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Abstract
We study the spectral properties of sparse random graphs with different topologies and type of
interactions, and their implications on the stability of complex systems, with particular attention to
ecosystems. Specifically, we focus on the behaviour of the leading eigenvalue in different type of
random matrices (including interaction matrices and Jacobian-like matrices), relevant for the
assessment of different types of dynamical stability. By comparing numerical results on
Erdős–Rényi and Husimi graphs with sign-antisymmetric interactions or mixed sign patterns, we
propose a sufficient criterion, called strong local sign stability, for stability not to be affected by
system size, as traditionally implied by the complexity-stability trade-off in conventional models of
random matrices. The criterion requires sign-antisymmetric or unidirectional interactions and a
local structure of the graph such that the number of cycles of finite length do not increase with the
system size. Note that the last requirement is stronger than the classical local tree-like condition,
which we associate to the less stringent definition of local sign stability, also defined in the paper. In
addition, for strong local sign stable graphs which show stability to linear perturbations
irrespectively of system size, we observe that the leading eigenvalue can undergo a transition from
being real to acquiring a nonnull imaginary part, which implies a dynamical transition from
nonoscillatory to oscillatory linear response to perturbations. Lastly, we ascertain the
discontinuous nature of this transition.

1. Introduction

Understanding the stability of dynamical systems is a fundamental question in various fields of science,
ranging from ecology [1, 2] and economics [3, 4] to neuroscience [5] and chemistry [6, 7]. In many cases, the
stability analysis of a dynamical system can be reduced to a spectral problem involving a matrix, as discussed
in [8, 9]. Therefore, there has been significant interest in understanding how the statistical properties of
matrix elements impact the spectral properties of the matrix, which in turn can shed light on the stability of
the underlying dynamical system.

As early as the 1970s, using randommatrices May has studied, for instance, the stability of fully connected
ecosystems [10]. Although this fueled significant interest [11], it is only recently that the influence of sparse
network structure on dynamical stability has been studied. Indeed, following pioneering work on the spectra
of symmetric Erdős–Rényi graphs [12–15], recent papers studied the spectra of random, directed graphs
[16–24] and the spectra of random graphs with predator–prey, mutualistic, or competitive interactions [25].

A surprising finding of these more recent works is that the spectra of sparse random graphs are strongly
affected by the sign patterns of their matrix entries, i.e. whether sign(AijAji) = 0 (unidirectional
interactions), sign(AijAji) =−1 (sign-antisymmetric interactions), or sign(AijAji) = 1 (sign-symmetric
interactions). Notably, the spectra of (infinitely large) sparse random graphs are confined to a region in the
complex plane with bounded real part if sign(AijAji) ∈ {0,−1} for all pairs i, j of nodes [21, 25], whereas the
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spectra of (infinitely large) sparse random graphs encompass the full real axis if there exists a finite
proportion of links with sign(AijAji) = 1 [25].

In the present paper, we provide a simple, sufficient criterion for the finiteness of the real part of the
leading eigenvalue, which is the eigenvalue with the largest real part, of an infinitely large, sparse, random
matrix. To this aim, we rely on the concept of sign stability.

Sign stability appeared first in studies on qualitative economics [3, 4] in the 1960s when economists were
studying the impact of qualitative properties of interaction matrices on the stability of economic systems,
such as, the sign of the elements in the interaction matrices. The importance of sign stability was soon
realised for ecology [26–30] and later it was also considered in chemistry [31]. A matrixM is sign stable if
any matrix whose entries have the same signs as the corresponding entries of M is also stable, i.e. its leading
eigenvalue is negative. In order for a matrix to be sign stable, it must satisfy specific constraints on its
topology and sign pattern [3, 32]. Interestingly, tree graphs admit sign stable structures, for instance, directed
tree graphs and antagonistic tree graphs are sign stable. On the other hand, in general, if cycles are present
the sign stability property may be lost.

As sparse random graphs, e.g. sparse Erdős–Rényi graphs, contain cycles, they are not sign stable.
However, Erdős–Rényi graphs are locally tree-like [33–35], and as tree graphs admit sign stable structures, we
say that Erdős–Rényi graphs are locally sign stable if the signs of their interaction patterns correspond those of
sign stable trees. A formal definition of local sign stability will be given in section 4 and will apply to a
broader class of sparse random graphs. We then propose a stronger version of local sign stability, called in the
following strong local sign stability, as sufficient condition for the finiteness of the real part of the leading
eigenvalue. Hence, we argue that strong local sign stability allows us to predict the stability of large, sparse
network structures and extends sign stability to sparse random graphs.

One important aspect of sign stability, which also applies under mild conditions, as discussed later, to
(strong) local sign stability, is that it refers to all matrices with the same topology and sign pattern,
independently from the absolute value of their nonzero elements. Sign stability is therefore a particularly
robust type of stability, as it characterises an infinitely large set of matrices. This aspect is particularly
relevant in ecological applications for at least two reasons. First, most of the time, as discussed in the
following section, to determine whetherM is stable we need to determine its leading eigenvalue, which
requires knowledge of the matrix entriesMij. Unfortunately, in applications it is often the case that only
partial information about the matrixM is available. For example, in the context of ecology, it is relatively easy
to determine both the foodweb of the trophic interactions between species, i.e. whetherMij = 0 orMij ̸= 0,
and the type of the interactions, inter alia, predator–prey (corresponding to sign-antisymmetric), mutualistic
or competitive (corresponding to sign symmetric, respectively positive or negative) interactions. On the
other hand, it is significantly more difficult to determine the strengths |Mij| of the trophic interactions
between species [2, 36]. This raises the question whether stability can be determined from the sign pattern of
the entries of the matrixM. Second, different kinds of ecosystem stability (linear stability, structural stability,
feasibility) can be studied by looking at the properties of different matrices obtained from the matrix A of
inter-species interactions without sign or topological alterations. In these cases, as explained in more details
in the following section, if the topological properties and the sign pattern of the interaction network grant its
strong local sign stability, the ecosystem can be declared at once feasible and stable, both with respect to small
fluctuations and small changes in the external conditions.

