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Abstract.  This work deals with an explicit guidance and control architecture for autonomous lunar ascent and orbit 
injection, i.e., the locally-flat near-optimal guidance, accompanied by nonlinear reduced-attitude control. This is a 
new explicit guidance scheme, based on the local projection of the position and velocity variables, in conjunction 
with the real-time solution of the associated minimum-time problem. A recently-introduced quaternion-based 
reduced-attitude control algorithm, which enjoys quasi-global stability properties, is employed to drive the 
longitudinal axis of the ascent vehicle toward the desired direction. Actuation, based on thrust vectoring, is modeled 
as well. Extensive Monte Carlo simulations prove the effectiveness of the guidance, control, and actuation 
architecture proposed in this study for precise lunar orbit insertion, in the presence of nonnominal flight conditions. 
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1. Introduction 
 

In recent years, the scientific community has shown a renewed interest toward the robotic and 
human exploration of the Moon, with the perspective of establishing a permanent settlement. 
Autonomous guidance and control in crucial operational scenarios, such as ascent, descent, and 

orbit docking, represents a key technological capability, especially for unmanned vehicles, such as 
cargo spacecraft. In particular, precision at orbit insertion represents a primary objective and 
affects the subsequent phases of spaceflight, because corrective maneuvers may be needed if orbit 
injection is completed with unsatisfactory accuracy. On the other hand, autonomous descent and 
landing represents a crucial task as well, and is the subject of recent research (Wang et al. 2022).  

Traditionally, two different approaches to guidance exist. Explicit algorithms (Calise et al. 
1998, Teofilatto and De Pasquale 1999) stem from the idea of re-defining the flight trajectory at 

the beginning of each guidance interval, at which an updated trajectory (leading to the target final 
condition) is computed. Implicit algorithms (e.g., Lu 1991) consider the perturbations from a 
specified nominal trajectory, and define the feedback control corrections aimed at maintaining the 
vehicle in the proximity of the nominal path. Neighboring optimal guidance (NOG) (Seywald and 
Cliff 1994, Yan et al. 2002, Charalambous et al. 1995, Hull and Nowak 1993, Pontani et al. 2015, 
Pontani and Celani 2019) can be regarded as an implicit guidance technique that relies on the 
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analytical second-order optimality conditions, with the intent of finding the corrective control 
actions in the neighborhood of the reference (optimal) path. Although NOG schemes outperform 
all the explicit guidance algorithms, the latter have the great advantage of not requiring any 
nominal trajectory. Moreover, usually explicit guidance techniques are more robust than implicit 
algorithms. Regardless of the specific guidance scheme, the attitude control algorithm must be 
able to pursue the desired spacecraft orientation, usually dictated by the time-varying thrust 
direction yielded by the guidance. For the problem at hand, attitude control must pursue single-
axis alignment, which is also known in the literature as reduced-attitude control. Significant 
contributions on reduced-attitude control can be found in (Chaturvedi et al. 2011), focused on 
pointing control with respect to an inertially fixed direction, and in (Pong and Miller 2015, Hu and 
Akella 2019), which consider reduced-attitude-tracking, corresponding to the more general case of 
desired time-varying pointing direction. Yang (Yang 2014) employs quaternions to design a LQR 
feedback controller for orbit raising. Finally, Shao et al. (Shao 2022) addressed the problem of 
attitude control in complex scenarios, i.e., in the presence of parameter uncertainties, actuator 
faults, and constraints on angular velocity and pointing direction. 

In this study, the locally-flat near optimal guidance is presented, accompanied by a recently-
introduced nonlinear quaternion-based reduced-attitude control algorithm. The latter drives the 
spacecraft toward the correct single-axis orientation, which is identified by assuming that the 
thrust is aligned with the longitudinal axis. This is in fact an approximation, because the spacecraft 
uses thrust vectoring, and the attitude control system must be capable of maintaining the actual 
spacecraft orientation sufficiently close to this thrust alignment condition. In short, the work that 
follows is aimed at (i) introducing a new, explicit near-optimal guidance, based on the local 
projection of the position and velocity variables, (ii) formulating and addressing the reduced-
attitude-control problem, and (iii) modeling the actuation dynamics, based on thrust vectoring. The 
explicit guidance, control, and actuation methodology proposed in this study does not require 
preliminary offline computation of any reference trajectory or quantity. Monte Carlo simulations 
are run, for the purpose of ascertaining the effectiveness and accuracy of the architecture at hand, 
in the presence of significant displacements from the nominal initial conditions. 
 
