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Abstract This paper introduces a model for the mechanical response of anisotropic
soft materials undergoing large inelastic deformations. The material is consid-
ered made by a isotropic matrix with embedded fibres, each component having
its own relaxation dynamics. The constitutive equations are provided in terms
of the free energy density and the dissipation density, which are both required
to be thermodynamically consistent and structural frame-indifferent, i.e., in-
dependent of a rotation overimposed on the intermediate natural state of both
matrix and fibers. This is in contrast to many of the currently used anisotropic
inelastic models, which do not deal with the lack of uniqueness of the inter-
mediate state. This issue is thoroughly discussed and in terms of two possible
choices satisfying structural-frame indifference and leading to different flow
rules of the inelastic processes.
It is shown that different models from the literature can be incorporated in
the proposed formulation including anisotropic viscoelasticity and growth.
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1 Introduction

Anisotropic soft solids are materials found either in Nature and in artificial
structures characterized by a soft matrix with an internal structure usually
constituted by stiff fibres. Both the fibres and the matrix contribute to the
mechanical response of the solid to actions such as forces or external stimuli
like temperature, electrical, magnetic and chemical fields [29,6,1]. Modeling
the inelastic behaviour of anisotropic soft solids requires the formulation of
evolution laws for the dissipative processes. These latter are associated to the
inelasticity of the matrix as well as to the reorientation of the internal struc-
ture, if this can evolve independently of the matrix. Interesting examples come
from biology and material science [30,11,17,25,19].
Within this field, elastic and inelastic deformations are frequently described
by assuming that the overall deformation F can be (multiplicatively) decom-
posed into an elastic Fe and an inelastic Fg parts [18], which introduce in the
modelling two layers of description. One attains to the natural state of the
material, where inelastic processes take place; the other to its current state,
where stresses and deformations are measured. Usually, the elastic energy and
dissipation functions are used to introduce suitable constitutive prescriptions
compatible with thermodynamics [13].
One of the issue of the multiplicative decomposition is the lack of unique-
ness of the natural state since both FeFv and FeQ

TQFv produces the same
macroscopic deformation. This raises several points that have been differently
dealt with in the literature [21,13,5], in particular in the field of large strain
plasticity [14,13]. Moreover, when anisotropic finite inelasticity is considered,
several questions remain open including the proper description of the material
anisotropy in the natural state as well as the relationship between the natural
states of the matrix and the one of the fibres [28,20].
In the framework outlined above, this paper aims at addressing some of the
open questions. Specifically, we propose a thermodynamically consistent model
of inelastic processes, which takes into account different natural states of ma-
trix and fibres and holds under the constitutive hypothesis that elastic energy
and dissipation function are structural frame-indifferent, i.e., independent of
a rotation overimposed on the natural state.
We start by presenting a short review of the different approaches proposed
over the years. Then, we describe our contribution and the plan of the paper.

1.1 A short review

The lack of uniqueness of the natural state, originating from the multiplica-
tive decomposition, has arisen several questions starting from [12], where the
notion of structural frame-indifference was first introduced as an indifference
requirement under a change of frame in the natural state, in addition to the
conventional frame-indifference, i.e., a change of frame in the current configu-
ration [13]. The issue is particularly significant within the framework of finite
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inelasticity, where the multiplicative decomposition of the deformation gradi-
ent is used to describe a wide variety of inelastic processes.
In [13], the Authors required that the constitutive functions were structural
frame-indifferent. This in turn is satisfied by requiring that the energy density
is a isotropic function of the deformation tensor, yet the dissipation func-
tion must be independent of the inelastic spin. As a consequence, the theory
misses three flow rules to fully determine the time evolution of the six inelas-
tic components of the deformation gradient. However, for isotropic materials,
the so-called irrotationality theorem was introduced [13] to show that one can
set the inelastic spin to zero. For anisotropic materials, different flow rules in
terms of the inelastic strain have been formulated in the literature, yet they
do not give the full evolution of the natural state [21,20]. Actually, it was
shown in [5] that the evolution of the natural state can be fully determined
by viewing the irrotational condition as an internal constraint on the elastic
spin, even in the anisotropic case. With this additional equation, the theory
has the right number of flow rules governing the time evolution of the inelastic
deformation, and the dissipation function is structural frame-indifferent.
In [5], the problem was discussed for anisotropic solids in which the reinforcing
fibers were dragged by the inelastic deformation of the matrix. However, there
are situations in which the deformation of the fibe is non-affine. In [26], for
instance, it was assumed that the internal structure evolved indipendently of
the matrix through a rotation field. This approach is indeed similar to the one
proposed in this paper, but in [26], despite introducing the definition of the
kinematical framework of the theory, the evolution equations of the inelastic
processes were not provided. A different point of view was presented in [28,
21,20]. The authors of [28] assumed that the evolution of the internal fibre
structure is driven by the inelastic part of the deformation gradient, which is
recognized as a further variable of the problem whose evolution is driven by ad-
ditional equations. Differently, in [21] and [20], it was assumed that the fibers
and the matrix can exhibit a distinct time-dependent behaviour and so two
different multiplicative decompositions of the deformation gradient for matrix
and fiber phases were introduced. As such, the internal structure in the natural
state is described by the inelastic deformation tensor of the fiber phase. Coher-
ently, the constitutive prescriptions involve different inelastic stretch measures
and free energy densities for matrix and fiber phases, thus separate flow rules
were specified.

