–330ms, allowing the brain to begin processing
visual information [44]. Saccades are the quick eye move-
ments between fixation points, lasting about 30ms during
reading and 40–50ms when viewing a scene [45, 46]. Blink-
ing, defined as the rapid closing and opening of the eyelids,
is another automatic ocular behavior that typically lasts
30–40ms and occurs approximately every 2–30 s [47].
Research has shown that eye movements can reveal cogni-
tive processing [48–50] and emotional activation [51–53].
Specifically, when individuals experience high cognitive
load, their fixation duration and saccade speed increase,
while their blink rate decreases [50, 54–56]. Additionally,
saccades, blinks, and fixations can provide insights into
physiological arousal, vigilance, and fatigue [57]. Several
studies have applied eye-tracking technology in deception
detection, revealing that when individuals lie, their fixation
duration and saccadic movements increase, while their blink
rate and duration decrease [50, 58–60].

To the best of our knowledge, few studies have specifically
employed eye-tracking technology to detect SDR. In a within-
subject study, Van Hooft and Born [43] asked 129 participants
to complete the Five Factor Personality Inventory either hon-
estly or with SDR in a personnel selection context. They found
that all personality traits could be manipulated to create a
more favorable impression. Additionally, SDR participants
responded more quickly and exhibited nearly one fewer eye
fixation per item on average compared to honest participants.
Furthermore, SDR participants paid more attention to
extreme response options (e.g., “much more/less (often) than
others”) than honest participants.

Logistic regression analyses revealed that test scores,
RT, and the number of fixations effectively distinguished
between honest and SDR participants, achieving an accu-
racy of 82.9%. Notably, the inclusion of eye-tracking data

significantly improved the model’s accuracy. These find-
ings suggest that SDR is associated with a lower cognitive
load and an altered focus of attention compared to honest
responses.

More recently, Fang et al. [41] investigated the role of
eye-tracking in detecting SDR and examined whether the
eye movement patterns of individuals instructed to lie differ
from those who lie spontaneously. The results indicated that
eye movements can effectively distinguish between honest
responses and SDR. Specifically, participants engaging in
SDR exhibited dilated pupils and had more frequent and
longer fixations. Additionally, these participants focused
more on positive items (i.e., socially desirable answers),
suggesting increased cognitive processing of such items.
However, the study found inconsistent results with saccade
and blink data, prompting the authors to recommend fur-
ther research. Unlike Hooft and Born’s findings, these results
support the hypothesis that SDR is cognitively demanding
and requires more effort than honest responses.

The present research falls within the research field of
SDR detection.

3. Materials and Methods

3.1. Participants. One hundred Italian young adults volun-
tarily participated in the study. All were undergraduate
students who were given extra credit for participating.
Fifteen participants (15%) were excluded from the analysis
due to technical problems that invalidated the procedure.
The final sample was composed of 85 participants (n = 60
female, 70.6%; n = 25 male, 29.4%), aged 18–31 years
(M = 21 89, SD = 2 97). Most participants were right-
handed (n = 80, 94.1%), 31 wore glasses (36.5%), and 6 wore
contact lenses (7.1%) (see Table 1). As detailed below, the
order of the test conditions (SDR vs. honest responding)
was balanced across participants. Half of the participants
(n = 43; MAge = 21 93, SD = 3 16) completed the question-
naire first honestly and then with SDR; the other half
(n = 42; MAge = 21 86, SD = 2 79) followed the opposite pat-
tern. There were no significant differences between groups in
the descriptive statistics (Table 1).

All participants provided informed consent prior to data
collection. The experimental procedure was approved by the
local ethics committee (Board of the Department of Human
Neuroscience, Faculty of Medicine and Dentistry, Sapienza
University of Rome), in accordance with the Declaration of
Helsinki.

3.2. Materials

3.2.1. MMPI-2. The MMPI-2 [12] is a 51-scale self-report
questionnaire that assesses personality and psychopathol-
ogy. It comprises 567 items with dichotomous response
options (i.e., true/false), and it is widely used in forensic
and evaluative settings [61–64]. The present study analyzed
the L and K underreporting scales of the Italian version of
the inventory [65, 66]. The L scale, composed of 15 items,
detects the acknowledgment of uncommon virtues and the
tendency to offer a more socially acceptable self-image
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(e.g., by asserting that the item “I do not always tell the truth”
is false). The K scale, composed of 30 items, detects defen-
siveness through measures of adjustment and emotional
control (e.g., “criticism or scolding hurts me terribly”). Higher
scores on the L and K scales are associated with higher SDR.