 
2. Dynamics of the ascent vehicle 
 

This study addresses accurate lunar orbit injection of an ascent vehicle. This is assumed to be 
subject to the gravitational attraction of a single body (i.e., the Moon). This section describes the 
equations that govern both trajectory and attitude. 

 
2.1 Trajectory 
 
The spacecraft motion takes place about the Moon, and the dynamics of its mass center is 

investigated under the following assumptions: 
(a) the Moon has spherical mass distribution, and 
(b) the propulsive thrust is continuous and (nominally) has constant magnitude T. 
Assumption (a) implies that the gravitational attraction is directed radially. Due to (b), the 

thrust acceleration 𝑎  is 

                      𝑎 = =      where     𝜂: =   and  𝑛 : =                                      (1) 
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Fig. 1 Reference frames for trajectory (a) and thrust angles (b) 

 
 
where m is the spacecraft instantaneous mass and 𝑚  denotes the respective initial value. 

The ascent vehicle trajectory can be described in an inertial reference frame, associated with 
the right-hand sequence of unit vectors (�̂� , �̂� , �̂� ). Its origin is located at the center of the Moon, 
and the target orbit lies on the (�̂� , �̂� )-plane. The position can be identified by the following three 
variables: radius r, right ascension 𝜉, and declination 𝜙 (c.f., Fig. 1(a)). The spacecraft velocity 
can be projected into the rotating frame (�̂�, �̂�, 𝑛), where �̂� is aligned with the position vector r and �̂� 
is parallel to the (�̂� , �̂� )-plane (and in the direction of the spacecraft motion, cf. Fig. 1(a)). The 
related components are denoted with (𝑣 , 𝑣 , 𝑣 ) and termed respectively radial, transverse, and 
normal velocity component. The ascent vehicle is controlled through the thrust direction, defined 
by the in-plane angle 𝛼 and the out-of-plane angle 𝛽, both illustrated in Fig. 1(b). The governing 
equations for (𝑟, 𝜉, 𝜙, 𝑣 , 𝑣 , 𝑣 ) are 

 𝑟 = 𝑣                                                                       (2) 

 𝜉 =                                                                    (3) 

 𝜙 =                                                                       (4) 

 𝑣 = − + + 𝑎 sin 𝛼 cos 𝛽                                               (5) 

 𝑣 = (𝑣 tan 𝜙 − 𝑣 ) + 𝑎 cos 𝛼 cos 𝛽                                           (6) 

 𝑣 = − tan 𝜙 − + 𝑎 sin 𝛽                                               (7) 

 𝜂 = −                                                                       (8) 

where c is the effective exhaust velocity of the propulsion system, 𝑎  is given by Eq. (1), and  𝜇 = 4903 km
sec

 is the lunar gravitational parameter. 
 

2.2 Attitude 
 
The spacecraft instantaneous orientation is associated with the body frame. Its origin is in the 

center of mass of the vehicle, while its axes are aligned with the right-hand sequence of unit 
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vectors 𝜄,̂ 𝚥̂, 𝑘 , with 𝜄 ̂pointing toward the longitudinal axis. Vectrix �̱̱� is composed of 𝜄,̂ 𝚥̂, 𝑘 , i.e., �̱̱�: = 𝜄 ̂ 𝚥̂ 𝑘 ; similarly, the right-hand sequence (�̂� , �̂� , �̂� ), corresponding to the inertial frame, 
forms vectrix �̱̱�: = �̂� �̂� �̂� . 

In this research, the instantaneous attitude is referred to �̱̱�  and is described through Euler 
parameters (quaternions), denoted with 𝑞 , 𝒒 , where 𝑞  is the scalar part, whereas q is the (3 × 1)-vector part. If N Bω  denotes the vector angular rate of �̱̱� with respect to �̱̱�, the attitude 
kinematics equations are (Hughes 2004) 

 𝑞 = − 𝒒 𝝎                                                             (9) 

 𝒒 = 𝑞 𝐼 × + 𝒒 𝝎                                                     (10) 

where 𝝎  denotes the (3 × 1) -vector that contains the three components of N Bω  in �̱̱� , i.e., 
BN B =ω ω , 𝒒 is the skew-symmetric matrix associated with q, and 𝐼 ×  is the (3 × 3) identity 

matrix. 
Under the (approximating) assumption that the mass center C does not move during the entire 

time of flight, the attitude dynamics equations are decoupled from the trajectory equations. Let 𝐉( ) denote the spacecraft inertia matrix with respect to center of mass C, resolved in 𝜄,̂ 𝚥̂, 𝑘 . The 
attitude dynamics equations are (Hughes 2004) 

 ( ) ( ) ( )( )1
,   with  BB B B

C C C C C C

−
 = − − + = ω ω ω ω T T TJ J J                                 (11) 

where the (3 × 1)-vector 𝑻  includes the (internal) torque components (along 𝜄,̂ 𝚥̂, 𝑘 ) due to 
thrust misalignment. In Eq. (11), 𝐉( ) is the time derivative of the inertia matrix, which is nonzero 
due to propellant consumption. 

