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Abstract—This paper discusses the challenges faced by cyber-
physical microgrids (MGs) due to the inclusion of information
and communication technologies in their already complex, multi-
layered systems. The work identifies a research gap in modeling
and analyzing stealthy intermittent integrity attacks in MGs,
which are designed to maximize damage and cancel secondary
control objectives. To address this, the paper proposes a nonlinear
residual-based observer approach to detect and mitigate such
attacks. In order to ensure a stable operation of the MG,
the formulation then incorporates stability constraints along
with the detection observer. The proposed design is validated
through case studies on a MG benchmark with four distributed
generators, demonstrating its effectiveness in detecting attacks
while satisfying network and stability constraints.

Index Terms—Cyber-physical microgrids, stealthy attacks, de-
tection, nonlinear observer, stability.

I. INTRODUCTION

A. Background and Motivation

Electric power systems are increasingly using more dis-
tributed energy resources (DERs) [1]. These DERs are con-
nected to the main grid through inverters, known as inverter-
based resources (IBRs). IBRs can operate in grid-forming
or grid-following mode. In grid-following mode, they cannot
maintain system frequency and voltage when disconnected
from the main grid. In contrast, in grid-forming mode, IBRs
can maintain frequency and voltage within narrow limits,
enabling an autonomous operation of the microgrids (MGs).
Grid-forming converters can act as an ideal AC voltage source
at the point of common coupling (PCC). They can minimize
load interruptions during adverse events and provide black-
start services during wide-area blackouts [2].

In MG hierarchical control [3], [4], primary control utilizes
droop-based control and virtual impedance control to maintain
MG frequency and voltage within acceptable limits, relying
on millisecond cycle times. Secondary control compensates
for residual deviations in frequency and voltage and operates
with response times of milliseconds to seconds. Tertiary con-
trol coordinates the MG with the main grid, setting power
output setpoints for each distributed generator (DG) based on
electricity markets and tariffs. It operates with cycle times
of minutes to hours. Automating primary control with local
DG data is possible, but secondary and tertiary control require
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communication infrastructure, adding cost and complexity to
the cyber-physical system (CPS). Cyber-attacks can target MG
communication controls, making robust and resilient control
policies necessary to mitigate disruption of the MG operating
state [5], [6].

B. Review of Previous Work
Over the past ten years, a significant number of research

articles have been written on detecting MG attacks, and various
innovative initiatives have been carried out to showcase the
advantages of IBR MGs in trial runs. After analyzing the
landscape in the literature, we have identified three pillars that
should be employed when reviewing this prior research.

The first criterion involves the model utilized for the attack
modeling due to the attack nature and based on which previous
work can be broadly classified into two categories:

1.1) Work focusing on denial-of-service (DoS) [7]. Interfer-
ence with data transmitted by sensors, actuators, and control
systems can lead to DoS. Attackers may flood communication
channels with random data or jamming them, preventing
devices from transmitting and/or receiving information. This
has been documented in several studies [8]–[10].

1.2) Work focusing on false data injection (decep-
tion/integrity) [11]. Malicious adversaries can perform decep-
tion attacks by accessing and replacing real measurements in a
system with fake information to cause harm. Such attacks are
challenging to identify as attackers can quickly access data,
but data veracity is hard to confirm [12], [13]. Intermittent
injection of false data is an overlooked problem that can
significantly affect the stealthiness of an attack and the energy
consumed by the attacker. A self-generated approach in [14]
generates specific false data to achieve perfect stealthiness.
Notably, recent studies have shown that deception attacks are
more challenging to identify than DoS attacks [1].

DoS and intermittent attacks can compromise information
integrity and result in data loss. Intermittent attacks involve
piece-wise signals and optimal energy management achieved
through scheduling DoS attack time instants [15]–[17]. Zero-
dynamics, replay, jamming, and covert attack models are
used to simulate stealthy and intermittent integrity attacks,
becoming difficult to detect by anomaly detectors [18]–[21].
In replay attacks, adversaries record data from compromised
sensors during a steady state and replay it while concealing
the attack effects [22].

The second criterion involves the approach adopted for
attack detection. Based on this criterion, previous work can
be broadly classified into two categories, consisting of model-
based and data-driven techniques:

2.1) Work focusing on model-based approaches [23]–[40],
which rely on a mathematical model of a system. Estimation
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methods are often employed to observe the state of the
system and create analytical redundancy for detecting attacks.
Common techniques include Kalman filtering methods, such
as the Kalman filter (KF) [23]–[25] and the unscented KF
(UKF) [26], as well as observer-based methods [27]–[38] and
sliding mode observation [39], [40].

In terms of KF methods, in [24], an optimal attack strategy
is developed for a linear CPS using linear quadratic Gaussian
(LQG) and KF to control and estimate the state. A distributed
KF approach is introduced in [25] to address CPSs with
bandwidth constraints. A resilient state estimator using L0-
norm-based state observer is presented in [29]. Distributed
observer-based approach is proposed in [30] for the mitigation
of cyber-attacks on CPS sensors and actuators. An event-
triggered and observer-based control frame for detecting DoS
attacks in CPSs is developed in [31]. Finally, [40] introduces
an attack isolation method based on sliding-mode technique
for linear systems with unknown inputs.

Regarding observer-based detection techniques for MGs,
Rana et al. [32] presented a KF-based observer to recover
states corrupted by attacks or random noise in a MG. In [33],
an unknown input observer within the secondary frequency
controller is developed to maintain MG stability under cyber-
attacks. An observer-based algorithm that uses real-time pha-
sor measurements to detect and mitigate attacks is presented in
[34]. Sahoo et al. [35] considered an adaptive and distributed
nonlinear observer to detect, reconstruct, and mitigate false
data injection attacks in MGs. Other studies focused on
designing observers for Lipschitz nonlinear systems [36]–[38],
or used sliding mode nonlinear observers [39].

2.2) Work focusing on model-free, data-driven detection
approaches [41]–[49]. Data-driven methods use historical sys-
tem data to detect attacks when a mathematical model is
unavailable or contains parameter uncertainties. They com-
monly employ intelligent methods such as neural networks
(NNs) [41], support vector machines (SVMs) [42], and naive
Bayesian classifiers [43]. However, the accuracy of these
methods depends on the quality of historical information, data
noise, and various operating and attack conditions. In the
following, we survey representative data-based works.

In the context of intelligent techniques, Li et al. pro-
posed an NN-based approach that combines a physical model
and a generative adversarial network to detect deviations in
measurements [44]. In [45], a deep learning method using
convolutional NNs is suggested to detect DoS in cellular
networks caused by flooding, signaling, and silent calls. In
[46], a method is proposed for constructing an attack detector
in MGs by identifying the stable kernel representation in
the absence of attacks. In [47], the authors introduced a
Bayesian-based approach to attack detection that uses the
hybrid Bernoulli random set method to jointly estimate states
and detect attacks. In [48], a two-stage approach is presented
for false data detection that reduces data dimensionality and
detects malicious activities via an SVM classifier. In [49], the
authors developed a multi-agent supervised attack detection
that employs SVM with a decision tree for each agent, with
final decisions made through consensus among all agents.

The third criterion involves the system considerations of the

modeling approach and subsequently the realistic operating
conditions. Based on this criterion, previous work can be
broadly classified into two categories:

3.1) Work focusing on considering MG network models
and corresponding operation constraints. Specifically, optimal
power flow (OPF) methods have been widely applied for MG
operation. In [50], a grid-connected MG OPF method is pre-
sented that optimizes energy storage while treating renewable
energy sources (RES) and loads as fixed power injections.
In [51], the authors propose a two-stage optimization method
for energy management of islanded MGs involving a mixed
integer programming unit commitment problem followed by
an unbalanced three-phase OPF problem. Building on this
work, [52] extends the first-stage unit commitment to a robust
optimization problem to address uncertainties in RES. For
distributed MGs, [53] introduces a method that relaxes power
flow constraints to reform the non-convex OPF model. The
authors then transform the centralized optimization into a
distributed one using predictor-corrector proximal multipliers.

3.2) Work focusing on stability-constrained network mod-
eling in MGs. Stability is a significant concern in MGs, in
addition to steady-state security constraints. This is mainly due
to the intermittent nature and fluctuating output of RES, and
the reduction of system inertia by DGs, which are interfaced
by inverters, leading to lower resistance to disturbances in
IBR-interfaced MGs. However, few OPF models in previous
works have integrated stability constraints. A single machine
equivalent method is used to obtain a bus equivalent rotor
angular trajectory as a stability constraint in a trajectory-
based transient stability-constrained OPF [54]. Conventional
power systems have studied voltage stability-constrained OPFs
[55], [56]. In MGs, a nonlinear optimization-based voltage
stability-constrained OPF is created in [57] to enhance multi-
MG voltage stability. Furthermore, a small-signal stability-
constrained OPF problem has been studied extensively in
traditional power systems [58], and recently in MGs [59].

C. Paper Motivation and Contributions

The challenges towards the security of cyber-physical MGs
have increased with the inclusion of more resources and
services to the already complex, multi-layered MGs with
information and communication technologies. Based on the
review of previous work, we have identified a significant
research gap that drives the motivation behind this paper: no
previous work has modelled and analyzed stealthy intermittent
integrity attacks, adopting an observer-based approach for
detection and mitigation, and employing within MG modeling
both network and stability operation constraints. In the context
of filling this knowledge gap, the following contributions are
achieved:

(1) We analyze and formulate the state space dynamics of
a generic DG in a MG system and consider integrity attacks
performed in an intermittent mode, i.e., intermittent integrity
attacks. In contrast to the approach used for conventional con-
tinuous integrity attacks, intermittent integrity attacks follow a
two-step process that involves creating a covert attack model
and scheduling the activation and pause times for the attack.
The attacker goal is to maximize potential damage in order to
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cancel secondary control objectives in removing deviations in
both MG global frequency and local voltage.