3.3. Research Design and Experimental Procedure. A within-
subjects design was implemented to control for the influence
of individual and dispositional factors on eye and hand
movements. The experimental task was completed individu-
ally in a neutral, quiet room in the Department of Psycholog-
ical, Health and Territorial Sciences (DiSPuTer), University
“G. d’Annunzio” of Chieti-Pescara, between May and
December 2021. Participants, placed approximately 60 cm
from the screen, completed the test on a 15.6” display laptop
running Microsoft Windows, with an eye-tracker mounted
(see below for details). After the initial reception, participants
read and signed the informed consent form. Following this,
they completed a sociodemographic questionnaire to provide
data on their age, biological sex, manual dominance, and
visual impairment/correction. Subsequently, the computer
session started with an eye-tracker calibration procedure to
ensure measurement precision. Participants were then intro-
duced to the experimental task by a set of instructions that
correlated with their first testing condition. All participants
completed the experimental task twice (i.e., once for each
testing condition). The Honest condition required partici-
pants to answer honestly, while the SDR condition required
participants to promote an overly positive self-image. The
order of conditions was randomly assigned, in alignment
with previous studies [41]. The Honest condition instruc-
tions were as follows:

We are interested in some characteristics of your person-
ality. We want you to take this test in a totally sincere fash-
ion. Be careful, because the questionnaire contains some
gimmicks to detect dishonesty. After reading each item, you
should take all the time you need to respond most accurately.

The SDR condition instructions were as follows:
We are interested in learning about some of your person-

ality traits. Imagine that you have to participate in a selection
process for a job you want. In this situation, it would be
advantageous for you to appear normal and in perfect psy-

chological health. In other words, we ask you to fill out the test
in such a way as to present a positive image of yourself. Be care-
ful, because the questionnaire contains some gimmicks to detect
dishonesty, and you must answer in such a way that you do not
get caught. After reading the statement, use as much time as
you want to respond, following these instructions.

After finishing the first experimental task, participants
were shown an unrelated short video (i.e., filler task). Subse-
quently, participants were presented with the experimental
task again, with the other set of instructions. Finally, partici-
pants were debriefed and given extra credit for their course.
The full procedure lasted approximately 20min. Figure 1 pro-
vides a general overview of the entire experimental workflow.

3.4. Experimental Task. Items were presented in the central
portion of the computer screen. Participants had to click
(with the mouse) a START button in the center of the screen
to initiate the presentation of each item (see Figure 2(a)).
They responded by clicking one of two response buttons
(i.e., true vs. false) presented in the upper part of the screen:
one in the upper-left corner and one in the upper-right cor-
ner (see Figure 2(b)). Items that belonged to more than one
scale (e.g., L scale Item 2 and K scale Item 1) were shown to
participants only once. Variables associated with these items
(i.e., score, RT, MD, area under the curve (AUC), and gaze
behavior features) were duplicated and integrated into all
relative scales’ metrics. The displayed order was consistent
with the original protocols.

3.5. Collected Behavioral Measures

3.5.1. Mouse Dynamics. During the experimental task, several
variables associated with mouse movement in spatial and tem-
poral terms were automatically registered. The recordedmouse-
related features were of two kinds: spatial, which included MD
(i.e., maximum perpendicular distance between the actual and
the ideal trajectory) and the AUC (i.e., geometric area between
the actual and the ideal trajectory); and temporal, which
included RT (i.e., the time between the presentation of the ques-
tion and the click of the response button).

3.5.2. Eye Movements. The Tobii Pro Nano (Tobii, Karlsro-
vagen, Sweden) was employed for gaze sampling during

Table 1: Descriptive statistics for the research sample.

Variable Total (n= 85)
Order of instruction

Honest-SDR (n= 43) SDR-honest (n= 42)

Biological sex n (%)

Female 60 (70.6) 31 (36.5) 29 34.1

Male 25 (29.4) 12 (14.1) 13 15.3

Manual dominance n (%)

Right handed 80 (94.1) 39 (45.9) 41 48.2

Left handed 5 (5.9) 4 (4.7) 1 1.2

Visual correction n (%)

None 48 (56.5) 23 (27.1) 25 29.4

Glasses 31 (36.5) 16 (18.8) 15 17.6

Contact lenses 6 (7.1) 4 (4.7) 2 2.4

4 Human Behavior and Emerging Technologies
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the task. Each participant was seated in front of a 15.6” dis-
play with an eye-tracking device positioned at the bottom.
Within the experimental room, the lighting was stable, and
the screen was adjusted to maintain constant brightness
and contrast. The eye-tracking software Tobii Pro Lab, ver-
sion 1.145 [67], was used to calibrate participants’ gaze as
they followed a white dot across the screen. If a participant
was unable to calibrate, their seating posture was adjusted,
and the calibration process was repeated until calibration
was achieved.

The Tobii Pro Lab software was used also to preprocess
eye-tracking data. Specifically, the Tobii “I-VT fixation” filter
was used to analyze fixations. Velocity-threshold identifica-
tion (I-VT), a velocity-based algorithm, defines fixations
when eye movement velocity is below a specific threshold.
In the current study, default filter values were maintained
(i.e., max angle between fixations = 0 5 degrees; velocity
threshold = 30 degrees/second; max time between fixations
= 75ms; minimum fixation duration = 60ms). Parameters
that have proven reliable in detecting deception [41, 43] were
then computed and employed for the statistical analyses.
Table 2 describes each of the considered parameters.

