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“Les questions les plus importantes de la
vie ne sont en effet, pour la plupart, que

des problèmes de probabilité.”
Pierre-Simon Laplace
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Abstract

This thesis investigates the chance-constraint formulation of robust trajectory opti-
mization for space applications. The importance of robustness in space trajectory
optimization is growing significantly as the modern mission design approach priori-
tizes lightweight satellite architectures and cost reduction. However, this emphasis
also raises the risk of deviating from a nominal path due to errors in navigation
or incorrect maneuvers. Consequently, it is crucial to compute control laws that
directly incorporate quantitative information about uncertainty in system dynamics
and stochastic navigation errors during the optimization process. This works aims
to formulate a stochastic framework for trajectory optimization with the goal of
increasing intrinsic robustness of space flight, in both impulsive and low-thrust
transfers. Two different approaches are considered in this regard: open-loop control,
assessing the possibility of reducing the state dispersion by optimizing a sequence of
deterministic maneuvers, and closed-loop control, defining a linear feedback control
law that computes the corrective maneuver during the flight, limiting in this way the
state dispersion. In order to deal with the stochastic formulation of the state, chance-
constraint theory is employed when expressing the cost function and the constraints
on control magnitude. As assessments of the validity and performance capability
of the proposed robust trajectory optimization methodologies, test cases involving
potential space applications are employed, involving interplanetary transfers and
station-keeping control strategies.
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Nomenclature

The list below explains the symbols, acronyms, and abbreviations used throughout
this document. In instances where the meaning differs from that stated in this list,
the specific definition will be clarified in the text.

Acronyms and abbreviations

ACO Ant colony optimization

AI Artificial intelligence

BC Behavioural cloning

BVP Boundary value problem

CL Closed loop

CR3BP Circular restricted three-body problem

CUT Conjugate unscented transform

DA Differential algebra

DE Differential evolution

DL Deep learning

DRL Deep reinforcement learning

EA Evolutionary algorithm

EoM Equations of motion

ESA European space agency

FPE Fokker-Plank equation

GA Genetic algorithm

GMM Gaussian mixture model

GSF Generic stochastic formulation

HML Human landing system

IPT Interplanetary transfer

IRK Implicit Runge-Kutta



Nomenclature vi

JAXA Japanese aerospace exploration agency

JPL Jet propulsion laboratory

LG Lunar gateway

MC Monte Carlo

MDP Markov decision process

MFB Moon flyby

ML Machine learning

MPBVP Multi-point boundary value problem

MPC Model predictive control

MTE Missed thrust event

NASA National aeronautics and space administration

NE Navigation error

NLP Non-linear programming

NN Neural network

NRHO Near-rectilinear halo orbit

OCP Optimal control problem

OD Orbit determination

ODE Ordinary differential equation

OL Open loop

PCE Polynomial chaos expansion

PDF Probability density function

PE Propulsion error

PMP Pontryagin maximum principle

POI Planetary orbit injection

PSO Particle swarm optimization

RF Reference frame

RNN Recurrent neural network

ROCP Robust optimal control problem

RPOD Rendezvous, proximity operations, and docking

RSO Resident space object



Nomenclature vii

SDE Stochastic differential equation

SM Stochastic manipulation

SOCP Stochastic optimal control problem

SOR Spiral orbit-raising

SP Sigma Point

SQP Sequential quadratic programming

SSA Space situational awareness

STM State transition matrix

ToF Time-of-flight

UP Uncertainty propagation

UT Unscented transform

Subcripts

`, ´ Right after or before the impulsive maneuver, respectively

0 First value

C Related to the Earth

K Related to the Moon

@ Related to the Sun

f Final value

i Value of the i-th leg

k Value at the k-th node

w Related to the white noise perturbation

max Maximum value

MC Related to Monte Carlo analysis

tot Total value

Superscripts

piq Value of the i-th segment

˚ Optimal value

0 Related to the first value
9 Derivation

T Related to thrust vector



Nomenclature viii

Mean value

1 Vector with only position and velocity values

r User-defined parameter

r, v, m Related to position, velocity, or mass, respectively

T Transpose

u Related to control

conv Reference value

Values and symbols

α, β Constraint violation probabilities

0n Vector of zeros with dimension n

0nˆm Matrix of zeros with dimension n ˆ m

1n Vector of ones with dimension n

η Observables noise vector

µ Mean state

ν Deterministic component of u

Θ Optimization variables vector

B Control vector mapping matrix

G Stochastic perturbation matrix

H Observables vector mapping matrix

In Identity matrix of dimension n

K Gain matrix of stochastic component of u

P State or control covariance matrix

Q Instantaneous additive noise matrix

R Observables noise covariance matrix

r Position vector

u Control vector

v Velocity vector

w Noise vector

x State vector

y Observables vector



Nomenclature ix

∆v Impulsive velocity variation

∆T Time of flight

∆t Time interval

E rxs Expected value of x

µ Gravitational constant

Cov rxs Covariance of x

Pr tXu Probability of event X

σ Standard deviation

J Merit index

L Number of legs

N Number of arcs

n Problem dimension

t Time
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Chapter 1

Introduction

S pace trajectory optimization is a complex task that demands a careful balance
of engineering, mathematics, and physics. In the vast expanse of outer space,

guiding a spacecraft from one point to another requires meticulous consideration of
numerous factors, including gravitational forces, propulsion system capabilities, and
mission objectives. As space exploration endeavors become increasingly ambitious,
from interplanetary missions to lunar landings and beyond, innovative trajectory
optimization techniques are essential. Meeting these challenges necessitates sophis-
ticated mathematical models, advanced optimization algorithms, and a profound
understanding of both the physical principles governing spaceflight and the practical
constraints of spacecraft engineering.

Commonly adopted methods for designing space trajectories typically center
around the computation of a control law aimed at optimizing a specified performance
index, such as minimizing propellant consumption, all while ensuring adherence to a
predefined set of deterministic constraints. However, the challenges inherent in space
exploration extend beyond deterministic constraints: uncertainties and disturbances
play a pivotal role in actual trajectory execution. Throughout the intricate journey
of space exploration, probes encounter a plethora of dynamic perturbations and
uncertainties that can significantly deviate their trajectory from the intended path,
thereby potentially jeopardizing mission success. These perturbations arise from
diverse sources, including gravitational effects from celestial bodies, solar radiation
pressure, atmospheric drag, and uncertainties in the spacecraft’s dynamics and
environmental conditions. Furthermore, uncertainties in navigation measurements
compound the complexity of the situation. Collectively, these factors contribute to
the formation of deviations, ranging from minor detours to substantial displacements
from the nominal trajectory. Such deviations pose significant risks to mission success,
as they may compromise critical mission objectives, scientific observations, or the
safety of the spacecraft itself. Therefore, effectively mitigating the impact of these
perturbations and uncertainties on trajectory deviation stands as a paramount
endeavor for ensuring the effectiveness and longevity of space missions.

To mitigate trajectory deviations and minimize the risks of mission failure,
spacecraft designers typically allocate propellant margins for correction maneuvers,
thereby ensuring a certain level of robustness throughout the mission. Traditionally,
the determination of these propellant margins occurs through a retrospective process
known as a posteriori estimation. This method unfolds after establishing a nominal
trajectory and relies on an iterative approach using Monte Carlo (MC) simulations.
However, aside from its substantial computational demands, this approach may
not comprehensively capture all critical circumstances that could potentially lead
to mission failures. Consequently, this limitation poses additional challenges for
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mission designers, who must navigate uncertainties while striving to guarantee
mission success. This underscores the urgent need for more efficient and nuanced
methodologies capable of accurately anticipating and addressing potential deviations,
thereby fortifying the resilience and efficacy of space missions. The latest trend in
research within this field is the direct integration of position and velocity uncertainties
into the optimization process, precisely tailoring in this way a control law for the
specific mission scenario, ensuring robust trajectory design. Adopting this modern
perspective, the thesis introduces a methodology designed to formulate a robust
control law applicable across various mission scenarios.

1.1 Background
In the dawn of space exploration, the strategy for handling crucial issues as-

sociated with trajectory and navigation was significantly different from modern
practices. Initially, space programs operated with considerably larger budgets [1],
which facilitated the use of extra fuel reserves and the incorporation of multiple
high-grade components to ensure mission success. As previously highlighted, the
approach traditionally adopted by mission analysis offices, originating from the ear-
liest space missions and continuing into contemporary practices, involves reserving
an additional margin beyond the nominal fuel expenditure, determined through
somewhat empirical means or on the basis of prior experience. More in detail, this
process begins with an optimization procedure aimed at identifying the optimal
trajectory solution that aligns with the mission’s goals and technical limitations.
Subsequently, an MC analysis is typically employed to simulate potential control
challenges the mission might encounter, such as missed thrust events, navigation
inaccuracies, or errors in command execution. The determination of the supple-
mentary fuel reserve is then based on ensuring coverage for the worst-case scenario
identified in the simulations or securing nearly all scenarios with a high level of
confidence.

Numerous studies have been undertaken in the past with the aim of systemati-
cally quantifying the required propellant margin allocation, particularly for missions
employing low-thrust propulsion systems, whose stringent power limitations signifi-
cantly complicate the estimation of potential failure magnitudes and associated risks,
as encountered during mission design of Dawn [2], by the National Aeronautics and
Space Administration (NASA). Such systems are characterized by potential extended
periods of missed or nearly-zero thrust, which could lead to trajectory deviations that
are difficult, if not impossible, to correct, in contrast with the dynamics of impulsive
propulsion, where, excluding irreparable engine failures, corrective maneuvers can be
more readily executed to realign with the nominal trajectory. Oh et al. [3] described
a methodology for integrating missed-thrust analysis within the trajectory selection
process. In their approach, coasting arcs are enforced at some sensitive points along
the trajectory, and the nominal one is optimized to account for the presence of these
points. Should the spacecraft proceed without experiencing any missed thrust events,
the trajectory undergoes reoptimization, during which the forced coast arc is delayed.
Nominally, the spacecraft never reaches a forced coast point, as the trajectory is
reoptimized for each new forced coast time, but a nearby coasting solution is always
available in case the spacecraft lose thrust. Alizadeh and Villac [4] introduced a
technique for calculating a margin for position and velocity within the context of the
three-body problem, which holds potential for addressing the missed-thrust issue
through strategic placement of coast arcs in low-thrust trajectories. An automated
method was proposed by Laipert and Longuski [5] to quantify the effect of missed
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thrust on a trajectory by measuring the propellant margin required to recover from
a missed thrust and the resulting delay in arrival.

The development of a novel method aimed at enhancing the robustness of a
trajectory by adjusting its specific characteristics represents a largely unexplored
strategy in mission analysis, with few notable exceptions such as the free return orbit
employed by the Apollo mission [6]. In this mission, the spacecraft had to be capable
of returning to the Earth without the need for propulsion, significantly increasing the
mission’s resilience to a variety of failures. In different instances, either fortuitous
conditions or the swift and resourceful actions of satellite operators have been able
to resolve issues, thereby fully or partially salvaging the mission in alignment with
its ultimate goals. A notable example of such resilience is observed in the case of the
aforementioned Dawn mission, which experienced an engine shutdown due to a high-
energy particle impacting an electrical component of the spacecraft — a situation that
threatened the entire mission’s viability before a successful recovery was executed [7].
Similarly, the Hiten probe, operated by the Japanese Aerospace eXploration Agency
(JAXA), benefited from an ingenious solution devised by Belbruno and Miller from
the Jet Propulsion Laboratory (JPL). They introduced a strategy based on ballistic
capture, which was subsequently implemented, enabling the probe to achieve lunar
orbit injection, its primary objective [8].

The management of critical issues related to trajectory deviations is increas-
ingly moving towards more autonomous control systems, reducing the reliance on
human intervention. This shift is primarily driven by the evolving landscape of
space exploration, which is increasingly favoring smaller platforms like SmallSats or
CubeSats [9, 10]. These compact vehicles are characterized by several constraints
that inherently limit the traditional approach to mission correction and control:

• limited control authority, which stems from lower thrust levels and a reduced
propellant budget, which constrain the scope of potential corrective actions;

• large uncertainties in state knowledge that arise from the adoption of novel
navigation techniques or restricted access to ground-based tracking and control
facilities;

• significant errors in command actuation, as a consequence of employing low-
maturity components.

In such probes, the limited control authority presents maneuvering challenges, as
correcting even minor deviations necessitates prolonged burn times. Consequently,
Orbit Determination (OD) and the execution of corrective maneuvers emerge as
significant concerns, necessitating their consideration in the initial trajectory planning
phase. Therefore, the technological restrictions make it challenging to implement
alternative strategies and creative solutions. This aspect underscores the inadequacy
of traditional trajectory design methods, which may result in operative plans that
account for a number of correction maneuvers and demand an excessive amount of
propellant for corrections.

The anticipated reduction in human intervention in future space missions is
supported by the expanding body of research focused on enabling autonomous
navigation for space probes, as discussed by Turan et al. [11]. The capability of
a spacecraft to autonomously and accurately estimate their position and velocity
is a critical advancement. This development significantly diminishes the reliance
on ground station commands, thereby mitigating the potential for errors that such
dependency entails. This progress in autonomous navigation is set to revolutionize
space exploration by enhancing mission efficiency and reliability through reduced



1.2 Robust trajectory optimization 4

human oversight. An example of these pioneering advancements is provided by the
CubeSat M-ARGO, developed by the European Space Agency (ESA). This mission
is set to utilize optical navigation for an autonomous rendezvous with an asteroid.
Once reached the asteroid, M-ARGO aims to conduct a thorough examination of the
asteroid’s physical properties and evaluate its potential for resource exploitation [12].

The advancements in space exploration and navigation highlighted so far de-
lineate the contemporary trends that are currently at the forefront of spacecraft
manufacturers’ and researchers’ endeavors: miniaturization, autonomy, and cost
reduction. Within this emerging paradigm, an additional pivotal enhancement that
heralds the beginning of a new era in mission design is robust trajectory optimiza-
tion. This evolution in mission planning marks a departure from traditional reliance
on design margins and redundancy, steering towards more intelligent, alternative
solutions. Enhancing the probability of mission success through a robust approach
to trajectory planning is a logical and anticipated outcome of this shift. It reflects an
understanding that, in an era prioritizing efficiency, adaptability, and affordability,
the strategic planning of spacecraft trajectories becomes paramount.

1.2 Robust trajectory optimization
Robust trajectory optimization stands distinct from traditional trajectory opti-

mization primarily due to the integration of stochastic variables within the constraints,
optimization variables, state definitions, and/or the cost function. In conventional
trajectory optimization, where every parameter is deterministic, it is not possible
to asses the robustness of the obtained control law. Indeed, the overall robustness
of a solution inherently relies on stochastic effects, which are not accounted for in
deterministic models. However, by incorporating stochastic representations into the
optimization problem, the level of robustness becomes directly tied to the optimized
control law. This inclusion shifts the challenge into the domain of robust trajec-
tory optimization, enabling a more nuanced assessment of a mission’s resilience to
uncertainties.

The introduction of stochastic variables fundamentally transforms the essence of
trajectory optimization problems, enriching them with a more nuanced understanding
of the mission’s dynamics and uncertainties. By incorporating elements such as the
first two stochastic moments — the mean and covariance — of the state, the problem
gains direct insights into the dispersion of the state along the flight. This provides
a clear metric to evaluate robustness during the iterative solution-finding process,
regardless of the specific algorithm employed. When these stochastic metrics are
integrated into the formulation of constraints or the cost function, the solution that
was optimal under deterministic conditions may no longer hold as the best choice in
a robust framework. Instead, a solution that embraces the stochastic nature of the
problem, accounting for uncertainty in its optimization process, becomes necessary.
This shift underscores a more sophisticated approach to mission design, where the
inclusion of stochastic elements necessitates a re-evaluation of what constitutes an
“optimal” solution. Furthermore, the specific objectives and constraints of each
mission can significantly influence how stochastic variables are incorporated into
the optimization problem. For instance, a mission could prioritize minimizing the
dispersion of the final state while allowing for greater control magnitudes if the
control effort is not a concern. Alternatively, a design might focus on maximizing
a chosen robustness index, placing strict limits on maximum allowed control effort
to adhere, for example, to fuel constraints. Indeed, the strategic application of
robust optimization principles enables the simultaneous minimization of various
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factors, whether they are associated with stochastic uncertainties or control dynamics.
This approach facilitates the acceptance of solutions that constitute a Pareto front,
representing an optimal trade-off among competing objectives. Amidst the various
considerations, a critical aspect of robust trajectory optimization is the inherent
trade-off that robustness improvements often entail an increase in control effort,
hence in propellant consumption. This relationship holds true across a wide range of
problems and formulations. Enhancing a mission’s robustness, that is, its ability to
withstand uncertainties and deviations, typically requires additional control actions,
which in turn, consume more resources. This fundamental principle underlines the
necessity of carefully balancing the desire for increased mission resilience with the
practical limitations of resource availability (i.e., mass constraints).

Another fundamental aspect to consider for a general understanding of robust
optimization involves the estimation and/or propagation of state uncertainty. As
highlighted, stochastic parameters, that are typically represented by the stochastic
moments of the spacecraft state, play a crucial role in robust problems, since they
serve as robustness index of the trajectory. Thus, an accurate estimate of these
quantities is necessary for robust trajectory optimization. However, such a precise
knowledge is not always easy to obtain, particularly during extended ballistic phases
of the mission or within complex dynamical environments like the Circular Restricted
Three-Body Problem (CR3BP) [13]. To overcome this challenge, researchers can
employ a variety of Uncertainty Propagation (UP) techniques to estimate state
dispersion along the trajectory [14], a topic that will be further explored in a
dedicated chapter of this thesis.

Before delving into the complexities of robust optimization, it is worth noting
that several straightforward strategies can enhance the robustness of space missions
while remaining within the deterministic realm. These approaches are relevant in
addressing challenges associated with critical mission phases like Planetary Orbit
Injection (POI). POI represents a crucial juncture of the mission as failing to
adequately decelerate the spacecraft can lead to inadvertently exiting the planetary
system, powered by an unintentional swing-by, consequently prolonging the time to
re-encounter the planet. Certain studies have focused on developing methodologies
to shorten the recovery flight time, enabling a spacecraft that has failed its POI and
escaped the planet’s gravity to re-encounter and attempt orbit injection again [15, 16,
17]. In the work of Ozaki et al. [18], the approach is extended to handle probabilistic
partial failures of POIs. Other works concentrate on crafting low-thrust trajectories
that can withstand Missed Thrust Events (MTEs). These trajectories incorporate
expected thrust fractions—continuous-time random variables that represent the
probability of a spacecraft encountering an MTE [19, 20].

The initial efforts to address the complexities of robust trajectory design through
more advanced methodologies can be traced back to works that explored solutions of
the Lambert problem under uncertainties [21, 22, 23, 24]. These studies introduced
the concept of computing corrective control measures in the vicinity of an optimal
solution by leveraging the principles of Taylor differential algebra. Other studies
have explored a different methodology to quantify stochastic errors, specifically
through the application of first-order variational equations [25, 26]. Building on
this methodology, a novel derivative-free numerical technique that exploits recent
advancements in uncertainty quantification has been introduced in [27].

The studies previously mentioned introduce creative and efficient approaches to
managing uncertainties; however, they do not fall squarely within the realm of robust
optimization methodologies. Their primary focus is on the development of algorithms
for robust design, which, crucially, does not incorporate an optimization process. This
distinction is important, as it highlights the difference between designing systems
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that can withstand uncertainties and the more complex task of optimizing these
systems within uncertain environments to achieve the best possible outcomes. The
foundational works that initially integrated optimization strategies primarily focused
on solving the rendezvous problem, also known as chaser-target problem. For the
linear rendezvous problem, a multi-objective optimization technique was formulated
that incorporates a robust performance index based on end-state uncertainties, taking
into account errors both in navigation and control [28]. This method established
a connection between the performance index, rendezvous duration, and propellant
expenditure for brief missions. Subsequent work expanded this approach to include
nonlinear rendezvous scenarios and the management of extended-duration phases [29].
Deaconu et al. [30] and Louembet et al. [31] introduced two distinct robust planning
methods for spacecraft rendezvous, aimed at addressing navigation and maneuver
execution errors. They applied these approaches to a series of linear rendezvous
scenarios to demonstrate the effectiveness of their methods.

While the aforementioned studies present innovative and effective strategies for
addressing uncertainties, their applicability is confined to the specific scenarios for
which they were designed. In contrast, the essence of robust trajectory optimization
lies in creating control strategies that are tailored to the unique requirements
of a particular mission, yet the underlying methodology for their computation
should benefit of a versatility applicable across a broad spectrum of conditions.
This approach represents a more holistic and adaptable framework for managing
uncertainties in space mission planning and execution. The comprehensive state
of research within this domain, encompassing both theoretical advancements and
practical applications, will be thoroughly explored in a dedicated chapter, highlighting
its significance and potential in advancing the field of space exploration.

1.3 Objectives and contribution
The primary objective of this dissertation is to formalize, design, and evaluate a

robust trajectory optimization algorithm tailored for space applications. Specifically,
the intent is to present a comprehensive methodology capable of optimizing control
laws for interplanetary probe transfers. This methodology seeks to ensure broad
adaptability across a variety of mission scenarios, encompassing diverse propulsive
systems and a range of uncertainties.

The choice of control strategy for a spacecraft significantly influences its robust-
ness and adaptability to uncertainties, and can be categorized into two main types:
Open-Loop (OL) control and Closed-Loop (CL) control. In the latter, maneuvers are
adjusted in real-time based on the current state of the spacecraft, making the control
adaptive to the flown trajectory or any changes in a general set of parameters. This
dynamism enables the spacecraft to respond immediately to deviations, enhancing
the robustness of the trajectory. Conversely, OL control maintains a predetermined
set of maneuvers that remain unchanged throughout the flight, eliminating the
possibility for mid-flight corrections. While CL control is often favored in robust
optimization for its ability to directly address state dispersion, OL control has its own
merits. Indeed, it provides a foundational understanding of the mission’s dynamical
environment and its inherent challenges. Through robust OL control, a trajectory
is designed to inherently avoid conditions that could exacerbate state dispersion,
such as close encounters with massive bodies or prolonged ballistic phases. While
less flexible, this approach offers valuable insights into the mission’s dynamics and
potential vulnerabilities. In this study, the focus is primarily placed on CL control
strategies, due to their dynamic adaptability and direct responsiveness to real-time
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mission variables and uncertainties; yet, an exploration of OL control is also included,
providing a comprehensive analysis of its role and effectiveness.

This thesis aims to develop a methodology valid for both impulsive maneuvers,
represented by ∆vs, and continuous thrust trajectories. The latter approach will
account for the spacecraft mass and its variation over time, thus considering the
distinct dynamics introduced by different propulsive systems. By adopting this
approach, a comprehensive coverage of the entire spectrum of propulsive scenarios
can be attained, ensuring that the methodology developed could be used regardless
of the propulsion system adopted in the specific mission.

A critical goal is to provide the algorithm with diverse and precise formulations
to account for the typical sources of uncertainty encountered throughout a mis-
sion. Foremost among these are the state uncertainties, where a pivotal choice lies
in selecting the appropriate model to characterize the dispersion of position and
velocity. While, for example, a Gaussian distribution might initially seem like a
reasonable choice for modeling state uncertainties, the reality of a mission could lead
to significantly different distributions. Depending on the specific mission parameters,
the actual distribution of uncertainties could deviate markedly from a Gaussian
model, varying dynamically over time and possibly assuming unique configurations
at different instants. An inaccurate assessment of the state distribution can signifi-
cantly compromise the efficacy of the optimized control strategy. This is because
optimization based on an erroneous understanding of state dispersion operates under
false premises, rendering the control actions ineffective or even counterproductive
for the intended objectives. In addition to state uncertainties, modeling Navigation
Errors (NEs) and Propulsion Errors (PEs) is important. NEs, in particular, can
exhibit a wide range of variability due to the diversity of measurements available for
OD during a mission (e.g., range, range rate, elevation angles, etc.). Therefore, in
this work a decision has been made to incorporate a simplified model of NEs. PEs are
more straightforward to characterize. Each maneuver within the mission is defined
by a specific thrust vector, making propulsive errors essentially deviations in the
magnitude and/or direction of this vector. By selecting an appropriate distribution
model for these errors and the corresponding stochastic moments, the cumulative
uncertainties can be calculated with relative ease. This more conventional approach
to model propulsive errors allows for a precise quantification of uncertainties as-
sociated with propulsion, facilitating the optimization process by providing clear,
manageable parameters for error analysis.

Once the foundational aspects are defined, the envisioned application of the
algorithm could significantly influence its mathematical framework. The primary goal
is to develop an optimized robust control law that transfers an interplanetary probe
from its initial state to a desired target state, essentially addressing a rendezvous
problem. This is contingent upon a defined initial state distribution and the specifics
of the propulsion system. A critical constraint involves ensuring that the dispersion
of the final state respects a set of predefined requirements, which are based on the
unique characteristics of the mission. Furthermore, it is imperative to incorporate
constraints related to the control magnitude, acknowledging the inherent limitations
of propulsion system. The cost function primarily aims at minimizing propellant
usage, aligning with the conventional priorities that guide the preliminary design
phase of most space missions. It is important to note that while this manuscript may
propose multiple methodologies, variations in the formulation of the cost function
and constraints are expected, though the overarching goal remains consistent.

The primary contribution of this Ph.D. dissertation lies in the theoretical frame-
work that underpins the algorithm’s formulation. Upon a comprehensive review
of the existing literature, detailed in Chapter 2 and 3, this work aims to mix the
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most advantageous elements from the current state of the art, with the aspiration of
advancing this research domain. The algorithm’s development is oriented around
three pivotal objectives:

1. efficiency: the primary objective is to develop a robust control law for
interplanetary transfers, aimed at minimizing trajectory deviations (state
dispersion) while adhering to mission parameters, without requiring excessive
control efforts or propellant usage;

2. computational affordability: the algorithm is designed to generate a control
law that necessitates minimal computational resources, especially for execution
on an onboard computer. This consideration is pivotal, given the ongoing
trend towards hardware miniaturization and autonomous navigation in satellite
technology.

3. versatility: adaptability to a broad spectrum of mission scenarios is a desired
attribute of the proposed methodologies, ranging from routine operations to
the complexities entailed in advanced space exploration.

These objectives delineate the dissertation’s intent to refine strategic planning in
space missions, ensuring that they are not only more efficient and feasible within
the constraints of current and forthcoming technology but also broadly applicable
across various space exploration initiatives.

1.4 Thesis outline
The thesis is organized as follows. Chapter 2 serves as a comprehensive explo-

ration of the theoretical framework underpinning this dissertation. Initial sections
delve into the deterministic Optimal Control Problem (OCP) and survey the leading
approaches for addressing it. The following section then shifts to detail the transition
necessary to move from a deterministic to a stochastic framework, thereby enhancing
understanding of the Robust Optimization Control Problem (ROCP). The chap-
ter concludes with an overview of the latest advancements in robust optimization
methods, succinctly presenting the state of the art in this domain.

Chapter 3 concerns an examination of the prevalent methods for UP. This
includes a critical assessment of the primary benefits and limitations inherent to
each technique, culminating in a rationale for the selection of a specific method
within the context of this research.

Chapter 4 formulates and tests a simple OL ROCP on a rendezvous case study.
Although the field predominantly focuses on CL control for its dynamic feedback
capabilities, exploring the potential of OL control to enhance trajectory robustness
is considered valuable. This chapter delves into the merits of an OL approach,
suggesting that non-feedback control strategies can also significantly contribute to a
mission’s robustness.

Chapter 5 introduces and thoroughly explains a CL formulation for impulsive
interplanetary transfers that incorporates magnitude-bounded maneuvers. Within
a designated section, NEs and PEs are modeled employing a set of simplifying
assumptions to streamline the complexity of these uncertainties. To evaluate the
effectiveness and adaptability of the developed algorithm, two realistic scenarios
are subsequently examined as potential applications. The first scenario analyzes a
phase of a JAXA mission involving a rendezvous with an asteroid, where the mission
trajectory starts from and returns to the Earth. The second scenario focuses on the
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station keeping of a spacecraft in lunar orbit. By treating the initial and final state
as identical, rather than as two separate spatial positions and velocities, this test
case demonstrates the algorithm’s versatility, even in the unique context of periodic
orbit control.

In Chapter 6, the previously proposed algorithm for impulsive control is ex-
tended to low-thrust trajectories, largely modifying the mathematical formulation
and including the spacecraft’s mass as additional stochastic variable. The refined
algorithm is then applied to a canonical Earth–Mars transfer scenario, demonstrating
its capability and effectiveness in managing the complexities of continuous thrust
space missions.

A conclusive chapters summarizes the main achievements of this work and
outlines strategies for future developments.
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Chapter 2

Overview of robust trajectory
optimization

Robust trajectory optimization is a specialized branch of mathematical optimiza-
tion that addresses optimization problems in presence of uncertainties or disturbances.
The uncertainties are modeled as stochastic variables that are function the param-
eters defining the problem. This discipline focuses on formulating solutions that
prioritize not only optimal performance under nominal conditions, but also maintain
effectiveness in off-nominal cases, ensuring solutions are resilient and reliable in
diverse circumstances.

The formulation of an ROCP (hereafter intended as synonym of robust trajectory
optimization) extends the theoretical framework of a deterministic OCP, while
maintaining the common aim of computing a control law. This control law is
determined to optimize a predefined cost index while ensuring compliance with
both dynamical and control-related constraints. Consequently, this chapter begins
with a detailed exposition of the principles of deterministic trajectory optimization,
laying the essential groundwork for understanding the subject. Furthermore, it
encompasses a comprehensive review of the predominant methodologies documented
in the literature for the calculation of optimal control.

2.1 The optimal control problem
An OCP represents a noteworthy application and development of the Calculus of

Variations (CV), which focuses on identifying OL control functions or feedback gains,
for CL control laws, that minimize a performance index for a system subject to both
algebraic and differential equation constraints. The genesis of CV can be attributed
to Pierre de Fermat (1601-1665), who, in 1662, articulated the principle that light
traverses paths of minimum time when passing through various media. Galileo Galilei
(1564-1642), in 1638, proposed two emblematic challenges subsequently addressed
by CV, that is, the “brachistochrone” problem, which seeks the curve along which
a body slides from one point to another in the least time, and the determination
of the curve formed by a “heavy chain” suspended between two points. Leonard
Euler (1707-1783), drawing inspiration from John Bernoulli (1667-1748), authored a
pivotal treatise in 1744, The method of finding curves that show some property of
maximum or minimum, addressing several specific problems and establishing the
foundational elements of CV theory [32]. Jean Louis Lagrange (1736-1813) engaged
in correspondence with Euler and developed the method of “variation,” a concept
praised by Euler and from which the field derives its name. Additionally, Lagrange
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introduced the method of multipliers, a concept that Euler also embraced, leading
to the formulation of the first-order necessary conditions for a stationary solution.
These conditions are now known as the Euler-Lagrange equations, foundational to
the calculus of variations and optimal control theory.

