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A B S T R A C T

Modeling and recognizing events in complex systems through machine learning techniques is a challenging
task. Especially if the model is constrained to be explainable and interpretable, while ensuring high levels of
accuracy. In this paper, we adopt a bilinear logistic regression model in which the parameters are trained in a
data-driven fashion on a real-world dataset of power grid failure data. The bilinear white-box model – grounded
on a specific neural architecture – has been proven effective in classifying faulty states with a performance
comparable to several classifiers in technical literature. Additionally, the low computational complexity of the
bilinear model, in terms of the number of free parameters, allows gaining insights into the fault phenomenon
correlating the events that impact the power grid (exogenous causes) with its constitutive characteristics,
thence eliciting the relational information hidden in the data. The proposed model is also able to estimate
a vulnerability vector that can be associated, as a suitable characteristic ‘‘label’’, to power grid components,
opening the way, as will be deeply demonstrated in the following, not only to predictive maintenance programs
or condition monitoring tasks but also to risk assessment and scenario analyses in line with the explainable
AI paradigm.
1. Introduction

With the advent of modern machine learning techniques, within
the Artificial Intelligence umbrella, the possibility of modeling and
controlling complex systems increased considerably. At the same time,
complex systems theory can be a useful tool for providing new insights
into machine learning approaches (Tang, Kurths, Lin, Ott, & Kocarev,
2020). Nowadays machine learning techniques are adopted not only
in computer science but also across a range of industries concerned
with data-intensive issues, such as consumer services, the diagnosis of
faults in complex systems, and the control of logistics chains (Jordan
& Mitchell, 2015). In any case, standard machine learning techniques
are based on the construction of learning datasets made up of patterns
which in most cases are a set of variables or measures on a process or
system. Often these measurements, after the usual data preprocessing
phases, consist of 𝑛-tuples of real numbers, each of which reflects a
specific characteristic considered important, therefore correlated with
the output of the system or process to be modeled (Bishop & Nasrabadi,
2006). Moreover, it is known that a classification algorithm, whether
it is based on the connectionist paradigm or on explicit geometrical
properties such as a suitable similarity measure between patterns, is a
data-driven procedure to learn an input–output mapping with a suitable
algorithmic architecture or model, the choice of which depends not
only on performance but also on other properties such as the so-called
‘‘explainability’’. In fact, in recent research trends, a desirable property
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of a learning model is the one to be ‘‘interpretable’’ and ‘‘comprehensi-
ble’’ (Martino, De Santis, & Rizzi, 2020). In other words, several modern
research programs, such as the one promoted by DARPA (Gunning &
Aha, 2019), endeavor to create AI systems whose learned models and
decisions can be understood and appropriately trusted by end users.
According to DARPA "The XAI program’s goal is to create a suite of
new or modified machine learning techniques that produce explainable
models that, when combined with effective explanation techniques,
enable end users to understand, appropriately trust, and effectively
manage the emerging generation of AI systems" (Gunning & Aha,
2019). If on the one hand, the endeavor in synthesizing explainable
models is not so recent if we consider decision trees, on the other,
the need for explainability is proportional to the power of modern
deep learning architectures, which remain in most cases black-box or
gray-box models. Moreover, the explainability of a machine learning
model is usually inverse to its prediction accuracy, that is the higher
the prediction accuracy, the lower the model explainability (Gunning
& Aha, 2019; Xu et al., 2019).

In complex systems modeling through machine learning techniques
and specifically in describing the state of the system, in some cases,
there is the possibility of collecting a set of measures that can be
grouped according to some semantic specification. This is the case of
modeling the state of a system in predictive maintenance and condition
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monitoring (but also in biomedical applications (Wang, Wang, Hu, &
Sorrentino, 2015)), where in determining the probability of failure or
outage it is possible to individuate ‘‘constitutive’’ slow-varying vari-
ables that are related to the material state of the system or equipment
and ‘‘exogenous’’ (or also ‘‘endogenous’’) fast-changing variables, which
are considered as ‘‘forces’’ that impact the state of the system itself. For
example, a failure event in a power grid can depend on the constitution
of the component subject to a fault and on several events impacting its
state, for example, the climatic or weather conditions (Guikema, David-
son, & Liu, 2006) (think to flooding or lightning strikes) or the electric
load determined by human behavior in using electric devices. Hence, in
synthesizing a condition monitoring system but also in constructing a
model capable of generating scenario analyses, having available smart
sensors spread on the network can be useful to semantically distinguish
measures related to components (constitutive parameters) and measures
on variables that impact to the system (exogenous variables). In sepa-
rating semantic variables it is possible to build a predictive relational

odel that can be both lightweight and in line with the explainable AI
aradigm. In this work, we propose a framework based on a bilinear
odel formally similar to the well-known logistic regression classi-

ier for recognizing failures in a real-world MV power grid with the
ollowing characteristics that allow:

• to suitably estimate the vulnerability of components – character-
ized by well-suited constitutive parameters – in relation to given
exogenous causes, i.e., the weather conditions and the electric
load measured by smart sensors;

• to estimate the probability of failure;
• to provide a clear interpretation of the obtained model;
• to open toward scenario analyses for network long-term planning

strategies gaining insights from the model.

ence, the following study has also a methodological aim, that is
onstructing a learning model maintaining the trade-off between a very
ood level of interpretability and high accuracy with the possibility of
xtracting useful information from the model to gain insight into the
ault phenomenon. It is emphasized that the approach is sufficiently
eneral and can be applied in all cases where the causes can be
isambiguated from the constitutive parameters. For example, in the
ield of medicine, the use of a drug in various clinical conditions can be
odeled to evaluate its effects. The approach is based on defining the

ulnerability vector as a linear function of the constitutive parameters
through a suitable parameter matrix) and estimating the probability of
aults as a non-linear function of the dot product of the aforementioned
ulnerability vector and the vector of exogenous causes. Given a dataset
f failures where data patterns can be semantically grouped in consti-
utive parameters and exogenous causes the primary goal is estimating
he (trainable) parameters of the linear combination (that define the
ulnerability) that better align with exogenous causes. In other words,
et to the output non-linearity – that will be a sigmoid function – the
robability of a failure reaches its maximum value if the inner product
s maximum, that is the vulnerability vector and the exogenous causes
re aligned. This simple model allows estimating a (rectangular) matrix,
hich we call ‘‘correlation matrix’’, that relates constitutive parameters
nd exogenous causes and can be directly interpretable. Moreover, the
atrix (along with a bias vector) allows for estimating the vulnerability

elated to a component given a set of constitutive parameters. Further-
ore, a spectral decomposition of the matrix, performed by SVD, can be

xploited to extract the main modes of the relation between constitutive
arameters and exogenous cause in determining the vulnerability and,
inally, the probability of fault. Once learned the parameters of the
odel, they can be used to visualize probability landscapes varying

ntries of the constitutive parameters or of the exogenous causes,
ith the interesting possibility of building a framework not only for
etecting failures but also for carrying out data-driven risk analysis and
etwork planning programs through a suitable knowledge discovery
2

aradigm. In fact, the possibility of estimating the vulnerability of
the components and the probability of failure allows us to carry on
a risk analysis through the product of the probability of failure and
the impact of the causes on the components, given their vulnerability.
Moreover, utilizing machine learning for risk analysis in smart grids
leads to more precise predictive maintenance, significantly reducing
equipment failures and extending their operational life. It enables effi-
cient resource allocation by identifying high-risk components, thereby
saving costs and enhancing grid reliability. This approach bolsters
the grid’s resilience, particularly against extreme conditions and load
changes, through early vulnerability identification and mitigation. The
methodology’s data-driven nature ensures informed, effective manage-
ment decisions. Additionally, its capability for continuous adaptation
to new data and changing grid conditions guarantees the smart grid’s
long-term stability and operational efficiency. We would like to point
out that in this investigation an in-depth risk assessment analysis of the
network and network planning in economic and programmatic terms is
considered out of scope, while a scenario analysis will be carried out
using various case studies.