1.2 Our contribution

Recently, we have studied fiber reorientation in elastic materials and consid-
ered both passive reorientation [4,2], driven by mechanical loads, and active
reorientation [3], driven by magnetic fields. We have also presented and dis-
cussed a structurally frame-indifferent model for anisotropic visco-hyperelastic
materials [5], based on evolution laws of the dissipative processes, which are
completely determined by the elastic strain energy and the dissipation den-
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sities. Therein, fiber reorientation was affine, i.e. completely driven by the
visible gradient.
Herein, we extend that approach by allowing fiber structure to reorient inde-
pendently of the matrix. Our approach falls within the unifying theory of ma-
terial remodelling [9,24]. Within the class of constitutive equations which are
indifferent to change of observer, we select those which also satisfy the dissipa-
tion imbalance and are structurally frame indifferent [7,12,13]. The constitu-
tive hypothesis of structural frame-indifference strongly affects the dissipation
function, making it dependent on the relative inelastic spin rate defined as
the difference between the fiber reorientation spin and the inelastic spin rate
induced by the matrix. As a consequence, the flow rules consistent with the
dissipation imbalance are not enough to solve the problem and uniquely de-
termine the natural state. The issue is discussed and two different approaches
are suggested to solve the problem.
The main focus of the paper is on transversely isotropic materials, yet the the-
ory may be straightforwardly generalized to more complex anisotropy classes.
Within this class of materials, it is shown that proposed theory can describe
some relevant examples from the literature, although the requirement of struc-
tural frame-indifference and the internal constraint on the spin rate limit the
number of scenarios that can be encompassed.
Section 2 described the two-layers kinematics of the model driven by the bal-
ance equations derived in Section 3. The constitutive prescriptions, both ther-
modynamically consistent and structurally frame-indifferent are presented and
discussed in Sections 4 and 5. The evolution equations driving the state vari-
ables are introduced in Section 6, whereas Section 7 present two approxima-
tions of those equations in the limit of fast or slow applied deformations.

Throughout the paper we use small bold letters to indicate vectors and
capital bold letters for tensors. The inner product is indicated with a dot ·
either for vectors and tensors, i.e. a · b =

∑
i aibi and A · B =

∑
i,j AijBij ,

where ai, bi and Aij , Bij are the components. The tensor product between
vectors is indicated by a⊗b and represent a tensor with components (a⊗b)ij =
aibj .

2 Kinematics

We identify the body with the region Br of the Euclidean three-dimensional
space E occupied at time instant t = t0, denoted as reference configuration.
We introduce the vector field a0 : Br → V, with V the translation space of
E , such that a0 · a0 = 1, that represents the reference orientation of the fibre
at position X. The corresponding orientation tensor, also called structural (or
Finger) tensor, is given by A0 = a0 ⊗ a0.
The deformation of the body is the time-dependent map p : Br × T → E that
assigns at each point X ∈ Br a point x = p(X, t) at any instant t of the time
interval T . Accordingly, the set Bt = p(Br, t) is the configuration of the body
at time t and Br = p(Br, t0) is the reference configuration. We call u(X, t) the
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displacement field such that u(X, t) = p(X, t)− p(X, t0) and we assume it to
be twice continuously differentiable, such that

F(X, t) = ∇ p(X, t) and ṗ(X, t) =
∂p

∂t
(X, t) , (2.1)

for the deformation gradient and the referential velocity field, respectively.
According to the Bibly-Kröner-Lee decomposition [18,27], the deformation
gradient (2.1) is decomposed into inelastic Fg and elastic Fe tensors such that
at each material point one has

F(X, t) = Fe(X, t)Fg(X, t) . (2.2)

The inelastic deformation Fg is a smooth tensor-valued field with positive
Jacobian determinant Jg := detFg > 0, that may be the manifestation of
inelastic phenomena such as growth, viscous relaxation or plasticity, and, in
general, do not affect the orientation of the fibres. We remark that the relaxed
(or natural) state of the matrix may not be described by a placement, meaning
that Fg may not be the gradient of any map, or in other terms, there is no
way to let each body element relaxing to its natural zero-stress state without
removing the surrounding elements [24,9]. Indeed, it is the elastic reversible
deformation Fe that makes the tensor field F = FeFg integrable. In the fol-
lowing, we will call J = detF and so we write J = Je Jg with Je = detFe.
We further admit the existence of a remodelling process defined by a time-
dependent rotation, here identified with an orthogonal tensorR : B × T → Orth+,
that identifies the orientation that the fibre would assume if it were freed by
any force, i.e., the relaxed state of the fibre. As such, we use the notation

A(X, t) = R(X, t)A0(X)R(X, t)T , (2.3)

to indicate the remodeled orientation tensor, with A = a ⊗ a, and a = Ra0
the remodelled fibre orientation. Here and henceforth, the dependence on the
position X and time t will made explicit only when needed.
The placement p, the inelastic tensor Fg and the reorientation tensor R
represent the state variables of our model and pertain to different layers of de-
scription. Placement p belongs to the current state, where strains and stresses
are measured, whereas Fg and R belong to the relaxed state, where the inelas-
tic processes take place, yet they may deliver constitutive information to the
current state. It is worth remarking that we have assumed a different relaxed
state for the matrix and the fiber, as schematically depicted in Fig. 1. Indeed,
Fg acts on a material line element (X, e0) by mapping it into the relaxed
state as (X,Fge0), whereas R acts on a reference fiber (X,a0), producing the
relaxed fiber state (X,Ra0).

