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Abstract

Ridge curves retrieval in time-frequency (TF) domains is fundamental in
many application fields as they convey most of information concerning the
instantaneous frequencies of non-stationary signals. However, it represents a
very hard task in the case of multicomponent signals having non-separable
modes because of the presence of cross-terms that generate interference in
TF domains. A preliminary detection of these interference regions may be
then useful for the definition of effective strategies for ridge curve recov-
ery. This paper introduces a novel approach based on machine learning for
the automatic detection of interference regions in spectrogram images. Each
spectrogram sample is suitably classified as interference, single mode or back-
ground by accounting for its relative information. Some critical problems,
such as the training set size and the type of examples to use for populat-
ing the training set, are dealt with. Experimental results show that a local
linear model for spectrogram image and a small training set can guarantee
good classification rates for a wide class of non-stationary signals, even in
the presence of moderate noise.
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1. Introduction

In the last years, there has been an increasing number of approaches deal-
ing with problems involving MultiComponent Signals (MCSs). The reason of
this interest stems from the fact that many practical applications are based
on MCSs. The latter are usually characterized by a superposition of specific5

waveforms with given time-dependent frequency content along with an am-
plitude modulation [1]. That is why they are also referred to as amplitude
and frequency modulated signals (AM-FM signals) — or, more simply, chirps.
Both frequency and amplitude are fundamental and their instantaneous value
i.e., respectively, Instantaneous Frequency (IF) and Instantaneous Amplitude10

(IA), must be accurately estimated for each component under study. For in-
stance, IF plays a fundamental role in biology and medicine [2, 3, 4], audio
processing [5, 6], civil and military air traffic control and security [7, 8, 9],
seismology [10, 11], physics [12, 13], etc..

Unfortunately, observed MCSs are a complicated mixture of single com-15

ponents where a correct estimate of each IF and IA passes through modes
separation. Even in this case, there is a plethora of approaches dealing with
this problem in different domains (as shortly presented in the next section),
with different pros and cons. An example is shown in Fig. 1: it refers to a
signal representation in the time frequency domain, that is one of the most20

popular domains for the analysis of non-stationary signals [14, 15]. Specifi-
cally, it depicts the spectrogram (squared modulus of the also popular Short
Time Fourier Transform (STFT) [16]) of a two component signal. As it can
be observed, just two components generate an interference region in the time-
frequency plane where their separation can represent a hard task as well as25

the estimation of the corresponding IF and IA. The task becomes more chal-
lenging whenever amplitude modulation concentrates energy signal mainly
in the interference region.

Such a difficulty has been mathematically proven in [17, 18, 19], where
the spectrogram of both a monocomponent signal and a multicomponent30

one have been described by a partial differential equation — specifically, an
advection equation. In the case of two or more components, such an equation
shows some interfering terms that are complicated to manage from both a
practical and theoretical point of view. Apart from this theoretical result, the
difficulty in managing interference is proven by the plethora of approaches35

proposed for this specific task that mainly embed ad hoc strategies in more
general models. For instance, some approaches treat signal time-frequency
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Figure 1: Spectrogram of a two-component frequency modulated signal with: Top) con-
stant amplitudes; Bottom) time-dependent amplitudes. Red ellipses show the interference
region.
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Figure 2: Examples of two-component FM signals. Top) Spectrograms; Bottom) IF
reconstruction via reassignment technique [1]. IF estimation fails because of interference
effects: additive (left) and subtractive (right).

representation as an image and missing points in the interference region are
achieved by interpolating detected IF points [20, 21, 22, 23]. The drawback
of this kind of approaches stems from a high computational cost as well40

as a high sensitivity to noise. Moreover, they often are subjected to the
well known switch problem that consists of misalignment of detected ridge
points. Other attempts try to use parametric strategies to mitigate missing
or wrong IF points [24, 25, 26, 27, 28, 29], including those oriented to define
adaptive or optimal support for the analysis windows [30]. More recently,45

deep learning is used for better reassigning time-frequency distributions over
the ridge curves; although promising, several data have to be used for training
in order to deal with the high variability of signals [31]. It turns out that
an effective preprocessing of the spectrogram image that is able to detect
interference regions before spectrogram analysis may be of great interest for50

the research community working on this topic.
It is also true that interference often is easily detectable by an expert, as
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it is evident from Fig. 2 that contains different spectrograms with different
MCSs combinations. Though different, interference regions show some non
trivial peculiarities that allow to characterize them. A natural question then55

arises: can a suitably trained machine learning tool recognize interference
regions? Machine learning (ML), and in general artificial intelligence (AI),
had a huge impact in different fields in the past few years [32]. In particular,
Convolutional Neural Networks (CNNs) have been widely used for classifi-
cation, object detection and recognition, showing very high performance in60