To the best of our knowledge, a neural architecture similar in
structure (but not identical) to the one proposed by us is known by
the name ‘‘Neural Tensor Network’’ and is treated in Socher, Chen,
Manning, and Ng (2013) and Chen, Socher, Manning, and Ng (2013).
Authors build a tensor layered bilinear neuron to capture relational
information in knowledge bases, extracting association and common
sense reasoning from large text corpora. The goal of the approach is to
be able to state whether two entities (𝑒1; 𝑒2) are in a certain relationship
𝑅, where entities are embedding vectors for words in the database.
Hence, at least in this approach, the involved relation matrix is square
and the entries do not posses a clear semantical meaning as in our
setting, in which exogenous causes and consecutive parameters are
composed by clear and interpretable entries (whether conditions, loads,
length of cables, constituent material, etc.). A bilinear approach with
similar structure and intents is proposed in Wang et al. (2015) within
the biomedical ambit. Authors claim to extend the classical logistic
regression scheme, where a regression vector of weights associated to
variables is estimated, to a bilinear scheme to put in relation (all) fea-
tures describing patients and possible patient outcomes (cases, controls)
in a binary classification settings. The learning scheme is grounded on
a suitable decomposition of the regression square matrix. Interestingly,
the study shows how the model can be adopted to perform patient score
prediction, patient risk stratification and clinical context discovery. We
can state that in a slightly different manner, we translate the same
aims in the predictive maintenance and condition monitoring context,
within the modern Smart Grids ambit. In Shi, Xu, and Baraniuk (2014)
authors use the locution "sparse linear logistic regression" for extending
the logistic regression scheme to data patterns having the form of data
matrices (matrices-labels pairs). Despite the name, the computational
scheme is quite different from the one adopted in the current study. We
decided, however, to adopt the naming ‘‘bilinear logistic regression’’
for our scheme because it is formally identical to the classic logistic
regression, net to the learning of a regression general matrix instead of
a regression vector. Finally, with the claim to prove the effectiveness of
the proposed method, we carry out our experiments on real-world data
measured on the MV power grid that feeds the city of Rome in Italy
and we compare classification results with other standard classifiers.
Moreover, we propose two different learning schemes, the plain one –
named plain B-LR – which learns a single correlation matrix with a low
complex model and the boosted one – named Boosted-LR (B-LR) – that
is capable of learning a set of correlation matrices in parallel, trying to
capture different relations between exogenous causes and constitutive
parameters. In order to investigate the complexity of the dataset and the
behavior of the model in terms of sparsity a parameter regularization
study is performed. Additionally, due to the application context, we
study a calibration scheme for output (uncalibrated) probabilities in
order to have an output in line with the observed frequencies (De

Santis, Arnò, & Rizzi, 2022). We present also a denormalization scheme
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of the models’ parameters that will be useful, together with output
calibrated probabilities, to carry out a set of knowledge discovery tasks,
proving the effectiveness of the overall methodology in the context of
further condition monitoring, risk analysis and mid-term plan strategies
in network operation.

It is worth noting that this work follows in the wake of seminal
studies published by the authors in the context of fault modeling in
Smart Grids – within the same project – such as in De Santis, Livi,
Sadeghian, and Rizzi (2015b), De Santis, Paschero, Rizzi, and Mascioli
(2018), De Santis, Rizzi, and Sadeghian (2018). In De Santis et al.
(2015b) a hybrid technique was used based on a one-class classifier
obtained through a clustering procedure whose underlying weighted
dissimilarity was learned through an evolutionary meta-heuristic while
in De Santis, Rizzi, and Sadeghian (2018) the task has been re-framed in
a binary classification perspective maintaining the same methodology,
with slight modifications. In De Santis, Paschero, Rizzi, and Mascioli
(2018) instead a first approach to the actual estimation of the probabil-
ity of failure is presented using a completely bilinear scheme, therefore
without layers that model the important non-linearities and proposing
a piecewise linear approximation methodology precisely to mitigate
the error due to the presence of these non-linearities intrinsic to the
problem at hand. In addition, in the present work, the dataset used
for experiments is not only more recent, as we will be able to say,
but completely re-engineered, with a different layout and completely
different features. While in previous investigations we worked with
dissimilarity measures capable of operating with unstructured data of
a heterogeneous nature, in the current study the data are in the form
of 𝑛-tuples of real numbers, allowing us to implement a lightweight
ata-driven model.

The current paper is organized as follows. In Section 2 it is reported
brief literature overview in the context of failure modeling and pre-

iction in Smart Grids through machine learning. Section 3 introduces
he rationale behind the approach and illustrates the dataset. Section 4
eals with the problem formulation, defining the model and providing
everal insights on its structure. The set of experiments is described and
iscussed in Section 5 while conclusions are drawn in Section 6.

. Related works on failure prediction and modeling in smart
rids

As regards the classification of faults and the impact they can have
n Smart Grids, useful insight can be gained from (Krivohlava, Chren,
Rossi, 2022; Rivas & Abrao, 2020). Artificial Intelligence in its many

ubdisciplines has been widely used in the context of Smart Grids and,
pecifically, to model fault states at various levels (Bose, 2017). In
echnical literature, deep learning techniques have been employed to
onitor the states of important components such as insulators, trans-

ormers and transmission lines (Zhang, Han, & Deng, 2018). In Zhao,
u, Qi, Liu, and Zhang (2016) authors propose to take advantage of
igh-level discriminative CNNs aiming to extract the features of the
nsulators and identify their defects achieving high accuracy. In Xi,
eilai, Yongchao, Zhiping, and Long (2017) the fault detection of the
ower line is faced with a sparse self-encoding neural network, in
hich normalized sub-band energy of wavelet decomposition is used
s the characteristic parameters. In Bangalore and Tjernberg (2015)
s studied a self-evolving maintenance scheduler framework for the
aintenance management of wind turbines. In the context of condition
onitoring authors adopt an artificial neural network (ANN)-based

pproach using data from supervisory control and data acquisition
SCADA). The investigation demonstrates that the ANN-based condition
onitoring program is capable of indicating severe damage in the com-
onents being monitored in advance. An approach for fault detection
nd classification in power transmission lines based on convolutional
parse autoencoder is proposed in Chen, Hu, and He (2016). The study
eals with a system that automatically learns features from a dataset
3

f voltage and current signals, on the basis of which a framework for
fault detection and classification is created. Performance is evaluated
on different scenarios and signal types. An automatic procedure, based
on a genetic algorithm capable of optimizing a diagnostic system for
the recognition and identification of partial-discharge (PD) pulse pat-
terns in the terminations and joints of solid dielectric extruded power
distribution cables, is described in Rizzi, Mascioli, Baldini, Mazzetti,
and Bartnikas (2009). The core of the diagnostic system is a fuzzy
neural network, namely a Min–Max classifier in which the structural
complexity is optimized through a Genetic Algorithm. An intelligent
fault detection scheme for microgrids based on wavelet transform and
deep neural networks is investigated in James, Hou, Lam, and Li
(2017). The authors aim to design a system capable to provide fast
fault type, phase, and location information for microgrid protection
and service recovery. The study tries to demonstrate the efficacy of
the proposed scheme in terms of detection accuracy, computation time,
and robustness against measurement uncertainty. Two techniques for
fault detection and classification in power transmission lines have
been investigated in Shahid, Aleem, Naqvi, and Zaffar (2012). The
approaches are based on One-Class Quarter-Sphere Support Vector
Machine (QSSVM). The first technique exploits the temporal and at-
tribute correlations of the data measured in a transmission line for
fault detection during the transient stage. The second technique is,
instead, grounded on a One-Class Support Vector Machine formulation,
which exploits attribute correlations only for automatic fault classifica-
tion. In Guikema et al. (2006) authors have established a relationship
between environmental features and fault causes while a fault cause
classifier based on the linear discriminant analysis (LDA) is proposed
in Cai and Chow (2009). Specifically, in the last investigation, infor-
mation regarding weather conditions, longitude–latitude information,
and measurements of physical quantities (e.g., currents and voltages)
related to the power grid have been taken into account. In any case, the
literature on the subject under examination is vast and heterogeneous.
This is because Smart Grids are complex technological systems and
the types and causes of failure are multiple and definable at various
semantic levels of the underlying layered architecture.