As already pointed out in the introductory section, the multiplicative de-
composition (2.2) causes the relaxed state to be non-unique. For any Q ∈
Orth+, both Fg and QFg indeed measure the same relaxed state; likewise, R
and QR. In fact, the transformations

F+
e = FeQ

T , F+
g = QFg, R+ = QR (2.4)
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Fig. 1 Schematic representation of the different configurations of the matrix and the fibre in
our modelling framework. The natural state is represented by a dashed line to indicate that
it may not be compatible, i.e., Fg may not be the gradient of any map. Matrix and fibre are
represented in different dashed boxes to highlight the fact that no kinematic compatibility
between the corresponding relaxed state is required.

keep the visible state unaltered, i.e.,

F+ = F+
e F

+
g = FeQ

TQFg = FeFg = F (2.5)

and

a+t = F+
e R

+a0 = FeQ
TQRa0 = at . (2.6)

Several strategies have been proposed in the literature to deal with this non
uniqueness including the assumption that either Fg or Fe were symmetric [21,
20]. A thorough discussion on this matter is presented in Sec. 4.

If the triplet (p,Fg,R) represents the local configuration space, the asso-

ciated velocity triplet is (ṗ,Lg,Ω) ∈ V × Lin × Skw with Lg = ḞgF
−1
g and

Ω = ṘRT .

3 Balance equations

The principle of virtual working defines the weak balance equations of the
model and, through the proper localization, allows us to introduce the stan-
dard local balance of forces and the new local balance equations of the torques
working-conjugate of the fiber reorientation and of the couples working-conjugate
of the matrix remodeling actions.
In doing so, we call z and s the forces per unit of (reference) volume and area,
Y and Z the external couple and torque per unit of (reference) volume, that
may be interpreted as the mechanical manifestation of processes affecting the
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hidden layer (growth, magnetic fields, etc...). On the other hand, we assume
that internal working is defined in terms of the (first) Piola–Kirchhoff stress
tensor S, the stress-couple G and the stress-torque Σ. Both the external and
internal workings are continuous, linear, real-valued functional on the space of
virtual rates (w̃, L̃g, Ω̃), given by

We(w̃, L̃g, Ω̃) =

∫
Br

(z · ˜̇p+Y · L̃g + Z · Ω̃) +

∫
∂Br

s · ˜̇p , (3.7)

for the external working, and

Wi(w̃, L̃g, Ω̃) =

∫
Br

(S · ∇w̃ +G · L̃g +Σ · Ω̃) , (3.8)

for the internal one.1

The principle of virtual working states that for any given subregion P ⊂
Br of the reference configuration, the external and internal workings must
be equal for all virtual velocities (w̃, L̃g, Ω̃) ∈ V × Lin × Skw. Therefore,
through a standard localization argument, the following strong form of the
balance equations can be derived together with the corresponding boundary
conditions2:

DivS+ z = 0 , in Br ,

u = û , in ∂uBr ,

Sm = s , on ∂tBr ,

(3.9)

and
G = Y and Σ = Z (3.10)

with ∂uBr and ∂tBr parts of the boundary ∂Br where displacements and trac-
tions are prescribed and m the unit normal to ∂tBr. The former equation (3.9)
is the standard balance equation of forces expressed in terms of the first Piola–
Kirchhoff stress tensor, whereas the latter (3.10) are the balance equations of
the stress-couples and stress-torques arising from the principle of virtual work-
ing.

4 Constitutive prescriptions based on structural frame-indifference

The multiplicative decomposition of the deformation gradient (2.2) causes the
relaxed state to not be unique since both (Fg,R) and (QFg,QR) gives the

1 It is worth noting that at this level the difference between external, such as Y and Z, and
internal, such as G and Σ, actions in a zero order theory is quite formal. Indeed, all of them
are working conjugate to the same kinematical quantities: both G and Y expend working
on Lg and both Σ and Z expend working on Ω. The difference comes when the constitutive
level is introduced: we are required to say which actions are constitutively assignable, that
is, are internal actions, and which actions have to be considered as data within the model.

2 In the present theory, boundary conditions are only associated to the standard balance
of forces as the internal working for stress-couple and stress torque is of order zero, since no
internal actions expend working on the gradient of L̃g and Ω̃.
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same macroscopic deformation as Eqs. (2.5)-(2.6) have evidenced. To this re-
spect, the Authors of [9] wrote: ...there is no reason why the stress response
from QFg should be Q−related to the one from Fg. This does happen, how-
ever, if the body element is isotropic and its relaxed state undistorted [9] (see
also [8]).

The Q− relation cited in [9] is the main idea behind the so called principle
of structural frame-indifference (SFI), first formulated in [12]. Accordingly,
the non-uniqueness of the relaxed state must not influence the constitutive
response of the continuum whether or not the material is isotropic. An imme-
diate consequence is that all constitutive functions must be insensitive to the
transformation laws (2.4).
In our model, constitutive prescriptions are given in terms of the strain energy
φ and dissipation δ densities per unit of mass; the two functions completely
characterize the material response of the body. Since the material is trans-
versely isotropic and the orientation tensor in the relaxed state is described by
A = RA0R

T , we assume φ to depend on the right Cauchy-Green strain tensor
Ce = FT

e Fe and on A, i.e., φ = φ(Ce,A). Then, we require the dissipation
function δ to depend on the inelastic rates Lg and Ω, such that δ = δ(Lg,Ω).3

With these assumptions both δ and φ are frame indifferent, i.e, the theory is
objective.
In addition, under the transformation laws (2.4), the arguments of φ(Ce,A)
change as

Ce 7→ QCeQ
T , A 7→ QAQT .