The nonlinear differential system composed of Eqs. (9)-(11) govern the instantaneous attitude 
and angular rate of the spacecraft. The torque components of 𝑻  represent the control input. 

The space vehicle must pursue a desired (commanded), time-varying attitude and angular rate 
along its ascent path. The commanded attitude is identified by vectrix �̱̱�, related to the inertial 
frame �̱̱� through the rotation matrix 𝐑← . This is associated with quaternion 𝑞( ), 𝒒( ) , whereas 

the commanded angular rate is CN C
C=ω ω . However, the actual body axes are associated with �̱̱�, 

and the rotation matrix that relates �̱̱�  to �̱̱�  is 𝐑← . This can be written in terms of the error 

quaternion 𝑞( ), 𝒒( ) , 

 𝐑← = 𝐑← 𝐑← = 𝑞( ) − 𝒒( ) 𝒒( ) 𝐼 × + 2𝒒( ) 𝒒( ) − 2𝑞( )𝒒( )               (12) 

The kinematics equations for 𝑞( ), 𝒒( )  are (Weiss 1993) 

  𝑞( ) = − 𝒒( ) 𝝎                                                    (13) 

 𝒒( ) = 𝑞( )𝐈 × + 𝒒( ) 𝝎                                           (14) 
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where 𝝎 : = 𝝎 − 𝑅← 𝝎 . Finally, the time evolution of the rotation matrix 𝐑←  is governed by the 
following equation (Weiss 1993): 

 𝐑← = −𝝎 𝐑←                                                             (15) 
 

 
3. Locally-flat near-optimal guidance 
 

This research introduces a near-optimal guidance scheme based on local projection of the 
spacecraft position and velocity, under the assumption that the instantaneous trajectory is 
sufficiently close to the (�̂� , �̂� )-plane, which contains the target path. This is assumed to be an 
elliptic orbit about the Moon, with specified periselenium and aposelenium radii, denoted with 𝑟  
and 𝑟 , respectively. Orbit injection is assumed to occur at periselenium. 

 
3.1 Local projection of position and velocity 
 
The guidance algorithm is run repeatedly and starts at equally-spaced discrete times 𝑡 ,…, . The symbol 𝛥𝑡  denotes the sampling time interval, i.e., 𝛥𝑡 = 𝑡 −𝑡  (𝑘 = 1, … , 𝑁 − 2); the last interval is shorter, because the guidance and control algorithm stops 

when the desired conditions are reached with satisfactory accuracy. At time 𝑡 , the spacecraft 
position and velocity are denoted with kr  and kv , and are associated with 𝑟 , 𝜉 , 𝜙 , 𝑣 , , 𝑣 , , 𝑣 ,  and (�̂� , �̂� , 𝑛 )  (i.e., (�̂�, �̂�, 𝑛)  at 𝑡 , c.f., Fig. 1(b)). Let (𝑥 , 𝑦 , �̂� ) 
denote three unit vectors obtained from (�̂� , �̂� , 𝑛 ) through a counterclockwise rotation about axis 
2 by angle 𝜙 . Vectors kr  and kv  are projected along (𝑥 , 𝑦 , �̂� ) , to yield the locally flat 
variables 𝑥, 𝑦, 𝑧, 𝑣 , 𝑣 , 𝑣  

 𝑥 = 𝑟 cos 𝜙      𝑦 = 0     𝑧 = 𝑟 sin 𝜙                                    (16) 
 𝑣 , = 𝑣 , cos 𝜙 − 𝑣 , sin 𝜙      𝑣 , = 𝑣 ,      𝑣 , = 𝑣 , sin 𝜙 + 𝑣 , cos 𝜙      (17) 

These variables are governed by the following equations of motion (Pontani et al. 2015) 
 𝑥 = 𝑣      𝑦 = 𝑣      𝑧 = 𝑣                                                 (18) 