different contexts of pattern recognition [33, 34, 35]. In addition, recently AI
has also been adopted for the solution of classical partial differential equa-
tions (PDEs), fractional equations, integral-differential equations as well as
stochastic PDEs [36]. If on the one hand, AI has often been criticized ”as a
very poor caricature of the workings of the human brain” [32], on the other65

hand, it uses abductive reasoning i.e., it is able to make a probable conclu-
sion from what you know [37]. Taking into account that the mathematical
formalism is based on induction and deduction, it turns out that AI can
pave the way to different solutions and results. In particular, though very
performing in specific case studies, abductive results can be used to produce70

an alternative and mathematical formalism that can lead to more performing
analytical and numerical solutions.

This paper just focuses on the aforementioned observation and then pro-
poses a novel approach oriented to detect interference regions in the spectro-
gram image by turning it into a problem of image regions classification, that75

can be addressed using CNN architectures [32]. Specifically, potential and
limits of such an approach are studied. Apart from the classical questions
tied to a machine learning approach, such as how to build a suitable training
set (the minimum number of interfering chirps), how accurate the model is,
what is its computational time etc., this approach aims at better understand-80

ing the intrinsic difficulty of interference detection that may be useful to find
out a different mathematical formalism able to overcome current numerical
problems.

The paper is organized as follows. Section 2 offers a short state of the art
concerning IF estimation approaches that are closer to the proposed strategy.85

Section 3 introduces the motivations of the proposed approach along with a
technical background useful to understand the rest of the paper. Section 4
presents the proposed model, while Section 5 contains some representative
simulations relative to different cases of interest. Finally, Section 6 draws the
conclusions.90
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2. A short state of the art

IF estimation is a very challenging task as proven by the plethora of ap-
proaches proposed in the literature. The following state of the art is just
oriented to show the major research lines without any claim of being exhaus-
tive. Particular attention will be devoted to those approaches that are closer95

to the proposed one. A first and broad classification of existing approaches
can take into account the working domain. As a result, two classes can be
identified: the first class contains strategies working in the time domain,
while the second one includes methods defined in the time-frequency plane.
A representative example for the first class is the Empirical Mode Decom-100

position [38, 39, 40], while examples in the more populated second class are
those that use spectrogram, syncrosqueezing, Smoothed Wigner Ville Distri-
bution or Adaptive Directional Time Frequency Distribution for estimating
IF [29, 41, 42, 43, 44, 45, 46, 47, 48, 49], just to mention some of them.

Approaches belonging to both classes have pros and cons. Time-domain105

based approaches can directly process the signal in the time domain avoid-
ing problems arising from kernel convolutions and adopted transform; on the
other hand they obviously show a greater sensitivity to noise that usually
characterizes real world chirps — very often with a non negligible compu-
tational effort. Transform-based approaches are highly sensitive to modes110

separability and robustness to noise represents one of the main challenge [50]
— as a result, they often are designed for specific families of signals.

With regard to the first class of methods, an interesting IF estimator de-
signed for wideband non linearly FM signals has been proposed in [51]. The
latter is based on removal of signal non-stationarity, by minimizing the band-115

width of the demodulated signal. It is also quite effective for crossing modes
(with some limits in the case of subtractive interference) but it is limited to a
specific signal family, as it also happens for many approaches belonging to the
second class of methods [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]. As far as
it concerns the second class, it is also worth mentioning those approaches that120

take advantage of the combination of more than one transform (for instance
spectrogram with Hough, Radon and Inverse Radon transform) that have
shown a good performance for different kinds of chirp — linear [64, 65, 66],
polynomial [67], sinusoidal [53] and non linear ones [68]. There have been
some approaches exploiting imaging for IF estimation such as [20, 21], and125

Viterbi algorithm-based methods [22, 23]. The simplicity of these approaches
is often accompanied by a not negligible computational effort, sensitivity to
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noise and not correct ridge assignment in the case of interference or close
chirps (switch problem). Some approaches oriented to minimize this aspect
are in [24, 26, 69], that mainly aim at estimating IF direction, and [25],130

that assumes local monotonicity. Alternative to Viterbi method but sim-
ilar in spirit approaches are the Ridge Path Regrouping Method (RPRM)
[27, 28] (showing a certain sensitivity to noise) and optimization techniques
[27, 29], properly designed to mitigate interference effects. As interference
among modes is a critical problem also for classical approaches like reassign-135