Thus, to satisfy the constitutive hypothesis of structural frame-indifference of
the strain energy density, we require that

φ(Ce,A) = φ(QCeQ
T ,QAQT ) , (4.11)

for any Q ∈ Orth+. Eq. (4.11) is indeed satisfied for every rotation Q if and
only if φ is a isotropic function of the Ce and A, which is equivalent to say that
the material is transversely isotropic in the relaxed state. In this sense, the
SFI requirement extends what already written in [13] for isotropic materials: a
condition both necessary and sufficient that the elastic relation be SFI is that
the function (4.11) governing the elastic response be isotropic in its arguments.
This allows the energy density to be expressed in terms of the invariants of
the two tensors [16].

For what concerns the dissipation function δ(Lg,Ω), its arguments change
as

Dg 7→ QDQT , Wg 7→ Q̇QT +QWgQ
T , Ω 7→ Q̇QT +QΩQT , (4.12)

where Dg = symLg and Wg = skwLg. Thus, to satisfy the constitutive hy-
pothesis of structural frame-indifference of the dissipation density, we require
that, for any Q ∈ Orth+ and for any Q̇QT ∈ Skw, it holds

δ(Dg,Wg,Ω) = δ(QDgQ
T , Q̇QT +QWgQ

T , Q̇QT +QΩQT ) . (4.13)

3 Our choice identifies the dissipative processes within the theory.
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Due to the arbitrariness of Q and Q̇QT , one can choose Q = I and Q̇QT =
−Wg and write

δ(Dg,Wg,Ω) = δ̂(Dg,−Wg +Wg,−Wg +Ω) = δ(Dg,0,Ω −Wg) , (4.14)

meaning that the dissipation function can only depend on the inelastic stretch
rate Dg and on the difference between the reorientation spin rate and the
inelastic spin rate Ω−Wg. Therefore, with a slight abuse of notation, we will
drop the dependence on Ω + Wg from δ to write the following structurally
frame-indifferent form of the dissipation function

δ = δ(Dg,Ω −Wg) . (4.15)

Let us note that if dependence of δ on the evolving material structure A is
incorporated in the function, previous results still hold true.

5 Thermodynamic consistency of the constitutive equations

Under isothermal conditions, the second principle of thermodynamics reduces
to the local form of the dissipation inequality, which prescribes the time rate
of elastic energy be less than or equal to the external actual working, or in
other terms that the dissipation function is positive, i.e., δ = We− d

dtϱrφ ≥ 0,
with ϱr the reference mass density. Due to the principle of virtual working,
the dissipation inequality can be equivalently written in terms of the internal
working and this form used to identify the class of admissible constitutive
equations for stresses, stress-couples and stress-torques. It is worth noting
that dissipation inequality must hold for any admissible velocity fields; hence,
the reactive components of the internal actions do not enter the inequality as
they must expend null working on those velocity fields.
The local form of the dissipation inequality is:

δ = Ŝ · Ḟ+ sym Ĝ ·Dg +
Σ̂ − skw Ĝ

2
· (Ω −Wg)

+
Σ̂ + skw Ĝ

2
· (Ω +Wg)− ϱr φ̇ ≥ 0 , (5.16)

where we have indicated with a superimposed hatˆthe constitutively prescrib-
able parts of the Piola-Kirchhoff stress Ŝ, of the stress-couple Ĝ and of the
stress-torque Σ̂, and we have rewritten the internal working (3.8) in terms of
sum and difference of the spins Ω and Wg.

The time derivative of the strain energy density can be written as φ̇ =
∂φ/∂Ce · Ċe + ∂φ/∂A · Ȧ and by making use of the strain rate relationships
derived in the Appendix, we obtain

φ̇ = 2Fe
∂φ

∂Ce
FT

e ·D− 2 sym
(
Ce

∂φ

∂Ce

)
·Dg + [Ce,

∂φ

∂Ce
] · (Ω −Wg) , (5.17)
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which uses the identity [∂φ/∂A,A] = [Ce, ∂φ/∂Ce] , proved true for a trans-
versely isotropic material in [4]. The symbol [·, ·] is used to indicate the com-
mutator operator defined in the Appendix.

The quantity 2ϱg∂φ/∂Ce is the symmetric relaxed (second) Piola-Kirchhoff

stress Ŝ, with ϱg = ϱrJ
−1
g being the mass density in the relaxed state, and

M = CeŜ is the so-called Mandel stress, for which skw M̂ = 1
2 [Ce, Ŝ] and

sym M̂ = sym (CeŜ).
With (5.17) in hand, we rewrite the dissipation inequality (5.16) as

δ =
(
ŜFT − 2ϱr Fe

∂φ

∂Ce
FT

e

)
·D+

(
sym Ĝ+ 2ϱr sym(Ce

∂φ

∂Ce
)
)
·Dg (5.18)

+
(Σ̂ − skw Ĝ

2
− ϱr [Ce,

∂φ

∂Ce
]
)
· (Ω −Wg) +

Σ̂ + skw Ĝ

2
· (Ω +Wg) ≥ 0 ,

that must hold true for any admissible (D,Dg,Wg,Ω) ∈ Sym×Sym×Skw×
Skw. Accordingly, suitable constitutive choices are

ŜFT = 2ϱr Fe
∂φ

∂Ce
FT

e , (5.19)

for the first Piola-Kirchhoff stress Ŝ, and

sym Ĝ = −2ϱr sym (Ce
∂φ

∂Ce
) + DDg ,

Σ̂ − skw Ĝ = 2ϱr [Ce,
∂φ

∂Ce
] + 2K(Ω −Wg) ,

(5.20)

for the symmetric part of the stress couple Ĝ and for the difference between
the stress torque Σ̂ and the skew part of Ĝ. D and K are fourth-order positive
definite tensors, that guarantee δ be a positive definite quadratic form of the
strain rates4.