3. Background

In general, in the modeling of complex systems, it may be nec-
essary to estimate the probability of a state starting from a series
of measures, which can be grouped according to a certain semantic
content. Often in data-driven modeling performed through machine
learning techniques, there is a feature vector, whose components are
heterogeneous measures and the output is a class label. The classifier
then operates on the feature space and learns a model – a suitable
mapping – to classify the state. In some cases, depending on the domain
of the problem, it is possible to group the features into semantic units
and study how these units interact in defining the state of the system.
An example, which will form the ground of the case study presented in
this investigation, is the synthesis of a predictive maintenance model,
specifically for fault detection in a Smart Grid equipped with suitable
measurement and processing systems. In fact, it is known that the
electric network, whether it is for transport or distribution, is subjected
to exogenous stresses which act as actual forces on the state of the
system itself — see Fig. 1. Furthermore, the electricity grid is not a
monolithic entity but is made up of many systems and subsystems,
each characterized by a series of constitutive parameters. Among the
exogenous variables, there are the meteorological conditions and the
electric load or related seasonal information such as the time of year.
Among the constitutive parameters, there are, instead, data regarding
the structure of the network, such as the length and diameter of the
cables, their composition in terms of material, the number of joints,
the position, the age, etc. The exogenous variables, in this case, can be
considered as agents causing a state of failure given certain constitutive
parameters. Therefore, it becomes necessary to synthesize a model
that not only relates exogenous causes and constitutive parameters but
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Fig. 1. Scenario relating to the impact of exogenous causes on the Smart Grid system
made up of subsystems defined by suitable constitutive parameters.

which can allow estimating the vulnerability of the components from
a risk assessment and network planning perspective. If the estimated
model has minimal structural complexity and also allows a certain
degree of interpretability from an ExplainableAI perspective, it can
certainly be used for the intended purpose.

The following methodological study can be considered a spin-off of
a huge project, known as ‘‘ACEA Smart Grid Pilot Project’’ (Vitiello
et al., 2015), aiming to develop an automated recognition tool for
fault states in the power grid managed by Azienda Comunale Energia e
Ambiente (ACEA), the distribution company that feeds the city of Rome
(Italy). In addition, the tool is designed to offer also diagnostic features,
allowing the characterization of the power grid status during fault
events. The ACEA Smart Grid under consideration consists of uniform
section backbones that radiate outwards and can counter-supply in case
of branch failure. Each backbone has two distinct Primary Stations
(PS) supplying it, with each half-line protected against faults through
breakers. The MV power grid comprises lines (feeders) with a nominal
voltage of 20 kV, with a few legacy lines operating at 8.4 kV. The
MV section covers 10,490 km, while the LV section covers 11,120 km,
with cables that can be on air or underground and vary in section
and material (copper, aluminum, etc.) along the backbone. The MV
section has 1565 lines in service and 76 PSs, while the LV section
supplies 13,292 Secondary Stations (SS). Each MV line feeds a specific
number of secondary stations, each equipped with two breakers to
ensure that the substation is fed by only one PS in case of a fault,
thereby maintaining the radiality condition of the network (De Santis
et al., 2015b). The data collected to build a dataset capable of operating
a snapshot of the state of the electricity grid – see Table 1 – comes from
various company information systems, such as the SCADA system, the
Petersen Alarm system, the Geographic Information System (GIS) and
the Territorial Information System (TIS), the Remote Control System.
The data was validated together with the ACEA field experts and
the choice of features is the result of a deep and long analysis of
the causes of failure and malfunctioning of the network. The faults
analyzed are defined as ‘‘Localized Faults’’ (LF) as they last longer
than three minutes. Most of the features come from smart sensors
disseminated in the network through the aforementioned information
systems, some features are calculated taking into account the operating
diagrams and the electrical model of the network available to ACEA
for standard planning operations. In Table 1 are reported the dataset
features, the information regarding if a given feature is semantically
considered a constitutive parameter or an exogenous cause and a brief
description.
4

The dataset, after a careful data transformation procedure corrobo-
rated by field experts and data cleaning (De Santis et al., 2015b), con-
sists of 5342 patterns of which 4591 were of normal operations while
751 were of LF. Therefore the dataset, as in most predictive mainte-
nance tasks, is unbalanced and this makes the problem of classification
and estimation of the probability of failure more challenging.

In Fig. 2 it is possible to appreciate the monthly distribution of
faults during the year 2018 (panel (a)), the maximum value of the
electric current measured in Ampere on a daily basis (panel (b)) and
the distribution of rain during the year (panel (c)).

Finally, it is worth specifying that the subdivision into exogenous
causes and constitutive parameters belongs to the inherent semantics
of the human field expert who frames the problem with a certain
logic thanks to his knowledge of the problem itself. Therefore, the
relationships that the B-LR model learns are correlative in nature and
there is no real mechanism that learns real causation instances.

4. Problem formulation

Given a vector 𝜇 ∈ R𝑚 of constitutive parameters and a vector
𝑥 ∈ R𝑛 of exogenous causes, the objective is estimating the probability
of fault as a particular function of the form:

𝑝(𝜔 = 1|𝜇, 𝑥, 𝛩) = 𝜎(𝜇, 𝑥;𝛩) (1)

where 𝜔 ∈ {1, 0} is the class variable (1, 0 are the fault state and stan-
dard functioning state, respectively) and 𝛩 is a set of free parameters.
Moreover, we define the vulnerability vector 𝑣 ∈ R𝑛 as a linear function
of the constitutive parameters 𝜇 summed to a bias vector:

𝑣(𝜇) = 𝐴𝜇 + 𝑣0, (2)

where 𝐴 ∈ R𝑛×𝑚 is a matrix that we call ‘‘correlation matrix’’ and
𝑣0 ∈ R𝑛. Finally, we define the probability of fault as a function of
the scalar product between the vulnerability vector 𝑣(𝜇) and the vector
of exogenous causes, that is:

𝑝(𝜔 = 1|𝜇, 𝑥, 𝛩) = 𝜎(𝑣(𝜇)𝑇 𝑥) = 𝜎(𝜇𝑇𝐴𝑇 𝑥 + 𝑣𝑇0 𝑥). (3)

In order to obtain a probability the function 𝜎(⋅) is defined as a
non-linearity given by a sigmoid function:

𝜎(𝑧) = 1
1 + 𝑒−𝛽𝑧+𝑏𝑠

, (4)

where 𝛽 is the slope parameter and 𝑏𝑠 a bias scalar, both possibly
trainable.