ment method [70], synchrosqueezing [71, 72] and syncroextracting transform
[73, 74], some refinement methods have been defined to mitigate this prob-
lem, as in [17, 18, 75, 76], as well as alternative approaches like the variational
method proposed in [51] and the de-chirping technique in [52, 77, 78]. More
recently ML-aided methods have been developed for modes separation other140

than signal classification. A very recent example is the Time Frequancy
Analysis-NET [31] that has been properly built for reassignment purposes.
Although promising, it requires populated and representative training set in
order to be sufficiently general and robust to noise. To weaken the depen-
dence on modes separability, modes counting methods can be employed to145

predict eventual nonseparability regions [19, 79, 80]. They are mainly based
on a specific measure of signal complexity, as for example, Renyi entropy [79],
multiscale entropy [80] or run-length encoding [19]. Unfortunately, indepen-
dently of the specific constraints and working scenarios, counting methods
limit themselves to output the time-dependent number of components; as150

a result, a successive processing is required for determining the presence of
interference or the incoming of a new and time-limited mode.

To overcome some of these problems, the main focus of the proposed
method is to define a simple but enough general and accurate model for a
specific task (time-frequency plane segmentation and labeling) that makes155

use of small amount of training data. It is a transform-based method that
exploits the spectrogram as an image by modeling interference detection
problem as a classification one, as explained in details in the next sections.

3. Motivation of the work

AM-FM signals can be mathematically written as follows [1]:160

f(t) =
K∑
k=1

fk(t) =
K∑
k=1

ak(t)e
iφk(t) , (1)
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where K represents the number of components while fk ∈ L2(R) is the k−th
mode with time-dependent amplitude ak and phase φk. The time derivative
of φk is the instantaneous frequency φ′k(t) of the k−th mode.

The Short-Time Fourier Transform of f is:

Sgf (u, ξ) =

+∞∫
−∞

f(t)g(t− u)e−iξt dt, ∀ (u, ξ) ∈ R× R+, (2)

where g ∈ L2(R) is a real and symmetric analysis window, while u and ξ165

represent time and frequency variables, respectively.
The spectrogram P of f is defined as the squared modulus of Sgf (u, ξ):

P (u, ξ) = |Sgf (u, ξ)|2.

By using the dilated window gs(t) = 1√
s
g
(
t
s

)
, with s > 0, the STFT of a

monocomponent signal f(t) = a(t) cosφ(t) can be written as [16]:170

Sgf (u, ξ) =

√
s

2
a(u)ei(φ(u)−ξ·u) [ĝ (s(ξ − φ′(u)) + ε(u, ξ))] , (3)

where ∗̂ denotes the Fourier Transform of ∗, g is a normalized window hav-
ing support

[
−1

2
, 1

2

]
and frequency bandwidth ∆ω [16], while ε(u, ξ) is a

corrective term that can be considered negligible for a(t) and φ′(t) slightly
varying in the support of the analysis window. Under these constraints, the
spectrogram analytical form becomes:175

P (u, ξ) =
s

4
a2(u)ĝ2 (s(ξ − φ′(u))) . (4)

Accordingly, the spectrogram of a two-component signal f(t) = a1(t)f1(t) +
a2(t)f2(t), like the one in Fig. 1, can be written as:

P (u, ξ) = P1(u, ξ) + P2(u, ξ) + 2
√
P1P2 cos(φ2(u)− φ1(u)), (5)

where Pk = Pk(u, ξ) = |Sgfk(u, ξ)|
2 =

s a2
k(u)

4
ĝ2(s(ξ − φ′k(u))), k = 1, 2.

Eq. (5) results less simple than eq. (4) because of the presence of the
cross-term, that is responsible for the difficulty in IF estimation in the time-180

frequency regions where the separability condition

|φ′1(u)− φ′2(u)| ≥ ∆ω (6)

does not hold true. In fact, as Fig. 2 shows, the two modes overlap both in
time and frequency. In particular, modes interference is additive whenever
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the spectrogram energy increases (i.e., it is greater than the sum of the
two isolated chirps energies), and subtractive in the opposite case. In both185

cases modes overlapping causes wrong ridge points detection (spectrogram
maxima), and then incorrect IF estimation. To address this issue, in [17, 54] it
has been proven that alternative time-frequency curves (spectrogram isolevel
curves for constant amplitude FM signals) contain the same information
of ridges but are less sensitive to cross-terms [17, 54]. These curves are190

characteristic curves Cc,φ of the following advection equation

∂P (u, ξ)

∂u
+φ′′(u)∂P (u,ξ)

∂ξ
− 2a′(u)

a(u)
P (u, ξ) = 0, ∀u ∈ supp{f}, (7)

that is satisfied by the spectrogram P (u, ξ) of a monocomponent signal.
Those characteristic curves Cc,φ are

ξ(u) = φ′(u) + c, (8)

with c = ξ0 − φ′(u0) and (u0, ξ0) is a point in the time-frequency (TF) plane
[18, 19]. Hence, they are nothing else than shifted copies of the ridge curve.195

As a result, characteristic curves sufficiently far from ridges correspond to
spectrogram points that are less influenced by cross-terms; then, they allow
to formally estimate IF with more precision in the case of multicomponent
signals — see [18, 19] for a more rigorous explanation.