Before delving into a more rigorous formulation of the mathematical cencepts, it
is important to clarify the notation conventions used throughout this thesis. Scalar
quantities and functions are represented by lowercase (e.g., a) or capital (e.g., N)
Roman letters, whereas vector variables and functions are indicated by lowercase
bold letters (e.g., x). The Euclidean norm of a vector is signified by the same symbol
in non-bold (e.g., x “ |x|), unless specified otherwise. Additionally, matrices are
denoted by uppercase bold Roman letters (e.g., M).

2.1.1 Dynamical system and constraints
At any given moment t P R, the state of the dynamical system is defined by

the vector xptq P Rn, n P N, as the dimension of the state vector. This vector
collects all the variables required to fully describe the system being studied, such as
position, velocity, and mass of a spacecraft. The trajectory of the system through a
designated time interval rt0, tf s is shaped by the temporal progression of the state
vector subject to the control vector uptq P Rm, with m P N as the dimension of the
control vector. This progression is achieved by solving a collection of first-order
Ordinary Differential Equations (ODEs), as

dx “ fpxptq, uptq, tqdt (2.1)

where the vector function f : Rn ˆ Rm ˆ R ÞÑ Rn denotes the system dynamics.
The system trajectory is required to satisfy multiple specifications, expressed as

equality or inequality constraints. Constraints solely dependent on the state and
control variables at the start and/or at the end of the time domain are classified as
boundary constraints. These can be collected within a vector χ P Rp composed of
homogeneous algebraic equations, as

χ pxpt0q, xptf q, upt0q, uptf q, t0, tf q “ 0 (2.2)

with p as the number of boundary constraints. General constraints that are meant to
be enforced through all the considered time interval are instead called path constraints
and are usually expressed with a vector ψ P Rq of inequalities as

ψ pxptq, uptq, tq ď 0 (2.3)

with q as the number of path constraints. An example of boundary constraint is
given by the departure from an assigned state x0 or the arrival to a target state xf

as

xpt0q ´ x0 “ 0 (2.4)
xptf q ´ xf “ 0 (2.5)

while a path constraint could limit instead the maximum magnitude of the control
vector as

}uptq} ď rumax t P rt0, tf s (2.6)

with rumax as maximum allowed control magnitude.
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2.1.2 Cost function
The aim of the OCP is to find the continuous-time control function uptq that

extremize a scalar objective function J , indicative of the system’s performance. In
this work, the minimization of the cost function is always considered, although it is
not an unusual practice to recast the formulation into an equivalent maximization
problem by changing the sign of the objective function as needed. This adjustment
may be necessary to accommodate the specifics of the chosen numerical solver.

The general expression of an objective function for the OCP is

J “ ϕ pxpt0q, t0, xptf q, tf q `

ż tf

t0

Φ pxptq, uptq, tq dt (2.7)

The fist component is a function of epochs, and the initial and final states only,
while the second term depends on the evolution in time of the state and control
variables through the function Φ. If J is written with both these two components,
the resulting OCP is known a problem of Bolza. While for ϕ “ 0 and Φ “ 0 the
OCP is respectively referred to as problem of Lagrange and problem of Mayer [33].
It should be highlighted that the same problem can be formulated in any of the
three variations by employing appropriate auxiliary variables.

Examples of typical cost functions for space missions are: minimization of the
fuel consumption (fuel-optimal problem), that leads to the cost function to maximize

J “ mptf q (2.8)

where mptq P R` is the mass of the spacecraft over time; the minimum ToF (time-
optimal problem) is achieved by minimizing the immediate cost function

J “ tf ´ t0 “ ∆t (2.9)

while the minimization of the imparted control energy (energy-optimal problem) is
performed adopting the cumulative control magnitude

J “ ´
1
2

ż tf

t0

}u}2dt (2.10)

Even though OCPs traditionally deal with the minimization of a scalar cost function
for optimization, it is possible to optimize multiple objectives simultaneously using
multi-objective (or Pareto) optimization [34, 35], which incorporates several objective
functions. In multi-objective optimization, finding a singular solution that optimizes
every cost function is unlikely due to potential conflicts between objectives, thus
one aims at finding a set of Pareto-optimal solutions. A solution is deemed Pareto
optimal (or noninferior) if improving one objective function’s value would lead to the
deterioration of others. In the absence of further subjective preferences, a multitude
of Pareto optimal solutions may exist, all considered equally viable. Therefore,
selecting a single solution from the Pareto optimal set (defined as Pareto front)
requires additional criteria and considerations beyond numerical performance indices.
In this dissertation, however, only single objective cost functions are considered for
the optimization process.

2.1.3 Multi-arc formulation
The elements introduced in the previous sections are sufficient to formulate simple

OCPs. Yet, it is important to note that an excessively compact formulation may lead
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to numerical challenges under certain conditions, particularly in scenarios where state
and/or control variables experience rapid or abrupt changes. As a result, the optimal
control function uptq might exhibit significant and periodic discontinuities, which can
make the associated computational tasks markedly challenging and often impractical
in many scenarios. To avoid this issue, a widely used approach in the literature
involves breaking down the time horizon of the state and control functions into a
series of finite segments (or arcs), while ensuring the continuity of these functions
across the internal boundaries of a trajectory to prevent dynamical inconsistencies.
Typically, the dynamical system described by Eq. (2.1) remains unchanged across all
segments, although it may be convenient for certain problems to consider a distinct
set of ODEs for each arc. The lengths of the time intervals into which a trajectory is
conventionally divided may be considered as variables subject to optimization. This
perspective allows for a more dynamic and flexible approach to trajectory planning,
enabling the optimization framework to tailor these durations for enhanced mission
efficiency and performance.

Considering N distinct time intervals, the additional boundary conditions im-
posed on the state to maintain dynamical consistency are formulated as

xpt
piq
f q “ xpt

pi`1q

0 q @i “ 1, . . . , N ´ 1 (2.11)

where the superscript piq indicates that a variable belongs to the i-th segment. The
initial and final boundary epochs of all segments are grouped in the following sets

T0 “

!

t
piq
0 , @i “ 1, . . . , N

)

(2.12)

Tf “

!

t
piq
f , @i “ 1, . . . , N

)

(2.13)

Similarly, the state and controls at the boundaries are grouped as

X0 “

!

x
´

t
piq
0

¯

, @i “ 1, . . . , N
)

(2.14)

U0 “

!

u
´

t
piq
0

¯

, @i “ 1, . . . , N
)

(2.15)

Xf “

!

x
´

t
piq
f

¯

, @i “ 1, . . . , N
)

(2.16)

Uf “

!

u
´

t
piq
f

¯

, @i “ 1, . . . , N
)

(2.17)

Incorporating the previous notation, the cost function is written as

J “ ϕ pX0, T0, Xf , Tf q `

N
ÿ

i“1

ż t
piq

f

t
piq

0

Φpiq pxptq, uptq, tq dt (2.18)

while the boundary constraints are now generalized as

χ pX0, Xf , U0, Uf , T0, Tf q “ 0 (2.19)

The ODEs and path constraints in a multi-segment formulation are instead extended
as

dx “ fpxptq, uptq, tqdt (2.20)

ψ pxptq, uptq, tq ď 0 t P

”

t
piq
0 , t

piq
f

ı

@i “ 1, . . . , N (2.21)
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The OCP with a multi-segment formulation is thus stated as

min
uptq

Eq. (2.18) (2.22a)

s.t. Eqs. (2.19) ´ (2.21) (2.22b)

In the following section, the principle methods to address this deterministic trajectory
optimization problem are briefly explained together with their advantages and
disadvantages.

2.2 Numerical methods for solving optimal control prob-
lems

Solving the problem outlined in Eqs. (2.22) involves calculating the optimal
time-continuous control function uptq and the associated state trajectory xptq. A
challenge arises as standard optimization algorithms are typically engineered to
handle a finite number of optimization variables, whereas optimizing a function
leads to an infinite-dimensional problem. Consequently, both the control function
and, by extension, the state function necessitate some kind of discretization. The
discretization approach and the way the conditions for optimality are handled within
the computational framework distinguish the various optimization methods used
to solve these complex problems. This section offers a comprehensive overview of
the principal optimization methods, shedding light on their unique features and
how they transform continuous optimization problems into discrete counterparts for
effective resolution.

The two main categorizes under which the optimization methods are categorized
are the indirect and direct methods, covered in this section, while other alternative
methods are briefly surveyed in conclusion to this section. Indirect methods are
based on the principles of the calculus of variations. In particular, the first-order
optimality conditions (i.e., the aforementioned Euler-Lagrange equations) and al-
gebraic boundary conditions of the control and state functions are employed to
formulate the problem in the form of a Boundary Value Problem (BVP), or a
Multi-Point BVP (MPBVP) in the sense of multi-arc problems, whose solution is
normally achieved by means of shooting techniques in the literature. A distinctive
aspect of these methods is the use of adjoint variables, and Lagrange multipliers,
which are employed to ensure compliance with differential and algebraic constraints.
While these variables may not directly embody any physical meaning, they are
an indispensable component of the optimization process, as they are required in
conjunction with the state and control functions to obtain a well-posed problem.
Given that the size of the multiplier set precisely matches the state dimension
by definition, this set of variables is often termed as costate. These methods are
termed “indirect” because they determine the optimal solution through the indirect
resolution of a BVP involving both the state and costate, complying with differential
constraints. Adherence to these conditions ensures the attainment of optimality.
A prominent benefit of indirect methods is their ability to swiftly converge to a
local optimal solution with remarkable accuracy, utilizing minimal computational
resources. However, this efficiency comes with the prerequisite of an initial estimate
closely aligned with the optimal solution to ensure convergence. The abstract nature
of the costate variables further complicates this process, making the fine-tuning of
these parameters towards an optimal solution a challenging endeavor. In addition,
managing path constraints within the optimization process often presents challenges,
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as it necessitates prior knowledge of the sequence of constrained and unconstrained
arcs.

Direct methods, as the name suggests, undertake the optimization of control
variables directly using NonLinear Programming (NLP) techniques, bypassing the
need for predefined optimality conditions. This approach involves discretizing the
state and/or control function and considering their values at each grid time as
optimization variables. The optimality conditions are then applied to the NLP
problem, rather than the time continuous one. A key benefit of direct methods is
their broad convergence radius, which make them particularly suitable for problems
where the optimal solution is mostly unknown. Dynamical equations are posed
as algebraic constraints, eliminating the necessity for adjoint variables found in
indirect methods. However, a notable drawback of direct methods lies in the
significantly increased problem size due to the introduction of numerous variables
through discretization, leading to a large, yet sparse, NLP problem, which is much
harder to solve than an MPBVP from a computational point of view. Another
drawback of direct methods is related to the optimality of the achieved solution,
which is typically uncertain or challenging to evaluate.

2.2.1 Indirect methods
As previously discussed, indirect methods draw upon CV theory, with the first-

order optimality conditions leading to the ODEs for the costate in the resulting
BVP. Following the formulation adopted by Bryson and Ho in their pioneering book
on optimal control [36], the cost function of Eq. 2.7 is substituted with an updated
J˚ as

J “ ϕ ` µTχ`

ż tf

t0

`

Φ ` λT pf ´ 9xq
˘

dt (2.23)

where µ and λ denote the Lagrange multipliers related to boundary and dynamical
constraints, respectively, with the latter specifically signifying the costate. For the
sake of simplicity, the function arguments are not written explicitly. The “dot
notation” indicates a derivative with respect to time. For simplicity, this discussion
omits path constraints; however, their inclusion is addressed in [36], where a detailed
explanation is provided. It is also noteworthy to remark that, when the boundary
conditions and dynamic constraints are both met, the merit indices J and J˚, as
well as their respective maximum values, are equivalent.

By applying integration by parts to Eq. (2.23), it is possible to remove the
dependency on the state variables’ derivatives from the functional J˚, resulting in

J “ ϕ ` µTχ` λT
0 x0 ´ λT

f xf `

ż tf

t0

´

Φ ` λTf ` 9λTx
¯

dt (2.24)

After introducing the Hamiltonian H as

H “ Φ ` λTf (2.25)
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the first variation of J˚ is obtained by differentiating Eq. (2.24)

δJ˚ “

ˆ

´H0 `
Bϕ

Bt0
` µT Bχ

Bt0

˙

δt0 `

ˆ

Hf `
Bϕ

Btf
` µT Bχ

Btf

˙

δtf ` (2.26)

`

ˆ

λT
0 `

Bϕ

Bx0
` µT Bχ

Bx0

˙

δx0 `

ˆ

´λT
f `

Bϕ

Bxf
` µT Bχ

Bxf

˙

δxf ` (2.27)

`

ż tf

t0

ˆˆ

BH

Bx
` 9λT

˙

δx´
BH

Bu
δu

˙

dt (2.28)

The first-order necessary condition for an optimal solution requires that the first
variation δJ˚ vanishes for all possible variations δt0, δtf , δx0, δxf , δx, and δu. By
setting the coefficients of δx and δu within the integral of Eq. (2.28) to zero at any
point on the trajectory, the Euler-Lagrange differential equations can be derived,
which govern the behavior of the adjoint variables as

9λ “ ´

ˆ

BH

Bx

˙T

(2.29)

and the algebraic equations of the optimal control as
ˆ

BH

Bu

˙T

“ 0 (2.30)

Particular attention must be paid if one of the controls is subject to a constraint,
meaning it must belong to a given domain of admissibility (e.g., the magnitude of
the thrust must be between the minimum value 0 and the maximum value Tmax).
Cases where the constraint depends on time or state variables are not considered,
but only those where it is explicit and constant. In the presence of such a constraint,
the optimal control value at every point on the trajectory is the one that, while
belonging to the domain of admissibility, maximizes (if maxima of J are sought) or
minimizes (if minima are sought) the Hamiltonian (2.25) at that point, as established
by the Pontryagin Maximum Principle (PMP) [37]. Thus, two scenarios are possible:

• The optimal control value is the given by solving Eq. (2.30) if it falls within
the domain of admissibility and thus the constraint does not intervene at that
point;

• The optimal value is at the extremes of the domain, i.e., the control assumes
the maximum or minimum value if the one given by Eq. (2.30) does not fall
within the domain of admissibility.

A particular case occurs if the Hamiltonian is linear with respect to one of the
constrained controls because in the corresponding equation (2.30) the control does
not appear explicitly and therefore cannot be determined. Therefore, if in Eq. (2.25)
the coefficient of the control in question is non-zero, then H is maximized for the
maximum value of the control if the coefficient is positive and minimized if it is
negative (bang-bang control), in accordance with PMP. However, if in Eq. (2.25)
the coefficient of the control is identically zero over a finite time interval (singular
arc), then it is necessary to set all higher-order time derivatives of the coefficient to
zero, until the control appears explicitly in one of them: the optimal control is then
determined by setting this last derivative equal to zero.
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Nullifying the coefficients of the variation terms δt0, δtf , δx0, and δxf in
Eq. (2.28) leads to the definition of the transversality conditions:

λT
0 `

Bϕ

Bx0
` µT Bχ

Bx0
“ 0 (2.31)

´λT
f `

Bϕ

Bxf
` µT Bχ

Bxf
“ 0 (2.32)

´H0 ` µT Bϕ

Bt0
` µT Bχ

Bt0
“ 0 (2.33)

Hf ` µT Bϕ

Btf
` µT Bχ

Btf
“ 0 (2.34)

The boundary conditions for optimality are inferred by excluding the constant
Lagrange multipliers µ from Eqs. (2.31)-(2.34), culminating in a formulation such
as:

σ px0, xf , λ0, λf , t0, tf q “ 0. (2.35)
Equations (2.31)-(2.34) specify certain optimality conditions for the adjoint variables
λ and the Hamiltonian H. The j-th component of a vector is henceforth denoted
with the subscript j. When a specific state variable xj P x is fixed at the initial
and/or final times, leading to δxj, 0 “ 0 and/or δxj, f “ 0, there are no requirements
for the initial and/or final values of the corresponding adjoint variable λj , rendering
it “free.” Conversely, if the initial and/or final value of the state variable xj P x is
not explicitly stated in the boundary conditions χ or in the function ϕ, the initial
and/or final values of the adjoint variable λj must be zero. In a similar vein, if the
initial and/or final times are not explicitly included in χ or ϕ, then the Hamiltonian
takes the value of zero at the initial and/or final times.

When employing a shooting method to address the BVP, the task simplifies to
pinpointing the initial values of the undetermined state and adjoint variables that
meet the boundary conditions. This is accomplished by numerically integrating the
ensemble of differential equations across the time domain. Typically, an iterative
process akin to Newton’s method is utilized, generating a succession of initial value
problems that iteratively approach convergence. When dealing with multiple-arcs
trajectories whose time durations are generally unknown, the resulting MPBVP is
solved by considering the boundary conditions

χpsq “ 0 (2.36)

where in the vector s the constant paramenters, such as the arc durations, and the
internal boundary conditions for the state, costate and control are included.

2.2.2 Direct methods
The main challenges with indirect methods are a small convergence radius to

an optimal solution and the need to specify an a priori control structure, which
limits the ability of the methods to explore different solutions. Moreover, unlike
state, costate variables lack physical interpretation, can vary greatly in magnitude
compared to state variables, and may exhibit discontinuities at the transition points
between constrained and unconstrained arcs in the solution. The conventional
shooting methods, which involve propagating the state and costate via differential
equations and assessing errors at the final time, presents significant complexities
for resolution of BVPs, especially within the framework of these methods. Hence,
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starting from the 1960s, alternative strategies to solve the MPBVP associated with
dynamic system optimization began to emerge. A variety of solutions were sought,
sharing the overarching strategy of transforming the continuous problem into one
of parameter optimization and moving away from the shooting method towards
techniques where all free parameters are optimized simultaneously [38]. In particular,
the continuous OCP is converted into a finite-dimension NLP problem by means of
the discretization of the state and/or control variables. Methods that are based on
this transcription lays within the definition of direct methods.

A first category of direct methods, referred as direct shooting methods, involves
the discretization of the control u only, using a continuous or piecewise-continuous
function, such as a polynomial, which is specified by a limited number of parameters.
These parameters become the decision variables or unknowns in the resulting NLP
problem. The state variables at any point in time are obtained by numerically
integrating the system’s differential equations using time-marching algorithms such
as the Runge-Kutta family of methods. The optimal values of the parameters that
define the control law are then found by solving the related NLP problems. This
can be done effectively using a vast plethora of deterministic NLP solvers, like
interior-point or Sequential Quadratic Programming (SQP) algorithms [39].

A second group of methods is termed direct collocation and is arguably the
most recognized and widely applied direct transcription method. State and control
trajectories are approximated through polynomials of a certain degree, while the
differential constraints are converted into algebraic constraints. This is done by
ensuring the polynomials adhere to the differential equations at selected intermediate
collocation points. The initial phase in the collocation transcription process involves
segmenting the time domain into discrete intervals by establishing a grid comprised
of N ` 1 time points t0 ă t1 ă ¨ ¨ ¨ ă tN “ tf , known as mesh points or nodes. In
each segment within two consecutive nodes the state xptq is approximated by a
polynomial s of degree d in the form

sptq “

d
ÿ

i“0
cit

i t P rti, ti`1s (2.37)

with ci as the constant coefficients of the polynomials. The coefficients are determined
by ensuring that the polynomial’s value and its first derivative at the mesh points
match the state variable xptjq and its first derivative f pxptjq, uptjq, tjq at those
corresponding points, having

sptiq “ xptiq (2.38)
9sptiq “ f pxptiq, uptiq, tiq (2.39)

spti`1q “ xpti`1q (2.40)
9spti`1q “ f pxpti`1q, upti`1q, ti`1q (2.41)

In case the degree d is too high to evaluate the interpolating polynomial, additional
constraints on q internal points ti, k, k “ 1, . . . , q, between nodes are added. with
q “ pd ` 1q ´ 4, that is the d ` 1 constraints needed for the coefficients cj , minus the
4 given by the pair of nodes. For odd d ą 3, q “ ppd ` 1q ´ 4q {2, that is the d ` 1
constraints needed for the coefficients cj , minus the 4 given by the pair of external
nodes, while for even d ą 3, q “ ppd ` 1q ´ 4 ´ 1q {2 ` 1, as the last constraint on
the derivative is omitted [40], as

spti, kq “ xpti, kq (2.42)
9spti, kq “ f pxpti, kq, upti, kq, ti, kq @k “ 1, . . . , q (2.43)
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To increase the accuracy of the approximating function, additional constraints only on
the first derivatives are added between external and internal nodes, constituting the
defects ∆i, p, p “ 1, . . . , q`1, as to have a defect between each pair of internal/external
nodes, hence

∆i, p “ 9spti, pq ´ f pxpti, pq, upti, pq, ti, pq @p “ 1, . . . , q ` 1 (2.44)

A similar formulation is given for the interpolating function of control uptq, although
simple linear or piecewise-constant function are not rarely chosen.

Enclosing the state and control variables at the internal and external nodes in
a vector Z, and the nonlinear constraints, including defects, in a vector ΓpZq, the
OCP problem is stated as

min
uptq

J pZq (2.45a)

s.t. ZL ă Z ă ZU (2.45b)
BL ă AZ ă BU (2.45c)
ΓL ă ΓpZq ă ΓU (2.45d)

where AZ are the linear constraints and subscripts L and U stands for the lower
and upper bounds respectively.

Several reputable commercial solvers, including SNOPT [41] and IPOPT [42],
are available for solving large sparse NLPs like the one presented in Eq.(2.45).
Additionally, there are various software tools that facilitate the transcription process,
such as GPOPS-II [43] and TransWORHP [44].

In recent times, convex programming-based direct optimization methods have
increasingly become a focal point for solving optimal control problems within the
aerospace sector [45, 46, 47]. Unlike NLP solvers, interior-point algorithms tailored
to convex problems ensure a polynomial-time convergence to the global optimum,
independent of how the problem is initialized. Nonetheless, the formulation of many
real-world challenges as a convex optimization problems is often not feasible. As a
result, various strategies for transforming the original nonconvex problem into a con-
vex format have been developed, a procedure commonly referred to as convexification.
Over time, two main techniques for convexification have been established: lossless
convexification and successive convexification. Lossless convexification involves for-
mulating an equivalent convex problem by appropriately altering variables and/or
relaxing constraints [48]. If lossless convexification is not sufficient to eliminate all
non-convex constraints, successive convexification becomes necessary. This technique
involves solving a series of convex subproblems that are defined by linearizing the
dynamics and other nonconvex constraints around a previously determined solution.
Theoretical assurance that successive convexification also yields a (locally) optimal
solution for the original problem is conditional on meeting certain criteria [49, 50].

2.2.3 Alternative methods
Two principal classes of optimization methods recently emerged as alternative

approaches for aerospace applications. Evolutionary Algorithms (EAs) form one
such category, offering global optimization solutions through heuristic rules. These
guidelines are often, but not exclusively, derived from natural phenomena to pinpoint
the best solution for optimization challenges. Concurrently, Machine Learning
(ML) has surfaced as another influential category, applying its principles to tackle
optimization issues [51]. This typically involves training a Neural Network (NN)
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through one of two approaches: Behavioural Cloning (BC), which uses a controlled
set of solved problems as examples to emulate, or Reinforcement Learning (RL),
entailing extensive interaction with numerous instances of the environment. The
latter approach, RL, is also recognized for its potential in contributing to robust
optimization techniques.

2.2.3.1 Evolutionary algorithms

The foremost benefit of EAs lies in their vast exploration of the optimization
domain, thereby amplifying the likelihood of finding a globally optimal solution.
This broad survey is achieved through a parallel random search across diverse sets
of solutions, wherein the process iteratively eliminates the less optimal solutions
in favor of those that exhibit greater performance. The allure of these methods,
sometimes referred to as meta-heuristics, is significantly heightened by their capacity
to seamlessly converge to an optimal solution, even when the initial solution is
considerably distant from the convergence basin. This robust adaptability sets them
apart from traditional optimization techniques, especially in scenarios characterized
by nonlinear, non-differentiable objectives, or intricate feasibility domains.

A key strategy within EA is represented by Genetic Algorithms (GAs), which
initiate by creating a population of potential solutions. These solutions are then
subjected to selection, crossover, and mutation processes, drawing inspiration from
Darwinian evolutionary theory. This method systematically explores discrete solution
spaces in pursuit of optimal outcomes, effectively mimicking the natural selection
process to evolve solutions towards higher levels of fitness and performance [52].
Differential Evolution (DE) stands out as a variation of GA, specifically tailored
for tackling problems within continuous spaces [53]. Similarly, Particle Swarm
Optimization (PSO) [54] and Ant Colony Optimization (ACO) [55] are renowned
meta-heuristic techniques, modeled on the collective foraging behaviors observed in
bird flocks and ant colonies, respectively. A rather exhaustive list of these bio-inspired
optimization techniques is maintained by Campelo et al. [56].

In the aerospace sector, where the design of missions often entails addressing
exceedingly complex optimal control challenges, EA methods have gained consider-
able popularity in recent decades. Genetic algorithms, for example, are frequently
utilized to navigate high-dimensional combinatorial problems, such as planning
active debris removal missions [57, 58, 59]. Similarly, differential evolution has
proven effective in unraveling intricate continuous problems like designing multiple
gravity-assist trajectories [60, 61] and rocket ascent paths [62]. While evolutionary
algorithms can be directly applied to combinatorial problems, their effectiveness may
diminish in overly large search spaces, potentially yielding sub-optimal outcomes.
An alternative, particularly suitable when the problem domain permits incremental
solution construction from smaller, distinct sub-problems, is the use of tree searches.
Tree search methods stand out as highly effective for such challenges, modeling
decision points as nodes for potential expansion and evaluation. Given the impracti-
cality of exhaustively enumerating all possible expansions, these methods employ
selective strategies to explore only the most promising branches. This approach
generates more manageable sub-problems, better suited to evolutionary algorithm
solutions [63].

Nonetheless, it’s important to acknowledge that meta-heuristic algorithms typ-
ically exhibit slower convergence rates, significantly elevating the computational
demands in comparison to deterministic methods. Furthermore, these algorithms of-
ten lack robust convergence guarantees, rendering the iterations required to reach the
global optimum or achieve a solution close to optimal within an acceptable tolerance
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potentially infinite or indeterminable. Such characteristics render meta-heuristic
approaches less viable for scenarios where time is crucial, and where computational
efficiency and assured convergence are paramount.

2.2.3.2 Machine Learning

In line with the current interest across various scientific and technical disciplines,
Artificial Intelligence (AI) is demonstrating remarkable potential in the realm of
trajectory design and optimization. A significant advantage of AI lies in its capability
to deliver solutions with minimal computational resources and near-instantaneous
response times once the algorithm has been adequately trained for a specific task.
ML techniques are used for this particular scope.

Neural Networks (NNs), fundamental tools of ML, stand out as universal function
approximators capable of emulating the optimal CL control law, effectively mapping
the observed spacecraft state (input vector) to the required thrust magnitude and
direction (output vector). This policy evaluation process is exceedingly rapid,
surpassing the speed of traditional optimization methods, making it particularly
attractive for applications where time is of the essence. However, as previously
highlighted, the critical endeavor lies in the training of Neural Networks (NNs).
This process involves meticulously optimizing the network’s parameters to achieve a
reasonable approximation of the optimal control law, ensuring the neural network
can accurately model the desired outcomes. Methods that employs artificial neural
networks with multiple layers to model complex patterns in data lay within the
definition of Deep Learning (DL). Each layer transforms its input data into a slightly
more abstract and composite representation, effectively enabling the network to
learn from vast amounts of unstructured data. DL demonstrated to be both efficient
and swift in resolving control issues across various research domains, particularly in
the field of robotics [64].

Three different categories of training are possible to this scope: supervised
learning, unsupervised learning, and RL. Supervised Learning involves training a
model on a labeled dataset, where each training example is paired with an output
label. The model learns to predict the output from the input data, making it ideal
for tasks such as classification and regression. An example is given by BC, which is
a widely used training approach that leverages a dataset of optimal trajectories from
an “expert” source, such as solutions generated by a deterministic solver, to train the
network. The objective is to mimic the expert’s actions by reducing the discrepancy
between the network’s output and the expert’s data. BC has been effectively applied
in various aerospace scenarios, including interplanetary transfers [65], powered
descent landings [66, 67], and hypersonic reentry phases [68, 69]. Unsupervised
Learning, on the other hand, deals with datasets without explicit labels. The goal
here is to discern underlying patterns or structures within the data. This can involve
clustering similar data points together or identifying distinct data distributions.
Aerospace applications in literature are principally related to hypersonic vehicles [70,
71]. Reinforcement Learning is a type of ML where an agent learns to make decisions
by taking actions in an environment to achieve some objective. The learning process
involves the agent interacting with its environment, receiving feedback in the form of
rewards or penalties based on the actions taken within the mission scenario, usually
formulated as a Markov decision process. The goal of the agent is to maximize
the cumulative reward over time. This framework enables the agent to learn from
its experiences, adjusting its strategy to improve performance in tasks such as
game playing, robotic control, and autonomous navigation. As a derived method,
Deep Reinforcement Learning (DRL) combines the representational power of DL
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with the decision-making prowess of RL. It’s an advanced AI technique where deep
neural networks are trained to make sequences of decisions, learning optimal policies
directly from high-dimensional sensory input. Despite being a relatively recent area
of interest within the aerospace community, RL and DRL have seen a notable surge in
research output in recent years. This burgeoning field has been applied to a variety of
aerospace challenges, including powered descent landing [72, 73], low-thrust transfer
maneuvers [74, 75], cislunar trajectories [76, 77, 78], spacecraft rendezvous [79, 80],
proximity operations [81], and terminal guidance [82], as evidenced by a series
of publications dedicated to these topics. In part of the cited works, stochastic
components are taken into account in the optimizatino problem, leveraging the
exploratory behavior of RL algorithms, as it will be further discussed in Section 2.4.2.

Training NNs with comprehensive datasets that span extensive areas of the
problem domain, similar to BC, or in variable simulated settings, akin to RL, adds
an inherent robustness to the derived policies. This can enhance the methods’
performance under atypical conditions. Despite this, the significant computational
resources required for training and the lack of formal assurances regarding the
policies’ effectiveness and robustness continue to restrict their practical use to
simpler problems.

2.3 From deterministic to stochastic representation
The optimization techniques for deterministic OCPs, reviewed in the previous

section, could be extend to deal with stochastic OCPs where elements like the
state, dynamical system, and control may exhibit non-determinstic behaviour. The
fundamental components of a deterministic OCP — namely the cost function, ODEs,
and path and boundary constraints — are retained in robust formulations. How-
ever, transitioning to a Stochastic Optimal Control Problem (SOCP) necessitates
accommodating intrinsic and theoretical distinctions. This section provides a com-
prehensive overview of the requisite modifications that facilitate this transition,
delineating how traditional deterministic frameworks are adapted to embrace the
uncertainties inherent in stochastic environments.