Gaze behavior was analyzed to assess differences in ocu-
lar activity between the two testing instructions (i.e., honest
vs. SDR) on the response buttons. Initially, it was tested
whether the instructions affected participants’ visual explora-
tion of the response options, independently of their actual
response (i.e., response AOI). Analyses of these AOIs are
reported in the Supporting Information (available here). The
focus of interest was eye movements as a function of response
selection. To this end, two AOIs were defined for both the L
and the K scale, and gaze behavior was compared across the
selected and unselected responses (i.e., selected response AOIs).
Statistical testing was conducted separately for each scale.

Of note, a percentage (rather than raw count) was calcu-
lated for the fixations and saccades, to control for individual
differences in the visual exploration of the screen. Also, blink
frequency (i.e., count/s) was analyzed instead of blink count,
to account for differences in trial duration.

3.6. Statistical Analysis

3.6.1. Univariate Analyses. To ensure that participants cor-
rectly understood and followed the instructions for each

Informed consent
sociodemographic

questionnaire eye-tracker
calibration

Filler task 
(short video)

Experimental task
(L and K scales of MMPI-2)

1st condition
(HONEST/SDR)

Experimental task
(L and K scales of MMPI-2)

2nd condition
(SDR/HONEST)

Mouse dynamics
Eye movements

T-scores

Mouse dynamics
Eye movements

T-scores Univariate analysis
Predictive models (logistic
regression, SVM, random 
forest, naïve Bayes, J48)

(i)
(ii)

Figure 1: Experimental workflow.

START

(a)

True False

Item Statement

(b)

Figure 2: Example of an experimental trial as seen by participants. After the participant clicked on the (a) start button, (b) the stimulus
appeared. Note: This is a prototypical image of how the items were presented on the screen. To ensure text security, we did not report
an actual text item.
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condition, scores on the outcomemeasures were compared via
separate paired t-tests on the L and K scales T-score. Paired
t-tests were also run to compare temporal and spatial fea-
tures of mouse movement in the honest vs. SDR conditions.
Separate analyses were conducted for the L and K scales.
Repeated measure ANOVAs with instruction (SDR vs. honest)
and response AOI (selected vs. unselected) were also conducted.

Effect sizes were interpreted as follows: for paired t-tests,
Cohen’s d = 0 2 was considered indicative of a small effect,
d = 0 5 a medium effect, and d = 0 8 a large effect [68]. For
repeated measure ANOVAs, η2p = 0 01 was considered
indicative of a small effect, η2p = 0 06 a medium effect, and
η2p = 0 14 a large effect [69]. The p value was considered sig-
nificant at the 0.05 level. Analyses were performed using
IBM SPSS v.25 [70].

3.6.2. Predictive Models. To investigate the effectiveness of
T-scores and mouse and eye movements in SDR detection,
a predictive statistical approach was adopted, imple-
menting ML models. ML techniques have been recently
applied to a broad range of domains [71, 72], including
predicting human behavior and, specifically, over- and
underreporting [29, 73, 74]. In the present study, ML anal-
yses were run in WEKA 3.9 [75], following a best practice
workflow comprised of (a) feature selection, (b) model train-
ing and validation, and (c) model testing using an out-of-
sample group [76]. As ML models are built to fit data, their
fit with new (i.e., unseen) data must be tested. A data training
set is generally used to train and validate the model, while a
data test set is used to test the model’s accuracy on new data.
This procedure guarantees generalization and increases the
replicability of the results [77–79]. For this purpose, partici-
pants were randomly split into training (n = 60) and test ( n
= 25) sets. The training set consisted of 120 responses (60
honest and 60 SDR), while the test set included 50 responses
(25 honest and 25 SDR).

First, feature selection was run with the aim of removing
redundant and irrelevant features, and thereby increasing
model generalization by reducing overfitting and noise in
the data [80]. This was performed using a correlation-
based feature selector (CFS) [81]. The CFS algorithm uses
the “greedy stepwise” search method to evaluate a subset of

features, in terms of the individual predictive ability of each
feature and the redundancy with other predictors. It selects
the subset with the highest correlation with the dependent
variable (i.e., honest vs. SDR), but low intercorrelation. The
predictors that resulted from this process were fed as inputs
to several ML models.

These models were then trained and validated using 10-
fold cross-validation [82]—a procedure that consists of
repeatedly partitioning the sample into training and valida-
tion sets. Thus, the sample of 120 responses was randomly
partitioned into 10 equal-size subsamples, or folds (i.e., 10
folds of 12 responses). One of the 10 folds was retained as
validation data to test the model, and the remaining 9 folds
were used as training data. This process was repeated 10
times, with each of the 10 folds used once as validation data.
The results of the 10 folds were then averaged to produce a
single estimation of prediction accuracy. Finally, to evaluate
the accuracy of the validated models in classifying unseen
participants as honest or SDR, they were tested on the out-
of-sample test set of 50 responses. The predictive perfor-
mance of the models was evaluated using accuracy,
precision, recall, and F-measure (i.e., F1 score). Together,
these metrics provide a comprehensive assessment of model
performance. In certain contexts, such as forensics and man-
agerial settings, it is crucial not to rely solely on overall accu-
racy but also to consider false positives and false negatives.