However, the selection of those good points is not always feasible, espe-200

cially for fast varying amplitude modulation functions or interference kind/level.
In fact, though cross-terms perfectly describe interference effects, they do not
help to completely solve IF estimation problem, as it is evident from the evo-
lution law of the spectrogram P (u, ξ) of a two-component signal, i.e.

∂P (u, ξ)

∂u
+ φ′′1

∂P (u, ξ)

∂ξ
+ (9)

−s
2

[
a1a

′
1ĝ

2
1 + a2a

′
2ĝ

2
2 + ĝ1ĝ2(a′1a2 + a′2a1) cos ∆φ

]
+

+
s

2
a1a2ĝ1ĝ2∆φ′ sin ∆φ+

s2

2
∆φ′′ĝ′2

[
a2ĝ

2
2 − a1a2ĝ1 cos ∆φ

]
= 0,

where ĝk = ĝ(s(ξ − φ′k(u))), ak = ak(u), φk = φk(u), k = 1, 2, and ∆φ =205

φ1 − φ2.
That is why refined or alternative approaches are required.
However, independently of the adopted refinement, it would be useful to

have prior information concerning TF interference regions. The next section
addresses this issue.210
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4. The proposed model

With reference to eqs. (3) and (5), the time-frequency plane ΩP can be
partitioned into three main regions i.e.,

ΩP = Ωo ∪ Ωm ∪ Ωb (10)

with
Ωo = {(u, ξ) ∈ ΩP : ∃! k ∈ {1, 2} : (u, ξ) ∈ ΩPk}
Ωm = {(u, ξ) ∈ ΩP : ∃ k, j ∈ {1, 2}, k 6= j : (u, ξ) ∈ ΩPk ∩ ΩPj}
Ωb = {(u, ξ) ∈ ΩP : @ k ∈ {1, 2} : (u, ξ) ∈ ΩPk},

,

where Ω∗ denotes the support of ∗.215

Ωo is the one-mode support and it collects the TF regions where only a
single mode contributes to the spectrogram P ; Ωm is the multi-mode sup-
port, i.e., the TF interference region among two (or more) chirps as formally
written in eq. (5); finally, Ωb includes the remaining TF points and represents
the background i.e., the points where there is no signal.220

The main idea is then to define a method that is able to recognize interfer-
ence regions (Ωm), i.e., regions that do not satisfy eq. (6). In agreement with
eq. (10), the problem then turns into an image classification/segmentation
one, where the image is the spectrogram. The image classification problem
can be addresed using a CNN with a supervised learning approach: the net-225

work learns from a set of input/output examples during the training phase
and then makes its own prediction on unseen data in the testing phase. In
the present classification problem, square patches of the spectrogram can be
considered as input of the CNN and the central point label of each patch is
considered as output. In particular, a custom CNN properly designed for hy-230

perspectral data classification purposes [34, 35] has been used and it has been
modified to be applied to 2D rather than 3D data in order to classify each
point of the spectrogram on the basis of its neighborhood. The adopted archi-
tecture conjugates moderate depth and high accuracy rate; similar structures
have demonstrated to be able to extract distinctive features for classification235

requiring a moderate learning time — details concerning the adopted CNN
are contained in the next section.

Apart from the selected architecture, the main issue is to properly define
the training set to use during the learning process. This is a delicate point
especially if one considers that the proposed approach aims at being non240
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parametric. Independence of transform parameters as well as of chirp family
usually is critical and can limit the actual applicability of many approaches.
With reference to the purpose of this paper, independence of chirp family is
then an issue to address till the definition of the training set. In particular,
we would like to define as less examples as possible while mantaining high245

classification rates in very general cases.
By taking advantage of modeling the problem as a pointwise classification,

local approximations of the spectrogram can be considered for restricting
the class of IF functions to use in the training phase. In particular, we are
interested in approximating a generic IF function φ′(u) with a piecewise linear250