 𝑣 = 𝑎 sin 𝜃 cos 𝜃 − 𝑔     𝑣 = 𝑎 cos 𝜃 cos 𝜃      𝑣 = 𝑎 sin 𝜃                (19) 
where angles (𝜃 , 𝜃 ) identify the thrust direction in (𝑥 , 𝑦 , �̂� ), g denotes the (local) gravitational 
acceleration, and 𝑎  is the thrust acceleration. Because the final orbit is elliptic, using 𝑥, 𝑦, 𝑧, 𝑣 , 𝑣 , 𝑣 , the desired conditions at orbit injection are rewritten as 

 𝑥 = 𝑟      𝑧 = 0     𝑣 , = 0     𝑣 , =      𝑣 , = 0                       (20) 

It is worth remarking that these projected variables are used only in the context of the guidance 
algorithm, and allow a sufficiently accurate approximate description of the spacecraft trajectory, 
provided that the time of flight is short. 

 
3.2 Minimum-time problem 
 
In general, the numerical solution of spacecraft trajectory optimization problems is an offline 
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task, which cannot be demanded to onboard guidance algorithms. In this study, the projected 
variables, in conjunction with the related governing Eqs. (18)-(19) and boundary conditions (20), 
are employed for the purpose of identifying the optimal thrust direction that minimizes the time of 
flight. Let 𝒙 = 𝑥 𝑦 𝑧 𝑣 𝑣 𝑣  and 𝒖 = 𝜃 𝜃  represent respectively the state and 
control vector. The following optimal control problem is introduced 

 𝒖∗(𝑡) = arg min𝒖 𝑡    subject to   Eqs. (18)-(20)                                    (21) 

where the star denotes the optimal value of the related vector. 
The problem at hand admits an analytical solution that depends on the initial values of the 

adjoint vector conjugate to the state Eqs. (18)-(19), if 𝑎  and g are assumed constant in Eq. (19). 
To prove this, a Hamiltonian H and the auxiliary function 𝛷 are introduced 

 𝐻 = 𝜆 𝑣 + 𝜆 𝑣 + 𝜆 𝑣 + 𝜆 (𝑎 cos 𝜃 sin 𝜃 − 𝑔) + 𝜆 𝑎 cos 𝜃 sin 𝜃 + 𝜆 𝑎 sin 𝜃    (22) 

 𝛷 = 𝑡 + 𝜐 𝑥 − 𝑟 + 𝜐 𝑧 + 𝜐 𝑣 , + 𝜐 𝑣 , − + 𝜐 𝑣 ,                (23) 

where 𝜆 ,…,  are the adjoint variables conjugate to the state Eqs. (18)-(19). The necessary 
conditions for optimality include the boundary conditions for the adjoint variables (Hull 2003) 

 𝜆 , = 𝜐      𝜆 , = 0     𝜆 , = 𝜐      𝜆 , = 𝜐      𝜆 , = 𝜐      𝜆 , = 𝜐                 (24) 

accompanied by the adjoint equations 

 𝜆 = − = 0   ⇒    𝜆 = 𝜆 ,                                            (25) 

 𝜆 = − = 0   ⇒    𝜆 = 𝜆 , = 𝜆 , = 0                                    (26) 

 𝜆 = − = 0   ⇒    𝜆 = 𝜆 ,                                           (27) 

 𝜆 = − = −𝜆    ⇒    𝜆 = 𝜆 , − 𝜆 , 𝑡                               (28) 

 𝜆 = − = −𝜆    ⇒    𝜆 = 𝜆 , − 𝜆 , 𝑡 = 𝜆 ,                           (29) 

 𝜆 = − = −𝜆    ⇒    𝜆 = 𝜆 , − 𝜆 , 𝑡                              (30) 

where subscript 0 denotes the value of the corresponding variable at the initial time 𝑡 . The 
Pontryagin minimum principle leads to expressing the control angles in terms of the adjoint 
variables 

 𝒖∗ = arg min𝒖 𝐻  ⇒   ⎩⎪⎨
⎪⎧sin 𝜃 = −    cos 𝜃 = −

𝜃 = − arcsin                       (31) 

The condition 𝜆 , = 0 leads to 𝜃 = ± , which implies the violation of the final conditions, 
therefore 𝜆 , ≠ 0. Hence, the closed-form expressions of 𝜆 , 𝜆 , 𝜆 , 𝜆 , 𝜆  can be scaled by 𝜆 , , 
to yield 
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 sin 𝜃 = − , ,, ,    cos 𝜃 = , ,                                (32) 