As described above, classification accuracy was assessed by
applying different ML algorithms to determine whether the
results remained consistent across different classifiers and
were not influenced by specific model assumptions. The algo-
rithms we selected represent a range of classification strategies,
including regression, classification trees, and Bayesian statis-
tics. Specifically, the following algorithms were used, based
on relevant previous literature [25, 30]:

• Logistic regression [83]: This method evaluates the
relationship between a categorical dependent variable
and one or more independent variables, using a logis-
tic function to estimate probabilities.

• Support vector machine (SVM) [84]: A binary linear
classifier that organizes data in space and separates

Table 2: Gaze behavior features and indicators.

Feature Indicator

Fixation percentage
Number of fixations during a specified time interval (i.e., onset to the end of each trial)

within target AOIs, as a proportion of the total number of fixations during the same interval

Fixation average duration (ms)
Mean elapsed time between the first and the last gaze point in the sequence of gaze points

in the fixation

Saccade percentage
Number of saccades during a specified time interval (i.e., onset to the end of each trial)

within target AOIs, as a proportion of the total number of saccades during the same interval

Saccade average duration (ms) Mean time required to move the fovea from the initial to the final position

Dwell time (ms) Total elapsed time between the first and the last fixation inside the AOI

Blink frequency (count/s)
Number of blinks in the period of interest, adjusted for trial duration. Only data gaps >

100ms considered

Note: Each indicator was measured within a trial (i.e., item) and then averaged across all trials composing a questionnaire.
Abbreviation: AOI = area of interest.
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categories by a margin that is maximized for greater
classification accuracy.

• Random forest [85]: An ensemble learning technique
that builds multiple decision trees and aggregates their
results.

• Naïve Bayes [86]: A probabilistic classifier that applies
Bayes’ theorem, assuming independence between
predictors.

In addition, the J48 tree model [87] was implemented to
facilitate interpretability. J48, often referred to as an imple-
mentation of the C4.5 algorithm in Weka software, builds
decision trees by selecting attributes that provide the highest
normalized information gain. It is one of the simplest classi-
fiers in terms of transparency, as it emphasizes the logic
behind the classification [88]. It should be noted that all
algorithms were run using the default parameters of WEKA
3.9 [75], without any fine-tuning to increase accuracy.

4. Results

4.1. L and K Scale T-Scores. A significant effect was found
for instruction (i.e., honest vs. SDR) on L scale T-scores,
t 84 = 11 15, p < 0 001, with a large effect size, d = 1 21.
As expected, participants in the SDR condition recorded
significantly higher T-scores. A significant (t 84 = 9 43,
p < 0 001) and large effect (d = 1 02) was also found for
instruction on K scale T-scores, with participants in the SDR
condition scoring significantly higher (see Table 3 and
Figure 3).

4.2. Mouse-Tracking Variables

4.2.1. Mouse-Tracking Variables on the L Scale. A significant
and small effect of instruction (i.e., honest vs. SDR) was
found for all mouse-tracking variables on the L scale: RT
(t 84 = 2 32, p = 0 023, d = 0 25), AUC (t 84 = 2 99, p =
0 004, d = 0 33), and MD (t 84 = 2 94, p = 0 004, d = 0 32).
For each variable, the average was higher for participants
in the SDR condition (see Figure 4(a) and Table 4).

4.2.2. Mouse-Tracking Variables on the K Scale. As shown in
Table 4, a significant and small effect of instruction (i.e., honest
vs. SDR) was found for both the AUC and MD on the K scale:
AUC (t 84 = 2 11, p = 0 038, d = 0 23) and MD (t 84 = 2 70,
p = 0 009, d=0.29). The average of these variables was higher
for participants in the SDR condition (see Figure 4(b)).

4.3. Eye-Tracking Variables on Selected Response AOI. A
repeated measures ANOVA with instruction (i.e., SDR vs.
honest) and response AOI (i.e., selected vs. unselected) was
conducted for all eye-tracking parameters (see Table 5 for
descriptive statistics).

4.3.1. Eye Movements on the L Scale. For fixation percentage
and average duration, the main effects of instruction and
response AOI were not significant, Fs 1,84 ≤ 1 22, ps ≥ 271.
However, a significant interaction effect emerged for both
fixation percentage, F 1,84 = 62 45, p < 0 001, η2p = 0 43,

and fixation average duration, F 1,84 = 65 92, p < 0 001,
η2p = 0 44. Pairwise comparisons showed that the selected
response received more and longer fixations in the honest
condition. In contrast, the unselected response AOI was fix-
ated on more frequently and for a longer duration in the
SDR condition.