IF ϕ′(u) that is defined over a uniform distribution of n points {ui}i=0,...,n−1

in the domain Ωū centered at time location ū. More precisely,

φ′(u) = ϕ′(u) + τ(u), ∀u ∈ Ωū (11)

where

ϕ′(u) =
n−2∑
i=0

pi(u)χDi(u) (12)

is the approximating piecewise linear IF with

pi(u) = φ′(ui) +
φ′(ui+1)− φ′(ui)

ui+1 − ui
(u− ui),

Di = [ui, ui+1] is the domain of the i − th linear piece, and χDi(u) is the
indicator function, while τ(u) is the pointwise approximation error.255

It is worth observing that:

1. independently of the approximation kind, the better the approxima-
tion the more φ′(u) and ϕ′(u) are far from satisfying the separability
condition, i.e.

|τ(u)| = |φ′(u)− ϕ′(u)| << ∆ω; (13)

2. according to eq. (8), the error for φ′(u) is the same for the associated260

characteristic curves;

3. τ(u) bounds the error for the spectrogram. In particular, let P be
the spectrogram of a monocomponent signal having φ′(u) as IF, and
let Q be the spectrogram of a monocomponent signal having ϕ′(u) as
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IF (both signals are supposed to have the same amplitude modulation
function), then

P (u, ξ) = Q(u, ξ) +R(u, ξ), ∀ (u, ξ) ∈ Dū,ξ̄

where R denotes the approximation error and Dū,ξ̄ = Ωū × Ωξ̄ a rect-
angular domain centered at the TF point to be classified (ū, ξ̄).
Eq. (4) and the Lagrange theorem for continuous functions provide

|R(u, ξ)| = |Q(u, ξ − τ(u))−Q(u, ξ)| = |Qξ(u, η)| |τ(u)|, (14)

where Qξ denotes the derivative of Q(u, ξ) with respect to ξ, and η ∈
[ξ − τ(u), ξ]. Hence, ∀ (u, ξ) ∈ Dû,ξ̂ it holds

|R(u, ξ)| ≤ maxξ∈Ωξ̄
|Qξ|(u, ξ) |τ(u)|.

For piecewise linear approximations of φ′(u), the error τ(u) can be ex-265

plicitly written as

τ(u) =
1

2

n−2∑
i=0

φ′′′(ūi)(u− ui)(u− ui+1)χDi(u), ūi ∈ Di (15)

while the global error over the whole time interval Ωū can be defined as

τ =

∫
Ωū

|τ(u)|du.

In particular, using a simple algebra, it can be bounded as follows

τ =

∫
Ωū

|τ(u)|du ≤M
|Ωū|3

12(n− 1)2
, (16)

where M = maxu∈Ωū |φ′′′(u)| and |Ωū| is the length of |Ωū|.
As it can be observed, the approximation error depends on the second

derivative of φ′(u), that mainly measures the variability of the curvature of270

the IF. In addition, the larger |φ′(u)|, the larger the number n − 1 of linear
pieces to use in the approximation in order to guarantee a fixed accuracy.

Using eq. (13) for bounding τ in eq. (16), we can conclude that a proper
local linear approximation of φ′ such that |φ′(u)−ϕ′(u)| ≤ ∆ω can guarantee
negliglible error for classification purposes. In particular, more points are275

needed for IFs having rapidly varying curvatures (chirp rates).
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It is also worth observing that the considerations above have been made
in a subset of the TF plane centered at the point to be classified; as a result,
the choice of the rectangular window Dū,ξ̄ plays a fundamental role: it has to
be sufficiently small to guarantee high accuracy of the linear approximation;280

on the other hand, it has to be enough large to allow to establish the class
of the interested point on the basis of its neighborhood. That is why it is
expected that it is comparable with the domain of the analysis window used
for spectrogram computation.

Figure 3: Spectrogram of chirps in eq. (17). Top) Additive interference (left), subtractive
interference (right). Bottom) High slope single chirp (left) and constant chirp (right).
Rectangles catch peculiar regions of each case.

These observations are fundamental for the definition of the training set285

that has to contain piecewise linear functions. In particular, two questions
arise: how many points should be considered for guaranteeing acceptable
accuracies, and what slope the linear chirp should have. Furthermore, as we
have to give examples of interference, the additional question is if we have
to use all the employed linear monocomponent signals to simulate interfer-290

ence. With regard to the last question, a broad classification of interference
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regions may be done in terms of an energy conservation criterion. In fact, as
previously discussed, there are usually effects of energy increase (additive in-
teference) or energy cancellation (subtractive interference) — as depicted in
Fig. 3 and in eq. (5). As a result, at least one example for each interference295

type has to be included in the training set.
Regarding the slopes, they have to be representative of constant, moder-

ate varying and highly varying IFs. Finally, as far as it concerns the number
of linear pieces, it is reasonable to use mainly just two-point approximations,
while leaving three-point approximations only for IFs having highly varying300

chirp rate.
Additional details are given in the next section where the performance of

the proposed approach under different design choices will be evaluated.