 𝛷 = 𝑡 + 𝜐 𝑥 − 𝑟 + 𝜐 𝑧 + 𝜐 𝑣 , + 𝜐 𝑣 , − + 𝜐 𝑣 ,                (33) 

where 𝜆 , = ,,  (𝑗 = 1,3,4,6). These quantities are collected in 𝝀 : = 𝜆 , 𝜆 , 𝜆 , 𝜆 , . 
The analytical expressions (31)-(32) are used in Eqs. (18)-(19), and lead to obtaining closed-form 
solutions (not reported for the sake of conciseness) for all of the state variables 𝑥 = 𝑓 (𝝀 , 𝑡)     𝑦 = 𝑓 (𝝀 , 𝑡)     𝑧 = 𝑓 (𝝀 , 𝑡)     𝑣 = 𝑓 (𝝀 , 𝑡)   𝑣 = 𝑓 (𝝀 , 𝑡)   𝑣 = 𝑓 (𝝀 , 𝑡)                                    (34) 

Eq. (34), combined with Eq. (20), leads to a system of 5 nonlinear equations in 5 unknowns, 
i.e., 𝑡  and the 4 components of 𝝀 . Numerical solvers (such as the embedded routine fsolve in 
Matlab) can be employed to find the numerical solution of this system in extremely short times (of 
order of 0.01 sec), provided that a proper guess is supplied. To do this, the analysis described in 
(Pontani et al. 2015) can be used. In fact, for planar trajectories, corresponding to 𝑧 = 0 and 𝑣 =0, a suitable first-attempt solution is proven to be (Pontani et al. 2015)  

 𝑡 = − , , ,( ) ,( )
,( ) ,( )                                     (35) 

 𝜆 ,( ) = − ,( ) ,( )
     𝜆 ,( ) = − tan 𝜃 ,( )                                 (36) 

where 𝜃 ,( ) and 𝜃 ,( ) are two guess values for the thrust angle 𝜃  at 𝑡  and 𝑡 , respectively; in this 
work, 𝜃 ,( ) is set to 80 deg, whereas 𝜃 ,( ) = 0. These two values correspond to a near- vertical 
thrust direction (at 𝑡 ) and final horizontal thrust, aligned with the desired velocity (at 𝑡 ). The 
remaining two guess values, for 𝜆 ,( ) and 𝜆 ,( ), are both set to 0.  

The guidance algorithm repeats the preceding solution process at each sampling time 𝑡 , which 
becomes the initial time 𝑡  of the optimal control problem. The final time 𝑡  can be regarded as the 
time-to-go. However, constant values of g and 𝑎  are needed in each guidance interval, which has 
duration 𝛥𝑡 . For the gravitational acceleration, the initial value is chosen, i.e., 𝑔 = . Instead, for 

the thrust acceleration, the average value of 𝑎  in 𝑡 , 𝑡  is employed. Letting 𝑛 : = ( ) , in 𝑡 , 𝑡  the thrust acceleration equals ( ) . Hence, 𝑎  is set to 

 𝑎 = ( ) 𝑑𝑡 = − 𝑙𝑛 1 − 𝛥𝑡                                (37) 

It is worth noticing that Eq. (31) resembles the linear tangent steering law (Perkins 1966, Smith 
1966). However, preceding formulations of this well-consolidated guidance technique introduce 
approximate assumptions (Smith 1966) to solve the problem. Instead, the three-dimensional 
guidance approach proposed in this work is based on the real-time numerical solution of the 
minimum-time problem formulated in flat coordinates, through enforcement of all the necessary 
conditions for optimality and without any further approximation or arbitrary assumption on the 
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initial thrust angles 𝜃  and 𝜃 . 
 
3.3 Commanded attitude 
 
The real-time numerical solution of the preceding optimal control problem provides the thrust 

angles (𝜃 , 𝜃 ), which identify the desired thrust direction in (𝑥 , 𝑦 , �̂� ). The latter sequence is 
obtained from (�̂� , �̂� , �̂� ) through a single counterclockwise elementary rotation about axis 3 by 
angle 𝜉 . Therefore, the commanded thrust direction 𝑇( ) is 

 𝑇( ) = cos 𝜃 sin 𝜃 cos 𝜃 cos 𝜃 sin 𝜃 𝑅 (𝜉 ) �̂� �̂� �̂�                  (38) 

Under the assumption that the thrust is aligned with the longitudinal axis of the ascent vehicle, 
unit vector 𝑇( ) identifies the commanded direction  𝜄 ̂( ). The actual body axis 𝜄 ̂must be driven 
toward 𝜄 ̂( ) by the attitude control system. The remaining two commanded body axes, 𝚥(̂ )  and 𝑘( ), are defined as 