Similar results emerged for saccade percentage and aver-
age duration, which showed nonsignificant main effects for
instruction and response AOI, Fs 1,84 ≤ 2 29, ps ≥ 0 134,
yet significant interaction effects. For saccade percentage,
the interaction effect was significant, F 1,84 = 27 14, p <
0 001, η2p = 0 24, and pairwise analyses indicated that the
selected response received more saccades in the honest con-
dition, while the unselected response received more saccades
in the SDR condition. For saccade average duration, the
interaction effect was significant, F 1,84 = 7 77, p = 0 007,
η2p = 0 09, and pairwise analyses indicated that in the unse-
lected response AOI, saccades tended to be longer in the
honest condition, while no difference between conditions
emerged in saccade duration within the selected response
AOI.

For dwell time, a main effect of instruction emerged,
F 1,84 = 6 85, p = 0 010, η2p=0.08, with higher dwell time
recorded by participants in the SDR condition. A significant
interaction between instruction and response AOI was
also found, F 1,84 = 61 48, p < 0 001, η2p = 0 42. Pairwise

Table 3: Results of the paired t-test on T-scores of the L and K scales.

Variable Instruction M SD Difference

L scale
SDR 64.42 13.17 16.07

Honest 48.35 9.14

K scale
SDR 53.84 9.14 9.48

Honest 44.35 8.71

Note: Statistically significant effects (p < 0 05) are in bold. The final column
reports the difference between the two means (MSDR-MHonest).
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Figure 3: Effects of instruction (Honest vs. SDR) on T-scores of the
L and K scales. Note: ∗∗∗p < 0 001. Error bars indicate the standard
error (SE).
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comparisons indicated that dwell time on the selected
response AOI was higher in the honest condition. In con-
trast, dwell time on the unselected response AOI was higher
in the SDR condition.

Finally, for blink frequency, there was a significant main
effect of instruction, F 1,84 = 22 05, p < 0 001, η2p = 0 21,
with higher blink frequency in the SDR condition. Also,
the main effect of response AOI was significant, F 1,84 =
6 66, p = 0 012, η2p = 0 07, indicating that blink frequency
was higher for the unselected response AOI. Notably, the
interaction effect was also significant, F 1,84 = 102 10, p <
0 001, η2p = 0 55. Pairwise comparisons indicated that blinks
were more frequent in the selected response AOI in the hon-

est condition and in the unselected response AOI in the SDR
condition (see Table 6).

4.3.2. Eye Movements on the K Scale. The main effect of
instruction was not significant for all tested parameters (all F
s 1,84 ≤ 3 41, ps ≥ 0 07). A main effect of response AOI was
detected for fixation percentage (F 1,84 = 4 67, p = 0 033,
η2p = 0 05) and blink frequency (F 1,84 = 8 16, p = 0 005,
η2p = 0 09), with both higher in the SDR condition. No
other tested parameter presented a significant main effect
for the selected response (all Fs 1,84 ≤ 3 57, ps ≥ 0 062).

Significant interaction effects were observed for all parame-
ters. For fixation percentage (F 1,84 = 26 45, p < 0 001, η2p =
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Figure 4: Effects of instruction (Honest vs. SDR) on mouse-tracking features. Note: ∗p < 0 05; ∗∗p < 0 01. Error bars indicate the standard
error (SE).

Table 4: Results of the paired t-test on the mouse-tracking variables for the L and K scales.

Variable Instruction
L scale K scale

M SD Difference M SD Difference

RT
SDR 4895.32 1864.38

489.95
5110.29 1503.61

76.29
Honest 4405.37 1323.17 5033.99 1372.27

AUC
SDR 32018.97 18629.06

5928.41
32792.72 17719.49

3127.66
Honest 26090.57 16853.93 29665.05 16582.82

MD
SDR 128.77 71.23

23.61
134.58 71.92

15.86
Honest 105.16 66.22 118.73 62.19

Note: The difference between the two means (MSDR-MHonest) is reported. Statistically significant effects (p < 0 05) are in bold.
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Table 5: Descriptive statistics for the eye-tracking variables of the L and K scales.