Hence, given the Eq. (1), for the probability of fault 𝑝 we define the
following model:

𝑝(𝜔 = 1|𝜇, 𝑥, 𝛩) = 1
1 + 𝑒−𝑣(𝜇)𝑇 𝑥

= 1

1 + 𝑒−𝜇
𝑇 𝐴𝑇 𝑥−𝑣𝑇0 𝑥

, (5)

where 𝛩 = (𝐴, 𝑣0).
Given a dataset  = {(𝜇1, 𝑥1, 𝜔1), (𝜇2, 𝑥2, 𝜔2),… , (𝜇𝑁 , 𝑥𝑁 , 𝜔𝑁 )} of 𝑁

data points as triples (𝜇𝑗 , 𝑥𝑗 , 𝜔𝑗 ), the objective is to training a classifier
defined by the hard classification rule:

𝜔̂ = argmax
𝜔

𝑝(𝜔|𝜇, 𝑥;𝛩). (6)

A general classification problem instance is defined as a couple of
disjoint sets, namely training set 𝑡𝑟, and test set 𝑡𝑠. The model
parameters are estimated on 𝑡𝑟 while the generalization capabilities
are evaluated on 𝑡𝑠.

It is worth noting that, considering Eq. (3) and in particular the
set of free parameters 𝛩, estimating 𝑝 means estimating a vulnerability
vector 𝑣(𝜇) that aligns with the vector of exogenous causes 𝑥 in case 𝑝
is equal to 1.

Taking the negative log-likelihood of the dataset under a Bernoulli
distribution with parameter 𝑝𝑖 we can define the loss as binary cross-
entropy. Specifically, if we assume that the probability of the positive
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Table 1
List of the considered features in power grid dataset records. ‘‘CP’’ is for ‘‘Constitutive Parameter’’ while ‘‘EC’’ is for ‘‘Exogenous Cause’’.

Feature Type Description

1 Day – Day in which the LF was detected
2 Minute (Minute-Fault) CP minute of the day in which the LF was detected
3 Cable section (Cable-section) CP section of the cable
4 Cable length (Cable-length) CP length of the cable
5 Feeder voltage (MV-voltage) CP nominal voltage of the feeder
6 Copper percentage (‘Copper-percentage’) CP weighted percentage of copper based on the length of a copper trunk on the total

length of the branch
7 Air percentage (Air-percentage) CP percentage of the feeder in the air
8 Level P ratio (Level-P-Ratio) CP ordinal number of the secondary substation upstream of the faulty section

expressed as a real number in [0,1]
9 Semi-backbone-MV-line current (semi-b-MV-line-current) EC last current sample measured on the line riser before the fault event
10 Current (Current) EC estimate of the portion of line current about the faulty branch calculated based

on ‘‘normal scheme’’ topological data
11 Minimum temperature (Min.-Temp.) EC Minimum registered temperature
12 Maximum temperature (Max.-Temp.) EC Maximum registered temperature
13 Rain (Mm-rain) EC millimeters of rain measured by the weather station geographically closest to the

cabin downstream of the fault on the date the fault occurred
14 Max. current (Max.-Current) EC maximum current sample recorded on the riser daily
15 Min. current (Min.-Current) EC minimum current sample recorded on the riser daily
16 Mean Current (Mean.-Current) EC average current sample recorded on the averaged amount daily
17 Mean Current ratio (Mean-Current-ratio) EC percentage of fault current calculated concerning the maximum current level

computed as an annual average in the days of fault
Fig. 2. The ACEA dataset. (a) Monthly distribution of faults during the year 2018. (b) Maximum value o the current [A] on daily bases. (b) distribution of rain during the year.
4
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class 𝜔𝑖 is given by a Bernoulli distribution with parameter 𝑝𝑖, then the
likelihood of the dataset can be written as:

 =
𝑁
∏

𝑖=1
𝑝𝜔𝑖
𝑖 (1 − 𝑝𝑖)1−𝜔𝑖 (7)

Taking the logarithm of this likelihood gives us the log-likelihood:

log =
𝑁
∑

𝑖=1
𝜔𝑖 log(𝑝𝑖) + (1 − 𝜔𝑖) log(1 − 𝑝𝑖), (8)

which is equivalent to the binary cross-entropy loss up to a sign change
and the normalization factor 1∕𝑁 :

𝐿 = − 1
𝑁

𝑁
∑

𝑖=1
[𝜔𝑖 log(𝑝𝑖) + (1 − 𝜔𝑖) log(1 − 𝑝𝑖)]. (9)

The regularized form of the cross-entropy given in Eq. (9) can be
written as:

𝐿reg = − 1
𝑁

𝑁
∑

𝑖=1
[𝜔𝑖 log(𝑝𝑖) + (1 − 𝜔𝑖) log(1 − 𝑝𝑖)]+

+ 𝜆
|𝐴|2 +

𝜆𝑏
|𝑏|2.

(10)
5

2 𝐹 2 i
where the term 𝜆
2 |𝐴|

2
𝐹 = 𝜆

2
∑𝑚

𝑖=1
∑𝑛

𝑗=1 |𝑎𝑖𝑗 |
2 is the penalty term that

depends on a regularization parameter 𝜆 and the Frobenius norm of
matrix 𝐴, and 𝜆𝑏

2 |𝑏|
2 is the penalty term related to the bias 𝑏 = 𝑣𝑇0 𝑥.

.1. Boosting the bilinear logistic model

In the previous section, we model the probability of the relation
etween a vector 𝜇 and a vector 𝑥 with a simple bilinear layer such
s 𝑝(𝜔 = 1|𝜇, 𝑥, 𝛩) = 𝜎(𝑣(𝜇)𝑇 𝑥) = 𝜎(𝜇𝑇𝐴𝑇 𝑥 + 𝑣𝑇0 𝑥). Among the
arious network architectures that can be designed, we propose here
‘‘boosted’’ version, where are defined 𝑘 correlation matrices 𝐴𝑖 and 𝑘
ias vectors 𝑣0𝑖 concatenated in 𝑘 ‘‘heads’’. Indicating with ℎ𝑖 the output

of the 𝑖th bilinear layer, the boosted bilinear logistic regression (boosted
B-LR) has the following form:

𝑝(𝜔 = 1|𝜇, 𝑥, 𝛩) = 𝜎(𝑊 ⋅ concat(ℎ𝑖) + 𝑏), (11)

here ℎ𝑖 = 𝜎(𝜇𝑇𝐴𝑇
𝑖 𝑥 + 𝑣𝑇0𝑖𝑥) and 𝑊 and 𝑏 are the weights of the last

ense layer. This architecture allows learning different representations
n terms of matrices 𝐴 and biases 𝑣 ,
𝑖 0𝑖
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Fig. 3. Visualization of the Bilinear Neuron. Each dashed box represents one slice of the tensor; there are 𝑘 slices where 𝑘, in this specific case, is the batch size.
4.2. The bilinear neuron

Rewriting the Eq. (3) in the form:

𝜎
[

𝜇𝑇𝐴𝑇 𝑥 + 𝑏
]

=

= 𝜎

⎡

⎢

⎢

⎢

⎢

⎣

[𝜇1𝜇2 …𝜇𝑚]

⎡

⎢

⎢

⎢

⎢

⎣

𝑎11 𝑎21 … 𝑎𝑚1
𝑎12 𝑎22 … 𝑎𝑚2
⋮ ⋮ ⋱ ⋮
𝑎1𝑛 𝑎2𝑛 … 𝑎𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑏

⎤

⎥

⎥

⎥

⎥

⎦

=

= 𝜎

[

𝑏 +
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
𝑎𝑖𝑗𝜇𝑖𝑥𝑗

]

,

(12)

where 𝑏 = 𝑣𝑇0 𝑥 is a bias term, the elements 𝑎𝑖𝑗 of the matrix 𝐴 can be
interpreted as the weights associated with the pairs of variables 𝜇𝑖 and
𝜇𝑗 in the scalar product ⟨𝐴𝜇, 𝑥⟩ = (𝐴𝜇)𝑇 𝑥 = 𝜇𝑇𝐴𝑇 𝑥. In other words, the
elements 𝑎𝑖𝑗 indicate the relative importance of each pair of variables
for the prediction of the dependent class variable (see Fig. 3).