 𝑘( ): = ̂ × ̂( )̂ × ̂( )      and     𝚥(̂ ): = 𝑘( ) × 𝜄 ̂( )                                    (39) 

These three unit vectors form vectrix �̱̱� , i.e., �̱̱�: = 𝜄(̂ ) 𝚥(̂ ) 𝑘( ) . Because closed-form 
expressions are available for (𝜃 , 𝜃 ), the components of 𝜄 ̂( )  (cf. Eq. (38)), 𝚥(̂ ), and 𝑘( ) can be 
written in closed form, as well as the rotation matrix that relates 𝜄 ̂( ), 𝚥̂( ), 𝑘( )  to (�̂� , �̂� , �̂� ), i.e., 𝐑← . Using the kinematics equation that governs the time evolution of rotation matrices, it is 
straightforward to obtain the commanded angular velocity. In fact, 

 𝐑← = −𝝎 𝐑←      ⇒      𝛚 = − 𝐑← 𝐑←                                        (40) 

Because analytical expressions are available for both 𝐑←  and 𝐑← , matrix 𝝎  contains the 

closed-form expressions of the three components of the commanded angular rate ( ) CN C
C=ω ω  

along 𝜄 ̂( ), 𝚥̂( ), 𝑘( ) . The time derivative of 𝝎  supplies 𝝎 , which is necessary for nonlinear 
attitude control (c.f., Section 4). However, only the alignment of the longitudinal axis 𝜄 ̂with 𝜄 ̂( ) is 
crucial for the purpose of pointing the thrust toward the correct direction. Moreover, component 1 
of 𝝎  is ineffective for the purpose of thrust alignment, therefore it is set to 0 (as well as 
component 1 of 𝝎 ). 

 
 
4. Quaternion-based nonlinear reduced-attitude control 
 

A recently-introduced reduced-attitude-tracking algorithm, aimed at pursuing the desired 
alignment for a single axis, is described and used in this research, as a suitable solution to the 
problem of aligning the longitudinal axis with 𝜄 ̂( ). From inspection of the first row of 𝐑← , it is 
apparent that correct alignment of 𝜄 ̂and 𝜄 ̂( ), i.e., 𝜄 ̂ ≡ 𝜄(̂ ), corresponds to 

 𝑞( ) + 𝑞( ) = 0                                                        (41) 
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where subscripts 2 and 3 refer to the components of 𝒒( ). The latter relation is accompanied by 
 𝝎 = 0                                                                     (42) 

Eqs. (41) and (42) identify the target set, which corresponds to the correct alignment of axis 1, 
whereas the commanded orientation of the remaining axes is not tracked.  

 
4.1 Feedback law and related stability 
 
The following two propositions provide the feedback control law for the torque components, 

and establish the related quasi-global stability properties. They are proven in (Napoli and Pontani 
2021) and (Pontani et al. 2022). 

Proposition 1.  For the torque vector 𝑻 , the following feedback control law is introduced 

 𝑻 = 𝝎𝐉( )𝝎 + 𝐉( )𝝎 + 𝐉( ) 𝐑← 𝝎 − 𝝎 𝐑← 𝝎 − 𝐉( )𝐀 𝐁𝝎 + 𝒇 𝑞( ), 𝒒( )       (43) 

where 

 𝒇 𝑞( ), 𝒒( ) : = 0 𝑞( )𝑞( ) + 𝑞( )𝑞( ) 𝑞( )𝑞( ) − 𝑞( )𝑞( )                  (44) 

and A and B are two constant positive definite matrices; A is also symmetric. The control law (43) 
drives the dynamical system described by Eqs. (11) and (13)-(14) toward the attracting set 
associated with 𝝎 = 0. 

Because the attracting set does not coincide with the target set, Proposition 1 does not ensure 
asymptotic convergence toward the desired final conditions (41)-(42). However, the LaSalle’s 
invariance principle can be used to identify the invariant set. 