2.3.1 State modeling
The primary element of distinction from a deterministic OCP is the characteri-

zation of the state vector xptq as a multivariate random variable, characterized by a
Gaussian probability distribution. Consequently, the state distribution is described
at any time by the mean µptq P Rn (or expected value), defined as

µptq “ E rxptqs “ pE rx1ptqs , E rx2ptqs , . . . ,E rxnptqsq
T (2.46)

and the covariance matrix P ptq P Rnˆn, that is defined as

P ptq “ E
”

pxptq ´ µptqq pxptq ´ µptqq
T
ı

(2.47)

The stochastic nature of the state vector demands a comprehensive probabilistic
framework, so that the behavior of the system can be represented not just by one
trajectory, but rather by a spectrum of possible outcomes, each weighted by its
likelihood. This essential modification allows to account for uncertainties that are
typical of space missions, as an exact precise knowledge of the spacecraft’s state
during flight is unattainable. The state level of accuracy is higher during phases
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where precise navigation is available, or lower during stages where OD becomes more
challenging due to factors like sensor limitations, environmental perturbations, or
other operational constraints (such as cost reduction).

Considering the state as a random variable, drastically changes the formulation
of boundary constraints as assertions on xptq pertain only to individual realizations
of the state probability distribution, rendering them inapplicable and meaningless
within a robust framework, where the state is exclusively characterized by its
stochastic attributes. Therefore, deterministic initial and terminal constraints as in
Eqs. (2.4) and (2.5) in this new context would be substituted for example by

Pr txpt0q P χ0u ě α (2.48)
Pr txptf q P χf u ě α (2.49)

where χ0 and χf are n-dimensional generic polytopes to constrain the initial and
final state, while α P r0, 1s is the compliance rate of the condition in argument.
Assuming a Gaussian distribution for xptq, an alternative stochastic constraint is
instead

E rxpt0qs “ µpt0q “ rµ0 (2.50)
E rxptf qs “ µptf q “ rµf (2.51)

where rµ0 and rµf are assigned initial and final mean state. To perfectly match the
deterministic conditions however, information on the state dispersion should be also
included alongside Eqs. (2.50) and (2.51). Specifically, to replicate the nature of
deterministic constraints, which inherently exclude any degree of dispersion, the
enforcement of zero dispersion becomes necessary, thus P pt0q “ P ptf q “ 0. In a
robust formulation, additional information on the stochastic moments specific for
the mission are added, e.g.

xpt0q „ N
´

rµ0, rP0

¯

(2.52)

λmax pP ptf qq ď δ (2.53)

where N pµ, P q is a Gaussian distribution of mean µ and covariance matrix P , rP0
is an assigned initial covariance matrix, λmax p¨q denotes the maximum eigenvalue of
the matrix in argument, and δ P R.

Unlike deterministic OCPs, where constraints are typically applied directly to
optimization variables or to quantities that have a straightforward dependency on
these variables, the stochastic nature of the state introduces further complexities. In
this respect, directly applying constraints to random variables would be inadequate,
as this approach would result in a computed control that fails to ensure compliance
in every possible execution of the flown trajectory. Therefore, it is the necessary
to formulate path constraints on stochastic quantities, which provide the most
accurate description of the system. This shift underscores the need for innovative
computational strategies to effectively manage and apply path constraints within
the inherently uncertain framework of robust optimization. In scenarios where direct
evaluation of stochastic quantities is infeasible, uncertainty propagation tools emerge
as essential instruments. These tools are designed to estimate stochastic parameters
and play a pivotal role in robust optimization frameworks. A detailed exploration of
the principal methods for uncertainty propagation, including their methodologies
and applications, is provided in Chapter 3.
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2.3.2 Stochastic Differential Equations
Where the knowledge of system dynamics is partial or imprecise, the use of

deterministic ODEs may inevitably lead to random deviation of the predicted
trajectory from the actual one. This discrepancy arises either because the model
employed does not adequately capture the intricacies of the actual dynamics or
because it fails to account for the system’s aleatory components. Thus, the shift
towards the SOCP paradigm is driven by the need to account for and manage these
uncertainties directly within the problem formulation, in order to obtain a reliable
and accurate approach to trajectory optimization under uncertain conditions.

The presence of unmodeled dynamics, as in the case of unknown harmonic
elements of a planet, or a complex dynamical environment, as a highly irregular
shape of a target celestial body, dedicated analyses are required to bridge these
knowledge gaps. However, even when a reasonably accurate dynamical model is
accessible, minor random disturbances can persist. These fluctuations may arise from
a variety of factors, ranging from structural complexities to navigation inaccuracies.
This reasoning highlight the need for a detailed and comprehensive approach to
modeling and analyzing the possible perturbations, ensuring the reliability of the
mission’s trajectory planning is maintained even in the presence of these disturbances.

One of the key factors in this regard is the use of Stochastic Differential Equations
(SDEs) in place of the deterministic ODEs. An SDE is made of a deterministic term
and stochastic component, leading to a solution that is itself a stochastic process.
The most common form in literature is represented by an ODE with the right hand
side perturbed by a term dependent on a white noise variable, this latter usually
represented by a Wiener process. Two fundamental approaches are possible in
literature to treat and solve SDEs: Itô and Stratonovich calculus, respectively named
after the mathematicians Kiyosi Itô (1915-2008) and Ruslan Stratonovich (1930-
1997). Itô calculus is founded on the principle of causality, a concept particularly
relevant in time-based applications. Conversely, Stratonovich calculus aligns more
closely with traditional calculus rules and possesses inherent geometric properties,
making it better suited for geometric problems like random motion on manifolds [83].
To integrate a perturbation component into a deterministic ODE, thereby adjusting
the Equations of Motion (EoM) to reflect a slightly perturbed dynamical model,
the standard formulation of SDEs as outlined in Itô calculus, featuring a singular
perturbation term, is employed. Equation (2.1) is thus substituted by

dx “ fpxptq, uptq, tqdt ` gpxptq, uptq, tqdw (2.54)

where g : Rn ˆ Rm ˆ R ÞÑ Rn ˆ Rnw is the diffusion term, which serve as a weight
for the white noise vector wptq P Rnw , modeled as a Wiener process characterized
by the following properties [83]:

1. wp0q “ 0nw almost surely1;

2. For every t ą 0, the future incrementswpt`δtq´wptq, δt P R`, are independent
of the past values wpt1q, with t1 ă t;

3. wpt ` δtq ´wptq is normally distributed with mean 0nw and covariance matrix
δtInw , where Inw is the identity matrix with dimension nw;

4. wptq is almost surely continuous in t.
1In probability theory, an event that almost surely happens is equivalent to an event that happens

with probability 1.



2.3 From deterministic to stochastic representation 25

A number of numerical methods to solve SDEs are available. The most common
solution scheme is the Euler-Maruyama method [84], that is an extension of the
Euler method for ODEs to SDEs. Extensions of the Runge-Kutta methods [84, 85]
and Rosembrock methods [86] to SDEs also exist in literature. Alternatively, the
Milsten method involves a more sophisticated formulation based on the derivative of
the diffusion term with respect to xptq [87].

A critical aspect when dealing with SDEs is that numerical integration produces a
different outcome for each execution of a same algorithm, attributed to the inherently
random nature of certain terms within the equations. Such randomness ensures
that outcomes differ with each execution. In MC analysis, this variability is not a
problem, as the analysis is designed to leverage a large number of runs, each with
independently random outcomes, to statistically infer system behavior. However,
within an optimization framework, the presence of random perturbations in a
trajectory, which may not be consistent across iterations, thus posing some challenges
on convergence of the optimization method. As an example, the performance index
varies on unpredictable way, leading to errors when computing gradients.

2.3.3 Cost function and constraints
The stochastic nature of the state variable and of the EoM immediately impacts all

facets of the SOCP, mirroring challenges observed with the non-uniqueness in SDEs
numerical integration. Optimizing performance indexes tied to specific trajectories or
random factors becomes particularly complex, veering towards theoretical irrelevance
under traditional deterministic models. This highlights a fundamental shift in
approach, necessitating a reevaluation of optimization strategies within SOCP. In
the context of aerospace applications, cost functions that rely solely on an OL control,
such as cumulative ∆v, remain unaffected by stochastic influences because they do
not depend on any stochastic variables. When dealing with a CL control law that
depends on real-time states with stochastic behavior, the associated cost function
becomes inherently variable, contingent on the actual trajectory flown. In such
cases, adapting a common cost function like cumulative ∆v for use within a robust
optimization framework becomes complex. This is because the cost function must
now accommodate fluctuations in trajectory due to the probabilistic nature of the
state variables, making the straightforward application of deterministic methods less
feasible.

Anticipating the key feature of chance-constraint methods, a possible approach to
formulate a cost function with stochastic components is to express it in probabilistic
sense. In other words, since it is not possible to know in advance the actual final
value of the cost function, an idea could be to minimize (or maximize) a quantity
that with a certain degree of confidence is smaller (or greater) than the actual cost
function for a particular realization of the trajectory. Formally, given the vector of
the control parameters Θ and the related cost function Φ pΘq,

Pr tΦ pΘq ă Ju ě α (2.55)
where J is the quantity to minimize. By definition, J represents the p-th percentile
of Φ pΘq, denoted with Qp pΦ pΘqq, with p “ 100α. The aim is thus to optimize the
control parameters as to minimize Qp pΦ pΘqq. Denoting the optimal control vector
with Θ˚, the related cost function Φ pΘ˚q “ Φ˚ is such that

Pr tΦ˚ ă Qp pΦ˚qu ě α (2.56)
The final task is to reformulate the p-th percentile in a manner that is compatible with
optimization algorithms. This involves translating the percentile into a quantifiable
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metric that can be systematically assessed and manipulated within the framework of
the algorithm, ensuring it can be effectively optimized as part of the solution process.
This step is explained in Chapter 5 resorting to a mathematical manipulation of
Eq. (2.56).

Path constraints that depend on stochastic variables also follow a similar approach
to integration within optimization frameworks. These constraints, which define
acceptable limits or conditions on the paths taken by system variables, must be
reinterpreted when those variables exhibit random behavior. For instance, in case of
the control magnitude to be constrained below a given threshold, the probabilistic
expression to manipulate is, similarly to Eq. (2.56),

Pr t}uptq} ď rumaxu ě α t P rt0, tf s (2.57)

In this case as well, by resorting to a reformulation of the p-th percentile of the
control magnitude, the constraint is converted to a treatable form for the optimization
algorithm.

Leveraging the aforementioned transformations, a general statement for an SOCP
could be given by

min
Θ

Qp pΦ pΘqq (2.58a)

s.t. dx “ f px, u, tq dt ` g px, u, tq dw @t P rt0, tf s (2.58b)
χ px0, xf , u0, uf , t0, tf q “ 0 (2.58c)
ψ px, u, tq ď 0 @t P rt0, tf s (2.58d)

where explicit time dependency of the state and control variable have been omitted,
and xpt0q “ x0, xptf q “ xf , upt0q “ u0, uptf q “ uf . Note that in Eqs. (2.58c)
and (2.58d), although the same notation of the deterministic OCP is used, the
probabilistic expressions discussed in this subsection are included.

2.4 Methods for robust trajectory optimization
This section concerns the diverse methodologies proposed in the literature for

addressing an SOCP. While the formulation provided in Eqs. (2.58) offers a broad
framework, the field of robust trajectory optimization allows for multiple inter-
pretations and approaches, each contributing to ongoing and vigorous research.
As a relatively nascent area of study, robust trajectory optimization is still in its
developmental infancy, with no universally accepted methodology established to
date, in contrast to the more mature field of traditional OCPs. This dynamic and
evolving landscape underscores the potential for significant advancements and the
establishment of foundational strategies in the years to come.

2.4.1 Chance-constraint formulation
Chance-constraint optimization is a mathematical approach designed to manage

uncertainties within optimization frameworks. This methodology ensures that
constraints are adhered to with a specific probability, accommodating uncertainties
by integrating them directly into the optimization process. The essence of chance-
constrained optimization lies in its ability to balance the trade-off between risk
and operational performance, making it particularly suited for applications where
parameter values are uncertain and can only be described probabilistically.
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The foundational concept of chance-constrained optimization was introduced by
Charnes and Cooper in 1959 [88] and Millen and Wagner in 1965 [89], who explored
the implications of incorporating probabilistic constraints into linear programming
models. This pioneering work has led to widespread adoption and development across
various disciplines, including finance, supply chain management, and engineering.
Further developments in the field were significantly advanced by Prekopa in 1995 [90],
who discussed the broader implications and models of stochastic programming
involving chance constraints, providing a deep theoretical foundation and practical
examples of applications. Another notable contribution came from Nemirovski
and Shapiro [91], who focused on the convex approximations of chance constraints,
offering insights into efficient computational strategies and enhancing the feasibility
of applying these models in real-world scenarios.

There exist multiple approaches to structuring chance constraints within opti-
mization problems, each with distinct implications for accuracy and feasibility. The
various formulations offer specific advantages and potential limitations concerning
the precision of solutions and the overall tractability of the problem. Consider an
optimization problem under uncertainty:

min
x

Φ px, ξq (2.59a)

s.t. g px, ξq “ 0 (2.59b)
h px, ξq ě 0 (2.59c)

where Φ represents the objective function to be minimized, g encapsulates the set of
equality constraints, and h embodies the inequality constraints. The vector x com-
prises the decision variables, while ξ is the vector of random variables, encompassing
all elements of uncertainty within the problem.

• Individual chance constraints represent a straightforward transformation of
the original constraints h1, h2, . . . , hn. These are expressed as:

Pr ph1 px, ξq ě 0q ě 1 ´ ϵ1 (2.60)
Pr ph1 px, ξq ě 0q ě 1 ´ ϵ2 (2.61)

...
Pr ph1 px, ξq ě 0q ě 1 ´ ϵn (2.62)

where ϵi P r0, 1s, i “ 1, . . . , n, are the violation rates. In this configuration,
each individual constraint hi is associated with its distinct tuning parameter
ϵi. This method’s benefit is the possibility to allocate different probabilities
to the constraints, reflecting their varying levels of criticality. Moreover, it
provides immediate insights into which specific constraint was breached upon a
violation. Nonetheless, individual chance constraints only guarantee that each
constraint is independently satisfied to its assigned confidence level, rather
than ensuring collective compliance.

• Collective chance constraints demand the simultaneous satisfaction of all
inequality constraints within a combined probability threshold:

Pr ph1 px, ξq ě 0 ^ h2 px, ξq ě 0 ^ ¨ ¨ ¨ ^ hn px, ξq ě 0q ě 1 ´ ϵ (2.63)

Assigned a collective parameter ϵ P r0, 1s, this model ensures that all constraints
are met at a given probability level. The logic parallels that of deterministic



2.4 Methods for robust trajectory optimization 28

constraints, where we anticipate all conditions to be valid simultaneously with
absolute certainty. This leads to a more conservative problem setup. However,
the primary drawback is the computational complexity these constraints
introduce, which limits their application to more straightforward or specialized
scenarios.

Chance-constrained optimization often presents computational challenges, pre-
dominantly due to the difficulty in calculating the integral for the probability,

Pr ph px, ξq ě 0q “

ż

tξ|hpx, ξqě0u

pξpξqdξ (2.64)

where pξ is the Probability Density Function (PDF) of ξ. This difficulty arises
primarily when the PDF is complex or intractable, a situation that is not uncommon
especially when the model establishes a nonlinear interplay between uncertainties in
inputs and outputs. In these cases, approximation methods become essential. Some
of the most prevalent methods include:

• Deterministic transformation: This technique simplifies the problem by
transforming it into a deterministic format, where the chance constraints are
expected to be satisfied with a stipulated violation rate ϵ. Mathematical
bounds on ϵ can be derived, with references such as Calafiore and Campi [92]
offering insight.

• Back-mapping: Bypassing the direct computation of the PDF, this method
finds an equivalent representation via a monotonic relationship between uncer-
tainties in input and output, enabling integration within the subspace of input
uncertainties. This mapping is then used to facilitate easier integration [93].
While advantageous, the limitation lies in the potential complexity of these
monotonic relations.

• Polynomial Chaos Expansion (PCE): A more contemporary approach
where random variables are represented in terms of a polynomial function
of other random variables. The polynomials are chosen to be orthogonal
with respect to the joint probability distribution of these random variables.
The merit of this representation is the direct accessibility to the moments
of the approximated variables, negating the need for further relaxation or
discretization. However, such methods may escalate rapidly in complexity with
increasing model uncertainties [94, 95]. Refere to the dedicated subsection for
mathematical details 3.2.2.

Chance-constraint programming has seen broad application across disciplines,
affirming its versatility and effectiveness [96]. Its utility is currently most notable in
robotic maneuvering. This method proves especially beneficial in guiding autonomous
agents through environments laden with unpredictable obstacles, enhancing navi-
gation and strategic planning within variable movement spaces [97, 98, 99]. Model
Predictive Control (MPC) found also applicability for chance-constraint program-
ming [100, 101]. Aerospace applications of this methodology have been instead
coupled in the works of Tsiotras et al. with convex optimization [102, 103] and
covariance steering [104].
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2.4.2 Machine learning approach
In Section 2.2.3, the fundamental concepts behind AI and its potential use for

deterministic trajectory optimization were explored, highlighting in the particular
the main results obtained with RL and DRL. More recently, the application of these
methods to robust control optimization has yielded promising results, showcasing
their potential to revolutionize strategies in unpredictable and dynamic settings.
This emerging approach couples the adaptive capabilities of AI with the need for
resilience against uncertainties, positioning DRL as a key player in crafting robust
strategies that can withstand and adapt to unpredictable variables in dynamic
environments.

DRL algorithms represent a significant departure from traditional control meth-
ods, particularly in their adeptness at managing stochastic control problems. These
algorithms are uniquely equipped to process transition probabilities and observation
models that are often presented in ambiguous (or even black-box) formats. This
flexibility allows DRL to function without the stringent requirement for detailed
mathematical formulations typically necessary in conventional approaches. The
exploratory nature inherent in RL enables these algorithms to naturally adapt
and develop resilience against uncertainties within the models. This characteristic
is crucial in environments where precise predictions are challenging, allowing the
system to maintain performance despite variable conditions. Furthermore, a major
advantage of DRL lies in its computational architecture. The most demanding
computational tasks, such as the extensive training of deep neural networks, are
conducted during the pre-flight phase. This phase leverages high-performance com-
puting systems capable of handling large datasets and complex learning algorithms
efficiently. Once this phase is complete, the operational demands on the spacecraft’s
onboard systems are relatively minimal. During flight, the execution of deep-RL
involves just a single pass through the trained neural network for each guidance
step, which is remarkably fast and ensures minimal delay in response times. This
efficiency makes DRL particularly suitable for real-time applications in aerospace
contexts, where decisions must be made swiftly and reliably to navigate through
dynamic and potentially hazardous environments.

When addressing SOCPs within the realm of RL, the challenge is typically
reformulated as a Markov Decision Process (MDP). Within an MDP framework, at
each discrete timestep i “ 0, . . . , M , M P N, the decision-making agent selects an
action or control ui, from the set of feasible actions, based on observations yi of
the system’s current state xi. This selection is computed by a CL control policy:
ui “ πpyiq. The consequence of each action transition to a new state xi`1, and
yields a scalar reward, Ri “ Rpxi, ui, xi`1q, which reflects the desirability of the
state transition. MDPs uniquely satisfy the Markov property, implying that the
subsequent state is dependent solely on the present state and the executed action,
not on the sequence of preceding states and actions. The overall objective in an
MDP is to discover the control policy π˚ that maximizes the expected return of
the discounted rewards along a trajectory τ “ tpx0, u0q , px1, u1q , . . . , pxM , uM qu,
formalized as:

Jpπq “ Eτ„π rGptqs (2.65)

Gptq “

M
ÿ

i“0
γiRi (2.66)

where γ P p0, 1q is a discount factor that diminishes the value of future rewards.
Here, Eτ„π r¨s represents the expected value over multiple trajectories τ accrued
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from interactions with the environment under policy π.
Several research papers have already dealt with the use of DRL for robust CL

guidance of spacecraft during planetary landing maneuvers [105] and proximity
operations [106], as well as for cislunar [107] and interplanetary [75] trajectory
design.

Integrating DRL algorithms with a recurrent network structure gives rise to
a sophisticated model often known as meta-RL, or the concept of “learning to
learn.” [108] These Recurrent Neural Networks (RNNs), with their feedback loops,
have the innate capacity to retain temporal information within their internal states.
This feature empowers RNNs to finely tune their outputs to the nuances of the current
problem scenario, markedly enhancing their efficacy in environments characterized
by non-Markovian properties, partial observability, or multifaceted tasks that require
a broader contextual understanding. An RNN-based meta-RL framework has been
effectively utilized for the onboard guidance of spacecraft or landers operating within
uncertain dynamic environments [105, 109], partially observable settings [82, 110,
111], or scenarios requiring the execution of various tasks [80]. This approach has
consistently surpassed the performance of standard RL techniques that rely on a
fully-connected policy network, showcasing its superior adaptability and proficiency
in complex navigational challenges.

2.4.3 Classifications of methods
The research field of SOCP is currently expanding, standing in stark contrast to

the mature field of deterministic control, where methodologies have been thoroughly
investigated, and their efficacies extensively documented. In the realm of SOCP,
research is actively evolving, with standardizations and benchmarking yet to be
solidified. As the field of robust trajectory optimization continues to mature, it
becomes increasingly apparent that a classification based on foundational elements is
more instructive than trying to delineate distinct methods. Besides methods based
on ML that are objectively unique in their formulation, the critical components that
define a robust methodology include stochastic approaches, the means of UP, and
problem formulation. The literature on robust trajectory optimization reflects a
plethora of methodologies, each interlacing the aforementioned fundamental elements.
A comprehensive evaluation of how each element affects the overall efficiency of a
proposed methodology is yet to be acquired by the scientific community. As the body
of SOCP techniques continues to expand, the need for a systematic classification
becomes ever more crucial.

A first classification relates to the way state uncertainty, cost function, and
constraints are manipulated. This is a crucial factor ingredient for any SOCP
solution method and will impact the overall accuracy and computational efficiency
of the approach. This classification can be synthesized as follows:

• Stochastic Manipulation (SM): probabilistic expressions of constraints and cost
functions are converted in equivalent or nearly-equivalent expressions suitable
for numerical solvers (see Sec. 2.4.1);

• PCE: method based on representing a random variable in terms of a orthogonal
polynomial functions of other random variables (see Sec. 3.2.2);

• Belief MDP: the problem is formulated as an MDP with stochastic state;

• General Stochastic Formulation (GSF): stochastic elements of the the state
are only considered in this approach. This is typically possible in situation
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where the limitation of state dispersion is the principal objective for the scopes
of the mission.

UP is a pivotal element in robust trajectory optimization, primarily affecting the
computational intensity rather than the robustness of the optimized control law
itself, assuming the same level of accuracy. Although a more detail and advanced
explanation of these techniques is included in the next chapter, UP tools are princi-
pally divided into linear and nonlinear methods. Linear methods typically assume
small deviations from a nominal trajectory and rely on linear approximations of the
dynamics. These methods often offer the benefits of reduced computational complex-
ity and simpler analytical insight, making them well-suited for quick assessments and
problems with modest uncertainty. Nonlinear methods, on the other hand do not
make such linear assumptions and can handle larger deviations and more complex
uncertainty models. While these methods provide a more accurate depiction of the
potential outcomes, they come with increased computational demands.

The choice on how to solve the SOCP depends on the specific application and
may play a crucial role on the final solution performance. The main approaches
adopted in literature so far are the following:

• Convexification: transformation of a non-convex problem into an equivalent
(lossless) or relaxed (successive) convex problem, as covered in Sec. 2.2.2;

• Differential Dynamic Programming (DDP): technique used for solving non-
linear optimal control problems. It operates by locally approximating the
dynamics of the system and the cost function using second-order Taylor series
expansions. The primary advantage of DDP is its ability to efficiently handle
high-dimensional systems with complex dynamics. At each iteration, DDP
solves a second-order expansion of the Bellman equation to find the local
optimal control, resulting in a locally optimal control law and associated value
function. The updates from these subproblems are then used to improve the
trajectory in a process similar to Newton’s method for optimization [112];

• Numerical algorithms: problem formulated in a OCP fashion without resort-
ing to any of the previous technique to manipulate the general formulation.
The OCP-like problem is solved directly via the classical iterative numerical
algorithms, e.g., interior point, sequential quadratic programming;

Chance-constraint optimization is the most renowned form of SM, and ensures
that constraints are adhered to with a specific probability. This method allows
the numerical solver to easily enforce the probabilistic constraints, which would
otherwise be challenging to address. Based on stochastic manipulation, several
studies have employed convex optimization. The polynomial-time convergence of
convex optimization to the global optimum is a significant advantage, particularly
for the computationally challenging domain of robust optimization. In the works of
Ridderhof et al. [102, 103, 113] and Benedikter et al. [114, 115] covariance steering
is performed resorting to convex optimization, while in the works of Oguri et
al. [116, 117] and Lew et al. [97] sequential convex programming is used for trajectory
optimization and motion planning. In the paper of Xiong et al. [118], polynomial
chaos expansion is instead coupled with convex optimization for a landing problem.
DDP is employed in the works of Ozaki et al. [119, 120], based on chance-constraint
SM.

In the work of Giordano and Topputo [121] polynomial chaos is used to handle the
state uncertainty, proposing an integrated approach for preliminary mission analysis,
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embedding in the trajectory design and optimization the navigation assessment and
the associated stochastic costs. Polynomial chaos has been also applied for robust
trajectory design in a three-body system by Feldhacker et al. [122], whose work has
been improved by Yang et al. [29] et al. including orbital re-planning.

A belief-based approach is proposed by Greco et al. [123, 124], where an optimal
control problem is formulated directly in terms of uncertainty distributions, called
beliefs, rather than on realizations of the system state, as in classic deterministic
optimal control. This work has been subsequently extended by including a nonlinear
navigation analysis under both aleatoric and epistemic uncertainty [125].

The main works that combine the mentioned elements are summarized in Ta-
ble 2.1, where notations “L” and “NL” stand for respectively linear and nonlinear
UP.

Table 2.1. SOCP classification.

Numerical
algorithms Convexification DDP

SM L: [126] L: [97, 102, 116, 117, 115] NL: [119, 120]
PCE NL: [121, 127] L: [128] -

Belief MDP NL: [123] - -
GSF L: [129]

NL: [29] L: [46, 130] L: [131]

As a minor methodology for the resolution of a SOCP, indirect methods were
recently employed in robust optimization. An extension of the primer vector theory
to stochastic optimization is proposed by Zimmer et al. [132] for an OL control
law, while Oguri et al. [126] extended this approach by including path constraints.
An indirect formulation is also employed by Xin et al. in computing a CL control
in linear dynamics for proximity operation [133]. A multi-objective optimization
is instead discussed by Jenson and Scheeres using cost function with covariance
and energy terms [130]. In the work of Heidrich and Holzinger [134], a relaxation
approach is adopted to tackle indeterminate control behaviour for singular arcs
by means of augmented covariance dynamics, allowing an application to optical
control problem with uncertainties. Despite the renowned advantages of an indirect
formulation, i.e. fast convergence and reduced computational cost, this class of
methods may suffer from limited convenience for advanced trajectory optimization
problems. The analytical expressions required in the indirect methods, as state and
co-state derivatives, increase the complexity of the problem formulation, reducing
the versatility to a confined range of possible mission scenarios.

A further approach that is worth of notation is the formulation of the SOCP in
an MPC fashion. MPC is an advanced method of process control that utilizes an
explicit dynamic model of the process to predict the future state of the system. At
each step, an optimization problem is solved to find the optimal control action by
minimizing a cost function over a future time horizon. The optimization considers
the current state of the system and the predicted future states. However, only the
first control action is implemented, and the process is repeated at the next time step
with updated measurements [135]. MPC initially emerged in the 1980s as a control
technique for the petroleum refinery industry [136]. Its effectiveness has since been
demonstrated across a wide spectrum of sectors, with its applications extending to
the aerospace domain among others [137, 138, 139]. MPC has been also extended to
robust applications in numerous works [140, 141, 142, 143].
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Chapter 3

State uncertainty propagation
tools

In the context of space trajectory planning and operations, uncertainty propaga-
tion typically involves calculating the PDF or the statistical moments (e.g., mean or
covariance matrix) of the spacecraft state

In addition to the context of robust optimization, uncertainty propagation is an
indispensable also in the field of Space Situational Awareness (SSA) — a critical
domain dedicated to the comprehensive monitoring, characterization, and tracking
of space objects. Efficient and precise long-term uncertainty propagation in orbital
trajectories is a significant challenge in SSA. This stems from the reality that
Resident Space Objects (RSOs) — often defined as those with dimensions of a
softball (approximately 10 cm) or larger-vastly outnumber the available tracking
sensors. Consequently, tracking any single object is typically based on infrequent
observations. Therefore, maintaining a trajectory’s uncertainty over several days or
multiple orbital periods without new measurements becomes a critical requirement
in SSA operations. The previous chapters highlighted the central role of accurately
predicting the evolution of state dispersion over the flight time, which is fundamental
for the development of a robust control. Indeed, an accurate knowledge of the
spacecraft state empowers the algorithm to design a control law tailored to the
envisaged perturbations/uncertainties, thereby enhancing the mission efficiency and
reliability.

During the latter half of the 20th century, orbital uncertainty propagation was
typically tackled using linear models or nonlinear MC simulations. Linear methods,
which simplify the problem by linearizing it, offer high efficiency but their accuracy
diminishes when applied to systems with significant nonlinearity or over extended
durations. Conversely, MC simulations deliver precise outcomes but at a considerable
computational cost. To circumvent these issues, a variety of analytical and semi-
analytical methods for handling nonlinear orbital uncertainty have been formulated
in more recent times.

3.1 Linear methods
Linear methods propagate the initial uncertainty distribution using a linearized

model of the dynamics, by leveraging on the so-called State Transition Matrix (STM).
These methods rely on the assumption that the linearized model adequately captures
the dynamics of trajectories close to a nominal path, and that the uncertainty is
fully represented by a Gaussian probability distribution. With these assumptions,
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the propagation process reduces to evaluating the mean and covariance matrix at
any time.

3.1.1 Local linearization
Assuming a random vector xptq, with PDF px pxptq, tq, subject to the SDE

dx “ fpxptq, tqdt ` gpxptq, tqdw (3.1)

as in Eq. (2.54) without the control dependency, the deterministic component
f pxptq, tq of the EoM is approximated with the first-order Taylor expansion, along
a reference trajectory x̂ptq, as

f pxptq, tq « f px̂ptq, tq `A pxptq, tq δxptq (3.2)

where

δxptq “ xptq ´ x̂ptq (3.3)

A pxptq, tq “
Bf pxptq, tq

Bxptq

ˇ

ˇ

ˇ

ˇ

x̂ptq

(3.4)

The time derivative of the state error δx is thus

d
dt

δxptq “ A pxptq, tq δxptq ` gpxptq, tq 9w (3.5)

where the superscript dot naturally represents the time derivative. The analytical
solution is hence

δxptq “ Φ pt, t0q δxpt0q ` gpxptq, tqwptq (3.6)

where Φ pt, t0q is the STM of f pxptq, tq from t0 to t. Mean state and covariance
matrix are hence expressed as

µptq “ Φ pt, t0qµpt0q (3.7)
P ptq “ Φ pt, t0qP pt0qΦ pt, t0q

T
` gpxptq, tqgpxptq, tqT (3.8)

In case the covariance matrix of wptq is Qptq ‰ δtInw , Eq. (3.8) becomes

P ptq “ Φ pt, t0qP pt0qΦ pt, t0q
T

` gpxptq, tqQptqgpxptq, tqT (3.9)
(3.10)

Among different other aerospace applications, local linearization has been applied in
trajectory design for common orbital rendezvous problem [144] and powered lunar
descending [145].