In addition, SFI requires the dissipation inequality (5.18) to be independent
of Ω +Wg (see Eq. (4.15)), that leads to two possible conditions:

(I) Ω +Wg = 0 or (II) Σ̂ + skw Ĝ = 0 . (5.21)

Equation (5.21)I restricts the range of admissible velocity fields by introducing
a kinematical constraint, that in turns make reactive components ofΣ+skwG
appear in the balance equations, yet makes the natural state of the body known
at each time instant.
On the other hand, equation (5.21)II restricts the class of external allowable
actions, since in this case the balance equations (3.10) yield Z + skwY =

Σ̂ + skw Ĝ = 0, meaning that the skew part of the external couple must be
balanced by the external torque. Indeed, this condition is commonly enforced

4 More complex constitutive choices still compatible with thermodynamics are indeed
possible (see for instance [5]), yet the constitutive prescriptions (5.20) allows us to highlight
the main features of our theory.
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in the literature where it is customary to assume that the external actions,
working-conjugate of the inner inelastic strains, are zero (see for instance [23],
[14], [21]). In such a case, the intermediate configuration remains indetermi-
nate, unless further assumptions are made.
The consequences that one or the other choice have on the evolution of the
inelastic strains are discussed in the following section.

6 Evolution equations of the inelastic processes

We rewrite the balance equations (3.10) in the equivalent form

symG = symY , Σ− skwG = Z− skwY , Σ+skwG = Z+skwY , (6.22)

to highlight the working conjugates of Ω +Wg and Ω −Wg, respectively.
The balance equations (6.22)1,2 and the rate-dependent constitutive equations
(5.20) yield

DDg = symY + 2ϱr sym (Ce
∂φ

∂Ce
) ,

2K(Ω −Wg) = Z− skwY − 2ϱr [Ce,
∂φ

∂Ce
] .

(6.23)

It is noted that no reactive components of the stress appear in previous equa-
tions since both of them are orthogonal to the constraint (5.21)I , if applied.
Equations (6.23) are indeed the evolution equations of the inelastic strains
and represent a system of 9 equations (1 symmetric and 1 skew-symmetric
equation) in the 12 unknowns of the problem Fg and R.

The consideration of the kinematical constraint (5.21)I brings in the further
3 equations necessary to solve the problem and determine the natural state of
the system, that is

DDg = symY + 2ϱr sym (Ce
∂φ

∂Ce
) ,

KWg = −1

4
(Z+ skwY) +

1

2
ϱr [Ce,

∂φ

∂Ce
] ,

Ω = −Wg ,

(6.24)

to be solved once the proper initial conditions are specified.

On the other hand, if the range of admissible rates is not restricted and
internal actions satisfy (5.21)II , thus Z+ skwY = 0, the evolution equations
(6.23) become

DDg = symY + 2ϱr sym (Ce
∂φ

∂Ce
) ,

K(Ω −Wg) = Z− ϱr [Ce,
∂φ

∂Ce
] ,

(6.25)
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which does not allow the solution of the problem unless a particular form of Fg

is assumed. If for instance, one restricts the evolution to symmetric inelastic
strains, i.e., Fg = Ug ∈ Sym, then Wg = 0, previous equations lead to

D ḞgF
−1
g = symY + 2ϱr sym (Ce

∂φ

∂Ce
) ,

K ṘRT = Z− ϱr [Ce,
∂φ

∂Ce
] ,

Fg ∈ Sym , (6.26)

that is a system of 9 equations in 9 unknowns. When symY = 0, Eq. (6.26)1
is indeed the evolution equation of the viscoplastic model presented in [23]
for isotropic materials (with φ independent of A in that case). On the other
hand, the equation (6.26)2 is the remodelling equation introduced in [4] and
used in [3] to study the reorientation of fibres under the action of an external
magnetic field5. The combination of the two models indeed allows a much
richer dynamics to be studied with the relaxation of the matrix uncoupled
from the reorientation of the fibres, as shown in the following section.

6.1 Reduced problems

We discuss both the system of equations (6.24), which holds under the con-
dition I defined by the equation (5.21)I , and the system of equations (6.26),
which holds under the condition II defined by the equation (5.21)II .

Case I. Let us start by considering an anisotropic material constituted
by a viscous matrix reinforced with stiff fibers and possible solutions of the
equations (6.24). As is customary in the literature, the external actions acting
on the matrix are considered to be null, that is symY = skwY = 0 (see [23,
5]). On the other hand, fibre reorientation may be driven by external sources,
thus we assume Z ̸= 0 (see for instance [3] for fibre reorientation driven by
the magnetic field); we also assume null bulk forces z. In this circumstance,
Eqs. (6.24) give

ηdDg = 2ϱr sym (Ce
∂φ

∂Ce
) ,

ηrΩ = Z+ 2ϱr [Ce,
∂φ

∂Ce
] ,

Wg = −Ω .