(2) We design a nonlinear observer to detect such stealthy at-
tacks, and to mitigate their impact by addressing the corrupted
signals with their corresponding estimation from the observer.
Rather than designing the observer based on nonlinear change
of coordinates and the use of “canonical forms” (or “normal
forms”, see, e.g., [27]), the proposed design is based on
simpler Luenberger observers, properly extended to nonlinear
systems. Finding a globally defined change of coordinates to
put the system into a normal form is a particularly challenging
task for the system at study since it is a multiple-output system,
with more outputs than inputs, and with a high number of state
variables (as explained, e.g., in [27, Chapter 4]). Our work
instead is a contribution in the lines of the papers presented
in [36], [37], and more recently, in [38], on Luenberger-like
observers for nonlinear systems. Differently from the above
works, in the present paper, a nonlinear gain is considered
in the design of the observer, which is a novelty that allows
for greater flexibility in the proof of the convergence of the
estimate, achieved via Lyapunov arguments. Also, a nonlinear
gain allows us to better tailor the design of the observer to the
specific dynamics of MG, reducing the number of conservative
boundings in the proof (Theorem 2).

(3) We present the OPF problem for the considered MG and
then identify the worst-case cyber-attack in the formulation
of a bi-level optimization problem. The adversary adopts
intermittent integrity attacks while satisfying the OPF of the
system operation. Operators, to ensure a stable operation of the
MG, react by incorporating both stability constraints as well
as the design of the residual-based detection observer. These
conditions ensure not only the stable and optimal operation of
the MG but also guarantee the detection of cyber-attacks.

(4) Case studies on a MG benchmark serve a twofold
purpose: a) validating that the proposed design successfully
encapsulates the stealthy nature of attack design in terms of
impact assessment, and b) demonstrating that the proposed
observer-based method achieves reasonable detection accuracy
with respect to other observer-based approaches while satis-
fying the network and stability constraints of the system.

D. Paper Organization

The remainder of this paper is structured as follows. Section
II presents the modeling of an islanded MG. Section III
presents the attack model formulation, with a discussion on
the scheduling interval and stealthiness of the intermittent
integrity attack. Section IV presents the formulation of the
proposed observer-based mitigation method as well as the
attack detectability analysis. Section V presents the stability-
constrained mitigation formulation. Section VI presents simu-
lation results, and Section VII concludes the paper.

E. Notation

In and 0n denote identity and zero matrices of dimen-
sion n × n, respectively. nv denotes the dimension of the
generic vector v. [A,B] denotes the horizontal concatenation
of matrices A and B. blockdiag(A1, ...,An) denotes the
block diagonal matrix having as diagonal blocks the matrices

Fig. 1: MG test system considered in this study [3].

A1, ...,An. Ai,j denotes the entry at row i and column j
of matrix A. For a linear map A : X −→ Y , we define
ker(A) ≜ {x ∈ X | Ax = 0} and Im(A) ≜ {Ax | x ∈
X}. Vector ei denotes the ith vector of the canonical base.
convh(x, y) denotes the convex hull of the two vectors x
and y. ∥v∥ denotes the Euclidean norm (l2) of vector v, i.e.,
∥v∥ ≜

√∑
i v

2
i . |a| denotes the absolute value of number a,

or the cardinality of a set, depending on the context.

II. CYBER-PHYSICAL STRUCTURE OF
ISLANDED MICROGRID

In this part, the mathematical model of the DG-based MG
system, also instrumental for the design of the proposed
nonlinear observer, is presented. The single-line diagram in
Fig. 1 shows the islanded MG considered in this paper.

A. Cyber Model of Islanded Microgrid

An islanded or autonomous MG can be considered as a CPS
with DGs, loads, and a communication network for monitoring
and control. A directed graph (digraph) is used to describe the
communication network of a multi-agent cooperative system.
The digraph is modelled as Gr = (VG , EG , AG), where VG =
{v1, v2, . . . , vN} is a nonempty finite collection of N nodes,
EG ⊆ {VG ×VG} is a set of edges, and AG = [aij ] ∈ RN×N

is the associated adjacency matrix. In the adopted model, the
DGs are the nodes of the digraph, whereas the communication
links are the edges of the communication network. For this
study, it is assumed that the DGs communicate with each other
through the digraph presented in the case study of [3], and the
term AG remains constant since the digraph is assumed to be
invariant in time.

B. Physical Model of Islanded Microgrid

The AC microgrid has N = {1, 2, . . . ,n} set of buses on
the power distribution network, L = {1, 2, . . . , l} ⊆ N × N
set of distribution lines, and G = {1, 2, . . . ,ng} set of inverters
at every DG. Each DG is considered to incorporate a primary
and a secondary controller. The droop control for the active
(Pi) and the reactive power (Qi) are described in [3].

The synchronization goals for the secondary voltage and
frequency controllers are to set the control input Vni such that
the d-axis component of the voltage after the LC filter, vodi,
reaches the reference value for the secondary controller, vref ,
and to set the control input ωni to ensure that the frequency
at the ith inverter, ωi, reaches the reference frequency for
the secondary controller, ωref . The voltage magnitude of
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Fig. 2: Voltage-controlled voltage source inverter (VCVSI) DG.

the ith DG is ∥vo∥ =
√
v2odi + v2oqi. The voltage-controlled

voltage source inverter (VCVSI) DG is shown in Fig. 2. The
functionalities of different blocks are explained briefly below.
δi calculator: The angle of the ith inverter-based DGs with
respect to a common reference, typically the inverter at bus 1
(i.e., ωcom = ω1 ) is δi, and satisfies δ̇i = ωi − ωcom. The
purpose of this angle is to transform the periodic and balanced
three-phase signal abc to a dq reference frame, while ensuring
that voqi reaches zero.
Power controller: This block includes the droop controller and
a low-pass filter to extract the fundamental components of Pi

and Qi. The outputs of this block are v∗odi, v
∗
oqi, and ωi [3].

Voltage and current controller: The dynamics of the voltage
and current controllers can be found in [3]. In both controllers,
auxiliary state variables, ϕdi, ϕqi and γdi, γqi, respectively, are
introduced to formulate the complete state-space model, where
ϕ̇di = v∗odi − vodi, ϕ̇qi = v∗oqi − voqi, γ̇di = i∗ldi − ildi, and
γ̇qi = i∗lqi − ilqi.
LC filter and output connector: The d-axis and q-axis equa-
tions for the LC filter and output connector are provided in
[3], and are considered in the state-space model.

As for the distributed frequency and voltage controller
design, the details can be found in [4]. Overall, the objective
of frequency control for VCVSIs is to achieve synchronization
with the nominal frequency. In addition, it should distribute the
output Pi of VCVSIs based on their Pi ratings. By taking the
derivative of the frequency droop characteristic (ωi = ωni −
mPiPi), the rate of change of the primary control frequency
reference ωni is expressed as ω̇ni = ω̇i+mPiṖi = vfi, where
vfi represents the auxiliary control input defined in (30) of
[4]. ω̇ni is utilized to calculate the control input ωni from
vfi, which involves integration of vfi over time. Similarly,
the distributed voltage control mechanism selects appropriate
control inputs Vni in the reactive droop (|vo|∗ = Vni−nQiQi)
to ensure synchronization of the voltage magnitudes |vo|
of VCVSIs with the reference voltage vref . Additionally,
it distributes the Qi of VCVSIs based on their Qi ratings.
Synchronization of the voltage magnitudes |vo| is equivalent
to synchronization of the direct term of output voltages vodi.
By differentiating the voltage droop characteristic, the rate of
change of Vni is expressed as V̇ni = v̇odi + nQiQ̇i = vvi,
where vvi denotes the auxiliary control input defined in (48)
of [4]. V̇ni is utilized to calculate the control input Vni from
vvi by integration over time. In our work, ωni and Vni will
be considered as the outputs of the secondary controller, to

follow the same structure as previous works, with mPi and
nQi being the active and reactive power droop coefficients that
are selected based on the Pi and Qi ratings of each VCVSI.

C. Full State Space Model

The state space dynamics of the generic ith DG over time
t are obtained by gathering and manipulating Eqs. (1) - (20)
of [3]. The complete model can be written in matrix form as:

W :

{
ẋ = Ax+ f(x)+Bu
y = Cx

(1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input vector
generated by the power controller. The vector function f(x)
∈ Rnx captures the nonlinearity of the system and y ∈ Rny is
the vector of sensor measurements at the DG. The state vector
x with nx = 15 in (1) is defined as:

x =[Pi,Qi,ϕdi,ϕqi, γdi, γqi, ildi, ilqi, vodi, voqi,

iodi, ioqi, δi,ωni,Vni]
⊤.

(2)

The input vector u, with nu = 9, in (1) where u2 and
u3 describes the voltage at the ith bus DG measured after the
output connector (Fig. 2) in terms of d and q axes components,
respectively. It also includes in u5 and u8 the setpoints for
the secondary controller ωref and vref , while the remaining
elements u4, u6, u7, and u9 represent the data collected from
the set of neighbouring/adjacent DGs in the MG j ̸= i, i.e., ωj ,
Pj , vodj , and Qj , respectively, where cfi and cvi are control
gains, and gi the pinning gain. It is defined as:

u =[ωcom, vbdi, vbqi, cfi
∑

j∈Nj ̸=i

aijωj , cfigiωref ,

cfi
∑

j∈Nj ̸=i

aijmPj
Pj , cvi

∑
j∈Nj ̸=i

aijvodj ,

cvigivref , cvigivref , cvi
∑

j∈Nj ̸=i

aijnQj
Qj ]

⊤.

(3)

Remark 1 (Measured Variables). The DG measured variables
are assumed to be the generated active and reactive powers,
i.e., the state variables x1 and x2 (as mentioned, e.g., in [3, see
after Fig. 1]), the inverter bridge current il, the output voltage
voi, and the output current ioi, and their direct and quadrature
components, i.e., respectively, the state variables x7, x8, x9,
x10, x11, and x12 (see, e.g., [3] and [35]); notice in fact from
Fig. 2 that the measurement of those variables are available
and fed-back to the current, voltage, and power controllers.
The secondary control inputs ωni and Vni are known, since
they are the inputs to the power controller (they are computed
according to, respectively, (20) and (46) in [3]). Finally, the
DG operating frequency, ωi is also measured (since it has to be
communicated to the neighbour DGs for distributed secondary
control purpose - see, e.g., [4, eq. (30)]. In conclusion, the
state variables assumed measurable are: x1, x2, x7, x8, x9,
x10, x11, x12, x14, and x15.