This method, with its analytical nature, offers straightforwardness and swift
computational performance, making it a suitable tool for autonomous onboard
mission planning. Its efficiency, however, diminishes when applied to systems
with pronounced nonlinearity, during extended periods of uncertainty propagation,
or when the initial uncertainty is substantial. Additionally, local linearization is
not tailored for propagating uncertainties that excessively deviate from Gaussian
distributions.
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3.1.2 Quasi-linearization
This method revolves around the approximation of fpxptq, tq with a semi-linear

function [146], as

f pxptq, tq « f̂ pxptq, tq `Nxptq (3.11)

resulting in

δxptq “ f pxptq, tq ´ f̂ pxptq, tq ´Nxptq (3.12)

where the function f̂ pxptq, tq and the gain matrix N P Rnˆn, named describing
functions, are chosen as to minimize the mean square approximation error J “

E
“

δxSδxT
‰

, where S is a symmetric positive semi-definite matrix. By setting the
partial derivatives of J with respect to the elements of f̂ and N equal to zero, these
latter result as

f̂ pxptq, tq “ E rf pxptq, tqs (3.13)
N “ E

“

f pxptq, tqxT
‰

P ptq´1 (3.14)

where P ptq is the covariance matrix of x. Due to the expectation operator in the
previous expressions, solution of the describing functions requires the PDF of x to
be known, thus it is most frequently assumed that x is Gaussian. Having that

9µ “ E r 9xs (3.15)
9P “ E

“

9xxT ` x 9xT
‰

´ 9µµT ´ µ 9µT (3.16)

where time dependency was omitted, the statistical differential equations of mean
and covariance matrix are obtained as

9µ “ f̂ px, tq (3.17)
9P “ NP ` PNT ` gpx, tqQgpx, tqT (3.18)

where, as in previous section, Q is the covariance matrix of wptq if different from
δtInw .

Equation (3.18) is commonly recognized as the Covariance Analysis DEscribing
function Technique (CADET). This method was introduced by Gelb [146, 147] in
the 1970s to evaluate the accuracy of nonlinear guidance systems [148].

A significant benefit of quasi-linear approximation, evident from the last equations,
is its independence from the necessity of derivatives of f px, tq. Therefore, it
can accommodate various nonlinear behaviors—like relay actions, saturation, and
thresholds—without the need for smoothing over discontinuities or abrupt changes
in f px, tq.

3.2 Nonlinear methods
The main limitation of linear methods for uncertainty propagation is a loss of

accuracy when applied to highly nonlinear dynamical systems or situations with
substantial initial uncertainties. This is due to the potential deviation of the true
trajectory from the assumed linear behavior, particularly in statistical terms [149].
Junkins et al. [150, 151] were among the pioneers to explore the nonlinear, non-
Gaussian aspects of orbit uncertainty propagation. Building upon their findings,
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Scheeres et al. observed fundamentals constraint on the propagation of orbital
uncertainty [152]. Furthermore, they introduced an innovative approach to derive
constraints on covariance matrices based on topological aspects [153], enriching the
theoretical framework of orbit uncertainty propagation. Following these studies,
the past twenty years have seen a surge in the development of analytical and
semi-analytical tools for nonlinear uncertainty propagation.

3.2.1 State transition tensors
An extension to linearization techniques, Park and Scheeres introduced a semi-

analytic approach for orbit uncertainty propagation, referred to as State Transition
Tensors (STTs) [154]. This method propagates the state uncertainty by computing
higher-order Taylor series terms that capture the local nonlinearities of the EoM,
coupled with an analytical procedure for mapping initial uncertainties.

The nonlinear relative motion in the vicinity of a nominal trajectory can be
estimated by implementing a Taylor series expansion of the solution function in
terms of the initial state variables. Given a multi-variate random variable xpt0q “
řn

i“1 xipt0q, at epoch t0, with xipt0q P Rn as the component along the i-th dimension,
and µpt0q and P pt0q as the related mean and covariance matrix, the generic state
deviation δxptq, at epoch t, as a function of the initial displacement δxpt0q “ δx0

from the nominal trajectory is given by
δxptq “ ϕ

`

t; xpt0q ` δx0, t0
˘

´ ϕ pt; xpt0q, t0q (3.19)
where the operator ϕ pt; xpt0q, t0q denotes the dynamical evolution of the state xpt0q,
from t0 to t, through f pxptq, tq. Applying a Taylor expansion with respect to the
nominal trajectory, the state deviation of the i-th component is obtained as

δxiptq “

M
ÿ

p“1

¨

˝

n
ÿ

k1“1

n
ÿ

k2“1
. . .

n
ÿ

kp“1

1
p!Φi, k1k2...kpδx0

k1δx0
k2 . . . δx0

kp

˛

‚ (3.20)

where M is the expansion order, the subscript kj “ 1, . . . , n denotes the kj-th
component of the state, and Φi, k1k2...kp P R is the STT defined as

Φi, k1k2...kp “
Bpx0

i

Bx0
k1

Bx0
k2

. . . Bx0
kp

(3.21)

which can be calculated by numerical integration along the nominal trajectory[154,
149]. In other words, Eq. (3.20) provides the effect on the i-th component of the
state given by the initial displacements δx0

i , i “ 1, . . . , n.
Substituting Eq. (3.20) into the definition of mean state and covariance, the

nonlinear propagation of the components of these moments is be obtained as [154]

µiptq “ E rδxiptqs “

M
ÿ

p“1

¨

˝

n
ÿ

k1“1
. . .

n
ÿ

kp“1

1
p!Φi, k1...kpE

“

Λ0
k, p

‰

˛

‚ (3.22)

Pijptq “ E rδxiptqδxjptqs ´ µiptqµjptqT “ (3.23)

“

M
ÿ

p“1

M
ÿ

q“1

¨

˝

n
ÿ

k1“1
. . .

n
ÿ

kp“1

n
ÿ

l1“1
. . .

n
ÿ

lp“1

1
p!q!Φi, k1...kpΦi, l1...lpE

“

Λ0
k, pΛ0

l, p

‰

˛

‚`

(3.24)
´ µiptqµjptq @i, j “ 1, . . . , n (3.25)
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where

Λ0
k, p “ δx0

k1 . . . δx0
kp

(3.26)
Λ0

l, p “ δx0
l1 . . . δx0

lp (3.27)

For M “ 1, the latter expressions are equivalent to the first-order linear covariance
propagation in Eq. (3.9), without the perturbation term. Given the expressions for
the components, the computation of mean and covariance matrix in a future time is
just an algebraic operation.

Utilizing the concept of STT, Fujimoto et al. constructed an analytical nonlinear
uncertainty propagator for both conservative [155] and non-conservative dynamical
systems (such as those affected by atmospheric drag [156]). Furthermore, Park et
al. introduced a simplified dynamic model to examine the interplay between the
accuracy of dynamic models and the precision of uncertainty propagation [157].
Their findings revealed that long-term, or secular, changes play a pivotal role in
mapping uncertainty.

The method based on STTs eliminates the need for random sampling in un-
certainty propagation, and its results have shown favorable comparison with MC
simulations, offering an effective semi-analytical approach for uncertainty mapping in
nonlinear dynamic contexts. Despite its merits, the STT methodology is dependent
on the continuity and differentiability of the governing dynamics. The complexity of
deriving higher-order STTs makes the method less practical, particularly for systems
requiring high-fidelity dynamics due to the computational intensity. To address
these challenges, various techniques have been introduced to calculate STTs more
efficiently, such as automatic differentiation in the work of Barrio et al. [158] and
the modified Picard integrator by Nakhjiri and Villac [159], which simplified the
computation process.

3.2.2 Polynomial chaos expansion
Methods based on PCE offer insights into higher-order moments. These methods

approximate the inputs and outputs of a given system using a series expansion with
standardized random variables, enabling a more comprehensive understanding of
the system’s behavior under uncertainty. This methodology employs the same set of
random variables to characterize both input and output uncertainties. Consequently,
the output model is articulated as a series expansion composed of orthogonal
polynomials. This series is as

x pt, ξq “

8
ÿ

k“0
ckptqΨk pξq (3.28)

where ξ “ rξ1, ξ2, . . . , ξds is a random vector of dimension d P N, where each
component is independent and identically distributed, Ψk pξq denotes a generic
element in the set of multidimensional orthogonal polynomials of order k P N0,
and ckptq P Rn is the corresponding coefficient vector at the output time t. The
orthogonal polynomials have the following property

xΨi pξq , Ψj pξqy “ xΨi pξq
2
yδij “

ż

ρ pξq Ψi pξq Ψj pξq dξ (3.29)

where x¨, ¨y denotes the inner product, δij is the Kronecker delta function, and ρ pξq

is the weighting function. The polynomials that comprise these orthogonal bases are
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part of the Askey scheme, which is a hierarchy of orthogonal polynomials [160]. Each
subset of the orthogonal polynomials in the Askey scheme has a different weighting
function in its orthogonality relationship. For istance, Hermite polynomials are the
basis for Gaussian distributed ξ, while Legendre polynomials are used for uniform
distribution [161].

The number of terms for tΨi pξqu in the PCE model in Eq. (3.28) is infinite;
thus, truncation at some order p is required for computational purposes. The
approximated state x̂ is hence modeled with PCE as

x̂ pt, ξq “

P
ÿ

k“0
ckptqΨk pξq (3.30)

where P satisfies [161]

P ` 1 “
pp ` dq!

p!d! (3.31)

As implied by this last expression, the number of terms P varies exponentially with
p and d, which leads to the notorious curse of dimensionality.

The development of PCE involves estimating the coefficients ck. This process may
be accomplished in two fashions: intrusive and non-intrusive method. The intrusive
method solves for ck via the Galerkin projection applied to the stochastic dynamic
system’s subspace, which results in modifying the original governing equations.
Substituting the state expressed as in Eq. (3.30) in the deterministic component of
the EoM, the outcome is the following ODE

d
dt

˜

P
ÿ

k“0
ckptqΨk pξq

¸

“ f

˜

P
ÿ

k“0
ckptqΨk pξq , t

¸

(3.32)

When applying the Galerkin projection on each orthogonal polynomial Ψk pξq

in sequence, a series of deterministic ODEs emerge, encompassing pP ` 1q ˆ n
interconnected equations

dcik

dt “
1

xΨk pξq , Ψk pξqy
xf

˜

P
ÿ

k“0
ckptqΨk pξq , t

¸

, Ψk pξqy (3.33)

i “ 1, . . . , n k “ 0, . . . , P

where cik is the k-th coefficient of the i-th component of x. The EoM are thus
transformed to the deterministic ODEs in Eq. (3.34) with dimension pP ` 1q ˆ n,
which can be solved by any standard ODE solver. Once the distribution of the initial
state is given, the initial values of the ODEs in Eq. (3.34) can be calculated using
the method presented in [118].

On the other hand, the non-intrusive methods rely on black box solvers to compute
cik via least-squares regression or pseudospectral integration on tensor/sparse grids.
In [162], a process based on the least-squares regression is illustrated.

Once the PCE coefficients are computed by means of either intrusive or non-
intrusive methods, the mean and covariance of the output uncertainties are obtained
as

µptq “ c0ptq (3.34)
P ptq “ CptqCptqT (3.35)
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where Cptq “ rc1ptq, c2ptq, . . . , cP ptqs.
This method of approximation was first proposed by Wiener [163].
To mitigate the curse of dimensionality (see Eq. (3.31)), Wan and Karniadakis

introduced the multi-element generalized PC method [164]. This approach partitions
the space of stochastic inputs into subdomains when the relative variance error
surpasses a predefined threshold. Subsequently, it implements a PC expansion within
each of these delineated random elements, effectively managing the complexity by
localizing the computational effort to areas of significant uncertainty.

PCE method offers a powerful tool for characterizing finite-variance solutions
that may deviate from a Gaussian distribution. In comparison to MC simulations,
computation is faster, which is exponentially related to the degree of the polynomial
basis, even under non-Gaussian uncertainty. Additionally, it furnishes a clear, func-
tional relationship between output uncertainties and stochastic inputs, facilitating
sensitive analytical endeavors and crafting measurement protocols. However, the
method’s complexity scales exponentially with the increase in the dimensions of
input uncertainty.

3.2.3 Gaussian mixture model
A major challenge in UP is that the state distribution often tend to evolve

into distributions that significantly depart from the Gaussian one. In OD analysis,
Gaussian assumption is commonly adopted, especially when the state dispersion
remains relatively confined. However, the contour set that corresponds to a given
confidence level (e.g., 3σ) of dispersion does not generally keep, over time, the
ellipsoidal shape typical of the Gaussian distribution; instead, it tends to distort and
deform, resulting in a geometrical evidence that the state distribution can no longer
be assumed as Gaussian distribution.

To address this limitation, the Gaussian Mixture Model (GMM) was introduced
as a nonlinear approach that accurately describes the propagated PDF while retaining
some of the benefits of the Gaussian distribution model. The core concept of this
approach is to represent any arbitrary PDF as a finite sum of weighted Gaussian
densities. The weights of the different Gaussian components are computed through
numerical optimization techniques. The approximated PDF p̂ of x is formulated as

p̂ pxptq, tq “

N
ÿ

i“1
ωipG pxptq; µiptq, Piptqq (3.36)

where N is the number of Gaussian kernels, µi and Pi are the mean and covariance
matrix of the i-th Gaussian density function pG px; µi, Piq respectively, and ωi is
the weight of the i-th Gaussian kernel. Constraint on normalization and sign of the
mixture PDF lead to the following constraints on the weights

N
ÿ

i“1
ωi “ 1 ωi ě 0 @i “ 1, . . . , N (3.37)

The larger is N . the better is the approximation of the original PDF.
The problem is thus reduced to propagate the sub-components of the state

distribution, which can be accomplished with other UP tools, as the ones described
in this chapter. Once the Gaussian kernels and the related weights are determined,



3.2 Nonlinear methods 40

the propagated mean and covariance are given as

µptq “

N
ÿ

i“1
ωiµiptq (3.38)

P ptq “

N
ÿ

i“1
ωi

`

Piptq ` µiptqµiptq
T
˘

´ µptqµptqT (3.39)

where µiptq and Piptq are the i-th propagated mean and covariance respectively.
For an accurate propagation, a precise subdivision of the PDF into kernels and
computation of the weights is hence the most important aspect of this method, and
different solutions are proposed in literature to accomplish this task.

A straightforward method involves propagating an initial Gaussian mixture into
a final Gaussian mixture while maintaining constant weights. Various techniques are
employed to calculate these initial weights, typically by dividing an initial Gaussian
distribution into several weighted Gaussian components. Horwood et al. [165, 166]
introduced a method that splits the initial Gaussian distribution by solving a
constrained optimization problem. In contrast, DeMars et al. [167, 168] explored
an entropy-based splitting technique where the GMM components are constrained
to be homoscedastic, meaning that they all share the same variance. Psiaki et
al. [169] introduced an innovative algorithm designed to approximate one Gaussian
mixture with another, expanding on the traditional particle filter concept. This
algorithm aims to closely replicate the original mixture using a constrained number of
Gaussian distributions. In parallel, the adaptability of the GMM has been enhanced
by Terejanu et al. [170, 171] and Vishwajeet et al. [172], who innovated methods
to adjust the weights of GMM components dynamically during the propagation
of the PDF. These adaptations involve locating the optimal weights for the GMM
components by minimizing, across the entire area of interest, the error from the
Fokker-Plank Equation (FPE), which is a partial differential equation that satisfies
the propagation of a PDF (hence, the solution of the FPE provides a complete
statistical description of the propagation) [173].

The GMM approach effectively breaks down a large uncertainty propagation
problem into smaller, manageable segments. This strategy not only enables accurate
representation of non-Gaussian distributions, but also mitigates the impacts of
dynamic nonlinearity. A significant benefit of using GMM is its ability to approximate
the PDF of a non-Gaussian distribution by merely propagating the first two moments
of the Gaussian mixtures. However, this approach is not without its limitations.
First, achieving a desired level of accuracy requires the propagation of a large
numbers of Gaussian components, leading to the curse of dimensionality problem.
Also, the method requires solving optimization problems to determine and adjust
the weights of the Gaussian mixtures throughout the propagation process, which
significantly increases the computational time and resource demand with respect to
other approaches.

3.2.4 Unscented transform
The Unscented Transform (UT) is a technique to estimate the mean value and the

covariance of a probability distribution related to a certain variable that undergoes
a nonlinear transformation. This is achieved by propagating a representative set
of points of the distribution, named as Sigma Points (SPs), and estimate the new
mean value and covariance by means of these propagated points.
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Given a multivariate random state variable xpt0q P Rn, subject to a deterministic
dynamics 9x “ f pxptq, tq, with mean µpt0q and covariance matrix P pt0q at epoch
t0, UT can be used to estimate of the mean and covariance matrix after a time
propagation of ∆t. The steps of UT are:

1. Evaluate the set of 2n ` 1 SP X i and the related weights ci, i “ 0, . . . , 2n,
where X 0 is termed central (or pivotal) SP as

X 0 “ µpt0q (3.40)

X j “ µpt0q `

´

a

pn ` κqP pt0q

¯

j
(3.41)

X n`j “ µpt0q ´

´

a

pn ` κqP pt0q

¯

j
j “ 1, . . . , n (3.42)

c0 “ κ{n ` κ (3.43)

ci “
1

2pn ` κq
i “ 1, . . . , 2n (3.44)

where κ P p0, 8q Ă R is a scaling parameter and the operator p¨qj is used to
represents the j-th column vector of the matrix in argument.

2. Propagate the SPs X i to obtain the new set Y i as

Y i “ ϕ pt; X i, t0q i “ 0, . . . , 2n (3.45)

where the operator ϕ pt; x, t0q denotes the solution flow through f pxptq, tq;

3. The propagated mean value µptq and covariance matrix P ptq are evaluated as

µptq “

2n
ÿ

i“0
ciY i (3.46)

P ptq “

2n
ÿ

i“0
ci pY i ´ µptqq pY i ´ µptqq

T (3.47)

In Fig. 3.1, a schematic visualization of UT is presented, having the initial and
final covariance matrices represented with 2D ellipses. The evolution through the
nonlinear dynamics of the covariance matrices and the mean state is depicted with
dashed lines. Note that the initial mean µpt0q and the pivotal SP X 0 are coincident,
according to Eq. (3.40).

Julier et al. [174] introduced the UT to overcome the inherent limitations of
linearization techniques. This method suggests that it might be simpler to directly
approximate a system’s probability distribution than to apply approximations to its
nonlinear functions [175, 176, 177]. UT offers a second-order accurate approximation
for the first two statistical moments of a mapped distribution. While this feature is
advantageous, the method is limited to the propagation of these two moments alone.
In scenarios where a more accurate description of the uncertainty is demanded and
higher order statistical moments play a critical role, the effectiveness of UT becomes
questionable. Extensions of the UT to higher order moments have been proposed by
Adurthi et al. [178] under the definition of Conjugate UT (CUT), followed by the
order up to which the moment constraints are satisfied (e.g., CUT8).

Given the optimal balance between accuracy and computational cost provided
by this technique, the UT is the preferred UP method chosen for the applications
discussed in the following chapters.
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Figure 3.1. Schematic representation of UT.

3.2.5 Other nonlinear methods
Less common nonlinear methods are also proposed in the literature. In order

to avoid the derivation of increasingly complex partial derivatives or numerical
approximations for the partial derivatives of the STT method, a technique based
on Differential Algebra (DA) was developed by Armellin and Di Lizia [179, 180].
DA was first proposed by Berz [181] to compute the derivatives of functions within
resorting to numerical methods. The main idea behind the DA method is to compute
an arbitrary order expansion for the solution flow of a general ODE with respect to
the initial condition. The DA-based approach presents a significant advantage as it
eliminates the necessity to integrate variational equations for deriving high-order
expansions of the dynamical flow. This DA framework automatically generates
these expansions to any desired order, allowing for the nonlinear propagation of
uncertainty through these high-order terms. However, like the STT method, the
DA approach requires the governing dynamics to be continuous and differentiable,
which limits its applicability in scenarios involving discontinuities. For instance,
solar radiation pressure perturbation acts as a step function during a satellite’s
transitions into and out of the Earth’s shadow, posing challenges for the DA method
at these critical points. Therefore, while the DA method offers robust capabilities
for smooth dynamic systems, its utility is constrained in many practical scenarios.

Alternatively, another way to propagate the state uncertainty involves directly
solving the Fokker-Planck equation, which governs the time evolution of a PDF.
However, solving the FPE for high-dimensional dynamical systems poses significant
challenges and may not be a valid option in many cases [182]. As an example,
traditional discretization methods, such as the finite element and finite difference
methods, require an exponential increase in computational resources as the number
of nodes for each dimension increases. If m nodes are used per dimension, the total
number of unknowns for an n-dimensional problem scales as nm. Consequently, for
an orbital problem with n “ 6, the exponential growth in the number of variables
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renders the computational complexity intractable, even for advanced supercomputing
platforms [183, 184]. In recent years, significant progress has been made in developing
efficient numerical solvers for high-dimensional FPE. Kumar et al. [185] introduced
a homotopic iterative method for refining solutions of the stationary FPE, offering a
systematic approach to define the solution domain for nonlinear systems. Building
on this, the same authors developed a semi-analytic partition of unity finite element
method aimed at solving the transient FPE for complex, high-dimensional dynamical
systems [183]. Further advancements were made by using a numerical strategy for
the stationary FPE that integrates tensor decomposition with Chebyshev spectral
differentiation [186]. This approach significantly reduces the computational load by
decreasing the number of degrees of freedom required to achieve high accuracy in
systems with increasing dimensionality.

3.3 Other methods
Beside the linear and nonlinear uncertainty propagation methods previously

discussed, there exist various other approaches that do not neatly fit into a single
category of propagation technique.

Several hybrid methods have been developed to leverage the strengths of var-
ious uncertainty propagation techniques. Fujimoto and Scheeres [187] introduced
a method that combines the GMM and STTs for enhanced UP and conjunction
assessment. Vittaldev et al. [188] developed an approach that merges GMM with
PCE, aiming to mitigate the dimensionality challenges inherent in PC by using GMM
to reduce the number of polynomial terms needed for precise accuracy. Aristoff et
al. utilized Implicit Runge-Kutta (IRK) based orbit propagators combined with the
UT [189] and classical particle filters [190] for rapid UP. This integration is partic-
ularly effective because some uncertainty quantification methods, such as particle
filtering, require propagating a set of particles or states through nonlinear dynamics.
The IRK methods capitalize on the proximity of initial conditions to efficiently
propagate uncertainties. Moreover, Horwood et al. introduced a novel approach for
orbital uncertainty propagation using the Gauss von Mises distribution [191]. They
also conducted a comparative study examining the performance differences between
linear method, UT, and their Gauss von Mises method [192], further enriching the
field of uncertainty propagation methodologies.

A further class of methods consists in performing a coordinate transformation,
with the aim of using efficiently a specific UP method that would not be applicable
or accurate enough in the original set of coordinates. The influence of coordinate
systems on uncertainty propagation statistics was initially explored by Junkins et
al. [150] and later by Junkins and Singla [151]. They introduced coordinate trans-
formations as an innovative method for orbit UP, discovering that orbital elements
could enhance predictive accuracy. Nevertheless, their approach remained rooted in
linear assumptions, omitting the nonlinear dynamics from their analysis. In contrast,
Sabol et al. [193] and Woodburn and Coppola [194] demonstrated that equinoctial
elements maintain normality more effectively than Cartesian elements. Building
on this, Aristoff et al. [195] devised a method to convert a Gaussian or Gaussian
mixture from orbital element space to Cartesian space while preserving accuracy.
Furthermore, Majji et al. [196] investigated the transformations of probability density
functions across different coordinate systems, highlighting the utility of the change
of variables formula for evaluating estimation errors in varying coordinate systems,
providing valuable insights for analytical comparisons. Although equinoctial ele-
ments effectively represent the probability distribution of perturbed trajectories, the
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combined formulation of position and velocity complicates the accurate depiction
of position uncertainty. To address this, Hill et al. [197, 198] showed that state
uncertainty, when expressed in elliptical curvilinear coordinates, maintains Gaus-
sian characteristics over longer propagation periods and larger in-track distances
compared to Cartesian coordinates. Further, Vallado and Alfano [199] crafted a
precise transformation from Cartesian to Hill’s curvilinear frame aligned with the
actual satellite orbit. This transformation proved crucial for correctly positioning
a covariance ellipsoid in the Earth-centered inertial frame, particularly when the
covariance is large, requiring a bend to accurately represent the ellipsoid shape.
Enhancing this approach, Tanygin [200] and Coppola and Tanygin [201] developed
explicit equations for these curvilinear coordinates.

In summary, coordinate transformations may effectively mitigate the most domi-
nant nonlinear terms in the equations of motion, thereby maintaining the validity of
Gaussian and linear approximations. Moreover, using curvilinear or orbital element
spaces can more effectively reduce the impacts of nonlinearity compared to Cartesian
coordinates.
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Chapter 4

Robust open-loop optimization
of impulsive trajectories

This chapter presents an initial step to transition from a deterministic OCP to
an ROCP, whose main features have been described in Sec. 2.3. A straightforward
methodology to obtain robust OL control law is developed. This approach employs a
fixed sequence of control maneuvers as the sole means to enhance the robustness of the
trajectory, regardless of the actual flown trajectory. Although an OL control cannot
be as effective as a feedback control, which computes corrective maneuvers most
suitable for real-time deviations, robust trajectory design with fixed pre-computed
maneuvers may still suffice in simpler scenarios. Additionally, it offers valuable
insights into how state dispersion during missions is influenced by the dynamical
environment.

4.1 General formulation
Aim of the ROCP is to optimize a sequence of impulsive maneuvers to transfer

in a limited amount of time a spacecraft from a given departure state, described in
terms of position and velocity, to a prescribed target state, described by position
and velocity. The time at which each maneuver occurs is free to be optimized. The
aim of the optimization is to minimize a measure of the dispersion of the spacecraft
state at the arrival, while ensuring that the magnitude of the impulsive maneuvers
is bounded and the cumulative change of velocity ∆vtot is below a given threshold.

The spacecraft is modeled as a point-mass object and its state xptq P Rn is defined
in terms of his Cartesian position as xptq “

“

rptqT vptqT
‰T , being rptq and vptq the

position and velocity of the spacecraft, respectively. A three-dimensional space is
considered, thus n “ 6. The trajectory is assumed decomposed into N ballistic
arcs, whose duration is subject to optimization, joined by impulsive velocity changes
at each node, which represent the spacecraft maneuvers. Additional impulsive
maneuvers are assumed at the departure and arrival time. Starting from a fixed
departure epoch rti, where the tilde denotes a constant (user-defined) quantity, the
time-grid for the N ` 1 maneuvers is thus defined as

rti “ t0 ď t1 ď ¨ ¨ ¨ ď tN “ tf (4.1)

having the time intervals for the ballistic arcs as ∆tk “ tk ´ tk´1, @k “ 1, . . . , N .
The values of the variables immediately before and after each k-th node are referred
to with the subscripts ´ and `, respectively. Position continuity must be ensured at
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each node, thus rk´ “ rk`, while velocity changes occur instantaneously according
to the impulsive model, as vk` “ vk´ ` uk, where the subscript k is used for
quantities at epoch tk. In this model, the available controls uk P R3 are therefore
given by the velocity impulse, that is uk “ ∆vk, @k “ 0, . . . , N . The update law for
the state is thus simply given by

xk` “ xk´ `Buk @k “ 0, . . . , N (4.2)

with B “ r03ˆ3 I3s
T . The control magnitude }uk} is constrained below an user-

defined threshold rumax.

4.1.1 Boundary constraints
The initial and final constraints for position and velocity are defined as in

canonical OCPs, that is

x0´ “ rxi (4.3)
xN` “ rxf (4.4)

where rxi and rxf are respectively the fixed departure state before the first impulsive
maneuver u0 and the target state after the last maneuver uN . In other words,
starting from the assigned state rxi, the spacecraft is constrained to reach a target
state rxf through N ` 1 impulsive maneuvers.

As additional parameter to be defined, a variable that quantifies the state
dispersion along the trajectory is necessary, in order to provide a robustness index
in the algorithm. In this regard, the initial covariance matrix P0 “ Cov rx0´s is
assigned as

P0 “ rP0 (4.5)

The OL outlined methodology revolves around the computation of a sequence of
impulsive maneuvers that minimize the final dispersion of the state, in compliance
with constraints on single and cumulative control magnitude.

4.1.2 Perturbed state propagation
Since information on the state dispersion upon arrival is incorporated into the

cost function to be minimized, it is necessary for the algorithm to include the UP of
the initial covariance.

Starting from the initial dispersion P0, the final covariance matrix PN is computed
by means of the UT. A cost function that is involves the elements of PN is then
defined to optimize the sequence of uk, @k “ 0, . . . , N .

Starting from the initial state x0´, the state after the first maneuver is

x0` “ x0´ `Bu0 (4.6)

This updated state is then used, together with the covariance matrix P0, as mean
state and propagated for the ToF ∆t1. The pivotal SP after propagating from time
t0 to time t1 is Y0 “ ϕ p∆t1; X 0, 0q, as in Eq. (3.45), with X 0 “ x0`.

This propagated SP is then used as the final state x1´ of the ballistic arc before
the second ∆v. Then, the propagated covariance matrix P1 is used together with the
updated state x1` “ x1´ `Bu1 as now pair of statistical moments to be propagated
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through UT. This process is repeated up to the final time, while the state after the
final ∆v is the last propagated pivotal SP to which uN is added.

An important feature of the robust optimization to be included during the
propagation is however a stochastic perturbation as in the SDE of Eq. (2.54). An
issue is posed by the characteristics of UT propagation when considering SDE
for the ballistic arcs. The usage of an SDE, as the Itô form in Eq. (2.54), to
propagate the SPs during the optimization process would not be possible as the
final mean and covariance matrix would differ from iteration to iteration, resulting
in convergence issues related to the variability of the computed results. For this
reason, the stochastic term of the SDE is neglected when propagating the SPs, that
are thus propagated using deterministic EoM

dx
dt

“ f pxptq, tq @t P ptk´1, tkq @k “ 1, . . . , N (4.7)

The random contribution is instead modeled as an instantaneous, additive pertur-
bation Q that takes place at the end of each arc, representing the overall effects
of the stochastic perturbations over a finite-time arc. Let P 1

k´ be the covariance
matrix estimated by UT, the covariance matrix after the inclusion of the (stocastic)
diffusion term is Pk´ “ P 1

k´ `Q. Rather than an empirically chosen Q, a more
sophisticated method to estimate this matrix will be introduced in the impulsive CL
chapter (Chapter 5).