4.3. On bilinearity

At this point, it may be interesting to sketch briefly some properties
of the involved bilinear form, useful for gaining insight on the general
interpretation of the vulnerability vector 𝑣(𝜇), the parameter matrix 𝐴
and the bias vector 𝑣0.

Let 𝑉 and 𝑊 be two vector spaces over the field R of scalars, with
dimensions 𝑚 and 𝑛, respectively. Then we can define a bilinear form
𝐵 ∶ 𝑉 × 𝑊 → R as follows. Let 𝐴 be an 𝑚 × 𝑛 matrix. For any 𝑥 ∈ 𝑉
and 𝑦 ∈ 𝑊 , we define the bilinear form 𝐵(𝑥, 𝑦) as:

𝐵(𝑥, 𝑦) = 𝑥𝑇𝐴𝑇 𝑦 (13)

where 𝑎𝑖𝑗 is an element of 𝐴. Note that 𝑥𝑇𝐴𝑇 𝑦 is a scalar, so 𝐵(𝑥, 𝑦) is
a bilinear form, i.e., it is linear in both 𝑥 and 𝑦. In other words, for any
vectors 𝑥1, 𝑥2 ∈ 𝑉 , 𝑦1, 𝑦2 ∈ 𝑊 , and scalars 𝑐1, 𝑐2 ∈ R, we have:

𝐵(𝑐1𝑥1 + 𝑐2𝑥2, 𝑦1) = (𝑐1𝑥1 + 𝑐2𝑥2)𝑇𝐴𝑇 𝑦1
= 𝑐1𝑥

𝑇
1 𝐴

𝑇 𝑦1 + 𝑐2𝑥
𝑇
2 𝐴

𝑇 𝑦1
= 𝑐1𝐵(𝑥1, 𝑦1) + 𝑐2𝐵(𝑥2, 𝑦1)

(14)

and
𝐵(𝑥1, 𝑐1𝑦1 + 𝑐2𝑦2) = 𝑥𝑇1 𝐴

𝑇 (𝑐1𝑦1 + 𝑐2𝑦2)

= 𝑐1𝑥
𝑇
1 𝐴

𝑇 𝑦1 + 𝑐2𝑥
𝑇
1 𝐴

𝑇 𝑦2
= 𝑐1𝐵(𝑥1, 𝑦1) + 𝑐2𝐵(𝑥1, 𝑦2).

(15)

So 𝐵 is a bilinear form between 𝑉 and 𝑊 .
If 𝑉 and 𝑊 have the same dimension, say 𝑚 = 𝑛, 𝐴 is a square
6

matrix.
Moreover, we can define a linear transformation 𝑇𝐴 ∶ R𝑚 → R𝑛 by
𝑇𝐴(𝑥) = 𝐴𝑥. Then the dot product 𝑥𝑇𝐴𝑇 𝑦 can be expressed as:

𝑥𝑇𝐴𝑇 𝑦 = (𝐴𝑥)𝑇 𝑦 = (𝑇𝐴(𝑥))𝑇 𝑦 (16)

We can interpret this dot product as a scalar product between a
linear transformation 𝑇𝐴 and the vector 𝑦. In other words, we can define
a bilinear form 𝐵 ∶ R𝑛 ×(R𝑚,R𝑛) → R, where (R𝑚,R𝑛) is the set of
all linear transformations (a vector space) from R𝑚 to R𝑛, by:

𝐵(𝑦, 𝑇𝐴) = (𝑇𝐴(𝑥))𝑇 𝑦 = (𝐴𝑥)𝑇 𝑦 = 𝑥𝑇𝐴𝑇 𝑦 (17)

So we can say that (𝐴𝑥)𝑇 𝑦 is the scalar product between the linear
transformation 𝑇𝐴 and the vector 𝑦, expressed using the bilinear form
𝐵(𝑦, 𝑇𝐴).

4.4. Deeping on the correlation matrix trough SVD

The SVD decomposition (Golub & Van Loan, 2013; Strang, Strang,
Strang, & Strang, 1993) is a very powerful tool for gaining insight
into the structure of a system and its behavior described in terms
of principal modes. In the case under examination, the interaction
between the system’s constituent parameters 𝜇 and exogenous causes 𝑥
is described by the matrix 𝐴 (and by the bias vector 𝑣0) which captures,
in the first instance, the reciprocal interrelationships in generating the
probability 𝑝 of an event (e.g., a failure), net of the non-linearity of the
output sigmoidal function 𝜎(⋅) – see Eq. (3).

Let apply the SVD to 𝐴𝑇 expressing it as a product of three matrices:

𝐴𝑇 = 𝑈𝛴𝑉 𝑇 , (18)

where 𝑈 is an 𝑚 × 𝑚 orthogonal matrix, 𝛴 is an 𝑚 × 𝑛 diagonal
matrix with non-negative entries arranged in decreasing order along the
diagonal, and 𝑉 is an 𝑛×𝑛 orthogonal matrix (𝑈𝑇𝑈 = 𝐼 and 𝑉 𝑇 𝑉 = 𝐼).
The value 𝑟 = min(𝑚, 𝑛) is the rank of 𝐴𝑇 (Kerschen & Golinval, 2002).

Substituting Eq. (18) into the previous expression we have:

𝜇𝑇𝑈𝛴𝑉 𝑇 𝑥 = (19)

=
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
𝜇𝑖𝑢𝑖𝑘𝜎𝑘𝑣

𝑇
𝑗𝑘𝑥𝑗 = (20)

=
𝑟
∑

𝑘=1
𝜎𝑘

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
𝜇𝑖𝑢𝑖𝑘𝑣

𝑇
𝑗𝑘𝑥𝑗 = (21)

=
𝑟
∑

𝑘=1
𝜎𝑘(𝑢𝑇𝑘 𝑥)(𝑣

𝑇
𝑘 𝑦) (22)
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where the left singular vector 𝑢𝑖 and right singular vector 𝑣𝑖 are the 𝑖th
olumns of 𝑈 and 𝑉 , respectively, and the singular value 𝜎𝑖 is the 𝑖th

diagonal entry of 𝛴.
In the context of Eq. (22), the singular values indicate how much

each component of the constitutive parameters 𝜇 contributes to the
output probability 𝑝, given a specific set of external causes 𝑥. Higher
singular values correspond to greater contributions, and lower singular
values correspond to smaller contributions. Moreover, the singular
values can be used to measure the sensitivity of the output probability
to changes in the input parameters. Specifically, the sensitivity of 𝑝 to
changes in 𝜇 is proportional to the ratio of the singular values. Thus,
a larger ratio of singular values indicates greater sensitivity to changes
in the input parameters.

Being the singular values 𝜎𝑖 the magnitudes of the projections of
the matrix 𝐴 onto the orthogonal basis vectors defined by the singular
vectors 𝑢𝑖 and 𝑣𝑖, they represent the amount of variation in 𝐴 that is
explained by each singular vector. Larger singular values correspond to
directions in 𝐴 that contain more information or are more important for
explaining the output.