The fifteen differential equations in (1), and the resulting
matrices/vectors A, B, C, and f(x) are detailed in the
following subsection II-D. The model of (1) is used for the
design of the observer in Section (IV).
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D. Detailed DG State Space Model

The state vector is defined in (2). The complete state space
model of the generic ith DG is given in (1) in matrix form.
In scalar form, the fifteen differential state equations can be
obtained by manipulating (1) – (20) of [3] as follows:

ẋ1 = −ωcix1 + ωcix9x11 + ωcix10x12 (4)

ẋ2 = −ωcix2 − ωcix9x12 + ωcix10x11 (5)

ẋ3 = −nQix2 − x9 + x15 (6)

ẋ4 = −x10 (7)

ẋ5 =−KPV inQix2 +KIV ix3 − x7 −KPV ix9+

− ωbCfix10 + Fix11 +KPV ix15
(8)

ẋ6 = KIV ix4 − x8 + ωbCfix9 −KPV ix10 + Fix12 (9)

ẋ7 =− KPCiKPV i

Lfi
nQix2+

KPCiKIV i

Lfi
x3+

+
KICi

Lfi
x5−

(Rfi

Lfi
+
KPCi

Lfi

)
x7−ωbx8+

−
( 1

Lfi
+
KPCiKPV i

Lfi

)
x9−ωb

KPCi

Lfi
Cfix10+

+
KPCi

Lfi
Fix11+

KPCiKPV i

Lfi
x15+

−mPix1x8 + x8x14

(10)

ẋ8 =
KPCi

Lfi
KIV ix4 +

KICi

Lfi
x6 + ωbx7+

−
(Rfi

Lfi
+

KPCi

Lfi

)
x8 + ωb

KPCi

Lfi
Cfix9+

−
(KPCiKPV i

Lfi
+

1

Lfi

)
x10 +

KPCi

Lfi
Fix12+

+mPix1x7 − x7x14

(11)

ẋ9 =
1

Cfi
x7 −

1

Cfi
x11 −mPix1x10 + x10x14 (12)

ẋ10 =
1

Cfi
x8 −

1

Cfi
x12 +mPix1x9 − x9x14 (13)

ẋ11 =
1

Lci
x9 −

Rci

Lci
x11 −

1

Lci
vbdi −mPix1x12 + x12x14 (14)

ẋ12 =
1

Lci
x10 −

Rci

Lci
x12 −

1

Lci
vbqi +mPix1x11 − x11x14 (15)

ẋ13 = −mPix1 + x14 − ωcom (16)

ẋ14 =
[
mPicfi

( ∑
j∈Ni

aij + gi
)
− cfi

( ∑
j∈Ni

aijmPi

)]
x1+

− cfi
( ∑

j∈Ni

aij + gi
)
x14+

+ cfi
∑
j∈Ni

aijωj + cfigiωref+

+ cfi
∑
j∈Ni

aijmPjPj

(17)

ẋ15 =− cvinQi

( ∑
j∈Ni

aij
)
x2 − cvi

(∑
j

aij + gi
)
x9+

+ cvi
∑
j

aijvodj + cvigivref+

+ cvi
∑
j

aijnQjQj

(18)

In the above equations, other parameters involve the nomi-
nal angular frequency of the MG, ωb, the cut-off frequency of
the low-pass filter in the power controller, ωci, gains of voltage
and frequency control, cvi and cfi, the current compensator
Fi, and impedance characteristics of the LC filter and the
output connector. The equations are compactly written in (1)
in matrix form, in which A, f(x), B, and C can be inferred
from inspection of the equations and are as follows.

The elements of matrix A are: A1,1 = A2,2 = −wci,
A13,1 = −mPi , A3,2 = −nQi, A5,2 = −KPV inQi, A5,3 =
A6,4 = KIV i, A7,5 = A8,6 = KICi

Lfi
, A5,7 = A6,8 = A3,9 =

A4,10 = −A13,14 = −A3,15 = −1, A8,7 = −A7,8 = ωb,
A9,7 = A10,8 = −A9,11 = −A10,12 = 1

Cfi
, A5,9 = A6,10 =

−A5,15 = −KPV i, A6,9 = ωbCfi, A11,9 = A12,10 =
1

Lci
, A5,11 = A6,12 = Fi, A7,11 = A8,12 =

KPCi

Lfi
Fi,

A11,11 = A12,12 = −Rci

Lci
, A14,1 =

[
mPicfi

(∑
j∈Ni

aij +

gi

)
− cfi

(∑
j∈Ni

aijmPi

)]
, A7,7 = A8,8 = −(Rfi

Lfi
+

KPCi

Lfi
), A15,2 = −cvinQi

(∑
j∈Ni

aij

)
, A7,9 = A8,10 =

−( 1
Lfi

+ KPCiKPV i

Lfi
), A15,9 = −cvi

(∑
j aij + gi

)
,

A7,2 = KPCiKPV i

Lfi
nQi, A7,3 = KPCiKIV i

Lfi
, A14,14 =

−cfi
(∑

j∈Ni
aij + gi

)
, A7,15 = KPCiKPV i

Lfi
, A7,10 = A8,9 =

−ωb
KPCi

Lfi
Cfi, and all the other elements are equal to zero.

The elements of matrix B are: B11,2 = B12,3 = − 1
Lci

,
B13,1 = −1, B14,4 = B14,5 = B14,6 = B15,7 = B15,8 =
B15,9 = 1, and all the other elements are equal to zero.

In view of Remark 1, matrix C is as follows:

C = blockdiag(I2, [06,4, I6], [02,1, I2]) (19)

The elements of f(x) are: f1 = ωcix9x11 + ωcix10x12,
f2 = −ωcix9x12 + ωcix10x11, f7 = −mPi

x1x8 + x8x14

f8 = mPix1x7 − x7x14, f9 = −mPix1x10 + x10x14,
f10 = mPix1x9 − x9x14, f11 = −mPix1x12 + x12x14,
f12 = mPi

x1x11−x11x14, where the matrix Mp is defined in
Appendix, and where each mPi

indicates the droop constant
of the ith inverter, and all the other elements are zero.

III. ATTACK MODEL FORMULATION

The communication network connecting the participating
DGs forming the MG can potentially expose the cyber-
physical MG system to cyber-attacks [46]. In literature, several
procedures rely on the adversary’s system knowledge and the
skills to corrupt measurements from remote terminal units
(RTUs). For example, in [12], the consequences of false
data on RTU measurements are examined at the distributed
transient stability control schemes of a MG. Cyber-physical
MGs include also smart inverters for renewable-based DERs
grid-connection. Recent work has demonstrated that such
firmware electronic devices can be tampered leading to system
disruption and instabilities [6].

In this paper, the threat model considers an adversary aiming
to corrupt the operation of grid converters. The attack entry
point could be direct, i.e., at the DG, or indirect, e.g., by
modifying the firmware of the inverters. First, the attacker
intends to undermine the communication links of the MG by
infiltrating compromised data that can harm substantionally
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(a)

(b)

Fig. 3: Distributed voltage (a) and frequency (b) controllers.

the voltage and frequency of all the inverters. The act of
introducing malicious data to the inputs of each DG will
affect the dynamics of the grid and hence, create instabilities
in the MG. The aim of the attack is to maximize the effect
of the disruption at the input control signals of the MG
secondary controller, shown in Fig. 3, and thus the states of
the MG, while remaining stealthy. Specifically, the attacker
would aim to modify control actions acti ∈ Ai,∀i ∈ G, of
inverter-based DG control under normal conditions to actions
act

′

i ∈ A′
i, act

′

i ̸= acti,∀i ∈ G, that would harm DGs
and/or MG/distribution and transmission systems. Following
this modification, the production and consumption at every
node are changed. Using this mechanism, the attacker will aim
to coordinate actions of compromised signals in the MG, i.e.,{
act

′

it :
∏

i∈G Si →
∏

i∈G A′
i

}
, defined over a discrete time

horizon (T =
[
1, 2, . . . , t, . . . ,NT

]
), i.e., ∀t ∈ T , to maximize

potential damage in order to cancel secondary control objective
in removing deviations in both MG global frequency and local
voltage, with the action space A representing control actions
(e.g., secondary control signal disruption, etc.) that influence
state space S and regulate interactions of DGs with the MG
system (e.g., withdraw/inject power from/to the system or
idle). The attack model assumes that the attacker possesses
some, but not necessarily exact, knowledge of the system
design (e.g., topology, parameters of lines, buses, generators,
etc), which can be obtained from publicly available data sets
(e.g., ISO New England [60] and WECC-240 [61]).

Throughout this work, stealthiness is considered with re-
spect to an anomaly detector D, characterized by the residual,
and a threshold η for the identification of an anomaly. Cur-
rent detection approaches within the communication of local
controllers (LCs) (primary) and MG centralized controller
(MGCC) (secondary) involve using residual-based methods
[46]. The residual is often determined from the difference
between measurements y and their estimated values ŷ. As an
example, the χ2-distribution with n −m degrees of freedom
and confidence interval can determine the threshold η equal
to σ
√
χ2
n−m,α. In the event that ∥y − ŷ∥2 > η, an alarm will

be raised.

Proposition 1. Let us consider the attacked system of Eq. (1)
becomes as follows based on the aforementioned attack model

at which an attack starts at an unknown time t = T0 (i.e., and
hence a(t) = 0 for 0 ≤ t < T0) targeting a subset of the input
vector u(t) from the neighboring DGs.

Wa :

{
ẋ = Ax+ f(x)+Bu+BΓuau

y = Cx
(20)

where Γu ∈ Bnu×|Ku|, B ≜ {0, 1}, is the binary incidence
matrix mapping the attack signal along with the mapping
of the disturbance vector to the respective channels. The
attack signal, incorporating also the disturbance, is au =[
au,1(t), . . . , au,|Ku|(t)

]T ∈ R|Ku|, where Ku ⊆ {1, . . . ,nu}
represents the disruption resources available to the attacker
able to corrupt the neighboring inputs of the system. For each
i ∈ {1, . . . , |Ku|}, au,i(t) = 0 for t ∈ R+ if no attack occurs
on the i-th transmission channel of Aaui

. In the specific model
of our MG, nu = 9 and |Ku| = 2.

Taking into account Proposition 1 and the threat model
described so far, we consider that the attacker has partial model
knowledge (A,B, Γ,C), available disruption resources (K),
and overall some limited but yet sufficient knowledge about the
internal system signals as well as a restrict understanding of
the network topology in order to create an adverse disturbance.
The goal is to generate a stealthy intermittent integrity attack
in which first the attack activation time is identified, and then,
the integrity model of the attack is constructed.