At each k-th node, the propagation is thus summarized as
tY0, Pku “ U

`

xpk´1q`, Pk´1, ∆tk; Q
˘

(4.8)
xk´ “ Y0 k “ 1, . . . , N (4.9)

where Up¨q stands for a function based on the UT tool returning the covariance at the
end of the k-th ballistic arc and the propagated pivotal SP Y0 “ ϕ ptk; X 0, tk´1q,
with X 0 “ xpk´1q`. By tracking the state dispersion along the trajectory at each
iteration of the optimization algorithm, the cost function can be accurately computed
using the elements of the final covariance matrix. This approach ensures that the
optimization process considers the impact of state dispersion throughout the mission,
as detailed in the following section.

4.1.3 Cost function and control constraints
Once the covariance matrix PN is evaluated, the cost function can be computed.

Different options are available; to quantify the “magnitude” of state dispersion, a
straightforward approach is to use the trace of PN ; indeed, the trace, which is equal
to the sum of the eigenvalues, provides a direct and comprehensive estimate of the
overall state dispersion. The cost function J thus simply reads

J “ tr pPN q (4.10)
As an alternative, the maximum eigenvalue of PN , or the maximum element

along the main diagonal can be used in place of the trace.
In order to comply with engine limitations and limit the overall fuel expenditure

of the mission, constraints on the magnitude of each impulsive control uk and the
cumulative ∆vtot “

řN
k“0 }uk} are enforced. An additional limitation on the total

ToF, ∆ttot “
řN

k“1 ∆tk, is considered. These constraints are enforced as
}uk} ď rumax (4.11)

∆vtot ď ∆rvmax (4.12)
∆ttot ď ∆rtmax (4.13)
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where rumax and ∆rtmax are user-defined parameters that comes from the engine
technological limitation and mission planning, while ∆rvmax comes from the propellant
mass budget of the mission.

A possible criterion to select ∆rvmax is to consider a pre-computed optimal ∆v
and then add a supplemental margin (e.g., 10%) to it. The optimal ∆v is obtained
with the deterministic formulation of the outlined OL ROCP where minimization
of ∆vtot is sought. Having only the unperturbed EoM, this deterministic OCP is
simply defined as

∆v˚ “ min
uk

Eq. ∆vtot (4.14a)

s.t. Eqs. (4.2) ´ (4.4), (4.7), (4.11), (4.13) (4.14b)

Once the OCP in Eqs. (4.14) is solved, the resulting ∆v˚ is increased by multiplying
it by a parameter η ą 1, thus Eq. (4.12) reads as

∆vtot ď η∆v˚ “ ∆rvmax (4.15)

In this way, it possible to really map the increase in ∆v required to obtain a reduction
in the final state dispersion, embodied with the cost function J . Note that this
formulation is based on the assumption that by increasing ∆vtot it is possible to
reduce the trace of PN (or any other chosen quantity) of the optimal solution
derived from Eqs. (4.14).The covariance matrix PN is indeed computable also in the
deterministic OCP via Eq. (4.8), considering however Q “ 06ˆ6.

The OL ROCP is hence summirized as

min
Θ

Eq. (4.10) (4.16a)

s.t. Eqs. (4.2) ´ (4.4), (4.8), (4.9), (4.11), (4.13), (4.15) (4.16b)

where Θ P RNΘ is the optimization variables vector of

NΘ “
npN ` 1q

2 ` N (4.17)

constituted by the control vector uk, k “ 0, . . . , N , and the N ToF ∆tk of each
ballistic arc, with k “ 1, . . . , N .

Given the OL RCOP in Eq. (4.16), a parametric analysis ranging η from values
nearly above 1 is useful to study how an OL control changes the trajectory from the
optimal deterministic case to a trajectory that progressively increases in robustness.

4.2 Case study: impulsive rendezvous mission
To demonstrate the effectiveness of the proposed approach, a familiar benchmark

scenario is considered, that is, a Keplerian multi-impulsive planar rendezvous problem.
A chaser spacecraft departing from a body is tasked to reach a (passive) target
spacecraft that flies on a larger circular orbit to a second body orbiting in a larger
circular orbit. The two spacecraft are phase 1800 apart at the initial epoch.

4.2.1 Problem data
As mentioned, a two-dimensional transfer is considered, and the spacecraft state

vector is given by position and inertial velocity in an RF centered on a generic main
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body. The dynamical model used for this analysis is a Keplerian motion, whose
EoM are simply

dx
dt

“

„

vptq
´µrptq{r3

ȷ

@t P ptk´1, tkq @k “ 1, . . . , N (4.18)

The state covariance at departure is defined as

rP0 “ diag
”

pσr
0q

2 I2, 0, pσv
0q

2 I2
2 , 0

ı

(4.19)

where σr
0 and σv

0 are the user-defined parameters for initial position, velocity and
mass standard deviation respectively. The initial state, naturally coincident with the
state of the first body, is defined by means of the initial angle θ1 along the departure
orbit, starting in a conventional way from the x axis in a counterclockwise direction.
Being r1 the radius of the departure orbit, The initial state rxi is defined as

rxi “

»

—

—

—

—

—

–

r1 cos θ1
r1 sin θ1

0
´
a

µ{r1 sin θ1
a

µ{r1 cos θ1
0

fi

ffi

ffi

ffi

ffi

ffi

fl

(4.20)

where
a

µ{r1 is the circular velocity of the departure orbit. The arrival state rxi

is not a fixed vector but is instead dependant on the ToT of the trajectory ∆ttot.
Having θ2 as the initial angle of the second body along its orbit, with radius r2, the
final angle θ2, f is defined as

θ2, f “ θ2 ` 2π
∆ttot

T2
(4.21)

where T2 “ 2π
a

r3
2{µ is the period of the second body. The target state at arrival

rxf is thus defined as

rxf “

»

—

—

—

—

—

–

r2 cos θ2, f

r2 sin θ2, f

0
´
a

µ{r2 sin θ2, f
a

µ{r2 cos θ2, f

0

fi

ffi

ffi

ffi

ffi

ffi

fl

(4.22)

The perturbation matrix Q is set to zero in this preliminary study. A parametric
analysis for several values of Q is then presented to assess its impact. The number of
arcs N , the radius of the departure and arrival orbit, and other essential parameters
are detailed in Table 4.1. The problem data are given in non-dimensional units for
the sake of simplicity. In summary, the objective function is expressed as

J “

6
ÿ

i“1
σ2

i (4.23)

where σ2
i is the i-the element of the diagonal of PN , having the terminal constraints

as in Eqs. (4.3)-(4.5) and the path constraints formulated in Eqs. (4.11), (4.13), and
(4.15).

The open-source large-scale sparse nonlinear optimizer WORHP [202] was used
for solving both the deterministic and the robust optimization problem.
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Table 4.1. Problem data.

Variable Value Unit
∆rtmax 7 -
rumax 0.11 -
N 3 -
µ 1 -
r1 1 -
r2 1.2 -
θ1 0 rad
θ2 π rad
η 1.05 -
σr

0 1.000 ˆ 10´5 -
σv

0 1.000 ˆ 10´5 -
Q 06ˆ6 -

4.2.2 Numerical results
Figure 4.1 visually depicts the trajectory and covariance ellipsoids on position for

both the deterministic solution (Fig. 4.1a) and the roboust OL solution (Fig. 4.1b) in
the x-y plane. The blue and red lines depicts the trajectories flown by the departure
and arrival body respectively during the transfer trajectory. The ROCP solution
manages to shrink the state dispersion at the arrival state by properly adjusting
the maneuvers and the duration of the ballistic arcs, in the same total ToF of the
deterministic solution, which is both cases coincident with the maximum value of 7.
The numerical results for both solutions are summarized in Table 4.2. In both the
deterministic and robust solution, the maximum allowed ToF is reached as generally
beneficial in terms of fuel consumption. The ROCP solution with an extra 5% of
fuel consumption (η “ 1.05) is able to roughly halve the trace of the final covariance
matrix PN , demonstrating the capability of an OL robust design to mitigate final
state dispersion. Although this is a promising enhancement, final state dispersion
might not be sufficiently reduced for actual missions, suggesting the need for a more
effective robust control strategy.

To validate the accuracy of the estimated probability distribution at each step
for both the CL and OL cases, an MC analysis comprising 10 000 independent runs
was conducted. Starting with a random initial state x0 „ N prxi, rP0q, each trajectory
was propagated towards the final state using the optimized impulsive maneuvers
uk and the ToF ∆tk. Numerical results are reported in Table 4.2, facilitating a
comparison between the MC and nominal solutions in both the deterministic and
robust cases. The MC analysis confirms an efficient reduction of the cost function,
although the MC values slightly differ from those estimated with the UT. Similar
discrepancies are also observed in the final standard deviation for in-plane position
(σx

N and σy
N ) and velocity (σvx

N and σ
vy

N ). This deviation is illustrated in the MC
plots of Fig. 4.2, where at arrival the final MC samples are spread in a roughly linear
shape, as evidenced by the MC position ellipsoid in a red dashed line, whereas the
predicted UT ellipsoid exhibits a larger transversal dimension.

The magnitudes of the impulsive maneuvers for the OCP and the ROCP are
reported in Table 4.3, together with the angle ϕ measured counterclockwise from
the positive x axis.

A parametric study is performed varying the value of η starting from the unitary
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(b) ROCP solution.

Figure 4.1. Nominal spacecraft trajectories with 95%-confidence position ellipses.

value, thus coincident with the OCP solution, to the value of 1.15, hence allowing an
increment of 15% from the OCP solution. In Table 4.4, the values of the cumulative
imparted ∆v, the maximum allowed ∆v, the ToF, and tr pPN q are reported with the
respective value of η. For every value, the ToF is exactly equal to ∆rtmax as expected
(as said, longer ToF generally corresponds to less fuel expenditure), as well as ∆vtot
which is in every case, except for η “ 1.15, is equal to the maximum allowed value
of η∆v˚. The cost function strictly monotonically decreases with η, proving again
effectiveness of the OL control to reduce the final dispersion. In Fig. 4.3, the MC
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Table 4.2. Comparison between the OCP and ROCP solutions with the related MC
analysis.

Quantity OCP OCP (MC) ROCP-OL ROCP-OL (MC)
∆vtot 0.331 0.331 0.347 0.347
∆vmax - - 0.347 0.347
∆t1 1.733 1.733 1.828 1.828
∆t2 2.913 2.913 2.859 2.859
∆t3 2.358 2.358 2.313 2.313
∆ttot 7.000 7.000 7.000 7.000
µx

N` - 2.092 ˆ 10´3 - 1.113 ˆ 10´4

µy
N` - 6.460 ˆ 10´3 - 1.482 ˆ 10´3

µvx
N` - 1.252 ˆ 10´3 - 9.601 ˆ 10´4

µ
vy

N` - 6.800 ˆ 10´3 - 5.898 ˆ 10´4

tr pPN q 6.848 ˆ 10´3 5.591 ˆ 10´3 2.820 ˆ 10´3 3.349 ˆ 10´3

σx
N 4.270 ˆ 10´2 4.009 ˆ 10´2 3.163 ˆ 10´2 3.182 ˆ 10´2

σy
N 4.882 ˆ 10´2 4.184 ˆ 10´2 2.843 ˆ 10´2 3.215 ˆ 10´2

σvx
N 1.866 ˆ 10´2 2.090 ˆ 10´2 1.318 ˆ 10´2 1.553 ˆ 10´2

σ
vy

N 4.789 ˆ 10´2 4.239 ˆ 10´2 2.894 ˆ 10´2 3.258 ˆ 10´2

Table 4.3. Comparison between the OCP and ROCP solutions for the magnitudes and
directions of the impulsive maneuvers.

Maneuver OCP ROCP
}u} ϕ }u} ϕ

u1 3.915 ˆ 10´2 258.169 3.445 ˆ 10´2 257.382
u2 8.096 ˆ 10´2 10.792 1.009 ˆ 10´1 345.120
u3 1.017 ˆ 10´1 88.873 1.100 ˆ 10´1 103.691
u4 1.088 ˆ 10´1 234.194 1.019 ˆ 10´1 237.316

trajectories for the two highest values of η in the parametric study are plotted. Note
the tendency to extend the first ballistic arc to reduce the final state dispersion, as
confirmed in Table 4.4.

In Fig. 4.4, tr pPN q together with the standard deviations σ∆r and σ∆v of the
position and velocity magnitude deviation from the mean value are plotted. In
particular, these two quantities are obtained as

σ∆r “

g

f

f

e

1
M

M
ÿ

k“1
prk ´ E rrksq

2 (4.24)

σ∆v “

g

f

f

e

1
M

M
ÿ

k“1
pvk ´ E rvksq

2 (4.25)

where M “ 104 is the number of MC runs, and

rk “ }rk ´ E rrks } (4.26)
vk “ }vk ´ E rvks } (4.27)
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(b) ROCP solution.

Figure 4.2. MC trajectories (in gray) with corresponding position ellipses (dashed red line)
and UT position ellipses (solid black line).

where rk and vk are the position and velocity of the final state xN` of the k-th MC
run. A rapid decrease in the cost function is observed in the initial part of the η
range, with the solution reaching a plateau around the final values. This behavior
indicates that further enhancement of robustness beyond those η values is nearly
impossible.

A final parametric analysis is performed for different values of the perturbation
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Figure 4.3. MC trajectories for the two highest values of η in the parametric analysis.

matrix Q, defined similarly to rP0 as

Q “ diag
”

pσr
wq

2 I2, 0, pσv
wq

2 I2
2 , 0

ı

(4.28)

The main solution parameters together with the corresponding values of σr
w and

σr
w are reported in Table 4.5, where the other problem data are still the ones in

Table 4.1. As expected, a greater perturbation matrix leads to a larger trace of the
final covariance matrix. It is noteworthy that the ToF ttot is slightly less than the
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Table 4.4. Main solution parameters for different values of η

η 1.00 1.05 1.10 1.15
∆vtot 0.331 0.347 0.364 0.377
∆vmax 0.331 0.347 0.364 0.380
∆t1 1.733 1.828 2.132 2.322
∆t2 2.913 2.859 2.441 2.218
∆t3 2.358 2.313 2.427 2.460
∆ttot 7.000 7.000 7.000 7.000
tr pPN q 6.820 ˆ 10´3 2.819 ˆ 10´3 1.737 ˆ 10´3 1.383 ˆ 10´3
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Figure 4.4. Trace and standard deviations of mean ∆r and ∆v as functions of η.

maximum allowable value of 7 for the largest perturbations considered, suggesting
that a shorter flight duration is necessary to comply with all mission constraints.

Table 4.5. Main solution parameters for different values of σr
w and σr

w.

σr
w 0.00 5.000 ˆ 10´6 1.000 ˆ 10´5 5.000 ˆ 10´5

σv
w 0.00 5.000 ˆ 10´6 1.000 ˆ 10´5 5.000 ˆ 10´5

∆vtot 0.347 0.347 0.347 0.347
∆vmax 0.347 0.347 0.347 0.347
∆ttot 7.000 7.000 6.999 6.812
tr pPN q 2.819 ˆ 10´3 3.034 ˆ 10´3 7.359 ˆ 10´3 2.934 ˆ 10´2



56

Chapter 5

Robust closed-loop optimization
of impulsive trajectories

The approach used in Chapter 4 to deal with OL robust optimization problem will
now be expanded to the case of a feedback (closed-loop) control law. Even though
robust OL control laws allow for some limitation on state dispersion, ignoring the
actual spacecraft flight path has inherent weaknesses in reducing the state dispersion
and may not be sufficient to deliver a robust-enough trajectory.

A natural enhancement is to incorporate a feedback component into the control
strategy, enabling corrective maneuvers tailored to the current flight conditions. In
this respect, this chapter introduces a methodology for optimizing robust trajectories
for impulsive missions, featuring potential space mission applications such as an
Earth–asteroid–Earth trajectory and station-keeping within a Near-Rectilinear Halo
Orbit (NRHO) around the Moon.

5.1 General formulation
A general description of the proposed robust trajectory optimization problem is

provided in this section. The objective of the proposed methodology is to formulate
an ROCP for an impulsive transfer, where a feedback control law is used to minimize
the cumulative ∆v, having fixed initial and final state, described as position and
velocity, fixed ToF, and control maneuvers bounded in magnitude. The state
dispersion is fixed for the initial state and limited at the arrival.

As in Chapter 4, the spacecraft is modeled as a point-mass object and its
state xptq “

“

rptqT vptqT
‰T is defined in terms of his Cartesian position rptq and

velocity vptq. The initial and final transfer epochs are fixed and denoted as rtf and
rti, respectively. As a major difference with the problem stated in Chapter 4, the
trajectory is divided into N ballistic arcs of equal duration, joined by impulsive
velocity changes, which represent the spacecraft maneuvers. Additional impulsive
maneuvers are performed at the departure and the arrival. A uniform time-grid
with N ` 1 maneuvering points, or nodes, is thus defined as

rti “ t0 ď t1 ď ¨ ¨ ¨ ď tN “ rtf (5.1)

where duration of the k-th arc is ∆tk “ tk ´ tk´1 “ prtf ´ rtiq{N “ ∆T {N , with ∆T
as the total ToF.

Adopting the same notation as used for the OL case, the values of the variables
immediately before and after the k-th impulse are indicated by the subscripts ´
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and `, respectively. Position is considered equal before and after each node, as
rk´ “ rk`, while instantaneous changes in velocity occur due to the impulsive
maneuvers, as vk` “ vk´ ` uk, where the subscript k denotes quantities at epoch
tk, and the control is again given by ∆vk. The update law for the state after a
maneuver is

xk` “ xk´ `Buk @k “ 0, . . . , N (5.2)

with B “ r03ˆ3 I3s
T . The control magnitude }uk} is constrained below an user-

defined threshold rumax.

5.1.1 Linear control law
The main idea behind the proposed methodology is the definition of a linear-state

feedback control law for the impulsive control uk, which is defined as

uk “ νk `Kk pxk´ ´ E rxk´sq “ νk `Kk pxk´ ´ µk´q @k “ 0, . . . , N (5.3)

where νk P R3 represents the deterministic (or feedforward) component of the control,
while the feedback term Kk pxk´ ´ E rxk´sq accounts for the difference between the
measured and expected states. Here, Kk P R3ˆ6 is a feedback gain matrix, whose
value has to be determined with the optimization process. The feedback term is a
stochastic component of the control, directly proportional to the deviation of the
actual state xk´ “ E rxk´s before the k-th maneuver and the mean state at the
same epoch µk´. Thus, the larger the deviation, the larger the corrective maneuver
imparted on the spacecraft.

Given the CL control law of Eq. (5.3), the on-board computer requires both the
knowledge of the current state provided by the navigation subsystem and the control
parameters given by the deterministic maneuver νk, the gain matrix Kk, and the
mean state right before the maneuver µk´.

The expected value of the k-th control maneuver uk is

E ruks “ νk (5.4)

Having Pk´ as the covariance matrix of xk´, the covariance matrix is analytically
derived through the following lemma.

Lemma 5.1.1. Considering the closed-loop control expression of Eq. (5.3)

uk “ νk `Kk pxk´ ´ µk´q @k “ 0, . . . , N (5.5)

The covariance of uk can be formulate by definition as

Cov ruks “ P u
k “ KkPk´K

T
k @k “ 0, . . . , N (5.6)
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Proof.

P u
k “ E

”

puk ´ E ruksq puk ´ E ruksq
T
ı

“ (5.7a)

“ E
”

puk ´ νkq puk ´ νkq
T
ı

“ (5.7b)

“ E
”

rKk pxk´ ´ µk´qs rKk pxk´ ´ µk´qs
T
ı

“ (5.7c)

“ E
”

Kk pxk´ ´ µk´q pxk´ ´ µk´q
T KT

k

ı

“ (5.7d)

“ KkE rpxk´ ´ µk´q pxk´ ´ µk´qsKT
k “ (5.7e)

“ KkPk´K
T
k (5.7f)

The previous expression will be used in the formulation of the cost function and
the control constraints, as described in the following sections.

5.1.2 Perturbed state propagation
As highlighted in the previous chapters, an accurate UP is of paramount im-

portance in stochastic optimization, as the optimized control is designed on the
knowledge of the state distribution. Thus, an incorrect evaluation of the state
uncertainty would lead to an ineffective control action when applied to the actual
mission. If the analysis of the state distribution is limited to its first two statistic
moments, that is, mean and covariance, the state probability distribution could be
easily propagated through a ballistic arc, using one of the UP techniques available
in literature (see Chapter 3). As already mentioned, the tool used in this regard
in the test cases presented in the last sections of this chapter is the UT, given its
reasonable balance between accuracy and computational effort.

Similarly to the OL case in Chapter 4, the perturbation term of the SDE
in Eq. (2.54) is neglected when propagating the SPs, that are thus propagated
using deterministic EoM. The random contribution is instead again modeled as
an instantaneous, additive, Gaussian perturbation Q that takes place at the end
of each arc, representing the overall effects of the stochastic perturbations over a
finite-time arc. Hence, if P 1

k´ is the covariance matrix estimated by the UT, the
covariance matrix that is actually considered after propagation is Pk´ “ P 1

k´ `Q.
The matrix Q is estimated along a reference trajectory according to the methodology
in Appendix A. In this respect, the function g px, u, tq is approximated as a constant
matrix G P R6ˆ3, as

g px, u, tq “ G “

„

pσr
wq

2 I3
pσv

wq
2 I3

ȷ

(5.8)

where σr
w P R and σv

w P R, considered as parameters of the problem, model the
variance of the position and velocity random disturbance, respectively.

The propagation of the mean state and the covariance matrix along the k-th
ballistic arc, i.e. from the pk ´ 1q-th and the k-th maneuver, is thus given by the
expression

tµk´, Pk´u “ F˚
`

µpk´1q`, Ppk´1q`, ∆tk; Q
˘

@k “ 1, . . . , N (5.9)
where F˚p¨q stands for the UP tool function returning the mean state and covariance
obtained by propagating the state xpk´1q` „ N

`

µpk´1q`, Ppk´1q`

˘

from time tpk´1q
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to time tk, while accounting for the (cumulative) perturbation of covariance Q. In
this particular work, as the UT is chosen for UP; thus, the generic expression F˚p¨q

in Eq. (5.9) is substituted with FUTp¨q.
While propagating the state distribution over time, jumps occur due to the

presence of impulsive maneuvers, as in Eq. (5.2). The effect of the (impulsive) linear
feedback control of Eq. (5.3) on the state probability distribution after the impulse
is evaluated by taking the expected value and covariance of xk`. The spected values
results in

µk` “ E rxk`s “ µk´ `Bνk @k “ 0, . . . , N (5.10)
while the covariance matrix is obtained through the following lemma.

Lemma 5.1.2. Considering the state update in Eq. (5.2), the covariance
matrix of xk` results as

Pk` “ Cov rxk`s “ pIn `BKkqPk´pIn `BKkqT @k “ 0, . . . , N (5.11)

Proof.

Pk` “ E
”

pxk` ´ E rxk`sq pxk` ´ E rxk`sq
T
ı

“ (5.12a)

“ E
”

pxk` ´ µk`q p. . . q
T
ı

“ (5.12b)

“ E
”

pxk´ `Buk ´ µk´ ´Bνkq p. . . q
T
ı

“ (5.12c)

“ E
”

rxk´ `BKk pxk´ ´ µk´q ´ µk´s r. . . s
T
ı

“ (5.12d)

“ pIn `BKkqE
”

pxk´ ´ µk´q p. . . q
T
ı

pIn `BKkq
T

“ (5.12e)

“ pIn `BKkqPk´ pIn `BKkq
T (5.12f)

where the dots are used in place of the identical expression in the previous
brackets pair.

Within the optimization process, the state mean and covariance are estimated
along the trajectory by alternatively recurring to Eqs. (5.10) and (5.11) to update
the state uncertainty after the impulsive maneuver, and an UP tool as in Eq. (5.9)
to propagate along the ballistic arc up to a moment before the following impulsive
maneuver, starting from the assigned covariance P0´ “ rP0´. The value of the
estimated mean state is used to enforce boundary constraints, while the estimated
covariance matrix is used in both path constraints and cost function, as will be
explained in the next sections.

5.1.3 Boundary constraints
In a deterministic context, boundary constraints enforce (without any uncertainty)

the state to be coincident at a given epoch to an assigned state, e.g. the final position
and velocity of a celestial body at arrival time. However, since uncertainty on the
state is now allowed, also boundary conditions must be treated in stochastic terms,
having in my mind however the ultimate goal of the trajectory, that is, to deliver
the spacecraft to a precise target at a precise time.

At the initial epoch, the departure state and the related uncertainty is generally
well known; thus, the initial boundary constraints are intuitively formulated to assign
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the departure mean state and covariance matrix to the fixed values deriving from
the mission scenario. For instance, the initial state uncertainty could be given by the
launcher performance statistics when delivering the payload after the final burnout
of the last stage. The initial boundary conditions are thus expressed simply as

µ0´ “ rµ0´ “
“

rrT
0´ rvT

0´

‰T (5.13)
P0´ “ rP0´ (5.14)

The final boundary constraints are handled in a different way. If the final mean
state is straightforwardly assigned to the final target state, the actual rendezvous
to the assigned state is not exactly guaranteed. Indeed, the final approach to the
target is enforced on average, but in case the final state uncertainty is relatively
large, the spacecraft may completely miss the target, although not far from the
expected average final state. It is hence fundamental to enforce also conditions on
the final dispersion, as to minimize the chance of being too far from the state goal.
A possible idea to limit the “size” of the final dispersion is to impose a threshold to
the eigenvalues of the last covariance matrix PN`, that is, after the final impulsive
control uN`. In this work, the threshold on the eigenvalues is imposed in particular
to the two sub-matrices of position and velocity of PN`, namely, the top left 3 ˆ 3
square matrix for position, P r

N`, and the bottom right 3 ˆ 3 square matrix for
velocity, P v

N`. Denoting with λ pP q the vector of eigenvalues of the matrix P in
argument, the final constraints are specified as

µN` “ rµN` (5.15)
λ
`

P r
N`

˘

´
`

σr
N`

˘2 13 ď 03 (5.16)
λ
`

P v
N`

˘

´
`

σv
N`

˘2 13 ď 03 (5.17)

where σr
N` and σv

N` are maximum allowed values of the standard deviation of
position and velocity at the arrival, respectively.

Alternatively, Eqs. (5.16) and (5.17) may be simplified as
b

λmax
`

P r
N`

˘

ď σr
N` (5.18)

b

λmax
`

P v
N`

˘

ď σv
N` (5.19)

The latter formulation focuses on limiting the magnitude of state dispersion, ne-
glecting the shape pf the dispersion ellipsoid. Note that other ways to constrain
the final state dispersion could be considered, without substantially changing the
problem solution. For instance, a threshold could be imposed on the trace the final
covariance matrix.

5.1.4 Chance-constrained cost function and control constraints
As discussed in Sec. 2.3.3, a stochastic variable requires a stochastic formulation

of the cost function and any related constraints, as a traditional deterministic
expression is not applicable in the context of an SOCP. In a CL control setup, the
control is modeled as a function of a stochastic variable, as stated in Eq. (5.3),
rendering the control itself stochastic. Consequently, when the objective involves
minimizing the cumulative control magnitude, it necessitates a formulation that
statistically confines the control within a specified confidence level. The aim of this
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section is to develop a deterministic expression for the control in a chance-constrained
framework. This formulation will be instrumental in defining both the cost function
and the constraints on control magnitude.

The chance-constraint formulation is based on the assumption of a Gaussian
distribution for the state xk´ before the impulsive maneuver. As demonstrated in the
test cases presented later, this assumption remains valid for scenarios characterized
by limited state dispersion, a condition achievable through the implementation of a
robust control strategy. Considering the feedback control law in the form of Eq. (5.3),
the control vector uk at time tk is consequently a random Gaussian vector, that
is uk „ N pνk,P u

k q. The following theorem from Ridderhof et al. [102] provides a
probabilistic bound for }u}.

Theorem 5.1.3. Let z „ N pµz,Pzq be an w-dimensional random vector
with w ě 1. Let also σ “

a

λmax pPzq be the square-root of the maximum
eigenvalue of the matrix Pz, ρ ą 0 and β P p0, 1q. Then

}µz} ` γpβqσ ď ρ ñ Pr p}z} ď ρq ě 1 ´ β (5.20)

with γpβq “

b

2 log 1
β `

?
w.

Proof of this theorem is included in the same cited work.
By applying this theorem with z “ uk, the probabilistic constraint on the control

magnitude bound Eq. (2.57) can be rewritten as

}νk} ` γpβq

b

λmax
`

P u
k

˘

ď rumax @k “ 0, . . . , N (5.21)

where }νk} “ ∆vd, k is the norm of the deterministic component of control uk and
γpβq

a

λmaxpP u
k q “ ∆vs, k is a measure (up to a confidence level 1 ´ β) of the control

magnitude due to the CL term. The bound in Eq. (5.21) has been chosen for the sake
of simplicity, although other formulations are possible [203]. Other expressions could
be easily selected depending on the researcher’s need, as the presented method do
not depends on specific manipulation to obtain a convex reformulation of Eq. (5.21)
(as is the case of [115]).

The theorem also allows to express a cost function on the cumulative control
magnitude in a straightforward form. Assuming the same violation parameter β,
the cost function reads

J “

N
ÿ

k“0

´

}νk} ` γpβq

b

λmaxpP u
k q

¯

“ ∆vd ` ∆vs “ ∆vtot (5.22)

where the first term of Eq. (5.22) accounts for the cumulative deterministic ∆v

cost ∆vd “
řN

k“0 ∆vd, k, while the second term measures the CL control effort
∆vs “

řN
k“0 ∆vs, k, which depends on the dispersion of the control vector through

the matrix P u
k and β. Once indeed the control parameters of a given k-th maneuver

are selected, Theorem 5.1.3 states that the quantity on the left side of Eq. (5.21)
is below the magnitude of the actual executed control, with a confidence level of
1 ´ β. Thus, lowering the value of }νk} ` γpβq

a

λmaxpP u
k q is equivalent to lowering

the stochastic upper bound of }uk}, that is, the maximum allowed value of }uk}

with 1 ´ β confidence level. Naturally, the same applies for the sum of all the control
maneuvers sequence. Alternative expressions that would account for the mean value
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and the uncertainty level of }uk} would prove equivalently efficient as stochastic
merit index, as it would serve nonetheless as a stochastic upper bound with a given
confidence level. However, for the sake of consistency and to retain a measure on
the confidence level the same expression is employed.

Note that this formulation allows to increase the overall deterministic cost ∆vd,
when it is beneficial for reducing the CL control term ∆vs, so as to reduce the overall
total velocity increment ∆vtot “ ∆vd ` ∆vs “ J . The overall ROCP is thus formally
formulated as

min
Θ

Eq. (5.22) (5.23a)

s.t. Eqs. (5.6), (5.9) ´ (5.17), (5.21) (5.23b)
(5.23c)

where in the optimization variables vector Θ the reference mean states, the deter-
ministic control, and the gain matrices are included as

Θ “ tµk´, νk, Kk, @k “ 0, . . . , Nu (5.24)

which results as a vector of dimension pn2 ` 3nqpN ` 1q{2, having however the initial
mean state µ0´ fixed to an assigned vector as in Eq. (5.13).