5. Experimental Results

This section provides implementation details related to the proposed ap-305

proach as well as the evaluation of the results achieved on some selected
synthetic AM-FM signals. In all tests AM-FM signals with N = 512 samples
have been considered. A Gaussian window has been used as STFT analysis
window with M = 54 samples, the overlapping range in STFT computa-
tion has been set equal to L = M − 1 while the number of voices equal to310

nfft = 2048. Finally, all tests have been performed in Matlab R2021a on
Intel(R) Xenon(R) Gold 6238R CPU 2.20GHz Processor.

Before showing spectrograms classifications, some points concerning the
adopted CNN deserve attention and they are listed below:

� definition of the training set so that the selected CNN is able to classify315

as many (interfering) chirp kinds (in terms of functional classes) as
possible by optimizing, at the same time, accuracy and computational
time;

� labels definition from spectrograms of single mode chirps;

� selection of the patch size to use as input of the selected CNN;320

� definition of the optimal design parameters for the selected CNN;

� noise effects: how noise can influence the final accuracy and how to
make CNN robust to it.

These points will be addressed separately in the following subsections.
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5.1. Training set definition325

Based on the considerations made at the end of the previous section,
just linear IFs with different slope (in the time-frequency plane) have been
selected, each representative of slow, medium and high IF variation. In addi-
tion, additive and subtractive interference between two linear chirps having
moderate slopes have been considered.330

Specifically, the following signals have been selected:

Additive interference : sigA(t) = sigA1(t) + sigA2(t)

sigA1(t) = cos
(π

3
Nt2 + 0.2πt

)
, sigA2(t) = sin

(
0.3πN(1− t)2

)
Subtractive interference : sigS(t) = sigS1(t) + sigS2(t)

sigS1(t) = cos
(π

3
Nt2 + 1.5πt

)
, sigS2(t) = sin

(
0.3πN(1− t)2

)
(17)

High Slope : sigHS(t) = cos

(
3

2
πNt2

)
Constant : sigC(t) = cos

(π
2
Nt
)

The training set is then composed of their spectrograms. As a matter of facts,
to reduce training time only representative spectrogram points belonging to
specific TF regions have been selected, as depicted in Fig. 3.

5.2. Labels definition335

In order to define the labels, the spectrogram of each single chirp has
been binarized. Binarization is performed by means of a threshold equal to
5% of the maximum value of the spectrogram under study — regions close to
spectrogram border are not considered. It turns out that background points
(Ωb in eq. (10)) will have a label value equal to ’0’, while chirp points (Ωo in340

eq. (10)) will be set equal to ’1’. The map of interfering chirps is achieved
as intersection of the maps of the isolated chirps; hence, interference regions
(Ωm in eq. (10)) will be characterized by the label ’2’, as depicted in Figs. 4
and 5. The labeled training set is shown in Fig. 6.

5.3. Patch size setting345

With regard to patch size, as discussed in Section 4, it has been set
in agreement with the support of the analysis window adopted for STFT

15



Figure 4: Labels definition in additive interference case. Top) Spectrogram of signal sigA1

in eq. (17) (left) and its domain after binarization (right). Middle) Spectrogram of sigA2

in eq. (17) (left) and its domain after binarization (right). Bottom) Spectrogram of sigA
in eq. (17) (left) and corresponding labels colors: ’0’ = blue is Ωb, ’1’ = cyan is Ωo, ’2’=
yellow is Ωm (right).

computation — M = 53 in the test presented in this section. This size allows
to minimize misclassification as it gets the best tradeoff between patch size
representativeness and localization. This statement has been also confirmed350
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Figure 5: Labels definition in subtractive interference case. Top) Spectrogram of signal
sigS1 in eq. (17) (left) and its domain after binarization (right). Middle) Spectrogram of
sigS2 in eq. (17) (left) and its domain after binarization (right). Bottom) Spectrogram
of sigS in eq. (17) (left) and corresponding labels colors, ’0’ = blue is Ωb, ’1’ = cyan is
Ωo, ’2’= yellow is Ωm(right).

by intensive tests using different patch sizes.

17



Figure 6: Labels for the selected training set.

5.4. Adopted CNN

The block scheme of the adopted CNN has been shown in Fig. 7. It is
composed of four convolutional layers interlayed by a ReLu layer for feature
extraction purposes, three fully connected layers, whose output size is 256,355

128 and number of expected classes respectively, a softmax layer and a clas-
sification layer. The input layer accepts patches with size M ×M while each
convolutional layer employs 8, 16, 32 and 8 fixed size filters (3 × 3 in this
paper), respectively.