Proposition 2. The control law (43) drives the dynamical system described by Eqs. (11) and 
(13)-(14) toward the invariant set composed of the following two subsets 

(1) 𝝎 = 0 and 𝑞( ) + 𝑞( ) = 0 

(2) 𝝎 = 0 and 𝑞( ) + 𝑞( ) = 0 
Hence, the invariant set includes two subsets, denoted with (1) and (2). It is apparent that subset 

(1) is the target set, whereas subset (2) corresponds to the alignment of body axis 1 toward a 
direction opposite to the desired one. However, convergence toward to subset (2) is only 

theoretical. In fact, 𝑞( ) + 𝑞( ) = 0 ⇔ 𝑞( ) + 𝑞( ) = 1, and this implies that V has a 

maximum in subset (2). Although 𝑉 = 0 in subset (2), if 𝑞( ) + 𝑞( ) = 1 − 𝜀 (where 𝜀 is a 
positive and arbitrarily small constant), then 𝑉 < 0, and the reduction of V leads the dynamical 
system to converge toward the target set, i.e., subset (1) of the invariant set. In other words, subset 
(2) represents and unstable equilibrium, whereas the target set corresponds to a stable equilibrium. 
This circumstance has the very interesting practical consequence that - from the numerical point of 
view - the dynamical system of interest enjoys global convergence toward the desired alignment 
conditions, provided that the feedback control law (43) is adopted. 

 
4.2 Gain selection 
 
The feedback control law (43) is defined in terms of two constant, positive definite matrices, 
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i.e., A and B. Selection of these matrices affects the transient behavior and the convergence time of 
the actual attitude toward the commanded one. In this research, these two matrices are selected by 
assuming that both of them are diagonal and written as 

 𝐀 = 𝑐 𝐈 ×      and     𝐁 = 𝑐 𝐈 ×                                          (45) 

where 𝑐  and 𝑐  are two positive constants. 
For the purpose of a preliminary selection of the control gains, in three-axial (full-attitude) 

maneuvers, the rotation is assumed to occur about the eigenaxis, and the gains of the quaternion-
based nonlinear feedback law are found using the second-order equation (Weiss 1993) 

 𝜑 + 2𝜁𝜔 𝜑 + 𝜔 𝜑 = 0     with  𝑐 = 2𝜔   and  𝑐 =                      (46) 

where 𝜑  is the principal angle. The associated second-order system has damping coefficient 𝜁 
and natural frequency 𝜔 . Selection of these two parameters, which have a straightforward 
interpretation in relation to the transient behavior, leads to selecting two proper values of 𝑐  and 𝑐 . In this study, 𝜁 = 1 and 𝜔 = 20 sec . 
 
 
5. Actuation  
 

The ascent vehicle employs thrust vectoring for controlling pitch/yaw attitude motion. This 
strategy is based on modest deviations of the direction of exhausted gases from the longitudinal 
axis of the spacecraft, and provides a torque action with components along body axes 2 and 3 (c.f., 
Fig. 2). Thrust vectoring is assumed to be implemented through deflection of the nozzle. As a 
preliminary step, the desired deflection angles, depicted in Fig. 2, must be obtained from the 
required torque 𝑻( ), yielded by the nonlinear control algorithm. From inspection of Fig. 3(a), it is 
straightforward to obtain the torque due to thrust vectoring, 

 𝑻( ) = 𝚥̂𝑇𝑙 cos 𝛥( ) sin 𝛥( ) − 𝑘𝑇𝑙 sin 𝛥( )                                          (47) 

This relation allows obtaining the commanded deflection angles 𝛥( )  and 𝛥( ) , once 𝑻( )  is 
known. To avoid excessive values, 𝛥( ) and 𝛥( ) are constrained to suitable ranges, i.e., 𝛥( ) ≤5 deg  and 𝛥( ) ≤ 5 deg . The actual deflection angles 𝛥  and 𝛥  are driven toward the 

commanded values 𝛥( )  and 𝛥( )  by the motor, which is modeled as a first-order system 
(Greensite 1970) 

 𝛥 = ( )
     and     Δ = ( )

                                            (48) 

where 𝜏 is a time constant, set to 0.1 sec. 
Roll control is usually demanded to side jets. However, in this research this control action is not 

considered along the ascent path, and is assumed to occur, if necessary, during the subsequent 
phases of spaceflight.   
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Fig. 2 Thrust deflection angles and thrust direction 𝑇
 
 
6. Numerical results 
 

The ascent vehicle has initial mass of 4700 kg (Pontani and Celani 2019), while the target 
elliptic orbit has aposelenium and periselenium altitudes equal to 100 km and 15 km, respectively. 
The propulsion parameters are 𝑛 = 0.5 g  (𝑔 = 9.8 m/sec ) and 𝑐 = 3 km/sec. The center of 
mass is assumed to remain located at the same point in spite of mass depletion due to propellant 
consumption. Instead, the principal moments of inertia decrease, according to (Pontani and Celani 
2019) 

 𝐼 = 𝐼 + 𝐼 𝑡     𝐼 = 𝐼 + 𝐼 𝑡     𝐼 = 𝐼 + 𝐼 𝑡                                 (49) 

where 

 𝐼 = 4800 kg m       𝐼 = −1 kg                                          (50) 