Variable Instruction AOI
L scale K scale

M SD M SD

Fixation percentage

SDR
Selected 5.78 4.58 2.70 1.77

Unselected 9.78 4.98 3.88 2.37

Honest
Selected 9.99 7.29 3.53 2.15

Unselected 6.55 4.04 3.28 2.04

Fixation average duration

SDR
Selected 185.81 145.83 195.50 123.90

Unselected 296.27 141.83 258.99 130.15

Honest
Selected 287.57 173.26 251.37 123.14

Unselected 176.54 117.22 203.27 108.20

Saccade percentage

SDR
Selected 2.51 2.82 1.09 1.02

Unselected 3.95 2.94 1.59 1.40

Honest
Selected 4.64 5.08 1.60 1.44

Unselected 2.73 2.65 1.34 1.20

Saccade average duration

SDR
Selected 36.62 17.73 36.95 19.07

Unselected 33.18 13.26 39.74 13.04

Honest
Selected 33.70 12.20 42.45 12.69

Unselected 36.91 14.60 39.32 15.51

Dwell time

SDR
Selected 376.16 328.21 355.93 249.17

Unselected 624.51 330.08 512.54 293.09

Honest
Selected 536.07 397.78 466.29 281.51

Unselected 328.92 228.40 415.92 246.63

Blink frequency

SDR
Selected 0.280 0.194 0.273 0.152

Unselected 0.483 0.210 0.390 0.181

Honest
Selected 0.366 0.180 0.333 0.154

Unselected 0.267 0.161 0.319 0.157

Table 6: Pairwise comparisons of the interaction effects between instruction and selected response AOI on eye-tracking variables in the L
and K scales.

Variable
Selected response AOI Unselected response AOI

SDR Honest p SDR Honest p

L scale

Fixation percentage − + < 0.001 + − < 0.001
Fixation average duration − + < 0.001 + − < 0.001
Saccade percentage − + < 0.001 + − 0.001

Saccade average duration = = 0.187 — + 0.051

Dwell time − + < 0.001 + − < 0.001
Blink frequency − + < 0.001 + − < 0.001

K scale

Fixation percentage − + < 0.001 + − 0.011

Fixation average duration − + < 0.001 + − < 0.001
Saccade percentage − + 0.002 = = 0.085

Saccade average duration − + 0.015 = = 0.783

Dwell time − + < 0.001 + − < 0.001
Blink frequency − + < 0.001 + − < 0.001

Note: The symbol “+” (“−”) indicates higher (lower) mean scores for a given variable (row) in a given instruction condition (column), compared to the
opposite condition.
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0 24), fixation average duration (F 1,84 = 37 84, p < 0 001,
η2p = 31), dwell time (F 1,84 = 33 04, p < 0 001, η2p = 0 28),
and blink frequency (F 1,84 = 34 21, p < 0 001, η2p = 0 29),
pairwise comparisons showed lower values for the selected
response AOI and higher values for the unselected response
AOI in the SDR condition. For saccade percentage
(F 1,84 = 20 32, p < 0 001, η2p = 0 20), pairwise comparisons
showed that the SDR condition was associated with a lower
saccade percentage in the selected response AOI, while no
difference between conditions emerged for unselected
response AOI. A similar pattern was detected for saccade
average duration (F(1, 84) =5.00, p = 0 028, η2p = 0 06), with
pairwise comparisons highlighting lower average duration
in the selected response AOI in the SDR condition, while
no difference between conditions emerged for the unse-
lected response AOI.

Taken together, these results suggest that SDR partici-
pants devoted less attention to the selected response and
more attention to the unselected response (see Table 6).

4.4. Predictive Models. To identify in which condition partic-
ipants had responded to the task (SDR vs. Honest), 32 vari-
ables considered in the statistical analysis were treated as
possible predictors and included in feature selection. CFS
identified the following six as the best set of predictors:

• L scale T-score;

• K scale T-score;

• Blink frequency on the unselected response AOI of the
L scale;

• Dwell time on the unselected response AOI of the
L scale;

• Fixation average duration on the unselected response
AOI of the L scale;

• Fixation average duration on the unselected response
AOI of the L scale.

ML algorithms were trained, validated, and tested on
these six variables, according to the procedure described

above. Table 7 reports the results of the 10-fold validation
procedure and the model performance in the test set.

Classification accuracy was stable between the different
classifiers, ranging from 70%–78% in the test set. The deci-
sion tree (i.e., J48) obtained the best performance (83.33%)
in the 10-fold cross-validation, but it also generalized the
least, as its accuracy dropped to 72% in the test set. The best
classifier was naïve Bayes, which achieved good accuracy in
the training set (80%) and maintained a similar performance
in the test set (78%).

The rule used by the decision tree algorithm to classify a
response as honest or SDR was as follows:

L scale T − score ≤ 58.
|L scale unselected AOI blink frequency ≤ 0 33: Honest.
|L scale unselected AOI blink frequency > 0 33: SDR.
L scale T − score > 58: SDR.
Notably, the rule was very simple, and its classification

accuracy was 72%, considering only two variables (i.e., L
scale T-score and L scale unselected AOI blink frequency).

Finally, looking at the confusion matrix of the test set
classification, all algorithms made a number of errors, result-
ing in a slightly higher number of false negatives (i.e., SDR
responses classified as Honest) than false positives (i.e., Hon-
est responses classified as SDR): logistic FP = 6/25, FN = 9/
25; SVM FP = 4/25, FN = 9/25; Random forest FP = 6/25,
FN = 8/25; naïve Bayes FP = 4/25, FN = 7/25; J48 FP = 8/25,
FN = 6/25.