All results are the output after 40 epochs using Adam optimizer, 256360

as minibatch size, 0.001 as initial learning rate, 0.1 as learning rate factor.
Shuffle is performed every epoch.

5.5. Classification Results

To detect interference regions, the proposed network has been trained on
overlapping patches falling in the rectangles (ROIs) in Fig. 3 — 60% of the365

whole points have been used for training and 20% for validation.
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Figure 7: Block scheme of the adopted Convolutional Neural Network.
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Validation accuracy [%] Test accuracy [%]
99.64 99.61

Table 1: Classification results for spectrograms in Fig. 3.

The first classification test has been performed on the remaining 20% of
the samples of the same ROIs. The achieved results have been measured
in terms of both validation and testing accuracy, and they are presented in
Table 1. As it can be observed, classes have been correctly recognized, as370

expected, since testing points belong to spectrogram referring to linear IFs.
The trained CNN has been then tested on spectrograms containing dif-

ferent kinds of chirp — labels for groundtruth are defined with the same
criterion described in Section 5.2. Classification refers to the whole spectro-
gram except for the external border whose width has been set equal to half375

of the width of patch dimension. This allows to discard annoying border
effects.

The following signals have been used as testing set:

� Group 1: Constant and linear chirps

sig1(t) = cos
(π

4
Nt
)

(Constant)

sig2(t) = cos
(π

4
Nt2

)
(Low Slope)

sig3(t) = cos
(π

2
Nt2

)
(Diagonal)

sig4(t) = cos(πNt2) (Moderate Slope)

sig5(t) = cos(2πNt2) (Very High Slope)

� Group 2: Non linear chirps
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sig6(t) = ei(20π cos( π
128

Nt)−1500t) + ei(0.95πNt2+170t)

(Linear + Sinusolidal)

sig7(t) =
√
t cos(0.5Nt4 + 500t) + e−2(t−0.4)2

cos
[
N
(
N+1
N
− t
)2

+ 120t
]

(Modulated Cubic + Linear)

sig8(t) = e−2(t−0.4)2
cos(0.5Nt3 + 500t) + e−9(t−0.5)2

cos
[
1.245N

(
N+1
N
− t
)3
]

(Modulated Quadratic Chirps)

sig9(t) = cos(40π ln(0.05t+ 0.002))
(Hyperbolic)

sig10(t) = sin(0.3πN(1− t)2) + cos(0.2πNt2 + 0.2πt) + cos(0.5πNt2 + 0.5πt)
(Three Linear Chirps)

380

Specifically, Group 1 is composed of a constant IF signal and four chirps
having different slopes. The classification accuracy is shown in Table 2,
while the corresponding classification maps are shown in Fig. 8. As it can
be observed, the proposed method is able to correctly classify spectrogram
points related to linear slopes that are different from the one used for training.385

Misclassifications are observed in the radar-like IF functions, such as sig4 and
sig5, in correspondence to regions where the sign of the slope changes as they
are confused with interference region.

Group 2 contains chirp signals having non linear IFs and it has been
defined to check whether the proposed CNN-based method is able to detect390

interference regions even in the case of chirps belonging to classes different
from the ones used for training — various combinations of linear chirps with
hyperbolic, amplitude modulated and a sinusoidal one have been included.
Group 2 also contains a signal composed of three non-separable linear modes.
Classification accuracies are in Table 2 while classification maps are provided395

in Fig. 9. Even in this case, the method is able to correctly classify most
of TF points reaching accuracies greater than 97% for signals sig7, sig8, sig9

and sig10. Some misclassifications occur for the signal sig6 in correspondence
to points where IF curvature rapidly changes.
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Figure 8: From top to bottom) Classification results for the spectrograms of signals in
Group 1. Spectrogram (left), spectrogram labels (middle), classification map provided by
the proposed method (right).
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Figure 9: From top to bottom) Classification results for the spectrograms of signals in
Group 2. Spectrogram (left), spectrogram labels (middle), classification map provided by
the proposed method (right).
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Test signal Accuracy [%] Refined Accuracy [%]

sig1 99.90 99.80
sig2 99.93 99.97

GROUP 1 sig3 99.77 99.78
sig4 96.41 96.40
sig5 94.85 94.86

sig6 88.20 89.71
GROUP 2 sig7 98.55 98.48

sig8 98.63 98.70
sig9 99.66 99.64
sig10 97.43 97.86

Table 2: Classification accuracy, measured in terms of percentage of correct assignments,
achieved by the proposed method for spectrograms referring to test signals in Group 1
and Group 2. The third column refers to postprocessed classification maps using median
filtering.