A. Scheduling Intervals for Intermittent Integrity Attacks

The time ∀t ∈ T in which the attack signal will be activated
or not is assumed to be determined by the adversary at the time
instants t1, . . . , tNa ∈ T , where Na ∈ Z+. Let us consider
a specific time slot k in which the signal is active for a time
interval τk, i.e., 0 < τk ≤ tk+1−tk. Thus, the attack is inactive
when t ≥ tk + τk. Consequently, the time interval where the
attack signal will be activated (Θac

k ) and deactivated (Θde
k ) for

the k-th attack slot is the following:{
Θac

k , tk ≤ t < tk + τk
Θde

k , tk + τk ≤ t <∞ (21)

The time interval where the k-th attack is implemented can
be defined as Θk = Θac

k ∪Θde
k , and an auxiliary time interval

where the attack slot is conducted can be formulated as:{
Θk, tk ≤ t < tk+1,∀k ∈ {1, . . . ,Na − 1}
ΘNa , tNa ≤ t <∞ (22)

B. Attack Model for Stealthy Intermittent Integrity Attacks

Given the attack interval where the signal is activated and
deactivated Θk, the complete attack model for the k-th slot
can be described as:

ζ̇k(t) = (A+BΓuQk)ζk(t) +BΓuLal(t) (23a)
ζk(tk) = −∆zk (23b)

ak(t) =

{
Qkζk(t) + Lal(t), ∀t ∈ Θac

k

0, ∀t ∈ Θde
k

(24)

a(t) =

k∑
i=1

ai(t), ∀t ∈ Θk (25)
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where the matrix Qk ∈ R(nu+ny)×nx is generated using
Theorem 1. The dimensions of the matrix La depend on the
orthonormal basis for the inverse map of Im(Va) in BΓu, and
can be computed with Theorem 1. The vector l(t) can be
any signal with proper dimensions. ∆zk ∈ Rnx shows the
difference between the real values of the system state and the
states known by the adversary. The initial conditions for ∆zk
are usually bounded, where the upper and lower bounds are not
specific requirements that the adversary needs to compute to
execute the disturbance in the system. Accordingly, the initial
condition from (23b), ∆zk, is not zero. This strategy provides
realism to the model since the attacker is not required to know
the exact value of each state. Furthermore, we consider time
slots when the attack signal is deactivated, t ≥ tk+τk, because
we want to guarantee continuity in the output signal y(t). The
convergence of a(t) is also guaranteed if the attack model
is built as (21), while the design of ak(t) ensures that the
generated attacks can pass through some statistical anomaly
detectors D [46], [62]. It is clear that the stealthiness of a(t)
is based on ∆zk, which is required to be sufficiently small not
to be perceived. ∆zk is valid under Assumption 1.

Assumption 1. There exists two scalars c1 > 0 and c2 > 0
such that the initial condition, described in (23b), is bounded:

c1 ≤ ∥∆zk∥ ≤ c2,∀k ∈ (1, . . . ,Na) (26)

where c1 and c2 are sufficiently small and not required to be
known by the adversary.

Remark 2. The inferior bound for ∥∆zk∥ shows that the
attacker is not supposed to know the exact value of the states
vector because the measurements are usually affected by the
noise that comes to the system. The superior bound, on the
other hand, is chosen in such a way that it will not be
distinguished by the detector D.

In [17], the input signal u(t) and ∆zk are taken into
consideration to evaluate the stealthiness of the attacks. These
two parameters are important to establish the convergence
of the output y(t) when the disruption starts. Following the
structure in [16], we split the system W in (1) during the time
interval Θk where the attack holds:

W1 :

{
ẋ1(t) = Ax1(t), ∀t ∈ Θk

y1(t) = Cx1(t), ∀t ∈ Θk
(27)

W2 :

{
ẋ2(t) = Ax2(t) + f(t,x2) +Bu(t),∀t ∈ Θk

y2(t) = Cx2(t),∀t ∈ Θk

(28)
where W1 and W2 correspond to the case where the system is
working under nominal conditions. The initial conditions are
x1(tk) = −∆zk and x2(tk) = x(tk). The way the split is done
satisfies the condition of x(t) = x1(t) + x2(t). In the same
way, y(t) = y1(t) + y2(t). Following the same technique, we
can split our system Wa in (20), when the attacker injects a
malicious signal a(t) into the communication of the DGs:

W1a :

{
ẋ1a(t) = Ax1a(t) +BΓua(t)
y1a(t) = Cx1a(t) +D′a(t)

(29)

W2a :

{
ẋ2a(t) = Ax2a(t) + f(t,x)− f(t,xn) +Bu(t)
y2a(t) = Cx2a(t)

(30)
where xn represents the state vector in nominal conditions
and D′ =

[
0ny×|Ku|, Γy

]
, where Γy ∈ Bny×|Ky|. a(t) =

βi(t−To)au(t), where βi(t−To) describes the attack function
dynamics and is given by:

βi(t− To) ≡
{

0, ∀t ∈ Θde
k

1− e−bi(t−To), ∀t ∈ Θac
k ,

(31)

with parameter bi ∈ R representing the attack evolution rate.
The initial conditions are x1(tk) = −∆zk and x2(tk) =
x(tk) − ∆zk. The splitting only works if the summation of
Wa1

and Wa2
yields Wa. The computation of the matrix

parameter Qk and the generation of several subspaces are
discussed below.

In order to calculate the largest controlled invariant subspace
of W1a under an attack signal a(t), the nonlinear function
f(t,x) of W2a in (30) needs to satisfy:

f(t,x) = f(t,xn + x2a) (32)

Using (32) and the mean value theorem in [16], [28], the
difference ∆f = f(t,x) − f(t,xn + x2a) can be described
as ∆f = F (t, ρ)x1a(t), where ρ = ϕ(x,xn + x2a) ≜
[ρ1, . . . , ρnx

] ∈ Rnx×nx with ρi ∈ convh(x,xn + x2a ) for
i = 1, . . . ,nx, and F (t, ρ) as:

F (t, ρ) =


∂f1
∂x1

(t, ρ1) . . . ∂f1
∂xnx

(t, ρ1)
...

. . .
...

∂fnx

∂x1
(t, ρnx) . . .

∂fnx

∂xnx
(t, ρnx)


The theory behind the decoupling of the largest controlled
invariant subspace and F (t, ρ) can be found in [16].

Theorem 1 (Stealthiness). Let us consider there is a weakly
unobservable subspace generated by the incremental sys-
tem Wa1

in (29), where this subspace can be represented
as V (W a

1 ), the unobservable subspace created by the pair
(C,A), denoted by H ⊂ Rnx , and the largest controlled
invariant subspace of W a

1 in H , denoted by V (H).

Va = V (Wa1
) ∩ V (H) (33)

Then, there is a matrix Qk, such that:

(A+BΓuQk)Va ⊂ Va (34)

∆zk ∈ Va,∀k ∈ (1, . . . ,Na) (35)

Finally, there is a matrix La that represents the attack gener-
ator gain as follows:

Im(La) = ker(D′) ∩ (BΓu)
−1Va (36)

Proof. The proof for Theorem 1 can be found in [16], [17].
■
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Fig. 4: Time responses of the attack signal au(t).
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Fig. 5: Time responses of the state vector x(t) under nominal xn(t) and attack
xna (t) scenarios.

C. Numerical Simulation Example

This section provides an illustration of a numerical simula-
tion using a linear time-invariant state space representation of
(20). The matrices of the system are specified as follows:

A =

[
0 1
−0.2 −0.1

]
, B =

[
0
1

]
, C =

[
1 0

]
where the pair (A,C) is observable.

In order to demonstrate the nature of the stealthy intermit-
tent integrity attack, we consider an adversary able to corrupt
all the input-related disruption resources, i.e., Γu = 1. We also
assume that the attack activating time instants tk are given
first as follows: t1 = 70s, t2 = 72s, t3 = 74s, with the same
interval time being used when the attack signal is inactive, i.e.,
τk = 1s, ∀k ∈ {1, 2, 3}. Following Theorem 1 and utilizing
the geometric approach toolbox [63], we can obtain the weakly
unobservable subspace Va and the matrix Qk as follows:

Va =

[
−0.4472
0.8944

]
, Qk =

[
0.8 −1.6
0.4 −0.8

]
The initial conditions ∆zk to generate the stealthy attack while
satisfying (35) are chosen as:

∆z1 =

[
−0.2236
0.4472

]
, ∆z2 =

[
−0.1118
0.2236

]
, ∆z3 =

[
−0.0559
0.1118

]
The effects of the attack signal on the system are shown
in Figs. 4 and 5. The attack signal au introduced into the
system input is intermittent and activated during specific time
intervals. By comparing the system states at nominal and
during attack scenarios, we can observe that, in this numerical
example, the stealthy attack compromises the stability of the
state vector. It can be observed from Fig. 5 that the system
state x(t) and its variation do not exhibit any abrupt changes
during the attack pausing time instants. Detecting this attack
can be challenging, especially when measurement noises and
disturbances are present in the system.
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Fig. 6: Proposed observer-based attack detection and mitigation architecture
for the generic DG.

IV. RESIDUAL-BASED DETECTION OBSERVER

In this section, a framework is proposed to detect and miti-
gate the attacks previously introduced. The proposed detection
architecture is illustrated in Fig. 6. An observer is deployed
at each DG. On the left of the figure, the measurements
transmitted from the connected DGs are represented. The
detection method is residual-based: it compares the value of
the measured variables, which is possibly affected by an attack,
with the estimation of the value that the variable would have
in the absence of the attack, as obtained through the use of
the proposed observer. In nominal conditions, the two values
coincide. When an attack occurs, the error between the two
increases, making it possible to detect the presence of the
attack. The observer’s inputs include the measured variables,
y, and the inputs of the DG, u, possibly subject to attacks.