 𝐼 = 9200 kg m       𝐼 = −7.5 kg                                         (51) 

 𝐼 = 8100 kg m       𝐼 = −8.33 kg                                        (52) 

The mass distribution is similar to that of the ascent module employed in the Apollo 11 mission. 
A Monte Carlo (MC) campaign composed of 100 simulations is run, by assuming nonnominal 

flight conditions, namely (i) initial declination, with zero mean and standard deviation of 0.13 deg 
(corresponding to 4 km on the lunar surface), and (ii) propulsive fluctuations, modeled as 
stochastic oscillations about the nominal value 𝑇 , according to the following expression 

 𝑇 = 𝑇 1 + ∑ 𝑎 sin ∗ , with 𝑎( ) = 0.04𝑇                     (53) 

where 𝑡∗ is the estimation of the total time of flight, obtained (offline) by solving the minimization 
problem described in Section 3.2 at liftoff, with nominal initial conditions. In the numerical 
simulations, the thrust yielded by Eq. (53) is used in Eq. (8) (setting 𝑛 = 𝑇 /𝑚  ). Two distinct 
sampling intervals are adopted, i.e., 5 sec up to 250 sec after launch, and 0.5 sec for the remaining 
time. 
Figs. 3 through 7 depict the time histories of the trajectory variables, i.e., altitude, declination, and 
velocity components, obtained in the MC campaign. Fig. 6 portrays the corresponding time 
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histories of the thrust deflection angles. Although the two angles are not clearly distinguishable, 
this figure points out that the limiting value (5 deg) is never exceeded. Inspection of the numerical 
results and the related statistics, reported in Table 1, reveals that the guidance, control, and 
actuation architecture at hand is very effective for precise lunar orbit injection. 

 
 

Table 1 Lunar orbit injection: statistics obtained from the MC campaign 𝛥𝑟___  (m) 𝛥𝜙___  (deg) 𝛥𝑣____  (m/sec) 𝛥𝑣____ (m/sec) 𝛥𝑣____ (m/sec) �̄� (sec) 
1.92 7.7e 7−  1.50 −0.71 9.0e 2−  273.8 𝑟( ) (m) 𝜙( ) (deg) 𝑣( )(m/sec) 𝑣( )(m/sec) 𝑣( )(m/sec) 𝑡( )(sec) 
0.24 9.5e 6−  0.64 0.73 1.00 0.33 

 

 
Fig. 3 Altitude time histories obtained in the MC campaign

 

 
Fig. 4 Declination time histories obtained in the MC campaign 
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Fig. 5 Time histories of the radial velocity, obtained in the MC campaign 

 

 
Fig. 6 Time histories of the transverse velocity, obtained in the MC campaign 

 

 
Fig. 7 Time histories of the normal velocity, obtained in the MC campaign 
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Fig. 8 Time histories of the deflection angles, obtained in the MC campaign 

 
 

7. Conclusions 
 

This study addresses the problem of autonomous lunar ascent and orbit injection using a new 
guidance and control architecture. An explicit near-optimal guidance is proposed as an effective 
strategy for the purpose of identifying the thrust direction along the ascent path. This approach is 
based on the local projection of position and velocity variables and the solution of an optimal 
control problem after its reduction to a system of 5 nonlinear equations in 5 unknowns. This is a 
real-time process thanks to availability of a suitable guess solution, involving intuitive variables. 
The two fundamental steps of the guidance algorithm, i.e., (i) local projection and (ii) numerical 
solution of the nonlinear equation system, are performed iteratively, at equally-spaced sampling 
times. The commanded thrust direction, yielded by the guidance scheme, is pursued by the attitude 
control system, through alignment of the actual thrust direction with the commanded one. To this 
end, a recently-introduced, quaternion-based nonlinear reduced-attitude control algorithm is used. 
Unlike three-axial control, this algorithm aims at aligning a single axis of the vehicle with a 
desired direction, and enjoys quasi-global stability properties. The commanded torque components 
represent the output yielded by the attitude scheme and the input for actuation, carried out by 
means of thrust vectoring. The final output of the guidance, control, and actuation architecture at 
hand is represented by the time histories of the two deflection angles of the nozzle. A Monte Carlo 
campaign is run, assuming errors on the initial conditions and significant oscillations of the 
propulsive thrust. The numerical results unequivocally demonstrate that the joint use of the 
locally-flat near-optimal guidance and the nonlinear reduced-attitude control algorithm represents 
an effective approach for precise lunar orbit injection. 
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