(6.27)

to be solved with the initial conditions Fg(X, 0) = I and R(X, 0) = I. In
writing Eqs. (6.27), we have assumed that the remodelling tensors are isotropic,
that is D = ηdI and K = 1/4ηrI, with ηd and ηr the matrix and fiber viscosity,
respectively.
The twelve equations in (6.27) are coupled but can be numerically solved
together with the macroscopic balance of forces to get the twelve unknown

5 See also [2] where an extension of [4] has been presented.
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fields in Fg, R and p. It is worth noting that the system does not admit an
equilibrium solution, in fact the application of the external field Z steers the
direction of the fibres within the viscous matrix which passively grows and
influences fibre reorientation. In such a case, an external source symY would
be needed to maintain the equilibrium solution determined by the equations

sym (CeŜ) = symY and [Ce, Ŝ] = Z . (6.28)

When no external actions are imposed, i.e., symY = 0 and Z = 0, the only
equilibrium solution of (6.27) corresponds to the natural state at which Ce =

I and both sym {CeŜ} and [Ce, Ŝ] vanish. However, in this situation R is
indeterminate, since the Mandel stress is zero in the natural state whether
rotation R is considered. This apparent limit of the theory can be overcome
by suitably prescribing a different dependence of the elastic energy on the
rotation R.
Equations (6.24) also describe the growth problem of a continuum in which
the fibre can not reorient independently of the matrix, when the following
additional constraint on the rotation matrix is enforced

R = I or equivalently Ω = 0 , (6.29)

that implies A ≡ A0, i.e., fibres do not rotate from the reference configuration
to the natural state. Equation (6.29) is indeed a constraint acting on the field
R, thus limiting the evolution of the state variables of the problem; therefore
the proper reactive actions appear. Under the constraint (6.29), the evolution
equations reduce to

ηdDg = symY + sym (CeŜ) and Wg = 0 . (6.30)

The remaining balance equation allows the reactive stresses to be determined
from the external actions

Σ̃ + skw G̃ = Z+ skwY and Σ̃ − skw G̃ = Z− skwY . (6.31)

A typical application of Eq. (6.30) is the growth of anisotropic tissues where
the reinforcing fibre structure does not evolve from the reference configuration
to the natural state, and the external field symY is used to bring into the
modelling the effects of external stimuli [11].

Case II. To illustrate the predicting capabilities of the theory when (5.21)II
is enforced, we consider the particular form of the elastic energy

ϱg φ(I1, I3, I4) =
µ

2

(
I
− 1

3
3 I1 − 3

)
+

µ

2

β1

β2

(
exp (β2(I4 − 1)2)− 1

)
+

κ

2
(I

1/2
3 − 1)2 ,

(6.32)
defined in terms of the elastic strain measures

I1 = Ce · I, I4 = Ce ·A, I3 = detCe .
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Such an energy was introduced in [22] and modifies the model proposed in
[10] to correctly account for anisotropic volumetric behaviour; µ and κ are the
shear and bulk moduli of the isotropic matrix, and β1 and β2 two positive
coefficients weighting the reinforcement contribution of the fibres.
With (6.32) on hand, the Mandel stress Me = 2ϱg Ce

∂φ
∂Ce

becomes

Me = µ I
−1/3
3 Ce+µβ1(I4−1) exp(β2(I4−1)2)CeA+

(
κ I

1/2
3 (I

1/2
3 −1)−µ

3
I
−1/3
3 I1

)
I ,

(6.33)
that upon substitution into (6.26) yields

τdDg =I
−1/3
3 Ce +

β1

2
(I4 − 1) exp (β2(I4 − 1)2)

(
CeA+ACe

)
+

(κ
µ
I
1/2
3 (I

1/2
3 − 1)− 1

3
I
−1/3
3 I1

)
I ,

τr ṘRT =− β1

2
(I4 − 1) exp (β2(I4 − 1)2)

(
CeA−ACe

)
,

(6.34)

with Fg ∈ Sym, τd = µ/ηd and τr = µ/ηr. Equations (6.34) allow the main
features of the model to be highlighted. First of all, we note that the reorien-
tation equation (6.34)2 has two stationary solutions. One of them corresponds
to CeRA0R

T = RA0R
TCe, meaning that the fibres align themselves to be

coaxial with Ce, i.e., in the principal directions of Ce. The other stationary
solution correspond to I4 = Ce ·RA0R

T = 1, when the fibres re-align to not
experiencing any elastic stretches. To further stress this point, we consider an
isochoric extension in the direction e1 when the fibres lie in the 1-2 plane. The
corresponding macroscopic deformation is

F = λ e1 ⊗ e1 +
1√
λ
(e2 ⊗ e2 + e3 ⊗ e3) , (6.35)

whereas the symmetric inelastic deformation is assumed of the same form,

Fg = λg e1 ⊗ e1 +
1√
λg

(e2 ⊗ e2 + e3 ⊗ e3) , (6.36)

with both λ and λg dependent on time. Accordingly, it holds

Dg =
λ̇g

λg

(
e1 ⊗ e1 −

1

2
(e2 ⊗ e2 + e3 ⊗ e3)

)
and Wg = 0 . (6.37)

In order to maintain the isochoric motion prescribed by (6.37)1, reactive
stresses must appear in (6.34); in particular, since I · Dg = 0, only the de-
viatoric part of the rhs of (6.34)1 determines the evolution, that is

τdDg = I
−1/3
3 dev{Ce}+

β1

2
(I4 − 1) exp (β2(I4 − 1)2) dev{CeA+ACe} .

(6.38)
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The reoriented fibre direction a = Ra0 is expressed in terms of the angle θ
with the e1-axis

a = cos(θ) e1 + sin(θ) e2 , (6.39)

such that
ṘRTa = −θ̇ sin(θ)e1 + θ̇ cos(θ)e2 .