Inspired by the works in [36], [37], which address also
observers for systems having a structure like (1), this work
proposes to use the following Luenberger-like observer:{

˙̂x = Ax̂+ f(x̂,y) +Bu+ L(x̂)(y − ŷ)

ŷ = Cx̂,
(37)

where u and y are, respectively, the inputs and the outputs of
the DG, which are both input signals for the observer. Later
on, in IV-A we will present the nomenclature to distinguish the
attack case from the normal operation. Notice that the observer
is essentially a copy of the system, plus a correction term.
Notice also that f and L in the observer may depend in general
on the output of the system and on the state of the observer.
Different observers arise depending on the choice of f and L.
Differently from the above-mentioned works [36], [37], in this
paper we consider a nonlinear gain L(x̂) in the correction term
in (37), which will allow reducing the number of boundings
done in the convergence proof for the observer, leading to less
conservative results. It is proved in the following that, with a
particular choice of L(x̂), in the absence of attacks on the
state and the input measurements, the state of the observer, x̂,
tracks the state of the system, x. This is used then to reveal the
presence of attacks, by analyzing the residual vector r ≜ y−ŷ.

Theorem 2 (Convergence of the observer estimate). There
exists a choice of L(x̂) in (37) such that the state x̂ of the
observer (37) globally asymptotically tracks the state x of
system (1) in absence of attacks.
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Proof. The result is proved by showing that there exists a
choice of L(x̂) such that the dynamics of the estimation error
ξ ≜ x− x̂ is globally asymptotically stable (i.e., ξ converges
to 0, for any initial condition).

The derivative of ξ is:

ξ̇ = ẋ− ˙̂x = Aξ + f(x)− f(x̂)− L(x̂)Cξ. (38)

Without loss of generality, one can write the nonlinear gain
term L(x̂) as L(x̂) ≜ L′ + L′′(x̂), so that (38) becomes

ξ̇ = (A− L′C)ξ + f(x)− f(x̂)− L′′(x̂)Cξ. (39)

The stability of the dynamics of ξ can proved via classical
Lyapunov arguments (see, e.g., [64] [Theorem 4.2]). The proof
is constructive, i.e., a particular choice for L′ and L′′ will be
derived, which results in a stable observer. Take the positive
definite and radially unbounded function V (ξ) = 1

2ξ
T ξ. Its

time derivative is:

V̇ =ξT ξ̇ = ξT (A− L′C)ξ + ξT (f(x)− f(x̂)
)
− ξTL′′(x̂)Cξ.

(40)
The result is proved if it can be shown that there exists a
choice of L′ and L′′ for which V̇ is negative definite.

First, it can be verified that, after removing (16), the couple
(A,C) is detectable, hence the term ξT (A − L′C)ξ can be
made negative-definite by a proper selection of L′ (i.e., any
which makes (A−L′C) Hurwitz). This part is addressed later
in the proof.

Focusing on the term N(ξ,x, x̂) ≜ξT
(
f(x) − f(x̂)

)
−

ξTL′′C(x̂)ξ, the strategy of the proof will be first to select L′′

so that the resulting terms in −ξTL′′C(x̂)ξ cancel as many
terms as possible of ξT

(
f(x)−f(x̂)

)
, and then to bound the

contribution to V̇ of any residual term in N(ξ,x, x̂) with a
proper choice of L′. First of all, the non-zero components of
f are (see Section II-C):

• f1(x) = ωcix9x11 + ωcix10x12

• f2(x) = −ωcix9x12 + ωcix10x11

• f7(x) = −mPi
x1x8 + x8x14

• f8(x) = mPix1x7 − x7x14

• f9(x) = −mPix1x10 + x10x14

• f10(x) = mPi
x1x9 − x9x14

• f11(x) = −mPi
x1x12 + x12x14

• f12(x) = mPi
x1x11 − x11x14

By noticing that xixj − x̂ix̂j = ξiξj + ξix̂j + x̂iξj = ξixj +
x̂iξj , the term ξT

(
f(x)− f(x̂)

)
in (40) can be written, after

simplifications, as:

ξT (f(x)− f(x̂)
)
=

ωciξ1ξ9x11 + ωciξ1x̂9ξ11 + ωciξ1ξ10x12 + ωciξ1x̂10ξ12+

− ωciξ2ξ9x12 − ωciξ2x̂9ξ12 + ωciξ2ξ10x11 + ωciξ2x̂10ξ11

−mPiξ7ξ1x8 + ξ7x̂8ξ14+

+mPiξ8ξ1x7 − ξ8x̂7ξ14+

−mPiξ9ξ1x10 + ξ9x̂10ξ14+

+mPiξ10ξ1x9 − ξ10x̂9ξ14+

−mPiξ11ξ1x12 + ξ11x̂12ξ14+

+mPiξ12ξ1x11 − ξ12x̂11ξ14.

(41)

The choice of L′′ to cancel as many terms in (41) as possible
can now be done in two steps. First, a proper selection of
elements in L′′ allows to cancel all the entries in (41) that
explicitly depend on x̂ (i.e., ωciξ1x̂9ξ11, ωciξ1x̂10ξ12, etc.). In

fact, first of all, given the structure (19) of C it is easy to see
that the generic ith row of L′′C is given by:

[L′′
i1,L

′′
i2, 0, 0, 0, 0,L

′′
i3,L

′′
i4,L

′′
i5,L

′′
i6,L

′′
i7,L

′′
i8, 0,L

′′
i9,L

′′
i10] (42)

Hence, the generic term cξix̂jξk in (41) (with c a constant
and i, j, k ∈ {1, ..., 15}), can be cancelled by choosing the
(i, k) entry of L′′C as [L′′C]i,k = −cx̂j . Hence, one can
take: L′′

1,7 = −ωcix̂9, L′′
1,8 = −ωcix̂10, L′′

2,8 = ωcix̂9, L′′
2,7 =

−ωcix̂10, L′′
7,9 = −x̂8, L′′

8,9 = x̂7, L′′
9,9 = −x̂10, L′′

10,9 = x̂9,
L′′
11,9 = −x̂12, L′′

12,9 = x̂11.
Then, by a proper selection of the remaining L′′ entries,

it is also possible to cancel the six terms in (41) which
depend on parameter mPi

. This is done by noticing that they
can be divided into three couples with a similar structure:
−mPi

ξ7ξ1x8+mPi
ξ8ξ1x7, −mPi

ξ9ξ1x10+mPi
ξ10ξ1x9, and

−mPi
ξ11ξ1x12 +mPi

ξ12ξ1x11. The first couple can be elim-
inated by selecting L′′

1,3 = mPi x̂8 and L′′
1,4 = −mPi x̂7,

the second couple by selecting L′′
1,5 = mPi x̂10 and L′′

1,16 =
−mPi

x̂9, and the third one by selecting L′′
11,1 = mPi

x̂12 and
L′′
12,1 = −mPi

x̂11.
With the above choices, the term ξT

(
f(x) − f(x̂)

)
+

ξTL′′(x̂)Cξ in (40) reduces to:

ξT (f(x)− f(x̂)
)
+ ξTL′′(x̂)Cξ =

ωciξ1ξ9x11 + ωciξ1ξ10x12 − ωciξ2ξ9x12 + ωciξ2ξ10x11

(43)

which consists of the sum of terms of the kind cxiξjξk, with c
being a coefficient. The generic state component can be upper
bounded as xi ≤ x̄i, since the state space is contained in
a compact set. From the Young’s inequality, it is cx̄iξjξk ≤
|c||x̄i|(ξ2j + ξ2k). Hence, with simple calculations, (43) can be
upper-bounded as:

ξT
(
f(x)− f(x̂)

)
+ ξTL′′(x̂)Cξ ≤

≤ ωci(x̄11 + x̄12)(ξ
2
1 + ξ22 + ξ29 + ξ210) = ξTDξ,

(44)

with D a diagonal, positive semi-definite matrix, such that,
Di,i = ωci(x̄11 + x̄12) for i = 1, 2, 9, 10, and zero otherwise.
In conclusion, by plugging (44) in (40), V̇ can be bounded as:

V̇ ≤ ξT (A+D − L′Cs)ξ. (45)

All that is left is to select L′ in (45) so that matrix (A+D−
L′C) is negative definite. Since (A+D,C) is detectable (after
removing (16),), this can be done by selecting (via a standard
eigenvalue assignment problem) any L′ such that (A + D −
L′C) is Hurwitz. The eigenvalues of (A + D − L′C) can
be chosen to control the speed of convergence to zero of the
estimation error.

In conclusion, it has been proven that the observer (37) with
L(x̂) ≜ L′ + L′′(x̂), and any L′, L′′(x̂) chosen as:

• L′′
1,7 = −ωcix̂9, L′′

1,8 = −ωcix̂10, L′′
2,8 = ωcix̂9, L′′

2,7 =
−ωcix̂10, L′′

7,9 = −x̂8, L′′
8,9 = x̂7, L′′

9,9 = −x̂10, L′′
10,9 =

x̂9, L′′
11,9 = −x̂12, L′′

12,9 = x̂11, and all the other entries
of L′′(x̂) equal to zero,

• L′ such that (A + D − L′C) is Hurwitz, with D a
diagonal matrix with entries Di,i = ωci(x̄11 + x̄12) for
i = 1, 2, 9, 10, and zero otherwise,

globally asymptotically reconstructs the state x. ■

The key steps in the proof are summarized in Fig. 7.
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ሶ𝜉 = (𝐴 − 𝐿′𝐶)𝜉 + 𝑓 𝑥 − 𝑓 ො𝑥 − 𝐿′′ ො𝑥 𝐶𝜉

Choose 𝐿 ො𝑥 = 𝐿′ + 𝐿′′ ො𝑥 .

Choose the candidate Lyapunov function 𝑉 𝜉 =
1

2
𝜉𝑇𝜉.

ሶ𝑉 = 𝜉𝑇(𝐴 − 𝐿′𝐶)𝜉 + 𝜉𝑇[𝑓 𝑥 − 𝑓 ො𝑥 ] − 𝜉𝑇𝐿′′ ො𝑥 𝐶𝜉

Choose the elements of 𝐿′′ ො𝑥 to cancel as many terms as possible
in the expression 𝜉𝑇[𝑓 𝑥 − 𝑓 ො𝑥 ] − 𝜉𝑇𝐿′′ ො𝑥 𝐶𝜉.