Now, we note that the left singular vectors 𝑢1, 𝑢2,… , 𝑢𝑟 form an
orthonormal basis for the column space of 𝐴, while the right singular
vectors 𝑣1, 𝑣2,… , 𝑣𝑟 form an orthonormal basis for the row space of
𝐴. Hence, in the context of the Eq. (22), the left singular vectors 𝑢𝑖
represent the directions in the space of constitutive parameters that are
most strongly correlated with the output probability 𝑝. Specifically, the
𝑖th left singular vector represents the direction in which a unit change
in the constitutive parameter results in the largest change in the output
probability 𝑝, given a specific set of external causes 𝑥. In other words,
the left singular vectors 𝑢𝑖 describe the variation of the constitutive
parameters in terms of modes, and the corresponding singular values 𝜎𝑖
represent the importance of each mode in explaining the variation. The
right singular vectors 𝑣𝑖 describe the variation of the external causes
in terms of modes, and the corresponding singular values 𝜎𝑖 represent
the importance of each mode in explaining the variation. Finally, by
evaluating the spread of the singular values 𝜎𝑖 we can truncate the SVD
to the first 𝑘 modes, capturing the most important variation in both 𝜇
and 𝑥, while the remaining modes capture the less important variation.
Considering Eq. (22), the SVD can be used to decompose the original
matrix 𝐴𝑇 in a weighted sum of singular values 𝜎𝑖 of 𝑖 rank-1 matrix
generated by the outer product of left and right singular vectors 𝑢𝑖 and
𝑣𝑇𝑖 , respectively. Truncating the weighted sum it is possible to have a
filtered version of the original 𝐴𝑇 matrix.

We can also express the vulnerability vector 𝑣(𝑥) in term of the SVD
of 𝐴 as:

𝑣(𝑥) = 𝐴𝑥 + 𝑣0 = 𝑈𝛴𝑉 𝑇 𝑥 + 𝑣0 =
𝑟
∑

𝑖=1
𝜎𝑖(𝑢𝑖)(𝑣𝑇𝑖 𝑥) + 𝑣0 (23)

In this case, larger singular values correspond to the constitutive
parameters that are more sensitive to changes in external causes, or in
other words, the parameters that have a greater impact on the vulner-
ability of the system. The singular vectors of 𝐴𝑇 give us information
about the directions in the input space that are most important for
explaining the vulnerability of the system, while the singular vectors
of 𝐴 give us information about the directions in the output space that
are most important for explaining the effect of external causes on the
system.

4.5. Data denormalization

In a real problem, the measurements related to a pattern that
identifies a state of a system before being input to a learning system can
be normalized. Therefore it may be necessary to calculate the learned
quantities, specifically the 𝐴 matrix and the 𝑣0 vector in denormal-
ized form for further analysis. One of the best-known normalization
techniques is the ‘‘affine normalization’’ which is often performed on a
7

feature basis. t
In general, given the data matrices 𝑈 = [𝜇1, 𝜇2,… , 𝜇𝑛] ∈ R(𝑁×𝑛) and
𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑛] ∈ R(𝑁×𝑚), with 𝑛, 𝑚 column vectors, respectively,
the affine normalization formulation can be written as:

𝜇̂𝑖 =
𝜇𝑖 − 𝑚𝜇

𝑖

𝑀𝜇
𝑖 − 𝑚𝜇

𝑖
= 1

𝑀𝜇
𝑖 − 𝑚𝜇

𝑖
𝜇𝑖 −

𝑚𝜇
𝑖

𝑀𝜇
𝑖 − 𝑚𝜇

𝑖

𝑥̂𝑖 =
𝑥𝑖 − 𝑚𝑥

𝑖
𝑀𝑥

𝑖 − 𝑚𝑖
= 1

𝑀𝑥
𝑖 − 𝑚𝑥

𝑖
𝑥𝑖 −

𝑚𝑥
𝑖

𝑀𝑥
𝑖 − 𝑚𝑥

𝑖

(24)

here 𝑀𝜇,𝑥
𝑖 and 𝑚𝜇,𝑥

𝑖 are the maximum and minimum value for the 𝑖th
eature of the vectors 𝜇 and 𝑥, respectively. Considering the vector of
onstituent parameters 𝜇 and the vector of exogenous causes 𝑥 we can
rite the normalization relations in compact form as:

̂ = 𝐶𝜇𝜇 + 𝑏𝜇 ,

𝑥̂ = 𝐶𝑥𝜇 + 𝑏𝑥.
(25)

he matrices 𝐶𝜇 ∈ R(𝑛×𝑛) and 𝐶𝑥 ∈ R(𝑚×𝑚) are diagonal and where the
th elements are the slopes 1

𝑀𝜇
𝑖 −𝑚

𝜇
𝑖

and 1
𝑀𝑥

𝑖 −𝑚
𝑥
𝑖

in Eq. (24), respectively.

Furthermore, the 𝑖th elements of the bias vectors 𝑏𝜇 and 𝑏𝑥 are −
𝑚𝜇
𝑖

𝑀𝜇
𝑖 −𝑚

𝜇
𝑖

nd −
𝑚𝑥
𝑖

𝑀𝑥
𝑖 −𝑚

𝑥
𝑖
, respectively.

Considering two normalized vectors 𝜇̂ and 𝑥̂, starting from the last
term of Eq. (3) and using the normalizing relations in Eq. (25) we can
obtain the following quantities:

𝑣̂(𝜇̂) = 𝐴̂𝜇̂ + 𝑣̂0
𝑝 = 𝜎(𝑣̂(𝜇̂)𝑇 𝑥̂) = 𝜎(𝜇̂𝑇 𝐴̂𝑇 𝑥̂ + 𝑣̂𝑇0 𝑥̂) =

= 𝜎[(𝜇𝑇𝐶𝑇
𝜇 + 𝑏𝑇𝜇 )𝐴̂

𝑇 (𝐶𝑥𝑥 + 𝑏𝑥) + 𝑣̂0(𝐶𝑥𝑥 + 𝑏𝑥)] =

= 𝜎[𝜇𝑇𝐶𝑇
𝜇 𝐴̂

𝑇𝐶𝑥𝑥 + 𝜇𝑇𝐶𝑇
𝜇 𝐴̂

𝑇 𝑏𝑥 + 𝑏𝑇𝜇 𝐴̂
𝑇𝐶𝑥𝑥+

+ 𝑏𝑇𝜇 𝐴̂
𝑇 𝑏𝑥 + 𝑣̂𝑇0 𝐶𝑥𝑥 + 𝑣̂𝑇0 𝑏𝑥].

(26)

In other words, starting from the normalized quantities we can recall
the following relations for the non normalized one:

𝐴 = 𝐶𝑇
𝜇 𝐴̂

𝑇𝐶𝑥

0 = (𝑏𝑇𝜇 𝐴̂
𝑇 + 𝑣̂𝑇0 )𝐶𝑥

0 = 𝐶𝑇
𝜇 𝐴̂

𝑇 𝑏𝑥

0 = (𝑏𝑇𝜇 𝐴̂
𝑇 + 𝑣̂𝑇0 )𝑏𝑥.