5. Discussion

The first aim of the present research was to replicate and
confirm the findings of previous studies regarding the role
of T-scores and temporal and kinematic indicators in
detecting SDR on a personality questionnaire. The results
supported the first hypothesis (H1), according to which T-
scores on the MMPI-2 underreporting L and K scales were
expected to be higher in the SDR condition. These findings
are aligned with the results of previous studies [20, 23, 25,
43] indicating that SDR respondents tend to obtain higher
scores on the MMPI underreporting scales. In this sense,
the result reflects that the study instructions were correctly
understood by participants, as participants who were

Table 7: Results of different machine learning algorithms in 10-fold cross-validation and the test set.

Algorithm Accuracy Precision Recall F-measure

Logistic
10-fold cross-validation 78.33% 0.78 0.78 0.78

Test set 70% 0.70 0.70 0.70

SVM
10-fold cross-validation 76.67% 0.77 0.77 0.77

Test set 74% 0.75 0.74 0.74

Random forest
10-fold cross-validation 80.83% 0.81 0.81 0.81

Test set 72% 0.72 0.72 0.72

Naïve Bayes
10-fold cross-validation 80% 0.80 0.80 0.80

Test set 78% 0.78 0.78 0.78

J48 10-fold cross-validation 83.33% 0.84 0.83 0.83

Test set 72% 0.72 0.72 0.72
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instructed to engage in SDR presented themselves in a more
positive way by selecting socially desirable alternatives.
Additionally, on average, participants in the SDR condition
scored 1.5 SD above the mean on the L scale and approxi-
mately 16 T-points differently from participants in the hon-
est condition. In contrast, participants in the SDR condition
scored much closer to the average on the K scale, and fewer
than 10 T-points differently from participants in the honest
condition. These findings could be considered a proxy con-
firmation of the scales’ construct validity. Indeed, the 15
items on the L scale refer to relatively common behaviors,
minor infractions, and faults/weaknesses that most people
would admit to. By responding negatively to these items,
SDR participants evidenced a tendency to provide a socially
virtuous and well-adjusted self-image. L scale items measure
social desirability more accurately than K scale items, which
instead measure emotional control and denial, across several
thematic areas (e.g., hostility, mistrust, family conflict, exces-
sive worry). Furthermore, L scale items are more transparent
and easier to feign than the less obvious items of the K scale.

The latter consideration is also useful in explaining why
SDR participants registered significantly longer RTs on the L
scale, but not the K scale. Thus, the results supported the
second hypothesis (H2) only in relation to the L scale. K
scale items, being less obvious in the construct they are
designed to measure, likely determined that honest partici-
pants needed more time to respond. This finding is consis-
tent with previous studies showing that, compared to
honest respondents, SDR respondents take more time to
respond to stimuli (see, for a meta-analysis [89]). In this
vein, the self-schema model [90] suggests that fakers take
longer to answer a self-report questionnaire than honest
respondents. Indeed, research suggests that faking requires
more time, either because it is more cognitively demanding
[18, 20, 29] or because it heightens arousal due to a fear of
detection [22].

Recently, mouse dynamics have been found to be useful
for the identification of deception. Studies by Monaro et al.
[19, 27] have shown that, when half of a sample answer an
autobiographical questionnaire honestly and the other half
answer according to fake profiles learned just prior to test-
ing, honest respondents follow the more direct trajectory
to the desired answer, whereas those answering according
to a fake profile show trajectories that initially converge
towards the actual autobiographical information and then
switch towards a relevant alternative. In line with this, in
the present study, the mouse trajectories of participants in
the SDR condition were wider (in terms of AUC and MD)
than those in the honest condition. Thus, the third hypoth-
esis (H3) was supported, consistent with a previous applica-
tion of mouse-tracking to identify SDR [25], which found
wider mouse trajectories only for the L scale.

The second goal of the present study was to explore
whether eye movements could improve the detection of
SDR on personality inventories. In line with the fourth
hypothesis (H4), SDR and honest responding were associ-
ated with different visual patterns. On the L scale, partici-
pants in the SDR condition fixated more often and
frequently on the unselected response AOI, with more (but

shorter) saccades, higher dwell time, and more frequent
blinks. Similar results were found for the K scale, except
for saccade percentage and average number, for which no
significant differences were found between testing condi-
tions in the unselected response AOI. In other words, when
answering honestly, participants focused more on the option
they eventually chose, in line with cognitive models of
decision-making. In contrast, SDR participants attended
more to the unselected response. A possible explanation
for this is that, when faking, respondents attempt to avoid
the “correct” answer, yet it nevertheless catches their atten-
tion. Supporting this explanation, participants in the SDR
condition registered lower blink frequency in the selected
response AOI. Albeit in the context of a feigning experimen-
tal paradigm, a similar result on eye movements has been
found by Ales et al. [37]. Specifically, the authors studied
the ocular movements of healthy participants asked to feign
schizophrenia while responding to an SVT (i.e., IOP-29)
compared with control participants instructed to respond
honestly. Findings showed that feigners paid more attention
than controls to those response options identified as more
indicative of feigning, even if they eventually decided not
to endorse them.