ሶ𝑉 = 𝜉𝑇 𝐴 − 𝐿′𝐶 𝜉 + 𝜔𝑐𝑖𝜉1𝜉9𝑥11 + 𝜔𝑐𝑖𝜉1𝜉10𝑥12 −𝜔𝑐𝑖𝜉2𝜉9𝑥12 +𝜔𝑐𝑖𝜉2𝜉10𝑥11

Bound the terms 𝜔𝑐𝑖𝜉1𝜉9𝑥11 + 𝜔𝑐𝑖𝜉1𝜉10𝑥12 − 𝜔𝑐𝑖𝜉2𝜉9𝑥12 +
𝜔𝑐𝑖𝜉2𝜉10𝑥11 with Young inequality.

ሶ𝑉 ≤ 𝜉𝑇 𝐴 − 𝐿′𝐶 𝜉 + 𝜉𝑇𝐷𝜉 with 𝐷 a diagonal matrix such that: 
𝜉𝑇𝐷𝜉 = 𝜔𝑐𝑖( ҧ𝑥11 + ҧ𝑥12)[𝜉1

2 + 𝜉2
2 + 𝜉9

2 + 𝜉10
2 ]

Find 𝐿′ such that 𝐺 ≜ 𝐴 − 𝐿′𝐶 + 𝐷, is negative-definite.

ሶ𝑉 ≤ −𝜉𝑇𝐺𝜉, negative-definite → 𝜉 converges to zero

Fig. 7: Main steps of the proof of Theorem 2.

The detection and mitigation strategy towards resilient MG
operation is based on the analysis of the residual vector
r ≜ y − ŷ, which represents the difference between the
measurements, y, affected by the attacks, and the estimated
measurements, built on the basis of the estimated state, x̂,
which tracks x when there are no attacks. A threshold-based
detection scheme is adopted, in which an alarm is raised when
∥r∥ exceeds a pre-specified threshold η. When this occurs,
the impacted state variables are replaced with their estimates
from the observer. The same detection and mitigation strategy
can be used on any other signal that is a function of the state
variables. Finally, the following remark presents an alternative
observer based on output injection [27].

Remark 3 (Output Injection Observer [27]). A first simpler
and alternative observer design based on “output injection”
can be made by noticing that all the state variables appearing
in f (see Section II-C) are actually measurable for our
particular system (see Remark 1), and thus available to the
observer from the output of the system. Hence, by following the
simple design suggested, e.g., in [27, Section 3.1.2], we can
take in (37) f(x̂,y) = f(x), and L(x̂,y) = L any constant
matrix which makes (A − LC) Hurwitz. As proved in [27],
this simple design choice results in an observer which correctly
estimates the DG state in normal operation (as it can be seen
also from a simple adaptation of the proof of Theorem 2).

A. Attack Detectability Analysis

In this part, we present the attack detectability analysis for
the two observers introduced previously and then we analyze
the conditions for the aforementioned detection scheme. We
start by analyzing the impact that the attack vector has on the
dynamics of the states and on the residual variable. Let xn(t)
denote the state of the system at time t in normal conditions
(i.e., when there is no attack according to (1)), x(t) denote
the state of the system under attack (according to (20)), and
BΓu = Ba. We want to characterize the deviation in the state
caused by the attack, i.e., the dynamics of the incremental state
variables xa(t) ≜ x(t)− xn(t):

ẋa = Axa + f(x)− f(xn) +Baau (46)

Moving now to the analysis of the impact on the residual,
let rn(t) denote the residual at time t, in normal conditions,

and denote with r(t) the residual when the system is under
attack. Define the incremental residual, i.e., the impact of the
attack on the residual, as ra(t) ≜ r(t) − rn(t) = C(x(t) −
x̂(t))−C(xn(t)− x̂n(t)) = C(ξ(t)− ξn(t)) ≜ Cξa, where ξ
and ξn are, respectively, the estimation error in the attack and
in the normal scenario (i.e., the deviation between the state of
the system and the observer estimate).

Consider first the output injection observer of Remark 3.
In this case, simple calculations show that the increment to
the detector state caused by the attack is governed by the
following:

˙̂xa = (A− LC)x̂a + f(x)− f(xn) + LC(x− xn). (47)

Also, the dynamics of ξn(t) is:

ξ̇n ≜ ẋn − ˙̂xn = (A− LC)ξn, (48)

and similarly the dynamics of ξ(t) is:

ξ̇ ≜ ẋ− ˙̂x = (A− LC)ξ +Baau (49)

From the above calculations, we can compute the dynamics of
variable ra, which characterizes the deviation that the attack
causes to the residual, fundamental to evaluate the detectability
of the attacks.

ṙa = C(ξ̇ − ξ̇n) ≜ Cξ̇a = C(A− LC)ξa + CBaau (50)

Remark 4 (Undetectability condition for observer in Remark
3). From (50) it is seen that the attack is perfectly undetectable
if au ∈ ker(CBa), since then the residual does not depend on
the attack. In particular, given the structure of (19), it follows
that any attack targeting only the state variables which are
not measured is undetectable under the observer of Remark 3.
Hence, the use of this observer is not recommended in practice.
Furthermore, even attacks such that CBa ̸= 0 could be easily
made undetectable. As a matter of fact, dynamics (50) are
linear, and the solutions to the equation ξ̇a = (A− LC)ξa +
Baau are also solutions to (50). They are given by:

ξa(t) = e(A−LC)tξa(0) +

∫ t

0

e[A−LC](t−τ)Baau(τ)dτ . (51)

Considering now that ξa(0) = 0 (at the initial time of the
attack the effect on the state is zero), and that ṙa = C(ξ̇ −
ξ̇n) ≜ Cξ̇a, from (51) we find that if:

∥C
∫ t

0

e[A−LC](t−τ)Baau(τ)dτ∥ ≤ τ (52)

then, the attack is not detected.

Finally, if instead the proposed observer is used (Theorem
2), the dynamics of the variation of the residual due to the
attack are given by:

ṙa := Cξ̇a = C{Aξa + [f(x)− f(xn)]+

− [f(x̂)− f(x̂n)]− L(x̂)Cξa +Baau}.
(53)

Notice that (53) is fundamentally different from (50), since
they are nonlinear and, beyond ξa, they include also x, xn,
x̂, and x̂n. Thus, even when the attack satisfies CBaau = 0
[11], the residual is affected by the impact of the attack on x.
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1) Conditions for Attack Detection: The residual scheme is
designed and analyzed based on the derivation of a suitable ob-
server which globally asymptotically tracks the state x of the
system in the absence of attacks. An important related question
is determining the class of attacks that can be detected. This
part focuses on deriving the conditions for the aforementioned
detection scheme. The analysis provides a theoretical result
that characterizes quantitatively and implicitly the class of
attacks detectable by the proposed scheme.

From (20), and incorporating the attack function dynamics
according (30) and (31), the state space model of each inverter
can be described as:

W̃a :

 ẋ(t) = k(x,u) + f(x(t)) + ζ(t)
+Baβi(t− To)au(t)
y(t) = Cx(t)

(54)

where k(x,u) represents the nominal function dynamics of
each DG considering both the state and input vactors, and
ζ(t) = Ew(t) describes the known disturbances of the system
according to (1) and (20). From (37), the state of the observer
can be re-written as:

˙̂x = k(x̂,u) + f(x̂) + Φ(x̂,x) (55)

where Φ(x̂,x) incorporates the nonlinear gain L(x̂) term from
the Luenberger-like observer.

Following similar approaches in literature in which they
use a filtering scheme to address unknown disturbances in
nonlinear systems [18], by filtering the output signal y(t) of
each DG, we can compute the filtered output z(t):

z(t) = H(s)[y(t)] = sHp(s)[x(t)] (56)

where H(s) and Hp are asymptotically stable and, hence,
BIBO stable. The conditions for selecting such filters can be
found in [18]. Now, by using s[x(t)] = ẋ(t)+x(0), we obtain:

z(t) = Hp(s) [ẋ(t)] +Hp(s) [x(0)δ(t)]

= Hp(s) [k(x,u) + f(x) +BΓua(t)]

+Hp(s)[ζ(t)] + hp(t)x(0)

(57)

The initial conditions x(0) = x̂(0) are considered to be
known and the term hp(t) describes a exponential decay [18],
converging to zero, eventually. Filtering the output of the
observer, ẑ can be described as:

ẑ(t) = H(s)[x̂(t)]

= Hp(s)[k(x̂,u) + f(x̂) + Φx̂,x] + hp(t)x̂(0)
(58)

The residual error r(t) to detect the attack in each DG can
be calculated from (56) and (58), and defined as:

r(t) = z(t)− ẑ(t) (59)

The logic for attack detection is defined as:{
|r(t)| ≤ η → No attack
|r(t)| > η → Attack detected

(60)

Prior to the attack (t < To), the residual signal can be written
using (56) and (57) as:

r(t) = Hp(s)[χ(t)] +Hp(s)[ζ(t)] = Hp(s)[χ(t)] + ζ(t)] (61)

where the term χ(t) incorporates the characteristics of the
system and the observer, can be defined as:

χ(t) = [k(x,u)− k(x̂,u)] + [f(x)− f(x̂)]− Φ(x̂,x) (62)

Now, by taking bounds on the residual error, we obtain:
r(t) = |Hp(s)[χ(t)] +Hp(s)[ζ(t)]|

≤ |Hp(s)[χ(t)]|+ |Hp(s)[ζ(t)]|

=

∣∣∣∣ ∫ t

0

hp(t− τ)χ(τ) dτ

∣∣∣∣+ ∣∣∣∣ ∫ t

0

hp(t− τ)ζ(τ) dτ

∣∣∣∣
≤

∫ t

0

|hp(t− τ)||χ(τ)| dτ +

∫ t

0

|hp(t− τ)||ζ(τ)| dτ

≤
∫ t

0

|hp(t− τ)|χ(τ)dτ +

∫ t

0

|hp(t− τ)|ζ(τ)dτ

(63)

A suitable threshold η(t) is given as:

η(t) =

∫ t

0

h̄p(t− τ)χ̄(τ)dτ +

∫ t

0

h̄p(t− τ)ζ̄(τ)dτ (64)

Finally, using the approach in [18], the threshold can be
implemented as:

η(t) = H̄p(s)χ̄(t) + H̄p(s)ζ̄(t) = H̄p(s)[χ̄(t) + ζ̄(t)] (65)

Theorem 3 (Attack Detectability). Consider the nonlinear
system described in (54), with the residual-based observer
detection scheme in (55) with the conditions (56)–(59) and
(65). An attack introduced at t = To is detectable if the attack
function au(t) satisfies the following inequality:∣∣∣∣ ∫ t