The primary advantage of the approach outlined here, over traditional methods
that derive a nominal trajectory before identifying a stabilizing control, lies in its
heightened responsiveness to system dynamics that are particularly sensitive to
external disturbances, such as strong nonlinearities or rapidly changing conditions.
Consequently, the efficacy of this method is expected to be greater in environments
where these dynamic complexities are more pronounced, thereby directly addressing
the challenges posed by such systems.

5.2 Multi-legs missions
The trajectory considered so far represents a single leg, that is, an alternative

sequence of impulsive maneuvers and ballistic arcs that link two assigned states
defined as position and velocity. Extension to the case of a multiple-legs mission
is straightforward. A multiple-leg trajectory is defined as a sequence of single legs
where the assigned final state of a single leg coincides with the assigned initial state
of the next leg. Hence, to define a multiple-leg trajectory, it is now necessary to
provide the number L of legs, the number Ni of ballistic arcs of each i-th leg, and the
sequence of initial and final state of each i-th leg µi, 0´ and µi, Ni`, thus requiring
the following linkage conditions to ensure the continuity of the trajectory

µi, Ni` “ µi`1, 0´ @i “ 1, . . . , L ´ 1 (5.25)

to which the final conditions of all the legs are added as

µi, Ni` “ rµi, Ni` @i “ 1, . . . , L (5.26)

The initial conditions are thus written as

µ1, 0´ “ rµ1, 0´ “
“

rrT
1, 0´ rvT

1, 0´

‰T (5.27)
P1, 0´ “ rP1, 0´ (5.28)
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while the terminal constraints are instead written as
λ
`

P r
i, Ni`

˘

´
`

σr
i, Ni`

˘2 13 ď 03 (5.29)

λ
`

P v
i, Ni`

˘

´
`

σv
i, Ni`

˘2 13 ď 03 (5.30)

µi, Ni` “ rµi, Ni` “
“

rrT
i, Ni` rvT

i, Ni`

‰T
@i “ 1, . . . , L (5.31)

To avoid inconsistencies (e.g., duplicity of the ∆vs), no control can be imparted
at the initial point of any leg, but the first one. The following constraints thus hold

νi, 0 “ 03 Ki, 0 “ 03ˆ6 @i “ 2, . . . , L (5.32)
which, in turn, leads to

Pi, 0` “ Pi, 0´ “ Pi´1, Ni´1` (5.33)
P u

i, 0 “ 03ˆ3 @i “ 2, . . . , L (5.34)
Adding the notation on the leg number, the equations related to the feedback control
law are now written as
ui, k “ νi, k `Ki, k pxi, k´ ´ µi, k´q (5.35)
P u

i, k “ Ki, kPi, k´K
T
i, k @k “ 0, . . . , Ni @i “ 1, . . . , L (5.36)

and the equations related to the state propagation as
tµi, k´, Pi, k´u “

“ F˚
`

µi, pk´1q`, Pi, pk´1q`, ∆ti, k; Q
˘

@k “ 1, . . . , Ni @i “ 1, ldots, L (5.37)
µi, k` “ µi, k´ `Bνi, k (5.38)
Pi, k` “ Si, kPi, k´S

T
i, k @k “ 0, . . . , Ni @i “ 1, . . . , L (5.39)

with Si,k “ In `BKi,k.
The path constraint on control magnitude is now

}νi, k} ` γpβq

c

λmax

´

P u
i, k

¯

ď rumax @k “ 0, . . . , Ni @i “ 1, . . . , L (5.40)

and eventually, the cost function reads as

J “

L
ÿ

i“1

Ni
ÿ

k“0

´

}νi, k} ` γpβq

b

λmaxpP u
i, kq

¯

(5.41)

The multiple-legs ROCP is thus formulated as
min

Θ
Eq. (5.41) (5.42a)

s.t. Eqs. (5.25) ´ (5.32), (5.36) ´ (5.40) (5.42b)
where Θ P RNΘ is the vector of problem unknowns of

NΘ “

L
ÿ

i“1
pn2 ` 3nqpNi ` 1q{2 (5.43)

elements, which encompasses the components of the deterministic control νi, k, the
gain matrix Ki, k and mean value of the state µi, k´ before the burn at any of the
maneuvering points, as

Θ “ tµi, k´, νi, k, Ki, k, @k “ 0, . . . , Ni, @i “ 1, . . . , Lu (5.44)
having however the initial conditions of each i-th leg µi, 0´ fixed to an assigned
vector as in Eq. (5.27) and indirectly with Eqs. (5.25) and (5.26).
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5.3 Modeling the uncertainty sources
The ROC described by Eq. (5.42) can be adapted to account for additional error

sources that may arise during a trajectory, such as navigation and PEs being the
primary sources of dynamical perturbation in space missions. This section introduces
a simplified model for both types of errors, that would allow their inclusion in the
robust design of the trajectory. It is important to acknowledge that achieving precise
modeling of these errors involves a complex, mission-specific analysis. Therefore, the
models presented here serve as a preliminary framework, providing a basis for more
detailed investigations tailored to specific mission scenarios.

5.3.1 Navigation errors
Space navigation is critical for the planning, execution, and safety of space

missions. It utilizes sophisticated techniques such as radiometric tracking, optical
navigation, and onboard autonomous systems to determine the spacecraft’s position
and velocity [204]. These techniques calculate position and velocity as a function of
measurements coming from on-board sensors or Earth-base ground station. Inter-
satellite measurements could also be viable in specific missions [205]. Transforming
measurements into state estimates is a complex task, which requires possibly nonlin-
ear algorithms, such as Extended Kalman Filter (EKF) [206] or batch sequential
filter [207]. Moreover, the dimensionality of the observable vectors might be less
than that required for the problem, limited by the capabilities of the navigation
sensors. For instance, a ground station might only provide range and range rate
data, making a direct transformation of these measurements into the full state vector
challenging.

When considering the inclusion of navigation errors in the design of a robust
trajectory, two options might be pursued. The first idea consists in simulating a
campaign of OD along a reference trajectory using the same observables expected
during the actual mission, i.e. estimating the navigation measures obtained from
selected ground stations with the respective measurement errors. In this way, the
mean state µk´ and covariance Pk´ before the impulsive maneuver in Eqs. (5.10)
and (5.11) are substituted by covariance and mean state obtained from the OD
simulation performed a priori. Thus, propagation of the stochastic moments as in
Eq. (5.9) would not be needed anymore. With a more accurate approach, the OD
campaign could be simulated within the optimization process and updated at every
iteration, once all the navigation features and setup are determined as input for an
implemented navigation filter in the algorithm.

As an alternative option, a linear relationship is assumed between some observ-
ables vector yk´ P Rm of generic dimension m P N and the corresponding state xk´,
that is

yk´ “ Hxk´ ` η @k “ 0, . . . , N (5.45)
where H P Rnˆm is the linear mapping matrix, and η P Rm is a zero-mean
measurement random error, which could be assumed, for instance, as a Gaussian
multivariate random variable η „

´

0m, rR
¯

. Note that this approach is suitable to
represent the behaviour of a system whose state estimate yk´ is provided by some
Kalman filter with covariance of the state rR.

The CL law of Eq. (5.3) in this measurement-feedback scenario modifies as

uk “ νk `Kk pyk´ ´ E ryk´sq “ νk `Kk pHxk´ ` η ´Hµk´q @k “ 0, . . . , N
(5.46)
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or simply

uk “ νk `KkH pxk´ ´ µk´q `Kkηk @k “ 0, . . . , N (5.47)

where Kk P R3ˆm is the control gain matrix, whose parameters are to be found by
the optimizer.

With the measurement-feedback expression of the control, the update equation
of the mean state as in Eq. (5.10) becomes

µk` “ E ryk`s “ µk´ `Bνk @k “ 0, . . . , N (5.48)

The covariance matrix of the state as in Eq. (5.11) modifies according to the following
lemma.

Lemma 5.3.1. Considering the CL control with NEs of Eq. (5.47), the co-
variance of xk` can be formulated as

Pk` “ Cov rxk`s “ pIn `BKkHqPk´ pIn `BKkHq
T

`BKk
rRKT

k B
T

(5.49)

for all k “ 0, . . . , N .

Proof.

Pk` “ E
”

pxk` ´ E rxk`sq pxk` ´ E rxk`sq
T
ı

“ (5.50a)

“ E
”

pxk` ´ µk`q p. . . q
T
ı

“ (5.50b)

“ E
”

pxk´ `Buk ´ µk´ ´Bνkq p. . . q
T
ı

“ (5.50c)

“ E
”

rxk´ `BKk pyk´ ´Hµk´q ´ µk´s r. . . s
T
ı

“ (5.50d)

“ E
”

rxk´ ´ µk´ `BKk pHxk´ ` η ´Hµk´qs r. . . s
T
ı

“ (5.50e)

“ E rpIn `BKkHq pxk´ ´ µk´q p. . . q
T

pIn `BKkHq
T

` pIn `BKkHq pxk´ ´ µk´q pBKkηq
T

`

pBKkηq pxk´ ´ µk´q
T

pIn `BKkHq
T

`

`BKkηη
TKT

k B
T
‰

“

(5.50f)

since there is no cross-correlation between η and pxk´ ´ µk´q,

“ E
”

pIn `BKkHq pxk´ ´ µk´q p. . . q
T

pIn `BKkHq
T

` (5.50g)

`BKkηη
TKT

k

‰

(5.50h)
“ pIn `BKkHqPk´ pIn `BKkHq

T
`BKkRK

T
k B

T . (5.50i)

The mean of the control uk as in Eq. (5.4) becomes

E ruks “ νk @k “ 0, . . . , N (5.51)
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The covariance matrix of the control uk as in Eq. (5.6) modifies according to the
following lemma.

Lemma 5.3.2. Considering the CL control with NEs of Eq. (5.47), the co-
variance of uk can be formulated by definition as

P u
k “ Cov ruks “ KkHPk´H

TKT
k `Kk

rRKT
k (5.52)

for all k “ 0, . . . , N , being rR the covariance matrix of η.

Proof.

P u
k “ E

”

puk ´ E ruksq puk ´ E ruksq
T
ı

“ (5.53a)

“ E
”

puk ´ νkq p. . . q
T
ı

“ (5.53b)

“ E
”

rKk pyk´ ´Hµk´qs r. . . s
T
ı

“ (5.53c)

“ E
”

rKk pHxk´ ` η ´Hµk´qs r. . . s
T
ı

“ (5.53d)

“ E
”

Kk rH pxk´ ´ µk´q ` η sr . . . s
T KT

k

ı

“ (5.53e)

“ E
”

Kk rH pxk´ ´ µk´qs rH pxk´ ´ µk´qs
T KT

k `

`Kk rH pxk´ ´ µk´qsηTKT
k `Kkη rHpxk´ ´ µk´qs

T KT
k `

` Kkηη
TKT

k

‰

“

(5.53f)

since there is no cross-correlation between η and pxk´ ´ µk´q,

“ E
”

KkH pxk´ ´ µk´q p. . . q
T HTKT

k `Kkηη
TKT

k

ı

“ (5.53g)

“ KkHPk´H
T
k K

T
k `KkRK

T
k (5.53h)

In case a general nonlinear transformation from the state to the observables
vector is instead considered as

yk´ “ h pxk´q ` η @k “ 0, . . . , N (5.54)

with h : Rn ÞÑ Rm as the nonlinear transformation, the estimate of the updated
covariance state and control get sensibly complex. The CL control is now formulated
as

uk “ νk `Kk

`

h pxk´q ´ hk´ ` η
˘

@k “ 0, . . . , N (5.55)

where hk´ “ E rh pxk´qs. The covariance of control is given by the following lemma.

Lemma 5.3.3. Considering the CL control with NEs of Eq. (5.55), the co-
variance of uk can be formulated by definition as

P u
k “ KkP

y
k´K

T
k `Kk

rRKT
k (5.56)
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for all k “ 0, . . . , N , being P y
k´ the covariance matrix of the observables vector

h pxk´q, computed with an UP tool.

Proof.

P u
k “ E

”

puk ´ E ruksq puk ´ E ruksq
T
ı

“ (5.57a)

“ E
”

puk ´ νkq p. . . q
T
ı

“ (5.57b)

“ E
”

“

Kk

`

h pxk´q ´ hk´ ` η
˘‰

r. . . s
T
ı

“ (5.57c)

“ KkP
y
k´K

T
k `Kk

rRKT
k (5.57d)

Note that E ruks “ νk `Kk

`

hk´ ´ hk´

˘

“ νk. The covariance matrix of the
state is obtained as follows.

Lemma 5.3.4. Considering the CL control with NEs of Eq. (5.55), the co-
variance of the state can be formulated by definition as

Pk` “ Pk´ `BKkP
y
k´K

T
k B

T `BKk
rRKT

k B
T `BKkM `MTKT

k B
T

(5.58)

for all k “ 0, . . . , N , being P y
k´ the covariance matrix of the ob-

servables vector h pxk´q, computed with an UP tool, and M “

E
”

`

h pxk´q ´ hk´

˘

pxk´ ´ µk´q
T
ı

P Rmˆn.

Proof.

Pk` “ E
”

pxk` ´ E rxk`sq pxk` ´ E rxk`sq
T
ı

“ (5.59a)

“ E
”

pxk` ´ µk`q p. . . q
T
ı

“ (5.59b)

“ E
”

“

pxk´ ´ µk´q `BKk

`

h pxk´q ´ hk´

˘

`BKkη
‰

r. . . s
T
ı

“

(5.59c)
“ Pk´ `BKkP

y
k´K

T
k B

T `BKk
rRKT

k B
T ` (5.59d)

`BKkE
”

`

h pxk´q ´ hk´

˘

pxk´ ´ µk´q
T
ı

`

` E
”

pxk´ ´ µk´q
`

h pxk´q ´ hk´

˘T
ı

KT
k B

T “ (5.59e)

“ Pk´ `BKkP
y
k´K

T
k B

T `BKk
rRKT

k B
T `BKkM `MTKT

k B
T

(5.59f)

The elements of the matrix M can be computed following the definition of
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covariance, as

Mij “ E rhi pxk´q xj, k´s ´ E rhi pxk´qsE rxj, k´s @i “ 1, . . . , m @j “ 1, . . . , n
(5.60)

where naturally hi pxk´q is the i-th element of h pxk´q and xj, k´ is the j-th element
of xk´. It is again possible to obtain these quantities by means of a proper UP tool.
Considering the UT for instance, the quantity E rhi pxk´q xj, k´s could be estimated
by averaging the sum between the cross products between the two sets of SPs of the
propagated state and observables vector, as

E rhi pxk´q xj, k´s “
1

p2n ` 1qp2m ` 1q

2n
ÿ

p“0

2m
ÿ

q“0
phi pxk´qqp pxj, k´qq (5.61)

where the subscripts p and q denote the affiliation to the p-th or q-th SP of the
propagated state set and observables vector set respectively.

5.3.2 Propulsive errors
In space missions, inaccuracies in both the magnitude and direction of thrust

delivered by the spacecraft’s propulsion system are a critical source of uncertainty
that can significantly affect trajectory design and mission success. Variability in
the performance of thrusters, environmental influences, and system malfunctions
contribute to these inaccuracies. For instance, chemical propulsion systems may
suffer from fluctuations in fuel pressure, while electric propulsion systems can be
affected by variations in power levels.

Similarly to the previous section, a simplified model to analytically characterize
the uncertainty contribution of PEs is provided, considering exclusively errors on
magnitude and direction of the deterministic component νk of the control. Errors
related to MTEs or major thrust failures (i.e., ∆v less than 1{10 of its nominal
magnitude) are not taken into account in the following analysis.

Considering the CL control law in Eq. (5.3), the deterministic component νk

is allowed to vary in magnitude and direction. Starting from the nominal vector,
a deviation by an angle δθ in every possible direction results in a locus of the
vector apex obtained as the intersection between a cone, whose apex is the point of
application of νk, aperture 2δθ, and the vertical axis coincides with νk, and a sphere
centered in the point of application of νk and radius νk. When considering also
deviation in magnitude of the nominal vector in a ˘δν range, the locus of the thrust
vector apex is obtained as the intersection between the same cone and a spherical
shell of thickness 2δν centered in the point of application of νk with maximum and
minimum radius νk ` δν and νk ´ δν, respectively. Figure 5.1 shows the region (in
grey) of the possible vertices of νk given the deviations δθ and δν. Note that, when
considering an unbounded distribution, the area in grey is to be considered as the
contour region corresponding to the 3σ contour plot. In 3D, a further deviation
angle δϕ P r0, πq is needed to identify the direction of the component perpendicular
to νk. Having thus the deviations δθ, δϕ, and δν, which might be sampled from
selected probability distributions, such as

δϕ „ Ur0, πq (5.62)
δθ „ N p0, σθq (5.63)
δν „ N p0, σνq (5.64)
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δν

δθ

ν

δν

Figure 5.1. PE 2D scheme.

where the deviation standards derives from the engine technical specifications, the
actuated control ν 1

k (accounting for PEs) is

ν 1
k “ p1 ` δνq R pδθ, δϕqνk @k “ 0, . . . , N (5.65)

where R p¨, ¨q is a rotation matrix made by two pure rotation of angles δθ and δϕ.
Considering a generic coordinate system with the x axis perpendicular to νk, the y
axis coincident with νk, and the z axis completing a right-hand system, the rotation
matrix R pδθ, δϕq is obtained by a first rotation about x by an angle δθ and a second
rotation about y by an angle δϕ, as

R pδθ, δϕq “

»

–

cos δϕ 0 sin δϕ
0 1 0

´ sin δϕ 0 cos δϕ

fi

fl

»

–

1 0 0
0 cos δθ ´ sin δθ
0 sin δθ cos δθ

fi

fl “ (5.66)

“

»

–

cos δϕ sin δϕ sin δθ sin δϕ cos δθ
0 cos δθ ´ sin δθ

´ sin δϕ cos δϕ sin δθ cos δϕ cos δθ

fi

fl (5.67)

While accurate, this model is impractical for the ROCP, due to its nonlinearity. In
particular, the presence of the rotation matrix R pδθ, δϕq results in an extremely
difficult analytical derivation of the update law for the covariance matrix of the
state and control as in Eqs. (5.11) and (5.6), respectively. In addition, note that the
deviation is imparted on the deterministic component of the impulsive control only,
rather than on the total control uk, for simplification purposes. However, under
the small displacements assumption, the errors on magnitude and directions can be
considered independently and then superposed, leading to a further simplified mode,
that will allow an analytical derivation of the update equation for the covariance
matrices.

The magnitude deviation p1 ` δunq, δun „ N p0, σnq, σn P R, as in Eq. (5.65) is
still considered, to which a Gaussian deviation vector δud „ N p0, σdI3q, σd P R, is
simply added, as

u1
k “ p1 ` δunquk ` δud “ (5.68)

“ uk ` δunνk ` δuKk pxk´ ´ µk´q ` δud “ (5.69)
“ νk ` δunνk ` p1 ` δuqKk pxk´ ´ µk´q ` δud @k “ 0, . . . , N (5.70)
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Figure 5.2 presents the 2D area (in grey) of the possible vertices of uk given the
deviations δud and δun is plotted. Also in this case, the area is intended to be a
reference shape of the distribution.

uk

δud

δunδun

Figure 5.2. Propulsion simplified error 2D scheme.

The updated state is evaluated as

xk` “ xk´ ` u1
k “ xk´ `Buk `Bδunuk `Bδud “ (5.71)

“ xk´ ` p1 ` δunqBνk ` p1 ` δunqBKk pxk´ ´ µk´q ` (5.72)
`Bδud @k “ 0, . . . , N (5.73)

The mean value of the control and the state of respectively Eq. (5.70) and (5.73)
are

E
“

u1
k

‰

“ νk (5.74)
E rxk`s “ µk` “ µk´ `Bνk (5.75)

having assumed no cross-correlation between δun and pxk´ ´ µk´q and that the
deviations δun and ud are zero-mean random variables.

The update law of the control covariance matrix is thus given by the following
lemma

Lemma 5.3.5. Considering the CL control with PEs of Eq. (5.70), the co-
variance of the control u1

k can be formulated by definition as

P u
k “

`

1 ` σ2
n
˘

KkPk´K
T
k ` σ2

nνkν
T
k ` σdI3 (5.76)

for all k “ 0, . . . , N .

Proof.

P u
k “ E

”

`

u1
k ´ E

“

u1
k

‰˘ `

u1
k ´ E

“

u1
k

‰˘T
ı

“ (5.77a)

“ E
”

rp1 ` δunqKk pxk´ ´ µk´q ` δunνk ` δuds r. . . s
T
ı

“ (5.77b)

“
`

1 ` σ2
n
˘

KkPk´K
T
k ` σ2

nνkν
T
k ` σdI3 (5.77c)

as there is no cross-correlation between δun, δud, and pxk´ ´ µk´q.

The update law of the state covariance matrix is instead obtained as follows.
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Lemma 5.3.6. Considering the CL control with PEs of Eq. (5.70), the co-
variance of the state can be formulated by definition as

Pk` “
`

1 ` σ2
n
˘

pIn `BKkHqPk´ pIn `BKkHq
T

` σ2
nBνkν

T
k B

T `

` σ2
dBB

T

(5.78)

for all k “ 0, . . . , N .

Proof.

Pk` “ E
”

pxk` ´ µk`q pxk` ´ µk`q
T
ı

“ (5.79a)

“ E
”

rp1 ` δunq pIn `BKkq pxk´ ´ µk´q ` δunBνk `Bδuds r. . . s
T
ı

“

(5.79b)
“
`

1 ` σ2
n
˘

pIn `BKkHqPk´ pIn `BKkHq
T

` σ2
nBνkν

T
k B

T `

` σ2
dBB

T

(5.79c)

as there is no cross-correlation between δun, δud, and pxk´ ´ µk´q.

5.4 Case study A: DESTINY+ interplanetary phase
In this section, the proposed methodology is applied to compute the robust

trajectory of an actual space mission, that is, a portion of the interplanetary flight of
the DESTINY+ probe. DESTINY+ is an upcoming JAXA exploration mission aimed
to observe, by means of a close passage, the Geminids meteor shower parent body
(3200) Phaethon. In addition to the meaningful scientific objectives, DESTINY+
will serve also as a demonstrator of several unprecedented technologies, including
lightweight solar array panels, advanced asteroid flyby observation instruments, and
a highly efficient ion engine system. This latter low-thrust engine will be used in
particular to escape from Earth’s vicinity into deep space after numerous revolutions
of the Earth. The mission is in fact divided into three phases: the Spiral Orbit-
Raising (SOR) phase, where a low-thrust spiraling trajectory will raise the altitude
of the spacecraft up to the Moon’s orbit, the Moon Flyby (MFB) phase, in which
sequential Moon gravity assists will provide the spacecraft with the required v8 for
the subsequent final InterPlanetary Transfer (IPT) phase, consisting in flybys of
multiple asteroids utilizing low-thrust maneuvers and Earth gravity assist maneuvers.
Similarly to this mission, the conceptual mission of sequential rendezvous of asteroids
was also recently proposed by JAXA [208].

5.4.1 Problem data
The nominal Earth–Phaethon–Earth transfer of the IPT phase is presented in

Fig. 5.3, highlighting the three crucial events: departure from Earth, close passage
to Phaethon, arrival to Earth. The first leg Earth–Phaethon is in yellow, while
Phaethon–Earth is in green. Considering a departure epoch around December
2026, DESTINY+ is expected to perform the first leg with ToF of approximately
1 year up to the encounter with Phaethon, whose ascending node is located in the
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proximity of the Earth’s orbit, making it the perfect candidate node for a flyby, since
the other descending node is instead placed inside Mercury’s orbit. After having
intercepted Phaeton’s passage in the ecliptic plane, DESTINY+ will then return in
Earth proximity in approximately 5 months. After having accomplished this main
scientific objective, the mission might continue with additional asteroid observations,
like 2005 UD, another asteroid of the Apollo group. The extended trajectory of the
mission however is not treated in this work.

Phaethon

EarthMars

1. Earth departure

2. Phaethon flyby

3. Earth flyby

Extended mission

Sun

Figure 5.3. Baseline interplanetary trajectory of DESTINY+ in the Sun-centered
ECLIPJ2000 inertial frame.

In the current analysis, a three-dimensional transfer is considered, and the
spacecraft state vector is given by position and inertial velocity in the Sun-centered
inertial RF J2000. The dynamical model used for this analysis is a heliocentric
Keplerian motion, whose EoM are simply

dx “

„

vptq
´µrptq{r3

ȷ

dt @t P ptk´1, tkq @k “ 1, . . . , N (5.80)

Given the close encounter with Phaethon during the trajectory, this mission requires
the spacecraft to transit at a specific epoch at the ascending node of Phaethon’s
orbit. This mission phase is thus modeled as a multiple-leg trajectory with L “ 2.
The first leg consists in the flight from the Earth to Phaethon, while the second leg is
from Phaethon to the Earth. In addition, to ensure the flyby, a constraint is enforced
on the spacecraft position at the end of the first leg, so that rr1, N1` “ r1, N1` is the
position of Phaethon at the flyby epoch tfb “ ∆T1, having

∆Ti “

Ni
ÿ

k“1
∆tk @i “ 1, . . . , L (5.81)
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A constraint on the mean velocity at the flyby is not considered in this preliminary
analysis but could be easily added to the computation.

For this test case, NEs with linear mapping relation as in Eq. (5.45) are considered.
Null PEs are instead included. The initial assigned covariance matrix rP1, 0´ and the
covariance matrix rR of the additive Gaussian noise η in (5.47) are defined as

rP1, 0´ “ diag
”

`

σr
1, 0´

˘2
I3,

`

σv
1, 0´

˘2
I3

ı

(5.82)

rR “ diag
”

pσr
Rq

2 I3, pσv
Rq

2 I3

ı

(5.83)

where σr
1, 0´ and σv

1, 0´ are the assigned initial standard deviations for position and
velocity respectively, and σr

R and σv
R are the fixed standard deviation for the NE on

position and velocity respectively. All problem data are summarized in Table 5.1.
The numbers of arcs N1 and N2 were chosen to be roughly proportional to the ToF
∆T1 and ∆T2 and to ensure an adequate number of maneuvers for each leg.

All numerical computations were made non-dimensional by scaling lengths,
velocities, and times with respect to rconv “ }rr1, 0´}, vconv “ }rv1, 0´}, and tconv “

rconv{vconv. The large-scale sparse nonlinear optimizer WORHP [202] was used for
solving the optimization problem.

Table 5.1. Problem data.

Variable Value Unit
L 2 -
N1 28 -
N2 10 -
∆T1 394.451 days
∆T2 140.191 days
rumax 105 m{s
β 5% -
µ@ 132712440018 km3{s2

rr1, 0´ r43148032, 140976675, ´8649s
T km

rv1, 0´ r´29.804, 7.537, 0.641s
T km{s

rr1, N1` r14739776, 138648434, 1279019, s
T km

rr2, N2` r´70786621, ´133919742, 8765s
T km

rv2, N2` r24.531, ´16.081, ´0.647s
T km{s

σr
1, 0´ 4.662 ˆ 105 km

σv
1, 0´ 30.003 m{s

σr
1, N1` 3.297 ˆ 104 km

σv
1, N1` 21.215 m{s

σr
2, N2` 1.043 ˆ 105 km

σv
2, N2` 6.709 m{s

σr
w 4.662 ˆ 105 km

σv
w 30.003 m{s

σr
R 8.075 ˆ 104 km

σv
R 5.197 m{s
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(a) OCP solution.
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(b) CL solution.

Figure 5.4. Nominal spacecraft trajectories with 95%-confidence position ellipses.

5.4.2 Numerical results
Figure 5.4 presents the DESTINY+ IPT trajectory. The ∆vs and the covariance

ellipsoids on position for the OCP solution (Fig. 5.4a) and the CL (Fig. 5.4b) solution
in the x-y plane are also presented. The OCP solution is computed starting from
a null state dispersion, while forcing the gain matrices of the CL control to zero.
The constraints on the final covariance of the state from the optimization problem
of Eq. (5.42) are instead removed. Once the OCP solution is obtained, the state
uncertainty along the trajectory is estimated applying UT separately to analyze how
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the initial state distribution propagates. It is apparent that the CL control is able to
reduce the estimated (by UT) dispersion of the state along the trajectory and most
prominently at the arrival point. The main feature of both OCP and CL solutions

Table 5.2. Comparison between the solution of the ROCP and the related MC analysis in
the OCP and CL cases.

Quantity OCP OCP (MC) ROCP-CL ROCP-CL (MC) Unit
∆vtot 0.695 0.695 1.405 1.406 km{s
∆vd 0.695 0.695 0.695 0.695 km{s
∆vs - - 0.710 0.711 km{s
∆rx

2, N2` - 2.488 ˆ 105 - 56.136 km
∆ry

2, N2` - 5.655 ˆ 105 - 77.411 km
∆vx

2, N2` - 0.102 - 6.763 ˆ 10´7 km{s
∆vy

2, N2` - 6.213 ˆ 10´2 - 1.077 ˆ 10´5 km{s
σx

2, N2` 6.416 ˆ 106 1.203 ˆ 107 6.948 ˆ 104 6.958 ˆ 104 km
σy

2, N2` 4.884 ˆ 106 5.984 ˆ 106 7.348 ˆ 104 7.344 ˆ 104 km
σvx

2, N2` 0.826 1.459 6.253 ˆ 10´3 6.249 ˆ 10´3 km{s
σ

vy

2, N2` 1.082 2.263 6.096 ˆ 10´3 6.103 ˆ 10´3 km{s

are also summarized in Table 5.2, which presents the deterministic (∆vd), stochastic
(∆vs) and total (∆vtot) velocity increment, as well as the mean terminal errors on
the in-plane components of the final position (∆rx

2, N2` and ∆ry
2, N2`) and velocity

(∆vx
2, N2` and ∆vy

2, N2`). Note that the stochastic ∆v is a function of the violation
rate β. Also, the square root of the diagonal terms of the final covariance matrix
(σx

2, N2`, σy
2,N2`, σvx

2, N2`, and σ
vy

2, N2`) related to the in-plane position and velocity
components are reported.

The additional robustness layer provided by the CL control is obtained at the
cost of about twice the baseline trajectory fuel, while the total deterministic ∆v is
roughly the same, considering a 95% confidence level and the perturbation magnitude
reported in Table 5.1. Note that the imposed maximum state variances at the asteroid
rendezvous and Earth arrival are relatively severe, and lower extra fuel expenditures
are possible if larger dispersions are allowed.

An MC analysis of 100 000 independent runs was carried out to verify the accuracy
of the estimated probability distribution at each step for both the CL and OCP cases.
Starting from a random initial state µ1, 0´ „ N prµ1, 0´, rP1, 0´q, each trajectory is
propagated towards the final state using the feedback control law in Eq. (5.47).
The propagation of the SDEs is accomplished by means of the stochastic fourth-
order Runge-Kutta method discussed in the work of N. J. Kasdin [85]. Numerical
results are reported in Table 5.2 to allow for a comparison between the MC and
ROCP solutions. The stochastic ∆v (∆vs) is evaluated through the second term
of Eq. (5.22), having the covariance matrix of the control derived from the MC
runs. It is possible to observe how state and dynamical errors affect the state
uncertainty when the deterministic OCP control is used, and how these uncertainties
are conversely mitigated in presence of the CL control law. Note that all MC values
for the CL case are in good agreement with the values estimated in the ROCP with
the UT. The large errors of the mean terminal state for the OCP MC are due to the
inaccuracy of UT in estimating the mean state when propagating wide uncertainties.