5.6. Post processing phase400

In order to improve classification results, a median filter has been applied
to the classification map in order to correct the classification for sparse and
isolated points. In fact, pointwise classification can be misleading in some
cases and the local median filter aims at making the classification map spa-
tially homogeneous. The window used for the median filter has size m×m,405

and m = 18 has been used in all tests — it has been fixed by using the 3σ rule
to the gaussian analysis window. The improvement in terms of classification
rate can be evaluated by looking at the third column of Table 2, while Fig.
10 allows to compare the refined classification maps for signals belonging to
Group 2.410

5.6.1. Classification under noisy conditions

To evaluate the robustness to noise of the proposed interference detection
method, noise having normal distribution and different standard deviations
has been added to signals under study. Two kinds of test have been per-
formed:415

1. CNN has been trained using clean patches. In this case, we are inter-
ested in evaluating to what extent noisy spectrogram can confuse the
proposed classification method;
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2. CNN has been trained using noisy patches. In this case, the aim is to
evaluate if CNN trained on noisy patches increases the classification420

performance and, if so, the level of such an improvement.

In the first case, chirps in eq. (17) are used for training. In the latter,
the same chirps have been corrupted with zero-mean Gaussian noise with
predefined Signal to Noise Ratio (SNR), i.e. SNR = 20 db and SNR = 10
db— see Figs. 11 and 12. These SNR values have been selected as they are425

representative of moderate-high noise.
Fig. 13 shows the results achieved using non noisy and noisy training

signals, while some classification maps are reported in Figs. 14 and 15 —
post processing has been performed in both cases.

As it can be observed, for test signals having low level of noise (SNR430

≥ 30 db) recognition rates are almost independent of the presence of noise
in the training set: a slight decrease is observed for the noisy training case
because of some bad classifications in correspondence to the interference re-
gions. As the noise level increases (SNR < 25 db), classification performed
using the noisy-trained CNN gives better results. However, when using the435

20db noisy training set, classification rate decreases as SNR decreases, mak-
ing the method quite robust till SNR values equal to 20 db — for smaller
SNR values, classification rates rapidly degrade. On the contrary, classifi-
cation rates remain high when 10db noisy training set is used, making the
method robust to higher noise levels.440

6. Conclusions

This paper has presented a novel approach oriented to detect interference
regions in the spectrogram image of multicomponent AM-FM signals. To this
aim, a machine learning-based strategy has been employed to classify spec-
trogram samples in three classes: interference, single chirp and background.445

The proposed method makes use of a small set of spectrogram regions to train
the selected CNN architecture. Specifically, the training set is composed of
portions of the spectrogram image of a few linear chirps. The rationale under
this choice relies on the fact that usually interference regions are very local
in the spectrogram. Hence, a local linear model is adequate for the spectro-450

gram of a large class of chirps. Extensive experimental results have shown
that the proposed method is able to correctly detect interference regions that
involve different kinds of signals, showing a certain robustness to moderate
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noise. Future research will be devoted to method improvements and refine-
ments that include optimization of the training set, greater robustness to455

significant noise, and more accurate detection of very critical interference
regions.
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Figure 10: Classification map for the chirp signals in Group 2: without post processing
(left), with post processing (right) – see text for details.
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Figure 11: Selected regions in the spectrogram of corrupted training signals defined in eq.
(17) — SNR = 20db.
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Figure 12: Selected regions in the spectrogram of corrupted training signals defined in eq.
(17) – SNR = 10 db.
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Non noisy training Noisy training Noisy training
(SNR = 20 db) (SNR = 10 db)

SNR Accuracy [%] Accuracy [%] Accuracy [%]

// 97.86 97.44 95.67
30 97.71 97.35 96.45
25 96.99 97.23 96.64
22 93.32 97.12 96.93
20 87.49 96.91 97.24
18 77.56 96.16 97.45
15 57.86 85.60 97.54
10 29.48 44.21 97.14

Figure 13: Three linear modes test signal (sig10 in Group 2) classification accuracies,
measured in terms of percentage of correct assignments, provided by the proposed method
using non noisy and noisy training signals with SNR = 20 db and SNR = 10 db. sig10 has
been corrupted with Gaussian noise with different SNRs.
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Figure 14: to be continued
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Figure 15: From top to bottom) Classification maps for the spectrogram of the three
mode interfering signal (sig10 in Group 2) and the same signal corrupted with noise with
SNR = 30, 25, 22, 20, 18, 15, 10 db. Training set without (left) and with noise with SNR
= 20db (middle), with noise with SNR = 10db (right).
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