To

hp(t− τ)(1− e−bi(t−To))au(t)dτ

∣∣∣∣ > 2η(t) (66)

Proof. In the presence of an attack at t = To, (61) becomes:

r(t) = Hp(s)[χ(t) + βi(t− To)au(t)] +Hp(s)[ζ(t)] (67)

By using the triangle inequality, for t > To, r(t) is computed:
r(t) ≥ −|Hp(s)[χ(t)]| − |Hp(s)[ζ(t)]|

+ |Hp(s)[βi(t− To)au(t)]|

≥ −
∫ t

0

|hp(t− τ)||χ(τ)| dτ −
∫ t

0

|hp(t− τ)||ζ(τ)|

+ |Hp(s)[βi(t− To)au(t)]|

≥ −
∫ t

0

h̄p(t− τ)χ̄(τ)dτ −
∫ t

0

h̄p(t− τ)ζ̄(τ)dτ

+ |Hp(s)[βi(t− To)au(t)]|
≥ −η(t) + |Hp(s)[βi(t− To)au(t)]|

(68)

The final attack detectability condition, can be computed as:

|Hp(s)[βi(t− To)au(t)]| > 2η(t) (69)

■
V. BI-LEVEL STABILITY-CONSTRAINED

ATTACK-MITIGATION FORMULATION

In this section, we first present the OPF problem for
AC MGs and then identify the worst-case cyber-attack in a
formulation of a bi-level optimization problem. The attacker
follows the threat model of Section III while satisfying the
OPF of the system operation. Operators, in order to ensure
a stable operation of the MG, react by incorporating both
stability constraints as well as the design of the detection
observer. These conditions ensure not only the MG stable and
optimal operation but also guarantee the detection of attacks.
Fig. 8 presents the concept of the formulation.
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Fig. 8: Bi-level formulation that considers attacker and operator objectives.

A. Optimal Power Flow in AC Microgrids

The injected active and reactive power at every inverter-
based DG are pg ∈ Rng×1 and qg ∈ Rng×1. The total
load demand is characterized by d ∈ Cnd×1 in the form of
constant complex impedances d = [R1+X1, · · · ,Rnd+Xnd ].
The MG admittance matrix is Y ∈ Cn×n and the load and
inverter incidence matrices are given by D̂ ∈ {0, 1}nd×n and
G ∈ {0, 1}ng×n, respectively. Thus, the from and to admit-
tance matrices are represented as

−→
Y ,
←−
Y ∈ Cn×n, and their

respective branch-incidence matrices as
−→
L ,
←−
L ∈ {0, 1}l×n.

Finally, vo is the terminal voltages at inverter/DG output
terminals, and v =

[
vg,vb

]
∈ Cn×1 represents all the

voltages, where vg ∈ Cng×1 is the vector of bus voltages
at point of coupling, and vb ∈ Cn−ng×1 is the vector of all
remaining MG buses. The OPF problem is then formulated as:

min h (pg) = min
Pi

ng∑
i=1

Ci (Pi) (70)

s.t.: G⊤ (pg + jqg) = D̂⊤d+ diag {vv∗Y ∗} (71)

pmin ≤ pg ≤ pmax (72)

qmin ≤ qg ≤ qmax (73)

diag

{−→←−
Lvv∗

−→←−
Y ∗

}
≤ lmax (74)

(
vmin

)2 ≤ |v|2 ≤ (vmax)
2 (75)

Here, in order to minimize the total cost of DG output while
satisfying system-wide requirements/constraints, we need to
schedule each generator’s active power output. The genera-
tion cost for the ith generator is typically approximated by
quadratic cost functions1 Ci (Pi) = αiP

2
i + βiPi + γi, where

αi,βi, and γi are the cost parameters. The system constraints
include the enforcement of the nodal power balance in Eq.
(71), the bounding conditions of active and reactive power of
the individual DG outputs in Eqs. (72) and (73), respectively,
the line flows in either direction using Eq. (74), and the voltage
magnitude limits within

[
vmin,vmax

]
according to Eq. (75).

1Quadratic cost functions are widely used in OPF problems even for
inverter-based systems [65]. The problem formulation, however, can be solved
for any convex formulation of the cost function.

B. Lower Level Problem: Identification of Worst-Case Attack

The aim of the attack is to maximize the effect of the
disruption at the output signals of the MG secondary controller
while remaining stealthy as explained in Section III. The
formalization of the worst-case attack model is achieved by
co-optimizing it with the MG operations as given in (70)–
(75) and adopting a common cybersecurity practice, which is
to conservatively assume a strong (omniscient) and stealthy
attacker with full knowledge of the network requirements
including all nodal and line parameters, operating limits, and
priorities. These assumptions lead to assessing the worst-case
impact of the attack. The attacker with a generic objective,
denoted as OA(act′it), can be modeled as in (76), where (77)
presents the MG OPF model conditioned by the modified
actions act′it that satisfy the stealthiness properties of (78).

maxOA(∩∀i∈Gact
′
it) (76)

s.t.:
{

(70)− (75) with actit = act′it,∀i ∈ G, t ∈ T
}

(77)

act′it s.t.:
{

(23)− (26) and (33)− (35)
}

(78)

C. Upper Level Problem: Stability-Constrained Operation

In this part, the MG entity operates at the top of the
hierarchy and aims to enforce the optimal operating setpoints
to the inverters while satisfying OPF conditions and ensuring
the small-signal stability of the inverter-based MG, since OPF
cannot guarantee MG stability [59], let alone the existence of
a stealthy attack, and assuming the existence of a residual-
based observer able to detect and mitigate malicious signal
manipulations according (76)–(78). To establish the stability
restriction, the MG is initially represented as a collection of
differential-algebraic equations:

ẋ = f̃(x, z) (79)
0 = g̃(x, z) (80)

In the above equations, f̃ and g̃ denote the nonlinear differ-
ential and algebraic equation vectors of a MG, respectively. x
and z are the vectors of state and algebraic variables with sizes
nx and nz , respectively. A third-order inverter model, as stated
in [66], is employed to minimize the computational burden.
Fig. 2 depicts voltage and current controllers that are equipped
with an LC filter, which possess a significantly higher closed-
loop bandwidth compared to the power controller module. It
can be assumed that these control loops achieve quasi-steady-
state quickly. Therefore, the vector of differential equations,
denoted by f̃ , includes state variables represented by x =
[p⊤, q⊤, δ⊤]⊤ ∈ Rnx×1.

ẋ⊤ =

 −ωc · p+ ωc · Re
{
vo · (io)∗

}
−ωc · q + ωc · Im

{
vo · (io)∗

}
(ω − ωcom)ωb

 (81)

where ωc, p and q ∈ Rng×1, vo ∈ Cng×1 = vod + jvoq, and
io ∈ Cng×1 = iod + jioq. The operating inverter frequency ω
is obtained using: ω = ωb −mP · p+mP · popf , where popf

is the active power setpoint provided by the OPF.
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Table I: Parameters of the test MG.
DGs 1 & 2 DGs 3 & 4

Parameter Value Parameter Value

mP 9.4× 10−5 mP 12.5× 10−5

nQ 1.3× 10−3 nQ 1.5× 10−3

Rc 0.03 Ω Rc 0.03 Ω
Lc 0.35 mH Lc 0.35 mH
Rf 0.1 Ω Rf 0.1 Ω
Lf 1.35 mH Lf 1.35 mH
Cf 50 µF Cf 50 µF

KPV 0.1 KPV 0.05
KIV 420 KIV 390
KPC 15 KPC 10.5
KIC 20000 KIC 16000
ωb 314.16 rad/s ωb 314.16 rad/s
F 0.75 F 0.75
ωc 31.41 Hz ωc 31.41 Hz
cf 30 cf 30
cv 30 cv 30

Table II: Parameters of MG lines and loads.
Lines 1, 3 Line 2

Rline 0.23 Ω Rline 0.35 Ω
Lline 318 µH Lline 1847 µH
Load 1 Load 2 Load 3 Load 4

R 30 Ω R 20 Ω R 25 Ω R 25 Ω
X 15 Ω X 10 Ω X 10 Ω X 15 Ω

The vector of algebraic equations, denoted by g̃, in-
cludes the algebraic variables represented by z =
[(iod)

⊤
, (ioq)

⊤
]⊤Rnz×1.

z⊤ =

[
Re

{
Y̌ (vo − io · zc)

}
Im

{
Y̌ (vo − io · zc)

} ]
(82)

where Y̌ is the Kron-reduced admittance matrix of the system
[66] and zc is the line impedance connecting an inverter to
the MG. The inverter terminal’s voltage is given as:

vo = (vopf + nQ · qopf − nQ · q) · (cos δ + j sin δ) (83)

where nQ is q − v droop constant, and qopf and vopf are
the OPF resulted values for the reactive power and voltage
setpoints, respectively.

Proposition 2. Let us consider a MG described by (79)–
(80). The state matrix, denoted by Â ∈ Rnx×nx , is defined
as Â = A (iod, ioq, δ, q) − B(δ, q)(D)−1C(δ, q), where
A (iod, ioq, δ, q) = ∂f̃

∂x , B(δ, q) = ∂f̃
∂z , C(δ, q) = ∂g̃

∂x , and
D = ∂g̃

∂z . The expressions for these matrices are given in the
Appendix by (89) – (92), along with the definition of the matrix
Mp in (88). Furthermore, Ǧ and B̌ represent the real and
imaginary parts, respectively, of the Kron-reduced admittance
matrix Y̌ . According to [67], the small-signal stability of the
MG can be ensured – incorporating the Lyapunov stability,
with a minimum decay rate (i.e., damping ratio) of η, if there
exists a symmetric positive definite matrix M that satisfies:

Â⊤M +MÂ ⪯ −2ηM . (84)

The proof for Proposition 1 can be found in [59].
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Fig. 9: Attack-free scenario.
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Fig. 10: Effects (at the output of DG 4) of an arbitrary attack vector
following for both voltage and frequency: (a) a uniform distribution with
µ[−0.01, 0.01], and (b) a normal distribution with N (0, 0.00001) multiplied
with a sine carrier of reference values (1 p.u., 50 Hz).