The MC campaign of the trajectories in Fig. 5.4 are presented in Fig. 5.5, showing



5.4 Case study A: DESTINY+ interplanetary phase 76

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

y
(a

u)

x (au)

Departure
Flyby
Arrival

(a) OCP solution with MC position ellipses (dashed red line) and UT position ellipses (solid
line of the leg colour).
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(b) CL solution.

Figure 5.5. MC trajectories (in gray).

good agreement, in the CL case, with the covariance ellipsoids found by solving the
ROCP in Eqs. (5.42). The position ellipses estimated in the MC are also shown in
red dotted line. In Fig. 5.6, the CL MC analysis is plotted together with both the
UT and MC ellipses up-scaled by a factor 5.

The covariance matrices Pi, k` empirically computed in the MC analysis are then
compared to those obtained during the ROCP that uses UT for propagating the
state uncertainty. The diagonal terms of either matrix are compared in Figs. 5.7– 5.9
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Figure 5.6. MC trajectories (in gray) with corresponding position ellipses (dashed red line)
and UT position ellipses (solid line of the leg colour). Ellipses are up-scaled by a factor
5.

for the OCP and CL solutions. According to the attained results, the UT succeeds
in propagating the state distribution very accurately in the CL case, where the
displacement from the nominal trajectory is kept very small and thus the state
distribution is well approximated by a Gaussian one. On the other hand, in the
OCP case, the MC trajectories may significantly deviate from the nominal solution,
especially at the end of the transfer, and the estimates of covariance matrix are
less accurate. This phenomenon likely occurs because, in the absence of a control
term to contain state dispersion at each maneuver, the probability distribution
progressively widens and deviates from a Gaussian shape. The UT’s reliance on
Gaussian assumptions becomes ineffective as the distribution stretches and distorts,
underscoring the need for a control strategy that consistently curbs dispersion and
maintains the distribution within a manageable range for precise propagation.

In Figure 5.10, the thrust profiles of both the CL and OCP cases are presented
alongside the MC runs for the CL solution and the magnitude threshold umax (the
red dashed line). Note that the commanded values are reported, resulting from
Eq. (5.35), not the actuated one, where the maximum control magnitude is saturated
by umax. In this plot, the rare violation of the control magnitude with a maximum
rate of β is visible. A significantly increase in thrust is also visible in the first part
of the trajectory for the robust case, unlike the OCP where small to null thrust is
instead performed before the midway peak. In this first part, the robust control
law impart a small amount of thrust to compensate for the reduced nominal thrust
ν at the peak. In case the nominal thrust would be kept close to the maximum
threshold as in the OCP case, there would not be margin for correction maneuvers.
Additionally, this initial thrust is effective also to reduce the state dispersion to meet
the deviation constraints at the asteroid encounter.

A parametric analysis has been carried out in the previous work to investigate
the behavior of the solution for increasing values of the process noise, that is, σr

w
and σv

w. The stochastic component of control becomes progressively larger as the
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Figure 5.7. Covariance matrices trace comparison of the OCP case.

magnitude of the perturbation increases. An effect of the disturbance term is also
visible on the deterministic component ∆vd, which increases with Q, as already
discussed. In this work, a similar analysis is performed for increasing values of NE,
that is, σr

R and σv
R. The results in this case are similar to the previous process

noise analysis, as reported in Table 5.3, where the “Medium” case is the test case
previously presented (data in Table 5.1), and the other cases are obtained scaling
σr

R and σv
R according to the parameter in brackets. The maximum eigenvalues of

the final in-plane position and velocity, that is related the covariance matrix P2, N2`,
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(a) CL, in-plane position.
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Figure 5.8. Covariance matrices trace comparison of the CL case.

are denoted as λxy
max “ λxy

max pP2, N2`q and λ
vxvy
max “ λ

vxvy
max pP2, N2`q. The cumulative

stochastic control ∆vs is the most affected component, given a significant raise for
higher NE, while only a marginal increment is reported for the deterministic control
∆vd. The maximum eigenvalue of the in-plane velocity λ

vxvy
max appears to be a limiting

parameter of the solution, as the values in the four cases are close to the maximum
allowed one of 6.709 m{s, while the maximum eigenvalue of the in-plane position
λxy

max remains largely below the maximum allowed value of 1.043 ˆ 105 km.
In order to asses the enhancement of the robust solution in which NE are included,
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(a) OCP, out-of-plane state.
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Figure 5.9. Covariance matrices trace comparison of the CL case.

a comparison between the performance of two solutions of the ROCP computed with
and without NE are performed. In particular, the first one is the problem formulated
with data in Table 5.1, while the second one has the same process noise but null
NE. From these two solutions, two MC analyses are then performed considering for
both the process noise and the NE of the first solution. The numerical comparison
is reported in Table 5.4. It is evident the worse performance of the control law
computed without including NE, as the final state dispersion is much larger in the
second MC, especially for velocity. The mean terminal errors on mean position and
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Table 5.3. Comparison of the solutions for the different values of NE.

Quantity NEs Unit
None (0ˆ) Low (1ˆ) Medium (3ˆ) High (5ˆ)

∆vd 0.695 0.696 0.695 0.695 km{s
∆vs 0.584 0.622 0.710 0.736 km{s
∆vtot 1.279 1.317 1.405 1.431 km{s?

λxy
max 4.510 ˆ 104 5.818 ˆ 104 9.454 ˆ 104 1.041 ˆ 105 km

σx
2, N2` 4.437 ˆ 104 5.125 ˆ 104 6.948 ˆ 104 8.151 ˆ 104 km

σy
2, N2` 9.662 ˆ 103 3.554 ˆ 104 7.348 ˆ 104 7.477 ˆ 104 km

a

λ
vxvy
max 6.709 6.709 6.709 6.710 m{s

σvx
2, N2` 1.074 ˆ 10´3 1.089 ˆ 10´3 1.142 ˆ 10´3 1.105 ˆ 10´3 km{s

σ
vy

2, N2` 6.219 ˆ 10´4 1.038 ˆ 10´3 1.113 ˆ 10´3 9.928 ˆ 10´4 km{s

Table 5.4. Comparison between the MC analyses of the CL solution computed with (left
column) and without (right column) NE in Table 5.1, considering the same NE in both
the MCs.

Quantity ROCP-CLR ‰ 0 ROCP-CLR “ 0 Unit Ratio
∆rx

2, N2` 56.136 124.763 km 2.223
∆ry

2, N2` 77.411 84.193 km 1.088
∆vx

2, N2` 6.763 ˆ 10´7 3.236 ˆ 10´5 km{s 47.844
∆vy

2, N2` 1.077 ˆ 10´5 4.404 ˆ 10´5 km{s 4.089
σx

2, N2` 6.958 ˆ 104 2.493 ˆ 105 km 3.583
σy

2, N2` 7.344 ˆ 104 9.524 ˆ 104 km 1.297
σvx

2, N2` 6.249 ˆ 10´3 2.856 ˆ 10´2 km{s 4.571
σ

vy

2, N2` 6.103 ˆ 10´3 3.312 ˆ 10´2 km{s 5.426

velocity do not appear instead to be particularly influenced by the erroneous control
law, since the values are close to each other in both cases.

5.5 Case study B: Station-keeping of NRHO
The Lunar Gateway (LG) is a proposed space station in lunar orbit that will

serve as a staging point for future human missions to the Moon and beyond. Unlike
previous space stations, the LG will not orbit the Earth but will instead be placed
in an NRHO around the Moon. NRHOs are especially convenient due to their
cost-effective transfer options from Earth, the ability to facilitate transfers to the
lunar surface and other orbits in cislunar space (and beyond), and their favorable
eclipsing properties. The usage of lunar NRHOs however is not limited to the LG,
but the Orion spacecraft and other vehicles core to the Human Landing System
(HLS) program of NASA will rely upon NRHOs to support a variety of future
Artemis mission objectives. NRHOs are a subset of the halo family of orbits, which
are periodic orbits that lie in the vicinity of the collinear points and are analytically
identified in the CR3BP [13]. NRHOs are characterized, as suggested by their
name, by a quasi-rectilinear motion, similar to a highly eccentric orbit in Keplerian
dynamics.
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Figure 5.10. MC analysis of thrust profiles for the OCP and CL cases.

The CR3BP dynamical model provides a preliminary, yet satisfactory approxima-
tion of higher-fidelity dynamical models of binary systems similar to the Earth–Moon
system, that can be successfully used to investigate the station-keeping of spacecraft
in an NRHO. In the CR3BP, the two main bodies (or primaries) are modeled as
point-mass and move around their common barycenter in circular orbits. The motion
of the spacecraft, whose mass is assumed negligible in comparison to the primaries, is
then described in relation to a synodic coordinate frame, that rotates synchronously
with the binary system. In the CR3BP, quantities are non-dimensionalized, and the
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distance between the primaries and their mean motion are both set to the unity.
The CR3BP admits five relative equilibrium points: the collinear points L1, L2, and
L3, located along the primaries line, and two equilateral points, L4 and L5, forming
equilateral triangles with the two primaries. Since the CR3BP is autonomous, a
constant energy integral exists relative to the rotating frame and is defined as the
Jacobi constant CJ , such that CJ “ 2U ´ v2, where U is the pseudo-potential
function and v is the velocity magnitude relative to the rotating frame. More details
on the CR3BP can be found in Appendix B.

5.5.1 Problem data
The considered NRHO is selected among the L2 family of halo orbits in the

Earth–Moon system, resembling the expected NRHO for the LG [129]. The main
parameters of this periodic orbit are reported in Table 5.5. This chosen NRHO is
among the subset of stable halo orbits [209], which makes it suitable for long-term
orbiting platforms such as the LG. The trajectory in the synodic RF is plotted
in Fig. 5.11, where the spherical shape approximates the actual Moon size. The
trajectory is divided into L “ 8 legs of equal ToF, and the initial point of each leg is
marked with a red square, with a label that specifies the order of encounters. Note
that, without any loss of generality, the starting point is arbitrarily chosen as the
farthest point from the Moon. Internal nodes, marked by black crosses, further
divide each leg into segments of equal duration. Impulsive maneuvers are supposed
to be executed at both the starting point of each leg and at the internal nodes.

Table 5.5. Data of the reference NRHO.

Parameter Value Unit
Period 6.893 days
x amplitude 1.561 ˆ 104 km
y amplitude 3.774 ˆ 104 km
z amplitude 7.561 ˆ 104 km
CJ 3.041 -

The ROCP outlined in Eqs. (5.42) is now formulated to find out a station-keeping
control law for the selected NRHO, having as (mean value of) initial and final state
the position and velocity at the point labeled as “1” in Fig. 5.11. The sequence
of initial and final state of each i-th leg rµi, 0´ and rµi, Ni` is computed a priori,
selecting L states along the orbit equally spaced in time. That is, having T as the
period of the NRHO, one has

∆Ti “ ∆T “ T {L @i “ 1, . . . , L (5.84)

The initial and final points are defined as

rµ1, 0´ “
“

rrT
1, 0´ rvT

1, 0´

‰T
“ (5.85)

“ rµL, NL` “
“

rrT
L, NL` rvT

L, NL`

‰T (5.86)

At each node, the mean state is constrained to be equal to the value of the (reference)
periodic orbit, hence

rµi, 0´ “ ϕ ppi ´ 1q ∆T ; µ1, 0´, t1, 0q @i “ 2, . . . , L (5.87)
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Figure 5.11. Reference NRHO.

The initial dispersion of the spacecraft state at the departure point “1”, σr
1, 0´ “

σr
0 and σv

1, 0´ “ σv
0 , and the maximum state dispersion σr

i, NL´ “ σr
max and σv

i, NL´ “

σv
max allowed at each node, that is, at each red markers in Fig. 5.11, are selected

according to the recent work of Woffinden and Barton [129] and reported in Table 5.6,
which provides a solid justification of these figures in terms of correctness and safe
execution of Rendezvous, Proximity Operations, and Docking (RPOD). Null NEs
and PEs are considered for this test case.

The initial assigned covariance matrix rP1, 0´ is defined as

rP1, 0´ “ diag
”

`

σr
1, 0´

˘2
I3,

`

σv
1, 0´

˘2
I3

ı

(5.88)

The number of segments that each leg is divided into is selected to provide relatively
frequent control maneuvers along the orbit, that is one every approximately 5-7
hours. The control frequency is increased where the velocity is the highest (legs 4
and 5 of the NRHO) to counter the (possibly divergent) growth in state dispersion.
Note that, in order to provide a continuous control strategy that can be sequentially
applied at each revolution, the terminal maneuver of the last leg is not performed,
as the final state of a given revolution coincides with the initial state of the next
one, resulting in two distinct maneuvers imparted at the same position. Therefore,
the conditions in Eq. 5.32, which avoid duplicity of maneuvers at consecutive legs,
are amended by enforcing also

νL, NL
“ 03 (5.89)

KL, NL
“ 03ˆ6 (5.90)

The maximum magnitude rumax of each impulse maneuver is selected to have as
maximum total ∆v expenditure per revolution, with a 3σ confidence level, the one
used in the cited work [129], that is 20 m{s. By dividing this amount for the total
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number of impulsive maneuvers per revolution
řL

i“1 Ni, the value of rumax reported
in Table 5.6 is computed. Equations. (5.29) and (5.30) are also applied to the
covariance matrix PL, NL´ as

λ
`

P r
L, NL´

˘

´ pσr
maxq

2 13 ď 03 (5.91)
λ
`

P v
L, NL´

˘

´ pσv
maxq

2 13 ď 03 (5.92)

The standard deviations σr
w and σv

w used to compute the perturbation Q are to
be selected in base of the accuracy level of the dynamical model used for the ROCP.
In this instance, only dynamical perturbations on velocity are considered (σr

w “ 0)
and the value, rather than derived from relevant literature, is chosen as relatively
large, since the CR3BP model, which has strong simplifying assumptions, is adopted
for the complex dynamical environment of this specific application. The parameters
are summarized in Table 5.6.

Table 5.6. Problem data.

Variable Value Unit
L 8 -
Ni @i “ 1, 2, 3, 6, 7, 8 3 -
Ni @i “ 4, 5 4 -
∆T 20.678 hrs
rumax 0.769 m{s
β 5% -
µ “ µK{ pµK ` µCq 0.012 -
rr1, 0´ “ rrL, NL` r395 083, 0, ´71 423s km
rv1, 0´ “ rvL, NL` r0.000, ´0.118, 0.000s km{s
3σr

1, 0´ 20 km
3σv

1, 0´ 1 m{s
3σr

max 20 km
3σv

max 1 m{s
σr

w 1.216 ˆ 103 km
σv

w 1.025 m{s

The large-scale sparse nonlinear optimizer WORHP [202] was used for solving
the optimization problem.

5.5.2 Numerical results
In Fig. 5.12a, the NRHO with the trajectory computed through the formulated

ROCP is presented. Each leg is highlighted with a different color in chromatic order.
The state dispersion ellipsoids with a 95% of confidence are also plotted with an
enlarging factor of 50.

The main features of the CL solutions is summarized in Table 5.7, which presents
the deterministic (∆vd), stochastic (∆vs) and total (∆vtot) velocity increment, as
well as the mean terminal errors of the final position (∆rx

8, N8`, ∆ry
8, N8`, and

∆rz
8, N8`) and velocity (∆vx

8, N8`, ∆vy
8,N8`, and ∆vz

8, N8`) after one revolution. The
final standard deviations for position (σx

8, N8`, σy
8, N8`, and σz

8, N8`) and velocity
(σvx

8, N8`, σ
vy

8, N8`, and σvz
8, 3`) are also included as comparison withe MC solution. The

total ∆vd, although negligible, is not exactly null; this is due to the tolerances of
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Figure 5.12. Trajectory resulting from the ROCP with 95%-confidence position ellipses.

the constraints in the optimization algorithm settings. By implementing stricter
tolerances, this minor numerical concern can be prevented.

An MC analysis of 100 000 independent runs was carried out to verify the accuracy
of the estimated probability distribution at each step of the ROCP solution. Starting
from a random initial state x0´ „ N

´

rµ0´, rP0´

¯

, each trajectory is propagated
for one revolution using the feedback control law in Eq. (5.3). The stochastic
fourth-order Runge-Kutta integration method for SDE discussed in the work of N.
J. Kasdin [85] was used to propagate each MC trajectory. Numerical results are
reported in Table 5.7 to allow for a comparison between the MC and ROCP solution.
It is possible to observe how state and dynamical errors are mitigated in presence of
the CL control law. It should be noted that all MC values for the CL case are in
reasonable agreement with the values estimated in the ROCP with the UT.

The MC campaign of the trajectory in Fig. 5.12a is presented in Fig. 5.12b.
The ellipsoids computed from the MC analysis are also plotted in dashed dark gray
lines. Good agreement with the covariance ellipsoids found by solving the ROCP in
Eqs. (5.42) is shown, as the MC and ROCP ellipses well overlap along the trajectory.
This is quantitatively confirmed by the plots in Figs. 5.13 andì 5.14, where the
standard deviations of position and velocity before each impulse (that is, the squared
diagonal terms of Pi,k´ matrices) are plotted for each impulsive maneuver. After the
perilune, the UT loses accuracy in propagating the uncertainty, although confirming
a reasonable alignment with the MC values, with maximum errors around 10%.

In Figs. 5.15a and 5.15b, a different visualization of the MC analysis is shown.
The difference vectors for position and velocity, ∆rptq and ∆vptq, between the state
of a single MC run and the reference NRHO is computed at every epoch t for one
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Table 5.7. Comparison between the solution of the ROCP and the related MC analysis.

Quantity ROCP MC Unit
∆vtot 3.027 3.142 m{s
∆vd 1.693 ˆ 10´2 1.693 ˆ 10´2 m{s
∆vs 3.010 3.125 m{s
∆rx

8, N8` - 0.205 km
∆ry

8, N8` - 5.713 ˆ 10´2 km
∆rz

8, N8` - 0.123 km
∆vx

8, N8` - 1.105 ˆ 10´3 m{s
∆vy

8, N8` - 4.575 ˆ 10´4 m{s
∆vz

8, N8` - 1.890 ˆ 10´4 m{s
σx

8, N8` 4.636 4.728 km
σy

8, N8` 3.072 3.308 km
σz

8, N8` 4.557 5.432 km
σvx

8, N8` 1.776 ˆ 10´2 1.960 ˆ 10´2 m{s
σ

vy

8, N8` 2.537 ˆ 10´2 2.304 ˆ 10´2 m{s
σvz

8, N8` 9.824 ˆ 10´3 1.132 ˆ 10´2 m{s

revolution, as

∆rptq “ rMCptq ´ µrptq (5.93)
∆vptq “ vMCptq ´ µvptq (5.94)

where µrptq and µvptq are respectively the position and velocity of the reference
NRHO at time t. The evolution in time of the norm of ∆rptq and ∆vptq for every MC
run is plotted in the figures, where also the maximum eigenvalues of the two related
covariance matrices for position and velocity (computed considering the reference
NRHO as mean state) are included. In the plots, the values of the maximum allowed
σr

max and σv
max, together with the related 3-sigmas values, is traced as threshold.

The initial value of the maximum position eigenvalue is close to the red dotted line
as expected (initial dispersion is set as the maximum value, as in Table 5.6), while
the maximum velocity eigenvalue starts well below its limit as the curve begins after
the first impulse, thus with an already shrunk dispersion (effect of the maneuver
as in Eq. (5.11)). The most limiting effect of the control law against the spread
of state uncertainty takes place in proximity of the perilune, as in this phase the
velocity dispersion reaches its peak. At the end of leg 4, the maximum velocity
eigenvalue approaches the allowed limit but still satisfies the associated constraint.
Consequently, the maximum position eigenvalue at the same moment remains well
below the threshold due to the velocity dispersion being the primary limiting factor.
In leg 5, the maximum velocity eigenvalue exceeds instead the threshold at the
beginning since the constraints are valid only at the end of each leg, confirming
however the tendency of the velocity dispersion to spread up at perilune.

5.6 Open-loop and closed-loop performance comparison
The performance capabilities of the CL formulation were discussed and analyzed

in the previous test cases (Sec. 5.4 and 5.5), demonstrating significant improvements
in robustness over the deterministic OCP solution. However, it is also worthwhile
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Figure 5.13. Covariance matrices trace comparison of the in-plane dimension.

to evaluate the enhancements obtained from the OL formulation. Therefore, this
section presents a comparative analysis between the proposed impulsive OL and CL
ROCP, focusing on final state dispersion and control effort for the same test case.

5.6.1 Comparison formulation
The trajectory considered for this comparison is the test case for the OL ROCP

in Sec. 4.2, that is, the non-dimensional transfer from two concentric orbits. The
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same parameters are used in this comparison, as in Table 4.1, with the exception of
the δv incremental parameter η, which is not considered in this comparison, as later
explained.

A fundamental adjustment to the CL formulation for a coherent comparison
involves including the ballistic arc duration, δtk, in the optimization variables vector,
rather than assuming arcs of equal duration ∆T {N . This is essential because arcs
with variable durations are considered for the OL control. Consequently, the single-
leg CL ROCP in Eq. 5.23 must be updated to account for the new optimization
variables vector.

Θ “ t∆tk, µk´, νk, Kk, @k “ 0, . . . , Nu (5.95)

which results as a vector of dimension pn2 ` 3n ` 2qpN ` 1q{2. A further constraint
on the total ToF is consequently added, with the same value of the OL test case.

Another fundamental adjustment for the CL problem is that, since variable ToF
is now assumed, final mean state µN` is no longer fixed, but rather equal to the
state rxf in Eq. (4.22). The initial mean state µ0´ is instead equal to the fixed state
rxi in Eq. (4.20). No random perturbation and navigation errors are included in
both the formulations.

The comparison is conducted as follows: the CL ROCP is initially performed
selecting arbitrary values for the maximum standard deviations of position and
velocity, as to comply with constraints in Eqs. (5.16) and (5.17). Once the CL
solution is obtained, the resulting ∆vtot, sum of deterministic and stochastic ∆v, is
selected as maximum threshold for the control effort of the OL ROCP. This approach
ensures that the OL solution is constrained to use a control effort that does not
exceed the total control effort used in the CL ROCP with a p “ 1 ´ β confidence
level, evaluating whether the OL approach can achieve comparable robustness and
performance employing the same control effort.

The parameters for the comparison are summarized in Table 5.8, having first
the parameters that are common in the two formulations, and then the ones specific
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Figure 5.15. Difference from the MC runs and the reference NRHO.

for each of the two. For the CL control, the final standard deviations are selected as
equal to the initial ones.

5.6.2 Numerical results
In Fig. 5.16, the trajectories obtained from the two robust methodologies are

plotted together with the MC runs (100 000) and the position ellipsoids, with 95%
confidence level, derived from the MC analysis and UT. Table 5.9 compares the main



5.6 Open-loop and closed-loop performance comparison 91

Table 5.8. Problem data.

Variable Value Unit
∆rtmax 7 -
rumax 0.11 -
N 3 -
µ 1 -
r1 1 -
r2 1.2 -
θ1 0 rad
θ2 π rad

CL
β 5% -
rµ0´ rxi -
rµN` rxf -
σr

0´, σv
0´ 1.000 ˆ 10´5 -

σv
0´ 1.000 ˆ 10´5 -

σr
N` 1.000 ˆ 10´5 -

σv
N` 1.000 ˆ 10´5 -

OL
∆rvmax ∆vtot from ROCP-CL -
σr

0 1.000 ˆ 10´5 -
σv

0 1.000 ˆ 10´5 -

features of the two solutions. The cumulative velocity change ∆vtot is intended to
be, for the OL case, the sum of the deterministic maneuvers, while, in the CL case,
the sum of the deterministic and stochastic ∆v as expressed by Eq. (5.22). Similarly,
the maximum eigenvalues for position and velocity λr

max and λv
max correspond to the

final covariance matrix PN in the OL case, and PN` in the CL case. Both the plots
and the table shows a significant improvement in robustness in the CL formulation,
as the final position and velocity eigenvalues are 2-3 orders of magnitude smaller
than the OL solution. It is important to note that, in both cases, the algorithm
selects the maximum ToF, as expected. Additionally, only minor variations in the
individual durations of the ballistic arcs are observed between the two cases.

The magnitudes of the impulsive maneuvers, for the OL case, and the deter-
ministic components of the impulsive maneuvers, for the CL case, are reported in
Table 5.10, together with the angle ϕ.
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Figure 5.16. Nominal solutions of OL and CL formulations, together with MC trajectories
(in gray) and corresponding position ellipses (dashed red line) and UT position ellipses
(solid line of the leg color).
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Table 5.9. Comparison between the solution of the ROCP in OL and CL formulation.

Quantity ROCP-OL ROCP-CL
∆vtot 0.348 0.348
∆t1 1.835 1.794
∆t2 2.856 2.852
∆t3 2.309 2.354
∆ttot 7.000 7.000
λr

max 1.696 ˆ 10´3 6.045 ˆ 10´6

λv
max 9.667 ˆ 10´4 1.431 ˆ 10´6

Table 5.10. Comparison between the solution of the ROCP in OL and CL formulation for
the magnitudes and directions of the impulsive maneuvers.

Maneuver ROCP-OL ROCP-CL
}u} ϕ }ν} ϕ

#1 3.384 ˆ 10´2 258.463 3.738 ˆ 10´2 257.238
#2 1.022 ˆ 10´1 345.152 8.287 ˆ 10´2 12.738
#3 1.100 ˆ 10´1 104.766 9.825 ˆ 10´2 87.640
#4 1.025 ˆ 10´1 237.834 1.124 ˆ 10´1 234.679
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Chapter 6

Closed-loop methodology for
low-thrust trajectories

6.1 General formulation
Insofar, only bounded-magnitude impulsive trajectories have been considered for

robust optimization. Goal of this chapter is to formulate an ROCP for continuous
low-thrust transfer with fixed initial and final state, described as position and velocity,
ToF, and control maneuvers bounded in magnitude. Minimization of the propellant
consumption is sought, while the state dispersion is fixed for the initial state and
limited at the arrival.

As in Chapter 5, the spacecraft is modeled as a point-mass object and its
state is defined in terms of the Cartesian position and velocity components, as
x1ptq “

“

rptqT vptqT
‰T . However, since a low-thrust model is here adopted, mass

mptq P R` is also included as a state variable. Thus, hereafter the augmented (or
complete) state xptq “ rx1ptq mptqs

T
P Rn, n “ 7, composed by the Cartesian state

and mass, is adopted.
The initial and final transfer epochs are denoted as ti and tf , respectively. The

trajectory is assumed to be comprised of N arcs of equal duration, where, differently
from the impulsive method, the thrust remains constant in both magnitude and
direction throughout each arc. A uniform time grid is thus defined as

rti “ t0 ď t1 ď ¨ ¨ ¨ ď tN “ rtf (6.1)

having again ∆tk “ tk ´ tk´1 “ prtf ´ rtiq{N , @k “ 1, . . . , N .
For the sake of conciseness, the state at time tk is denoted as xptkq “ xk.

Analogously, rk, vk, mk are position, velocity, and mass at time tk, respectively.
Note that in this model a continuous thrust is considered; hence, the state is now
continuous at grid nodes. The constraint on the thrust }Tk} ď rTmax is applied to
ensure that the required thrust complies with the technological limitations of the
engine.

6.1.1 Linear control law for piece-wise constant thrust arcs
The thrust Tk P R3, imparted by the engines, is assumed constant in direction and

magnitude during the arc. Similarly to the impulsive case, the proposed approach is
based on the definition of a linear CL control used to evaluate the thrust vector for



6.1 General formulation 95

each arc as

Tk “ Sk `Kk

`

x1
k´1 ´ µ1

k´1
˘

@k “ 1, . . . , N (6.2)

where Sk P R3 represents the deterministic component of the thrust, while the CL
correction is Kk

`

x1
k´1 ´ µ1

k´1
˘

, which depends on the difference between the actual
Cartesian state x1

k´1 “ x1ptk´1q at the beginning of the k-th arc and its mean value
µ1

k´1 “ E
“

x1
k´1

‰

, multiplied by a feedback gain matrix Kk P R3ˆ6. Note that the
trajectory is guided towards the reference mean by leveraging only on position and
velocity as driving factors, rather than the full augmented state xptq, which would
also comprise the mass mptq.

6.1.2 Perturbed state propagation
In the case of low-thrust mission, the spacecraft (perturbed) dynamics is repre-

sented by a set of SDEs, defined as the deterministic EoM, as in Eq. (2.54), with
the additional presence of the spacecraft mass. Hence,

dx “ fpxptq, Tk, tqdt ` gpxptq, Tk, tqdw @t P rtk´1, tks @k “ 1, . . . , N
(6.3)

where, f : R7 ˆ R ÞÑ R7 is the drift term, g : R7 ˆ R ÞÑ R7 ˆ Rnw is the diffusion
term. For the sake of simplicity, nw “ n “ 7 is considered hereafter.

As done in Sec. 5.1.2, for the purpose of UT propagation, the effect due to
the diffusive term in Eq. (6.3) over each k-th arc of trajectory, that represents
the cumulative effects of stochastic perturbations, is modeled as an instantaneous,
additive, Gaussian perturbation with zero mean and covariance Qk, applied at the
end of the arc. The matrix Qk is estimated for each arc along a reference trajectory
obtained from the optimal deterministic (i.e., non-robust) solution, following the
same approach outlined in Sec. 5.1.2 and Appendix A. As a major difference from the
impulsive case, where the same average matrix sQ was added at the end of each arc, a
more accurate estimation of the stochastic disturbance is required; hence, a different
Qk is used for each arc. In this respect, the function g px, T , tq is approximated as
a constant matrix G P R7ˆ7, as

g px, T , tq “ G “

»

–

pσr
wq

2 I3 03ˆ3 03ˆ1
03ˆ3 pσv

wq
2 I3 03ˆ1

01ˆ3 01ˆ3 pσm
w q2

fi

fl (6.4)

where σr
w, σv

w, and σm
w P R model the variance of the position, velocity, and mass

random disturbance, respectively.
Given the CL control expression for the thrust vector in Eq. (6.2), uncertainty

propagation tools prove inadequate for estimating the final state. This limitation
arises as the EoM, formulated by the low-thrust dynamical system in Eq. (6.3)
with the control law specified in (6.2), involves a term dependent on the actual
initial state, making the differential equations dependant on the initial state. This
unique characteristic introduces a level of complexity in the propagation of stochastic
moments, deviating from the more straightforward nature of a pure ballistic arc.
The presence of a term dependent on the initial state makes many conventional
techniques infeasible or exceedingly challenging for this specific scenario. Hence,
to effectively propagate the first two stochastic moments of the state and the CL
control, essential for solving an SOCP, this work employs a modified version of the
UT, here outlined.
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Let the initial state be xk´1 „ N pµk´1, Pk´1q, k “ 1, . . . , N , where µk´1 “

E rxk´1s and Pk´1 “ Cov rxk´1s. The CL control law of Eq. 6.2 is defined by
parameters Sk and Kk. Eventually, the mean µk and the covariance Pk of the state
xk at time tk are evaluated as follows:

1. generate a set of 2n ` 1 SPs X i and the related weights ci for xk´1

X 0 “ µk´1 (6.5)
X j “ µk´1 ` p

a

pn ` κqPk´1qj @j “ 1, . . . , n (6.6)
X n`j “ µk´1 ´ p

a

pn ` κqPk´1qj @j “ 1, . . . , n (6.7)
c0 “ κ{n ` κ (6.8)

ci “
1

2pn ` κq
@i “ 1, . . . , 2n (6.9)

2. for each SP the thrust vector is computed as

T0 “ Sk (6.10)
Ti “ Sk `Kk

`

X 1
i ´ µ1

k´1
˘

@i “ 1, . . . , 2n (6.11)

where X 1
i P Rn´1 corresponds to the SP X i excluding the mass term, mirroring

the structure of x1
k´1 in relation to xk´1. Note that X 1

2n´1 “ X 1
2n “ µ1

k´1,
implying that T2n´1 “ T2n “ T0. This equivalence arises because, for these
two specific values of i, the corresponding SPs exhibit variations solely in mass.
Consequently, their forms without the mass term are precisely identical to the
mean position and velocity µ1

k´1.
The covariance P T

k of the thrust vector Tk is evaluated as

P T
k “

2pn´1q
ÿ

i“1

1
2pn ´ 1q

pTi ´ SkqpTi ´ SkqT (6.12)

since E rTis “ Sk. The pivotal thrust vector T0 is intentionally excluded from
the computation of P T

k to align with the choice of κ “ 0 in the state UT
propagation. The thrust vectors T2n´1 and T2n are likewise omitted from the
computation, given that both are equal to T0.