(27)

ith which, finally, we can express the probability of a state as:

= 𝜎(𝜇𝑇𝐴𝑇 𝑥 + 𝑣𝑇0 𝑥 + 𝜇𝑇 𝑥0 + 𝑝0). (28)

. Simulation settings and results

The simulations were conducted using the TensorFlow framework
ver. 2.11) by designing a custom Keras layer that implements the
ilinear form under study and the 𝐿1 and 𝐿2 regularization procedure
n the trainable parameters (specifically the correlation matrix 𝐴 and
he bias vector 𝑣0). To conduct a deep analysis of the behavior of
he training system in estimating the probability of failure in case of
nbalanced classes, it is possible to choose whether to make the sigmoid
arameters 𝛽 and 𝑏𝑠 – inherent to the output layer of the network –
rainable as well. The vector of the exogenous causes 𝑥 has a dimension
qual to 9 while that of the constituent parameters vector 𝜇 has 7
omponents, therefore the matrix 𝐴 has 63 parameters while the bias
ector has 9 parameters, for a total of 72 + 2 trainable parameters
considering also 𝛽 and 𝑏𝑠 – see Eq. (4)). The training was carried out in
ll the experiments by adopting a stochastic gradient descent using the
dam optimizer with a learning rate equal to 0.005 and a batch size
qual to 32. During the experiments good stability was found in the
lassification results, therefore it was decided to fix the learning rate at

he aforementioned value.
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Fig. 4. Regularization surfaces obtained through a grid search with parameters 𝜆𝐴 and
𝜆𝑣0. (a) 𝐿1 regularization, (b) 𝐿2 regularization.

5.1. Sensitivity analysis of the regularization parameters

In order to evaluate the effect of the regularization on the classi-
fication performance, we perform a grid search for the parameter 𝜆𝐴
and for the parameter 𝜆𝑏 – see Section 4. Experiments are conducted
both in the case of 𝐿1 regularization, for eliciting sparsity, and 𝐿2.
The parameters were evaluated for 20 logarithmically spaced values
in the range [0, 1]. Fig. 4 shows the two surfaces measured in terms of
Accuracy.

The maximum value has also been indicated in the figure. The
experimental results show that at least for this dataset high values
for 𝜆𝐴 and 𝜆𝑏 are not necessary. This indicates that the dataset un-
der examination has a low complexity and the model does not need
regularization.

5.2. Score calibration

Even if in Fig. 4 we referred to the estimate of the probability of
an event (e.g., a failure), it is known that in most of the classifiers the
probabilities can be uncalibrated. Therefore, the classifier’s output can
be defined more properly with the term ‘‘score’’. Formally speaking, the
8

classifier under analysis is said to be well-calibrated if 𝑃 (𝜔|𝑠(𝜇, 𝑥) = 𝑠)
– where with ‘‘𝑠’’ we indicated the uncalibrated probabilities, i.e., the
output score. In other terms, the probability for a pattern 𝑥 to belong
to a label 𝜔 converges to the score 𝑠(𝑥) = 𝑠 as the number of samples
tends to infinity (Murphy & Winkler, 1977; Zadrozny & Elkan, 2001).
In plain terms, the calibration of a classification system consists in
mapping the scores (or not calibrated probability estimates) into proper
probability estimates bounded in the range [0, 1] by definition. Calibrat-
ing a classifier means learning suitable mappings between scores and
calibrated probabilities (Martino, De Santis, Baldini, Rizzi, et al., 2019).
There are many techniques for learning this mapping, such as the Platt
Scaling (Smola, Bartlett, Schölkopf, & Schuurmans, 2000) and Isotonic
Regression (Zadrozny & Elkan, 2001) techniques. The calibration per-
formance can be assessed through the so-called reliability diagram,
which is a graphical tool used to assess the calibration of a predictive
model by comparing the predicted probabilities (i.e., scores) with the
observed frequencies. On the 𝑥-axis we have the scores/probabilities
while on the 𝑦-axis we have the empirical probabilities (observed fre-
quencies), that are, namely, the ratio between the number of patterns in
class 𝜔 with score 𝑠 and the total number of patterns with score 𝑠. If the
classifier is well-calibrated, then all points lie on the 𝑦 = 𝑥 line (i.e., the
scores are equal to the empirical probabilities). In our experiments, we
used the Isotonic Regression calibration method but we also obtained
good results with Plat scaling. Fig. 5 shows the reliability diagrams
before (panel (a)) and after calibration (panel (b)). The learned model
was used in subsequent experiments regarding failure analysis and
modeling.

5.3. Classification performance comparison

In order to compare the classification performance of the bilinear
logistic form on the ACEA dataset, 7 classifiers known in the litera-
ture were trained using the Matlab™Statistics and Machine Learning
Toolbox™, which differ on the basis of the model structure and training
methods. Specifically, the following classifiers were tested: Logistic Re-
gression (LR), Linear Discriminant (LDA), Naive Bayes (NB), Gaussian
Kernel SVM (G-SVM), weighted KNN, a Feedforward Neural Network
(FFNN) and Random Forest (RF). For the hyperparameters tuning the
Bayesian optimization scheme is adopted, which is a probabilistic
model-based method that builds a probability model of the objective
function and uses it to select the most promising hyperparameters to
evaluate in the true objective function. As concerns the LR algorithm,
the optimization regards the regularization strength (Lambda) and the
regularization type (L1 or L2). For LDA the discriminant type (linear,
quadratic and the respective diagonal forms) and the two regularizer
parameters are optimized. Concerning the NB the distribution parame-
ters (normal, kernel) are optimized. For the G-SVM the BoxConstraint,
the KernelScale are optimized. For RF the number of trees, the maxi-
mum number of splits and the minimum leaf size are optimized, while
for the FFNN the number of hidden layers and the number of neurons
per layer are tuned.

Table 2 shows the performance in terms of Accuracy on the valida-
tion set, Accuracy on the test set, Area Under Curve (AUC) for the class
𝜔 = 1 (target) and 𝜔 = 0 (non-target).

Considering the results in general, the plain B-LR classifier achieves
results comparable with the other classifiers analyzed, both in terms
of Accuracy and AUC. The details of the results can also be appre-
ciated in Fig. 6 where the Receiving Operating Characteristic curve
(ROC) (Fawcett, 2006) for each class is reported for each investigated
classifier. The work points on the ROC are also reported. The inserts
instead show the normalized confusion matrices together with the
Positive Predictive Value (PPV) and the False Discovery Rate (FDR).
The classifiers proposed in this study achieve very low results in terms
of false alarm probability making it useful in the context in which it is
being investigated.
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Fig. 5. (a) Reliability diagram before calibration. (b) Reliability diagram after
calibration. Results from the ACEA dataset.

Table 2
Comparison of classification results with several classifiers known in technical literature

Classifier Val. accuracy Test accuracy AUC 1 AUC 0

Boosted B-LR 95.79% 95.88% 95.65% 95.65%
Plain B-LR 95.11% 96.18% 95.65% 95.65%
Logistic Regression 95.74% 95.42% 95.97% 95.97%
Lin. Discriminant 93.12% 93.26% 96.99% 96.99%
Naive Bayes 88.18% 89.5% 89.37% 89.37%
SVM 95.81% 95.51% 97.45% 97.45%
weighted KNN 93.99% 94.01% 94.00% 94.00%
FF Neural Network 95.67% 96.45% 94.28% 94.23%
Random Forest 94.62% 94.57% 91.60% 91.60%

This is particularly true for plain B-LR while the boosted version has
omparable results in terms of accuracy. In any case, as expected, in-
reasing the number of bilinear layers improves the convergence speed
f the training phase. However, we have reported this variant here for
erely experimental purposes, but we assume that the increase in the
umber of bilinear layers can be justified (and useful) by the presence
f a dataset with a much higher sample size than the investigated ACEA
ataset and greater underlying complexity.