A direct comparison of the current results with those of
previous studies is not possible, as AOIs were examined on
the basis of the response, rather than item content. Further-
more, to the best of our knowledge, this was the first study to
analyze items with two response alternatives, in line with the
MMPI-2. Contrary to both Hooft and Born [43] and Fang
et al. [41], little evidence was found for overall smaller or
greater fixations and saccades in the SDR condition. Differ-
ences between conditions emerged only when the selected/
unselected responses were separated, thus accounting for
participants’ decisions.

The third and main aim of the present research was to
develop an ML model integrating T-scores and mouse and
eye movements to accurately predict SDR on the MMPI-2
underreporting scales. The main advantage of ML models
is their ability to draw inferences at the individual level, with
utility for (e.g.) clinical, recruiting, and forensic settings. The
present study validated models to predict SDR on the MMPI-
2 with 70%–78% accuracy. In particular, the model trained
with the naïve Bayes algorithm obtained satisfactory accu-
racy in both the validation and the test set, and good general-
ization on previously unseen subjects. SDR seems slightly
more difficult to identify than honest behavior, as all the clas-
sifiers produced a greater number of false negatives than false
positives. Interestingly, classification was based on only L and
K scale T-scores, and L scale eye-tracking variables (espe-
cially for the unselected response AOI). Moreover, a simple
decision tree model demonstrated that two variables (i.e., L
scale T-score, blink frequency in the unselected response
AOI of the L scale) could obtain 72% accuracy. Interestingly,
Hooft and Born [43] attributed predictive importance to fix-
ation number, using hierarchical logistic regression. In con-
trast, in the ML algorithms employed in the present study
(which were not explicitly programmed), the average dura-
tion of fixations and number of blinks played a central role.
Compared with the model proposed by Fang et al. [41], in
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which fixation count and pupil size were decisive (though the
model was built on only a small number of participants), the
present models replicated the 74% accuracy with the SVM
algorithm and improved on this (78% accuracy) with the
naïve Bayes classifier.

As previously mentioned, SDR is a prevalent source of
bias that undermines accurate assessments in high-stakes
evaluative settings. The importance of research in SDR
detection is underscored by its substantial social and eco-
nomic costs. For instance, hiring personnel with undesirable
traits, particularly in managerial roles, can lead to significant
economic, managerial, and organizational losses. Even more
severe consequences can arise from appointing unsuitable
individuals to public positions of high responsibility, such
as pilots, military personnel, law enforcement agents, and
teachers. In forensic contexts, granting a driver’s license to
an ineligible driver poses a considerable risk to road safety.
Similarly, SDR during a parenting skills assessment in child
custody cases can result in incorrect judgments, endangering
the child’s physical and psychological well-being. Mental
health professionals in forensic psychology, including those
involved in family law and child custody hearings, face chal-
lenges in providing reliable support to decision-makers
when family outcomes are at stake.

This research not only advances scientific understanding
of SDR but also has a tangible social impact. In institutional
settings, new SDR assessment strategies could be particularly
beneficial for experts in personnel selection, enhancing their
ability to accurately differentiate between candidates. The
proposed SDR detection strategies can be utilized by profes-
sionals in private practice, as well as organizations involved
in evaluation and personnel selection across both civilian
and military sectors. In forensic contexts, these findings
could assist mental health professionals by indicating
whether assessment data is genuine or fabricated to influ-
ence the court, potentially leading to more informed sen-
tencing decisions.

6. Conclusions

Overall, the current findings highlight that individuals who
respond to personality questionnaires in a socially desir-
able manner tend to have longer RTs and wider mouse
trajectories and often avoid looking at the answers they
intend to fake, compared to honest respondents. Building
on the pioneering work of Hooft and Born [43], these
results contribute significantly to the development of inno-
vative methods for detecting SDR by integrating new tech-
nologies, such as mouse tracking and eye tracking, with
ML algorithms.

When interpreting the present results, it is important to
consider some limitations. First, as noted by Hooft and Born
[43], the SDR experimental procedure instructed partici-
pants to present themselves as the best candidate for a job
while avoiding detection. This instruction may have affected
participants’ reporting accuracy, as personnel selection
involves a significantly different psychological experience
than the actual study task. Second, the study employed a
within-participants design, which is advantageous for con-

trolling individual and dispositional factors but limits the
generalizability of the results to more ecological and opera-
tional settings. Additionally, this design introduces another
limitation: Participants performed the same experimental
task twice, meaning they had already read the items once
when completing the task after the second set of instruc-
tions. Although the order of instructions was balanced, this
could have influenced the results. The repeated exposure to
the items might have led to a familiarity or learning effect
that future research could explore using a between-subjects
design and a congruent participant group. Another limita-
tion is that participants were aware that their eye move-
ments were being recorded due to the calibration process
with eye-tracking technology prior to data collection. As a
result, participants may have consciously directed their gaze.
However, it is unlikely that they could self-regulate their
gaze for the entire duration of the experiment.
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