3. the SPs X i are propagated to obtain the new set of samples Y i, i “ 0, . . . , 2n.
The propagation is performed using the deterministic component of the EoM
in Eq. (6.3), as

dx “ fpxptq, Ti, tqdt @t P r0, ∆tks @i “ 0, . . . , 2n (6.13)

The propagated SPs are thus

Y i “ ϕ p∆tk; X i, 0q @i “ 0, . . . , 2n (6.14)

The final mean state µk and its covariance matrix Pk are thus computed as

µk “

2n
ÿ

i“0
cjY i (6.15)

Pk “

2n
ÿ

i“0
cjpY i ´ µkqpY i ´ µkqT (6.16)
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The propagation of the mean state and the covariance matrix of the state and thrust
vector is thus summarized by the expression

␣

µk, Pk, P T
k

(

“ F pµk´1, Pk´1, Sk, Kk, ∆tk; Qkq @k “ 1, . . . , N (6.17)

Here, Fp¨q embodies the functionality of any uncertainty propagation tool proficient
in delivering the control covariance, as well as the propagated mean and covariance of
the state based on the control parameters, time interval, and perturbation parameters.

6.1.3 Boundary constraints
For the low-thrust case, the initial stochastic moments are defined similarly to

the impulsive ROCP as

µ0 “ rµ0 “ rrµr
0, rµv

0, rµm
0 s (6.18)

P0 “ rP0 (6.19)

with rµr
0, rµv

0 and rµm
0 as the assigned mean position, velocity and mass respectively.

The final mean state is instead simply enforced with

µ1
N “ rµ1

N “ rrµr
N , rµv

N s (6.20)

as no constraints are imposed on the final mass to ensure that there are no limitations
on the trajectory in terms of mass consumption. By selecting σr

N and σv
N as

user-defined parameters for the standard deviation of final position and velocity
respectively, the constraints are enforced on the eigenvalues of the final covariance
matrix P 1

N “ Cov rx1
N s, following the same formulation of the impulsive case as in

Eqs. (5.16) and (5.17)

λ pP r
N q ´ pσr

N q
2 13 ď 03 (6.21)

λ pP v
N q ´ pσv

N q
2 13 ď 03 (6.22)

where P r
N and P v

N are the two 3 ˆ 3 sub-matrices of P 1
N for position and velocity,

constituting the diagonal blocks of PN . As discussed in Sec. 5.1.3, this approach
prioritizes constraining the magnitude of state dispersion, regardless of the values of
its components.

6.1.4 Cost function and control constraints
The aim of the optimization is to minimize the propellant consumption given by

řN
k“0 }Tk}∆tk{c, which, under the assumption of uniform time grid and constant

Isp, is proportional to the cumulative thrust magnitude, that is

min
Tk

J “

N
ÿ

k“0
}Tk} (6.23)

Similarly to the CL impulsive case, the thrust control vector is a stochastic
variable. Thus, any quantity which is dependant on Tk requires a numerically
tractable formulation to be included in the optimization algorithm. In this respect,
the cost function of Eq. (6.23) must be read in a probabilistic sense as in Eq. (2.57).
Assuming the state x1

k´1 follows a multivariate Gaussian distribution, the thrust
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vector Tk, governed by the feedback control law in Eq. (6.2), can, in turn, be consid-
ered a random Gaussian vector, i.e., Tk „ N

`

Sk, P T
k

˘

. Consequently, the squared
norm of the control, }Tk}2, follows a non-general central χ-square distribution [210].
This assumption holds true for degrees of position and velocity dispersion that align
with the typical navigation requirements of space missions. The justification for this
assumption is based on the efficacy of the proposed method, as the central objective
of the designed robust control is to effectively constrain this dispersion below the
allowable thresholds.

The theorem from Ridderhof et al. [103], already adopted for the impulsive
ROCP in Sec. 5.1.4, provides a strong bound for the p-th percentile of a χ-square
distribution. By applying this theorem with 1 ´ β again as the compliance rate, the
chance-constraint on the control magnitude bound,

Pr
!

}Tk} ď rTmax

)

ě α @k “ 1, . . . , N (6.24)

can be rewritten as

}Sk} ` γpβq

b

λmax
`

P T
k

˘

ď Tmax @k “ 1, . . . , N (6.25)

where γpβq “

b

2 log 1
β `

?
w, where w “ pn ´ 1q{2 is the dimension of Tk. The term

}Sk} “ Td, k is the norm of the deterministic component of thrust vector control Tk

and γpβq

b

λmax
`

P T
k

˘

“ Ts, k is a measure (up to a confidence level 1 ´ β) of the
control effort due to the CL term.

The theorem also allows to express the merit index Eq. (6.23) in a straightforward
form, that is

J “

N
ÿ

k“1

ˆ

}Sk} ` γpβq

b

λmaxpP T
k q

˙

(6.26)

where the first term of Eq. (5.22) accounts for the cumulative deterministic cost,
while the second term measures the CL control effort, that depends on the dispersion
of the control vector through the matrix P T

k .
It is noteworthy to recall that with this formulation the optimization algorithm

evaluates the most efficient trade-off between the overall deterministic thrust ex-
penditure, denoted as Td “

řN
k“1 Td, k, and the CL control term Ts “

řN
k“1 Ts, k.

This strategic flexibility aims to diminish the overall thrust magnitude, expressed
as Ttot “ Td ` Ts. This distinctive feature stands as the primary advantage of
the proposed approach over traditional methods that involve deriving the nominal
trajectory first and subsequently searching for a stabilizing control. The efficacy of
the proposed approach is anticipated to enhance, particularly in scenarios where the
system dynamics exhibit heightened sensitivity to external disturbances, such as
strong nonlinearities or rapidly time-varying properties.

The low-thrust ROCP is thus formulated as

min
Θ

Eq. (6.26) (6.27a)

s.t. Eqs. (6.17) ´ (6.22), (6.25) (6.27b)

where Θ P RNΘ is the vectore of problem unknowns, that is composed by

NΘ “ N rn ` pn ´ 1q{2 ` pn ´ 1q2{2s “ Npn2 ` 3n{2q (6.28)
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optimization variables, which encompasses the n elements of µk, the pn ´ 1q{2
components of the deterministic control Sk and the pn ´ 1q2{2 elements of the gain
matrix Kk. The vector is thus written as

Θ “ tµk, Sk, Kk, @k “ 1, . . . , Nu (6.29)

having that µk for k “ N is fixed to the assigned final mean state as in Eq. (6.20).

6.2 Case study: Earth–Mars transfer
In this section, the application of the proposed low-thrust methodology is explored

by considering a time-fixed heliocentric single-leg Earth–Mars transfer in Keplerian
motion, which is an established case study employed in analogous works [120, 102].
The choice of this mission serves to evaluate and demonstrate the effectiveness of
the proposed approach within a familiar benchmark scenario.

6.2.1 Problem data
Considering the ecliptic J2000 RF centered on the Sun, the initial mean state

rµ0 is defined based on the Earth’s position and velocity at the initial time, with the
assumption of zero excess hyperbolic velocity. For the continuous thrust heliocentric
Keplerian motion, the deterministic EoM are simply

dx “

»

–

vptq
´µ@rptq{r3 ` Tk{mptq

´}Tk}{ pg0Ispq

fi

fl dt @t P rtk´1, tks @k “ 1, . . . , N (6.30)

where g0 is the standard acceleration of gravity and Isp is the specific impulse of the
engine. The state covariance at departure is defined as

rP0 “ diag
”

pσr
0q

2 I3, pσv
0q

2 I3, pσm
0 q

2
ı

(6.31)

where σr
0, σv

0 and σm
0 are the user-defined parameters for initial position, velocity

and mass standard deviation respectively.
The terminal dispersion is constrained in accordance with Eqs. (5.16) and (5.17),

contingent upon establishing the maximum standard deviations for position and
velocity, denoted as σr

N and σv
N . Essential problem parameters, including the

confidence level β, the number of arcs N , and the maximum thrust magnitude
Tmax, are detailed in Table 6.1. The initial dispersion for position and velocity are
intentionally set as relatively large. This deliberate choice aims to demonstrate the
efficacy of the method in ensuring the satisfaction of severe final constraints even
when faced with significant initial inaccuracies. In contrast, the initial standard
deviation of the mass is deliberately chosen to be substantially null. This decision
is based on the recognition that the initial mass of a spacecraft is a well-known
and accurately determined quantity at launch. The disturbance term for the mass,
denoted as σm

w , is assumed to be null in this specific application. However, it can
be set as different from zero in scenarios where a source of uncertainty in the mass
evolution exists, such as variations in the specific impulse of the engine over time.

All numerical computations were made non-dimensional by scaling lengths, veloc-
ities, and times with respect to rconv “ }rr0}, vconv “ }rv0}, and tconv “ rconv{vconv.

The open-source large-scale sparse nonlinear optimizer WORHP [202] was used
for solving the optimization problem.
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Table 6.1. Problem data.

Variable Value Unit
tf 358.790 days
rTmax 1 N
β 5% -
N 30 -
Isp 2000 s
µ@ 132712440018 kg3{s2

rr0 r´140699693, ´51614428, 980sT km
rv0 r9.775, ´28.078, 4.338 ˆ 10´4sT km{s
rm0 1000 kg
rrN r´172682023, 176959469, 7948912sT km
rvN r´16.427, ´14.861, 9.215 ˆ 10´2sT km{s
σr

0 1.499 ˆ 106 km
σv

0 94.102 m{s
σm

0 1.000 ˆ 10´5 kg
σr

N 1.499 ˆ 105 km
σv

N 9.410 m{s
σr

w 3.351 ˆ 106 km
σv

w 210.419 m{s
σm

w 0.000 kg

6.2.2 Numerical results
Figure 6.1 visually depicts the trajectory and covariance ellipsoids on position for

both the deterministic OCP solution (Fig. 6.1a) and the CL solution (Fig. 6.1b) in
the x-y plane. The OCP solution, similarly to test case A (see Sec. 5.4), is obtained
forcing the elements ofKk to zero and removing the constraints on the final covariance
of the state. Once the OCP solution is computed, the state uncertainty along the
trajectory is estimated separately with the modified UT. It is appearent that the CL
control effectively reduces the dispersion of the state along the trajectory, especially
at the arrival point. The numerical results for both solutions are summarized in
Table 5.7, providing insights into control efforts, including the final average mass
(µm

N ), and the ˘3σ final mass (m3σ` and m3σ´). Additionally, the mean terminal
errors on mean in-plane position and velocity (∆rx

N , ∆ry
N , ∆vx

N , and ∆vy
N ) and the

diagonal terms of the final covariance matrix (σx
N , σy

N , σvx
N , σ

vy

N , and σm
N ) for the

in-plane components are reported. The augmented robustness offered by the CL
control comes at the expense of approximately 10 kg of extra propellant on average
and up to about 80 kg for the worst case. These observations hold true for a 95%
confidence level, considering the perturbation magnitude detailed in Table.

To validate the accuracy of the estimated probability distribution at each step for
both the CL and OCP cases, an MC analysis comprising 100 000 independent runs
was conducted. Starting with a random initial state x0 „ N prµ0, rP0q, each trajectory
was propagated towards the final state using the feedback control law from Eq. (6.2)
for the CL case and solely the deterministic component Sk for the OCP case. The
propagation of the SDEs in Eq. (6.3) was executed using the Stochastic Fourth-order
Runge-Kutta method, as discussed in the work of N. J. Kasdin [85]. The numerical
results, summarized in Table 6.2, facilitate a comprehensive comparison between
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(b) CL solution.

Figure 6.1. Nominal spacecraft trajectories with 95%-confidence position ellipses.

the MC solutions and the solution of the ROCP presented in Eqs. (6.27). It is
noteworthy that all MC values align well with the ROCP solution, affirming the
robustness and reliability of the proposed methodology. In particular, the variances
at final time are in good agreement with the P matrices of the OCP solution, and the
same consideration applies to the mean error on the terminal state. An inaccuracy
for the vy standard deviation of about 50% is however noticed in the CL case. The
trajectories from the MC campaign solutions are illustrated in Fig. 6.2, revealing
a commendable alignment with the covariance ellipsoids obtained by solving the
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Table 6.2. Comparison between the solution of the ROCP and the related MC analysis in
the OCP and CL cases.

Quantity OCP OCP (MC) ROCP-CL ROCP-CL (MC) Unit
µm

N 628.165 628.163 612.071 611.170 kg
m3σ` 628.165* 628.193* 640.172* 642.011* kg
m3σ´ 628.164* 628.133* 583.969* 580.328* kg
σm

N 1.000 ˆ 10´5 1.002 ˆ 10´5 9.367 10.280 kg
∆rx

N - 6.191 ˆ 105 - 359.112 km
∆ry

N - 1.100 ˆ 105 - 887.948 km
∆vx

N - 53.618 - 0.503 m{s
∆vy

N - 54.801 - 1.030 m{s
σx

N 1.720 ˆ 107 1.595 ˆ 107 1.304 ˆ 105 1.332 ˆ 105 km
σy

N 1.491 ˆ 107 1.843 ˆ 107 1.440 ˆ 105 1.446 ˆ 105 km
σvx

N 905.970 1.376 ˆ 103 8.292 10.392 m{s
σ

vy

N 1.411 ˆ 103 1.713 ˆ 103 9.390 12.176 m{s
* These values are computed as µm

N ˘ 3σm
N .

stochastic optimal control problem in Eqs. (6.27). This visual comparison underscores
the consistency and accuracy of the proposed approach in capturing the stochastic
behavior of the system. The covariance matrices Pk empirically computed in the
MC analysis are compared to those obtained during the robust optimization that
uses the modified UT tool for propagating the state uncertainty. The diagonal terms
of either matrix are compared in Figs. 6.3 and 6.4 for the OCP and CL solutions.
According to the attained results, UT succeeds in propagating the state distribution
very accurately in the CL case, where the displacement from the nominal trajectory
is kept very small and thus the state distribution is well approximated by a Gaussian
one. On the other hand, in the OCP case, the MC trajectories may significantly
deviate from the nominal solution, especially at the end of the transfer, and the
estimates of covariance matrix are slightly less accurate. This discrepancy is also
evident in Fig. 6.2a, where the position ellipses computed in the MC analysis exhibit
significant divergence from the estimated ellipses indicated by the black dotted
lines. This is due to the fact that, without a control term that limits the state
dispersion at each maneuver, the probability distribution progressively spreads up
and deviates from a Gaussian distribution, reducing the accuracy in propagating the
state distribution. Considerations for the out-of-plane dimension are omitted, given
that the trajectory is largely aligned with the ecliptic plane, and the distribution
along the z axis can be easily tracked.

The empirically computed covariance matrices Pk utilizing the MC approach
are subsequently juxtaposed with those derived during the optimization process
employing the modified UT for state uncertainty propagation. The comparison is
particularly focused on the diagonal terms of both matrices, as illustrated in Figs. 6.3
and 6.4 for both the OCP and CL solutions. The results highlight the effectiveness of
the adopted technique in accurately propagating the state distribution, especially in
the CL case where deviations from the nominal trajectory are minimal, resulting in
a well-approximated Gaussian state distribution. Conversely, in the OCP case, the
MC trajectories exhibit substantial deviation from the nominal solution, particularly
towards the end of the transfer. Consequently, the estimates of the covariance
matrix are less accurate in this scenario. Figure 6.5 presents the norm of the
deterministic component of the control Sk, along with the spacecraft mass over
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Figure 6.2. MC trajectories (in gray) with corresponding position ellipses (dashed red line)
and UT position ellipses (solid black line).

time mptq, normalized with respect to the initial mass mpt0q. The trend in the
(normalized) average mass µm{rµm

0 is also depicted. The grey lines represent the
mass evolution for each MC run, plotted alongside the average mass computed from
the MC and the related 3σ error bars, revealing a good match with the estimated
average mass. These plots provide insights into the behavior of the control system
and the evolution of the spacecraft’s mass over time. Figure 6.5b highlights a crucial
observation concerning the deterministic control in the CL solution. In contrast to the
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Figure 6.3. Covariance matrices trace comparison of the OCP case.

OCP case, the deterministic portion of the thrust norm does not reach the maximum
admissible value rTmax. The nominal control design ensures the preservation of a
margin for necessary corrective actions to meet the final covariance constraint. By
incorporating this margin, the system is better equipped to handle uncertainties
and variations, thereby enhancing the overall robustness of the trajectory. The
margin is not uniformly distributed over all burn arcs, as it would be in the case of
a sub-optimal, empirical design. Instead, it accommodates expected uncertainties as
well as the actual need for corrections.
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Figure 6.4. Covariance matrices trace comparison of the CL case.

An MC analysis of the thrust magnitude }Tk} is visually presented in Figure 6.6,
where the grey lines represent the thrust profiles for each MC run, and the dotted red
line is the rTmax threshold. Notably, the thrust magnitude is consistently maintained
below the maximum allowed limit of 1 N. However, due to the chance-constrained for-
mulation of this bound, there is a possibility of violation at a rate of β. Nevertheless,
as observed in the figure, no violation is evident.

Figure 6.7 shows the comparison of the standard deviation of mass σm between
the MC value and the value estimated within the ROCP. The graph reveals a
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Figure 6.5. Norm of the deterministic thrust and average mass evolution along trajectory.

maximum difference on the order of 1 kg. This discrepancy arises from the final
distribution of the mass at the end of each arc, which slightly deviates from a normal
Gaussian distribution, which is the probability distribution best-tracked by UT.
Note that, the mass distribution exhibits a subtle negative skewness with respect to
the mean value, as evident in Fig. 6.5b. The MC values tend to spread wider when
below the mean mass rather than above, indicating this negative skewness. This
skewness is a consequence of a slight positive skewness of the thrust magnitude with
respect to }Sk}, as the stochastic term Kk

`

x1
k´1 ´ µ1

k´1
˘

generally increases the
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Figure 6.6. MC analysis of the thrust magnitude.

thrust magnitude }Tk}. Consequently, a greater thrust magnitude corresponds to a
greater mass consumption. This deviation from a normal Gaussian distribution is
likely to be the root cause of the aforementioned discrepancy in σm.
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Figure 6.7. Standard deviation of mass comparison for the CL case.
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Chapter 7

Conclusions

This thesis investigated methodologies of robust optimal control problems for
space trajectory design applications. Two categories of methods were considered:
Open-Loop (OL) or feedforward robust control and Closed-Loop (CL) or feedback
robust control. The first approach consists in an optimized deterministic control
law to be imparted on the spacecraft, without any consideration of the ongoing
trajectory. The latter is a control law that depends on the estimated state of the
spacecraft during its flight and thus takes into account the actual deviation from the
nominal trajectory. In CL robust design, the parameters of the control law required
to compute the maneuvers on-board are optimized a priori, rather than optimizing
directly the maneuvers as in the OL case.

An OL methodology has been proposed for the problem of an impulsive transfer
from a given initial state to a target state. Here the optimization variables are
the impulsive control vectors and the duration of the ballistic arcs between the
maneuvers. Once a Gaussian distribution of the initial state is defined, the goal of
the optimization is to minimize the state dispersion at the arrival, quantified with
the trace of the final covariance matrix (although other formulations are possible),
subject to a maximum threshold for the magnitude of the single control vectors,
total magnitude, and total ToF. Specifically, the maximum total control magnitude
can be selected by adding an adjustable margin to the control effort derived from an
equivalent deterministic OCP; this latter, having as cost function as the total control
magnitude and identical constraints on single control magnitudes and total ToF.
The unscented transform was adopted to propagate the state uncertainty through
the ballistic arcs. As test case, an impulsive rendezvous was considered, showing the
ability of the OL robust control to roughly halve the final state dispersion with a
marginal increase in fuel consumption.

Next, a CL robust optimization algorithm for impulsive transfers was conceived,
formulated, and tested. A linear feedback control law was adopted with the aim of
countering the state dispersion during the flight, thus having as input the real-time
state right before the impulsive maneuver. Analytical expressions were obtained
to compute the effect of the CL impulsive control on the covariance matrix of the
state, while the unscented transform was resorted to propagate the state distribution
through the ballistic arcs. Stochastic perturbations on the EoM, in order to model
inaccurate knowledge of the dynamical system, are introduced via an instantaneous
covariance matrix that is added at the end of the arc to the estimated state covariance
matrix. Chance-constraint formulations are instead used for the cost function,
representing a stochastic estimate of the total control magnitude with a given level of
confidence, and a constraint on the control magnitude of the single impulse. Further
constraints are enforced on the state uncertainty for critical epochs of the mission
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(e.g., arrival or close encounter with an asteroid) via a maximum threshold for the
position and velocity eigenvalues of the covariance matrix (although alternative
constraints on the state dispersion are possible). Two distinct test cases were
presented in this regard. The first concerned an Earth–asteroid–Earth trajectory
in the context of the future JAXA mission DESTINY+, whose primary goal is the
encounter with the Geminids meteor shower parent body (3200) Phaethon. Results
show an effective limitation of the state uncertainty of the mission, with reasonable
increments on the total control effort with respect to the optimal deterministic non-
robust formulation. The second application consisted of a station-keeping strategy
along an NRHO around the Moon, with control efforts compliant with alternative
station-keeping strategies available in the literature. Monte Carlo simulations were
performed in both cases to confirm the accurate state propagation of the UT along
the flight.

The impact of CL impulsive control on the covariance matrix of the state,
considering navigation and propulsion errors, was thoroughly examined. These
errors are among the most critical sources of inaccuracy in space missions, making a
direct understanding of their effects essential for robust optimization. For navigation
errors, a simplified model was formulated using a linear mapping from the state with
a Gaussian random perturbation. The resulting observables vector is then utilized
in the CL control law in place of the state vector. Subsequently, navigation errors
with a general nonlinear mapping were addressed, and strategies to estimate the
resulting strongly nonlinear terms were suggested. For propulsive errors, a simplified
model accounting for inaccuracies in the magnitude and direction of the control was
developed to determine their impact on state estimation, which is then incorporated
into the CL control.

The CL formulation was extended to continuous thrust trajectories, following
a similar approach to the impulsive methodology. The critical difference is the
inclusion of the spacecraft mass as an additional element of the state vector. A
linear feedback control law is used to formulate the thrust vector, which is assumed
to be constant in magnitude and direction in each segment of the trajectory. To
propagate the state distribution along the trajectory, a modified version of the
UT is developed and implemented in the proposed algorithm. A chance-constraint
formulation is also adopted in this low-thrust method to express both the cost
function, again a stochastic estimate of the total control effort, and the constraint
on the maximum thrust vector magnitude for each segment. A canonical Earth-
Mars transfer demonstrated the efficacy of a robust CL control law in mitigating
state dispersion during the mission and meeting the robustness requirements of the
trajectory with only a marginal increase in fuel consumption. Additionally, an MC
analysis confirmed the reasonable accuracy of the uncertainty propagation method
used in this context.

In light of the discussed methodologies, the objectives of this thesis are reasonably
deemed achieved. The robust methodologies developed for both impulsive and low-
thrust trajectories have demonstrated their effectiveness in limiting state dispersion
along the trajectory, even under significant dynamical perturbations. These methods
have shown versatility across various mission scenarios, largely due to the flexible
uncertainty propagation tool, in particular for the impulsive method. Furthermore,
for the CL control, since the maneuvers are computed onboard through a single
algebraic expression, the computational burden is handled during the optimization
process, resulting in minimal computational effort required from the onboard system
during mission execution.
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7.1 Future works
There are several potential enhancements for the proposed methodologies. A

crucial aspect that requires more accurate investigation is the inclusion of the per-
turbation effect of SDE into the robust optimization algorithm, rather than relying
on an additive term applied to the covariance matrix at the end of each propagation
arc. For relatively simple trajectories, one approach could be to use a semi-empirical
method to quantify this random contribution. This would involve propagating a
limited number of samples with a set of SDE and estimating the propagated state
dispersion to be considered within the optimization process. Although this approach
would significantly improve the accuracy of dispersion tracking, the computational
effort would increase exponentially, making it infeasible with limited computational
resources. Another technique could involve addressing the specific dynamical uncer-
tainties of the gravitational model considered (e.g., selecting ranges of gravitational
parameters) and performing an a priori analysis of these uncertainties’ effects on
the trajectory, rather than considering a general white noise perturbation on the
dynamics. This approach would more realistically follow the actual design phase of a
trajectory, given that most missions have a reasonable understanding of the dynami-
cal environment, except for small margins on specific parameters (e.g., planetary
harmonics).

Gravity assist, which is a fundamental tool of space trajectories, could be also
investigated using the robust algorithm discussed in this thesis. The key modification
that a flyby would require is the estimate of how the state distribution evolves during
the close passage with the selected body. Rapid trajectories, relative to the main
body, are generally highly sensitive to numerical propagation, making it challenging
to estimate the evolution of state dispersion in such scenarios accurately. Therefore,
a precise analysis of how to perform this state estimate, balancing both numerical
accuracy and computational effort, is essential. An improvement in this sense would
allow the usage of the proposed robust optimization methods and similar ones that
rely on the knowledge of the state distribution for complex missions that need one
or multiple gravity assists.

Another possible development of this work would be the adjustment of the
robust formulation proposed for the continuous-thrust case to the use of indirect
optimization methods. Crucial advantage in this regard would be a continuous
control law for the propulsion system, rather than assuming a constant thrust vector
in each segment. Another immediate benefit would be a more rapid convergence
to an optimal solution (assumed a close first guess), which is typical of this class
of methods. Several challenges however would be posed by this approach. Firstly,
state propagation with continuous thrust would not be trivial to be computed,
since control is included in the EoM, as already discussed in the low-thrust chapter.
Most importantly, extensive analytical derivations would be necessary to obtain the
Euler-Lagrange equations in this case, where also the elements of the gain matrix
and a chance-constraint formulation of the cost function are expected. In addition
to those, also the common challenges of the indirect methods would pose an issue,
like a close estimate of the optimal state and co-state.
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Appendix

A Dynamical disturbance model
Considering the linear stochastic system obtained by linearizing Eq. 2.1 along a

reference trajectory px̂ptq, ûptqq

dx “ pAptqx`Bptqu` cptqq dt `Gptqdw (A.1)

where

Aptq “
Bf

Bx
px̂ptq, ûptq, tq (A.2)

Bptq “
Bf

Bu
px̂ptq, ûptq, tq (A.3)

Gptq “ g px̂ptq, ûptq, tq (A.4)
cptq “ f px̂ptq, ûptq, tq ´Aptqxptq ´Bptquptq (A.5)

Assume a time grid discretization t0 ď t1 ď ¨ ¨ ¨ ď tN “ tf , and a piece wise constant
control law in each sub-interval, that is

uptq “ uptkq “ uk t P rtk, tk`1q @k “ 0, . . . , N ´ 1 (A.6)

Equation (A.1) can be written in the discrete form

xk`1 “ Akxk `Bkuk ` ck `Gkwk (A.7)

with

Ak “ Φptk`1, tkq (A.8)

Bk “

ż tk`1

tk

Φptk`1, sqBpsqds (A.9)

ck “

ż tk`1

tk

Φptk`1, sqcpsqds (A.10)

where Φpt, sq “ Aptq is the state transition matrix and Gk is a matrix so that the
stochastic process Gkwk has covariance Qk, evaluated as

Qk “

ż tk`1

tk

Φptk`1, sqGpsqGpsqT Φptk`1, sqT ds (A.11)

Recalling that Φps, tk`1q “ Φps, tkqΦptk, tk`1q and Φptk, sq “ Φps, tkq´1, the
previous equation can be rewritten as

Qk “ Ak

ˆ
ż tk`1

tk

Φ´1 ps, tkqGpsqGT psq
`

Φ´1ps, tkq
˘T ds

˙

AT
k (A.12)
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In the present manuscript, no time-continuous control is present, so the term Bk

and uk can be neglected. As reference trajectory to evaluate Qk, the OCP solution
of the deterministic optimization problem is chosen. For simplicity, we define the
average perturbation effect on the covariance matrix Q, calculated as

Q “
1
N

N
ÿ

k“1
Qk (A.13)

B CR3BP dynamics
Consider a body P3 of mass m3 in the vector field of a larger primary P1, and

a smaller primary P2, of masses m1 and m2, respectively, such that the condition
m3 ! m2 ă m1 is satisfied. The primaries revolve in planar configuration at constant
angular speed. The motion of the third body, or particle, is studied in a rotating
synodic RF, whose origin is located at the primaries center of mass, the x axis is
always aligned with the P1–P2 direction, the z axis is orthogonal to their plane of
motion, and the y axis forms a right-hand tern. By selecting proper non-dimensional
units [13], the equations of motion depend only on the mass parameter, defined as
µ “ m2{pm1 ` m2q. The non-dimensional values are such that the distance between
the primaries, their angular speed, and the sum of their masses are set to an unity
value. The equations of motion of P3 are

9x “ fpxq “

»

—

—

—

—

—

–

vx

vy

vz

2vy ` U{x

´2vx ` U{y

U{z

fi

ffi

ffi

ffi

ffi

ffi

fl

(B.1)

where x “ rx, y, z, vx, vy, vzs
T is the P3 state vector, dots denote derivatives with

respect to non-dimensional time, and slashed subscripts are partial derivatives. The
three-body pseudo-potential U is

U “
1
2
`

x2 ` y2 ` z2˘ `
1 ´ µ

r1
`

µ

r2
`

µp1 ´ µq

2 (B.2)

where terms r1 “

b

px ` µq
2

` y2 ` z2 and r2 “

b

px ´ 1 ` µq
2

` y2 ` z2 are the
distances between P3 and each primary, respectively.
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