.4. Failure analysis and modeling

The main aim of the present section is to demonstrate the potential
oth of the bilinear model in scenario analyses and therefore of the
epresentation learned through the estimation of the correlation matrix.
irst of all, in Fig. 7 (panel (a)) it is possible to appreciate the scatter
9

a

plot — obtained through the t-distributed stochastic neighbor embed-
ding (t-DSNE) dimensionality reduction algorithm (Van der Maaten &
Hinton, 2008) – of the ACEA dataset considering the vectors at the
same semantic level, i.e., by considering the composite vector 𝑐 =
concat(𝜇, 𝑥). Panel (b) within the same figure shows the projections
of the vector of the constitutive parameters 𝜇 and of the exogenous
causes 𝑥 in the space of left and right singular values computed through
the SVD. In particular, the patterns relating to the constituent param-
eters are the rows of the matrix obtained from the transformation
𝜇𝑇𝑈(1∶𝑘,∶)

√

𝛴(1∶𝑘,1∶𝑘) while the patterns relating to the exogenous causes
are the rows of the matrix

√

𝛴(1∶𝑘,1∶𝑘)𝑉 𝑇
(1∶𝑘,∶)𝑥, for all the vectors 𝜇

and 𝑥 belonging to the dataset and for the truncation parameter set
to 𝑘 = 2. The reason behind the choice of the value 𝑘 = 2 can be
found in Fig. 8 (panel b) where are reported the singular values of
the matrix 𝐴. It is clear that the first two singular values have a high
spread concerning the next ones. Panel (a), on the other hand, shows
the heatmap of the 𝐴 matrix estimated with the base B-LR model,
where the exogenous causes are shown in rows and the constituent
parameters in columns. Examining the correlation matrix it is noted
that some pairs of exogenous cause-constitutive parameter features
have high values indicating a strong correlation. This is the case of
the percentage of the cable in the air (Air-percentage) and the electric
current at the beginning of the backbone (semi-b-MVline-current) or
the value of the Current feature before the failure and its position in
terms of numbers of SS along the backbone (Level-P-Ratio). The sign
of the entries in 𝐴 tells us if the features are negatively or positively
correlated. We can see for example that at least in this investigated
dataset the rain is weakly correlated with the constitutive parameters
except for Air-percentage. This feature is also strongly correlated with
the features obtained from the electric current measured before the
faults and the temperature measured in the fault location. Interestingly,
but nevertheless an expected result, the cable length is correlated with
the electric current features (specifically with Current). This is true also
for the cable section which is strongly negatively correlated with the
Current feature measured before the failure.

In panel (c) it is possible to retrieve the same information but in a
multifaceted way. In fact, we report the values of the first, second and
third left and right singular vectors related to the first three singular
values. The bar plot expresses pictorially the directions of various ‘‘nat-
ural modes’’ – with power measured by singular values – determining
a state of the system, measured by its probability and considering the
interrelation of constitutive parameters and external causes. Similar
considerations can be provided for the vulnerability vector 𝑣(𝜇) both
exploiting the SVD decomposition or analyzing its entities directly, in
the same way we did for the correlation matrix 𝐴. Fig. 9, instead,
reports two specific types of representation that provide the user with
a comprehensive pictorial view of the failure scenario. From panels (a)
to (d) and (i) to (n) we report the average level lines of the probability
surface related to failures computed parametrizing a pair of features
(chosen among exogenous causes and constitutive parameters) within
the range of variation calculated with the data normalization proce-
dure. The average is computed by grouping the pattern pertaining to
the ACEA dataset according to the season, meaning that we are learning
a specific model (𝐴 and 𝑣0) for each one of the four seasons. In panels
(e) to (h) are reported the seasonal average of the vulnerability vectors
𝑣(𝜇) computed through the constitutive parameters. The correlation

atrix 𝐴 and the vulnerability vector 𝑣0, after the training procedure,
ere denormalized by exploiting the relations obtained in Section 4.5.

Regarding the average probability diagrams, we let variate – within
he precomputed normalization range – the (averaged) Min-Current
nd the Max-Current features measured before the failure. We can see
different behavior depending on the season. In all cases for high

alues of the Max-Current the probability of fault approaches 1. An
nteresting behavior can be found also investigating the constitutive
arameters’ pair Air-percentage-Cable length. While in winter there is

n appreciable interrelation of both features, this behavior change in
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Fig. 6. Classification performance of the various tested models. It is reported for each algorithm the Receiving Operating Characteristic curve for each class and the AUC value.
The inset panel reports the confusion matrix obtained from the test set with the Positive Predictive Value and the False Discovery Rate.
Fig. 7. Low dimensionality visualization of the ACEA datasets. (a) Scatter plot obtained
with t-DNSE algorithm with Euclidean distance on the plain patterns (b) Scatter plots
of the projection of constitutive parameters and external causes on the left and right
space, respectively, generated by singular vectors.
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spring and summer. Conversely, in the fall we found no dependence
on the Air-percentage feature. The features were chosen by analyzing
the picture provided by the analysis of the correlation matrix and by
the inspection of the singular vectors. However, other interesting cases
have not been reported for reasons of space.

6. Conclusion

In this paper it has been proven that the bilinear approach to
fault modeling in a real-world power grid can be very useful. The
effectiveness lies not only in having a low computational complexity
algorithm with classification performance comparable to other known
standard classifiers but it can also be considered as a good working
point in the trade-off between generalization capacity and explainabil-
ity, in line with the xAI paradigm. In fact, in terms of performance,
the B-LR classifier achieves a low false alarm probability (with 96.18%
of accuracy on test set) demonstrating its usability in the context in
which it was designed, i.e., in predicting faults starting from hetero-
geneous measurements on the state of the power grid. In addition,
after a suitable calibration procedure of the output scores, it can be
used to estimate the empirical probability of failure given a pattern
of measurements. Furthermore, the semantic disambiguation between
exogenous causes and constitutive parameters of the features together
with the data-driven learned correlation matrix opens the way to
knowledge discovery procedures — These distinctive features tip the
scale in favor of the proposed model over standard classifiers, assuming
equal performance. The matrix can be used to relate the causes to
the characteristics of the components and estimate their vulnerability,
which, as we have demonstrated, can have a seasonal nature. This
means that each component can be associated with a ‘‘label’’ indicating
the vulnerability to certain conditions that may occur during opera-
tions, with the additional possibility of predicting even heterogeneous
scenarios simply by querying the model with new data. Furthermore,
the estimation of the probability of failure allows a stratified risk
analysis for scenario analysis establishing priorities for intervention on
the network in the short and medium term. As a future development,
in addition to the application of this model to the estimation of impact
metrics and risk analysis of the entire MV network feeding the city
of Rome, the plan is to synthesize a model trained on a quantity of
data spanning several years – when it will be available – placed in the
pipeline to a Clustering system whose function is to estimate in an unsu-
pervised way homogeneous subclasses of faults. Therefore, the aim is to
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Fig. 8. Spectral analysis of the Correlation matrix computed on the entire ACEA dataset. (a) Correlation matrix. (b) Singular values related to the SVD of the matrix 𝐴. (c) First,
second and third left and right singular vectors related to the SVD of the matrix 𝐴.
Fig. 9. Seasonal Analysis. Average probability diagrams for some exogenous causes (upper panels) and some constitutive parameters (lower panels). Average vulnerability diagrams
(middle panels).
provide the user with a bilinear model suited for the specific subclass of
failure, hence allowing the extraction of useful information from each
discovered cluster. Finally, it is important to stress that the proposed
approach can be generalized to other predictive maintenance problems,
as well as to other diagnostic problems, not necessarily constrained to
pertain to technological networks and devices (e.g., clinical diagnostic
problems). As a general criterion, this approach can be applied every
time a set of features can be conveniently partitioned on a semantic
basis, between external causes and constituent parts characteristics,
opening the way to an easy and effective knowledge discovery tool for
a wide range of possible applications.
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