The evolution equations (6.34) are hence recast in terms of the inelastic stretch
λg and of the angle θ as

3τgλ
2 λ4

g λ̇g = 2λ4λ2
g − 2λλ5

g + β1 exp
(
β2

(
λ2 cos(θ)2

λ2
g

+
λg sin(θ)

2

λ
− 1

)2)
,(

2λ3 Cos(θ)2 − λv3 sin(θ)2
) (

λ3 Cos(θ)2 + λv2
(
−λ+ λv sin(θ)2

))
2τrλ

2λ4
g θ̇ = β1 sin(θ) cos(θ)

(
λ3 − λ3

g

) (
λ3 cos2(θ) + λ2

g

(
λg sin

2(θ)− λ
))

exp

(
β2

(
λ2 cos2(θ)

λ2
g

+
λg sin

2(θ)

λ
− 1

)2
)
.

(6.40)
with the following initial conditions: λv(0) = 1 and θ(0) = θ0.

The evolution of the inelastic processes under a macroscopic deformation λ
with a constant stretch rate, i.e., λ(t) = exp(ε0 t) is followed through numerical
integration of the equations (6.40). The results are shown in Fig. 2. The simula-
tions were carried out with ε0 = 1 s−1, τd = 0.5 s, τr = 0.05 s, β1 = 1, β2 = 0.5
and different values of the initial fibre angle θ0 = {0◦, 30◦, 60◦, 80◦, 90◦}.
Figure (2)a shows that the elastic stretch λe = λ/λg reaches a steady state
values for λ larger than 2.5 for all the fibre angles. This in turn causes the
first Piola-Kirchoff stress S = S · e1 ⊗ e1 in Fig. 2b to achieve a stationary
value with a horizontal asymptote. In this situation the macroscopic deforma-
tion keeps increasing, yet the flow is totally viscous and does not produce any
stress increase.
The evolution of the fibre orientation angle θ is plotted against the stretch λ
in Fig. 2c for the different values of θ(0) = θ0. At 0◦ and 90◦, the fibres lie
in the principal direction of the deformation tensor Ce, in this case e1 and
e2, and the rhs of (6.40)2 is zero, meaning that no evolution occurs. On the
other hand for 0◦ < θ0 < 90◦, θ0 evolves toward an angle slightly lower than
60◦ at which I4 = 1 and the fibre are unstretched as shown by the plots in
Fig. (2)d. The grey curves in Fig. 2c represent the fibre orientation in the cur-
rent configuration, defined as the angle between the vector Fea/|Fea| and e1:
for the considered constant stretch rate case, the current orientation reaches
a stationary value, lower than the relaxed orientation θ, due to the fact that
either λe and θ have reached an asymptotic value.

7 Asymptotic approximations

In order to further exploit the peculiarities of the proposed theory, we inves-
tigate the solutions of the evolution equations (6.24) in the limit of slow or
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Fig. 2 Isochoric extension under constant stretch rate. The gray curves in inset (c) repre-
sents the fibre orientation in the current configuration.

fast applied deformations, when no external actions are present. We rewrite
the equations (6.24) in the following form

µ τdDg = sym (CeŜ) and µ τrWg =
[
Ce, Ŝ

]
and Wg +Ω = 0 ,

(7.41)
to make explicit the dependence of the evolution on the characteristic times
τd and τr defined from ηd and ηr as τd = ηd/µ, τr = ηr/µ, where µ is the shear
modulus of the matrix. In addition, we define the characteristic deformation
time as

τ−1
c = |D|, such that D = τc D, and Dg = τc Dg ,

to obtain the following dimensionless evolution equations

µ
τd
τc

Dg = sym (CeŜ) and µ
τr
τc

Wg =
[
Ce, Ŝ

]
and Wg +Ω = 0 .

(7.42)
We consider two evolution regimes: the first one, that we call slow deformation
regime, in which the characteristic deformation time is much longer that the
characteristic times of the inelastic processes; the second one, that we call fast
deformation regime, in which the characteristic times of the deformation are
much shorter than those driving the evolution.

Slow deformation. We first examine the case in which the applied defor-
mation is slow by formally writing that max{τd, τr}/τc ≪ 1, meaning that the
matrix has had time to relax around the natural configuration. We introduce
the smallness parameter ε = τd/τc ≪ 1; it holds: τr/τc = ε τr/τd. Hence, all
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the variables can be expanded around the natural configuration in terms of
the smallness parameter ε:

Fe = I+ ε F1 , (7.43)

Fg =
(
I− εF1

)
F+ o(ε) . (7.44)

Accordingly, it holds

Ce = I+ ε
(
F1 + FT

1

)
+ o(ε) ≃ I+ 2 εEe , , (7.45)

Lg = L− ε
(
Ḟ1 +

[
F1,L

])
+ o(ε) , (7.46)

where the symbol ≃ stands for first order approximation in ε and the strain
tensor Ee in (7.45) is defined by Ee = 1

2

(
F1 + FT

1

)
. The constraint (7.42)3

gives

Ω = −Wg ≃ −W .

In addition the Mandel stress tensor takes the form

CeŜe =
(
I+ 2εEe

)(
Ŝe(I,R) + εC[Ee]

)
+ o(ε) ≃ εC[Ee] , (7.47)

where it was used the fact that the symmetric Piola stress tensor vanishes in the
natural state, i.e., Ŝe(I,R) = 0. The fourth order tensor C := 4ϱr∂

2φ/∂Ce∂Ce

is the elasticity tensor evaluated around the natural state with symmetries
dictated by RA0R

T . In this sense, Eq. (7.47) shows that, at the first order,
the approximation of the Mandel stress coincides with the Cauchy stress of
a transversely isotropic material. It is further noted that at the zero-th order
the model predicts zero stress, which is a plausible result since the expansion
has been carried out around the natural state.