Additional constraints are formulated to connect the in-
verter’s internal variables with the OPF variables:

vg = (vref − nQ · q) · (cos δ + j sin δ)− io · zc (85)

io = Y̆ vg (86)
p+ iq = diag

{
io (io)

∗
[zc]

}
+ pg + iqg (87)

The OPF represented by (70)-(75), along with the additional
constraints in (84)-(87), constitutes a small-signal stability-
constrained OPF for an inverter-dominant MG. In combi-
nation with the utilization of the designed observer (37),
with L(x̂) ≜ L′ + L′′(x̂), and any L′, L′′(x̂) chosen as
described in the proof of Theorem 2 and able to globally
asymptotically reconstruct the state x, ensures that the operator
can counter stealthy attacks while ensuring a sufficient stability
margin during optimal generation. It should be noted that
the constraints in (71)-(75) are quadratic functions of the
bus voltage v, while the state matrix Â in (84) and the
constraints (85) and (87) are nonlinear functions of io, q, and
δ. These bilinear matrix inequalities (BMIs) and nonlinearities
make the problem nonconvex which can be solved using
computationally tractable semidefinite programming (SDP)
or parabolic relaxation techniques [68], or even sequentially
through objective penalization [59].

VI. EXPERIMENTAL AND SIMULATION RESULTS

In this section, the simulations results are presented demon-
strating the impact of attacks discussed in Section III and the
effectiveness of the proposed detection and mitigation strategy
of Section IV. The MG adopted for testing is shown in Fig.
1, and the relevant MG modeling parameters are detailed in
Table I and Table II. Simulations have been performed with
MATLAB 2020.b, on a Macbook Pro 2021, with 16 GB of
RAM and a 512 GB hard disk drive.
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Fig. 11: Demonstration and effects of a stealthy attack at the outputs of DG 4 with bi = 0.2 as the attack evolution rate.
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Fig. 12: Demonstration and effects of a stealthy and intermittent attack at the outputs of DG 4 with bi = 0.2 as the attack evolution rate.
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Fig. 13: l2 norm of the proposed residual under an arbitrary attack vector fol-
lowing for both voltage and frequency the attack configuration demonstrated
in Fig. 10.
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Fig. 14: l2 norm of the proposed residual under: (a) a stealthy only attack,
and ((b)) a stealthy and intermittent attack, with bi = 0.2.

A. Effectiveness of Attack Models

Fig. 9 displays the voltage and frequency values in the
attack-free scenario. The reference values are set to 1 per
unit (p.u.) and 50 Hz, respectively. The figure shows that
the secondary controller operates properly, i.e., voltage and
frequency values reach the reference values. The magnitudes
of voltage and frequency in the DGs present instabilities after
attacks are introduced into the system. This effect is produced
by tampering the input references ωj and vodj provided to
the secondary controller. The attack duration is assumed to
be bounded and last from 0.4s to 0.8s. This action leads to
distorting the active and reactive power values of the DGs
inside the MG. The plots presented next are only for DG 4
for brevity. Similar results can be obtained for other DGs.

Figs. 10, 11, 12 present the simulation results under three
different attack models: (a) an arbitrary attack vector following
a uniform and normal-sinusoidal distribution (Fig. 10), (b) an
attack following the stealthy but not the intermittent character
of the attack modeling of Section III (Fig. 11), and (c) an
attack following the complete proposed model of Section III
(Fig. 12). In Figs. 11 and 12, we selected empirically within
the attack function dynamics, βi(t− To) in (31), as an attack
evolution rate bi = 0.2. Increasing substantially the evolution
rate of the attack will cause the attack to lead to much higher
residual errors. On the other hand, lower values of bi will
have minimal effect on the output voltage and frequency of
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Fig. 15: l2 norm of the residual acquired via the output injection observer
(Remark 3) under an arbitrary attack vector following for both voltage and
frequency the attack configuration demonstrated in Fig. 10.
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Fig. 16: l2 norm of the residual acquired via the output injection observer
(Remark 3) under: (a) a stealthy only attack, and ((b)) a stealthy and
intermittent attack, with bi = 0.2 as the attack evolution rate.

the secondary controller, i.e., will minimize the attack model
objectives. Overall, the attack vectors intend to affect the
system’s voltage and frequency stability while tampering the
pre-defined setpoints of the MG. It is clear that the constraints
of the scheduling interval as well as the stealthiness of the
attack slightly reduce the effect on the secondary control
output (especially on the frequency range).

B. Residual-based Observer Comparison

The importance of observers relies on computing an error,
described as the residual variable r, presented in Theorem
2. This error indicates that the MG is experimenting an
anomalous behavior. The norm of the error vector, e.g., the
Euclidean l2 norm (i.e., ∥r∥), can be computed to measure
the error. The error acts as an alarm for this work’s residual-
based detection approach. This paper focuses on effectively
detecting attacks, and leverages a residual-threshold based
approach. Similar to presented literature, where corrupted
system states could be recovered with a selected detection
threshold, in our experiments we are able to correctly identify
corrupted values with a similar empirically-selected maximum
error threshold. The l2 response of the residual is presented,
without any mitigation strategy, for three set of results: (a)
the proposed residual-based observer (Theorem 2) under an
arbitrary attack vector of effects presented in Fig. 10 (Fig.
13), and (b) the proposed residual-based observer (Theorem
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Fig. 17: Detection and mitigation strategy applied at DG 4 under an arbitrary
attack vector following for both voltage and frequency the attack configuration
demonstrated in Fig. 10.
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Fig. 18: Detection and mitigation strategy applied at DG 4 under: (a) a stealthy
only attack, and (b) a stealthy and intermittent attack, with bi = 0.2 as the
attack evolution rate.

2) under the proposed stealthy and intermittent attack model
of effects presented in Fig. 12 (Fig. 14), (c) an alternative
residual-based observer from literature (Remark 3) under an
arbitrary attack vector of effects presented in Fig. 10 (Fig. 15),
and (d) an alternative residual-based observer from literature
(Remark 3) under the proposed stealthy and intermittent attack
model of effects presented in Fig. 12 (Fig. 16). In all cases,
the initial state of the observer is set equal to the measured
state at the initial time (for the measurable state variables,
while it is set to zero for all the other ones). From Figs. 13–
16, it can be observed that the DGs behavior captured by the
residuals is sensitive to attack perturbations, especially when
the error diverges more critically. In addition, the l2 norm
of the residual error of the proposed observer compared with
the output injection observer (Remark 3 - see Section IV-A)
indicates that the proposed one is more accurately estimating
the system’s state.

C. Mitigation Strategy

In this subsection, the mitigation strategy is applied to deal
with the attack scenarios. A threshold value is used as an alarm
in case the DG inverter is experiencing abnormal operating
values for frequency and voltage; in the time instants when one
or more components of the residual go beyond the respective
threshold τi, the DG controllers will use the estimated state
values from the observer, instead of the measured values that
triggered the residual-based detection condition. Consequently,
protection of the MG is effectively guaranteed.

Here, we present three sets of mitigation results following
the proposed observer of our work: (a) under the effect
of the arbitrary attacks (Fig. 17), (b) under the proposed
stealthy and intermittent attack (Fig. 18), and (c) under the
proposed stealthy and intermittent attack while complying to

the stability-constrained network modeling and overall formu-
lation structure of Section V (Fig. 19). According to IEEE
1547.4-2011 guide [69], the MG control strategy necessitates
that the MG’s voltage and frequency deviations meet the
standards acceptable to all parties involved. The MG’s ability
to maintain a narrow frequency range will determine its
effectiveness in load following. This is clearly demonstrated by
the results in Figs. 17–19. Specifically, after the residual-based
observer mitigation is implemented in Figs. 17–18, the effect
on both the voltage and frequency for all of the presented
scenarios can be considered negligible. The results confirm
that the mitigation strategy effectively counters the impact of
the attacks, even in the stealthy and intermittent attack case.
Furthermore, Fig. 19 illustrates the eigenvalues of the MG
obtained under four scenarios: the attack-free case, the stealthy
attack scenario, the stealthy and intermittent attack scenario,
and after the stability-constrained mitigation formulation is
employed while the stealthy and intermittent attack is active.
We observe that four of the eigenvalues remain stationary,
however, the remaining eleven, in the attack cases, they are
located closer to the imaginary axis which can potentially
cause instabilities in the MG in response to load perturbations
or other disruptive events. In contrast, when stability and
network constraints are employed during the stealthy and
intermittent attack, the eigenvalues move further away from
the imaginary axis, providing a better stability margin.

VII. CONCLUSIONS

This paper presents a detection and mitigation strategy for
the operation of islanded MGs under disruptive and stealthy
attacks. It depicts the consequences of such attacks at the
output of the secondary controller. The work further develops
a theoretical formulation of a detection strategy based on the
analysis of the residual error between the actual state of the
DGs, and the estimated one, as provided by a nonlinear ob-
server. Finally, the paper considers both network and stability
constraints to ensure secure MG operation, while it provides
simulation-based experiments to demonstrate the effectiveness
of the proposed mitigation strategy. The results demonstrate
that unexpected disturbances can affect the reference of each
DG provided by the secondary controller. However, an ac-
curate mitigation strategy can significantly increase the effort
required by the adversary to affect MG operation.

APPENDIX

The matrix Mp is defined as:

Mp =


−mP1 mP2 0 · · · 0
−mP1 0 mP3 · · · 0

...
...

...
. . . 0

−mP1 0 0 · · · mPng

 (88)

where each mPi
indicates the droop constant of the ith

inverter, ∀i ∈ G.

Definition 1 (Convexity). A set P ⊆ Rd is convex iff∑n
i=1 λipi ∈ P, for all n ∈ N, p1, . . . , pn ∈ P , and

λ1, . . . ,λn ⩾ 0 with
∑n

i=1 λi = 1

Definition 2 (Convex Hull). The convex hull convh(P) of a
set P ⊆ Rd is the intersection of all convex supersets of P.
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Fig. 19: MG eigenvalues under the: ◦ attack-free case, ♢ stealthy attack scenario, □ stealthy-intermittent attack scenario, + stability-constrained mitigation
formulation is employed while the stealthy and intermittent attack is active.

∂ f̃

∂x
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 − [ωb] − [ωb · nQ · (ioq · sin δ + iod · cos δ)] − [ωb · (vref − nQ · q) · (iod · sin δ − ioq · cos δ)]
0n

g
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Mp 0n
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g−1

 (89)

∂ f̃

∂z
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