Fast deformation. When the characteristic deformation time τc is much
smaller than the relaxation times governing he evolution problem, the de-
formation is considered fast. Formally, we assume that min{τd, τr} ≫ 1 and
introduce the smallness parameter ϵ = τc/τd ≪ 1. Accordingly, τc/τr = ϵτd/τr
and the following formal expansions can be considered

Fg = I+ ϵF1 , (7.48)

Fe = F
(
I− ϵF1

)
+ o(ϵ) , (7.49)

Ce = C− 2ϵ sym {CF1}+ o(ϵ) , (7.50)

corresponding to an inelastic deformation rate given by

Lg = ϵ Ḟ1 + o(ϵ) . (7.51)

In such a regime, the Mandel stress tensor is evaluated as follows

CeŜ =
(
C− 2 ϵ sym (CF1)

)(
Ŝ(C,R)− ϵ Ĉ[sym (CF1)]

)
+ o(ϵ) (7.52)

≃ CŜ(C,R)− ϵ
(
2 sym (CF1)Ŝ(C,R) +C Ĉ[sym (CF1)]

)
, (7.53)
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where the elasticity tensor Ĉ is evaluated around the current configuration at
Ce = C and R. Therefore, the model predicts at zero-th order a stress tensor
CŜ(C,R) coincident with the one of a purely elastic anisotropic material with
symmetries dictated by RA0R

T . On the other hand, the evolution problem
at the first order becomes

ϵ sym Ḟ1 = ϵ sym (CŜe(C,R)), and ϵ skw Ḟ1 = ϵ
τd
τr

[
C, Ŝe(C,R)

]
,

(7.54)

together with the constraint equation Ω + skw Ḟ1 that completely determine
the evolution of the system.

8 Conclusions and perspectives

We have introduced a modelling framework capable of describing the mechan-
ical response of anisotropic soft materials undergoing large inelastic deforma-
tions, which act differently on the matrix and the fibres. It means that the
matrix and the internal fibre structure have two different relaxed states. This
assumption has allowed us to partially decouple the evolution of the fibre struc-
ture from the one imposed by the matrix, making the interaction between the
fibre and the matrix non–affine.
Within this framework, the consistency of the model with thermodynamics
was carefully analysed. It was further required that the state functions, i.e.
strain energy density and dissipation density, are independent of a rotation
overimposed on the natural state, that is, are structurally frame–indifferent.
Such a requirement is a constitutive prescription of the theory, which strongly
affects the representation form of the dissipation density whereas is easily sat-
isfied by the anisotropic strain energy density. In particular, it was shown that
the elastic energy must be a isotropic function of the strain tensor and of the
structural tensor that conveys information on the fibre direction, whereas the
dissipation function must be independent on the difference between the fibre
reorientation spin and the matrix spin. Two different ways to satisfy this con-
stitutive restriction are discussed. One of them allowed us to fully determine
the relaxed state, and corresponds to the introduction of a kinematical con-
straint which links the inelastic spin rate, due to the evolution of the matrix,
to the reorientation spin rate of the fibres. From one hand, the constraint
equation, together with the flow rules naturally arising from the dissipation
inequality, make the evolution problem of the 12 unknowns of the problem, the
placement p, the inelastic deformation Fg and the rotation tensor R, fully de-
termined. On the other hand, the constraint limits the scenarios attainable by
the model, granted the considered constitutive assumptions which are indeed
shared by other Authors in the literature [15,26]. The second road restricts
the class of external allowable actions and allows to uniquely determine the
relaxed state only if further hypothesis on the form of Fg hold, as it is usually
made in the Literature.
The theory can be extended by assuming different constitutive prescriptions
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for φ and δ with a stronger interactions between fibres and matrix, as is
the case in which the reoriented fibers are dragged by the inelastic processes
that remodel the matrix. Interestingly, another possibility would be to make
weaker the kinematical constrain by an elastic-type interactions such that
Ω +Wg = M(Z+ skwY).

9 Appendix: Deformation rates

It is worth deriving and listing the relationships between the rates of the
different kinematical quantities defined above.
We call L = ḞF−1 the gradient of the velocity field and Le = ḞeF

−1
e and Lg =

ḞgF
−1
g the elastic and inelastic deformation rate tensors. The relationship

between these quantities follows as

L = Le + Fe Lg F
−1
e .

The rate of the right-Cauchy Green strain tensor Ce = FT
e Fe is

Ċe = 2FT
e DFe − 2 sym (CeLv) . (9.55)

where D = symL is the symmetric part of the velocity gradient, i.e., the
stretch-rate. Throughout the paper sym and skw will be used to indicate the
symmetric and skew-symmetric part of tensors, i.e., symA = 1

2 (A+AT ) and
skwA = 1

2 (A−AT ).
To highlight the effects of the interaction between the matrix and the fibre, it
is worth computing the rate of evolution of the remodelled fibre a = Ra0 and
compare it to the rate of the remodelled line element e = Fge0. These are

ȧ = Ω a and ė = Lg e . (9.56)

Figure 3 shows this difference for a fibre and a line element, that coincide at
time t = t. We remark that since R is an orthogonal tensor the length of a0
is unchanged whereas e can be stretched (with a stretching rate Dge).

Finally, since a = Ra0 and ȧ = Ωa, the time rate of the remodeled orien-
tation tensor A is

Ȧ = ȧ⊗ a+ a⊗ ȧ = [Ω,A] , (9.57)

where we have made use of the commutator operator [·, ·] : Lin×Lin → Skw
such that [A,B] = AB−BA , ∀A,B ∈ Lin .
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Fig. 3 Illustration of the deformation rates for a remodelled fibre a = Ra0 and a remodelled
line element e = Fge0, which coincide at time t = t̄. The difference between the two rates
is given by the Lg −Ω.
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