A second interesting problem for sparse random graphs that we address is whether the leading eigenvalue
is real-valued or whether it has a nonzero imaginary part. As it will be recalled, the presence of pairs of
conjugate complex leading eigenvalues has important consequences on the dynamical behaviour of the
models associated as it gives rise to oscillatory dynamics in the vicinity of the fixed point with frequency of
oscillations inversely proportional to the absolute value of the imaginary part of the leading eigenvalue. This
aspect is especially relevant for strongly locally sign stable random graphs, as their leading eigenvalue is finite.
In particular for these cases, we will discuss how depending on the choice of model’s parameter both
situations can arise and we will describe the transition between the two corresponding dynamical phases.

The paper is structured as follows: we first review in section 2 the problem of stability in ecology,
including a general discussion on the dependence of stability on the system size, and we specify the random
matrix models that we study in this paper. In section 3, we review the properties of sign stability with
particular attention to its occurrence in tree graphs, before presenting the main results of this paper in the
sections 4 and 5. In section 4, we present the paper’s main claim: we identify strong local sign stability as an
important feature for the spectra of sparse random matrices and the stability of complex systems. We also
present several numerical results through direct diagonalisation of the models of sparse random matrices, as
defined in section 2. In particular, we test the strong local sign stability criterion by showing that if its
conditions hold the leading eigenvalue remains finite. We also show how significant the main conditions are
by giving examples of ensembles that violate one of the conditions and show divergence of the leading
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eigenvalue. In section 5, we determine the imaginary part of the leading eigenvalue for several type of sparse,
random graphs, and in particular we identify a transition from a regime where the leading eigenvalue is real
to a regime where the leading eigenvalue come in a pair of complex eigenvalues. We end the paper with a
discussion in section 6, and a few Appendices with technical details.

2. Stability in ecology andmodel setup

In this section, we introduce the model setup of this paper. In sections 2.1 and 2.2, we review the relation
between, on one hand, the spectral properties of matrices and, on the other hand, the stability of linear
dynamical systems and (nonlinear) ecosystems, respectively. The reader not needing the basic mathematical
background or not interested in the ecological applications can skip these two sections. In section 2.3, we
review the concepts of absolute and size-dependent stability, which play an important role in this paper.
Lastly, in section 2.4, we define the random matrix models that we study in this paper, and in particular in
section 2.4.3, we discuss the canonical model parameters that we use.

2.1. Absolute stability and size-dependent stability in linear dynamical systems
Let x⃗(t) ∈ RN, with t⩾ 0 a time index, denote the evolution in time of the state of a system consisting of N
components. The simplest model for a dynamical system of N interacting components is given by a linear
differential equation of the form

d⃗x

dt
=Mx⃗, (1)

whereM ∈ RN×N is an arbitrary matrix.
The asymptotic state x⃗∞ = limt→∞ ∥⃗x(t)∥ is determined by the eigenvalues λi(M) of the matrixM. If all

the λi(M) have negative real parts, then x⃗∞ = 0 [8], and we say that the matrixM is stable. On the other
hand, if there exists at least one eigenvalue with a positive real part, then x⃗∞ does not exist, as the norm of
∥⃗x(t)∥ diverges for large t, and we say thatM is unstable. If we order the eigenvalues such that
ℜ[λ1]⩾ ℜ[λ2]⩾ . . .⩾ ℜ[λN], where ℜ(·) denotes the real part of a complex number, thenM is stable if

ℜ [λ1]< 0. (2)

In the intermediate regime for which

ℜ [λ1] = 0, (3)

we say that the matrix ismarginally stable. Note that for marginally stable systems ∥⃗x(t)∥may still diverge as a
function of t if the matrixM has degenerate eigenvalues [37, 38].

Additionally, the transient dynamical behaviour after external perturbations is revealed by the imaginary
part of the leading eigenvalue λ1(M), which we denote by ℑ[λ1(M)]. If ℑ[λ1(M)] = 0, then the transient is
nonoscillatory, whereas a nonzero imaginary part implies oscillatory behaviour of x⃗(t) in the vicinity of the
origin. The absolute value |ℑ[λ1(M)]| determines the frequency of oscillations of the slowest mode if the
system is stable, and of the fastest unstable mode if the system is unstable.

Since in this paper we consider large complex systems, following [25], we introduce here two variants of
linear stability in the limit of large N. Consider a sequence of matricesMN growing in size N ∈ N. In this
case, we can distinguish two classes of matrix sequences, viz., those for which the real part of the leading
eigenvalue converges to a finite value, i.e.

lim
N→∞

ℜ [λ1 (MN)] ∈ R, (4)

and those for which

lim
N→∞

ℜ [λ1 (MN)] = +∞. (5)

Take as an example of the latter the nondirected star graph (MN)ij = δi,1(1− δj,1)+ δj,1(1− δi,1) (with
λ1 =

√
N− 1, as text book calculation shows [39]) and as an example of the former, the directed star graph

(MN)ij = δi,1(1− δj,1) (with λ1 = 0, which is a simple linear algebra problem), where δa,b is the Kronecker
delta function. In the former case, there exists a finite d> 0 such that

lim
N→∞

ℜ [λ1 (MN − d1N)]< 0, (6)
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where 1N stands for the identity matrix of size N ×N, and hence the sequenceMN − d1N is characterised by
linear absolute stability. In the latter case, any constant shift d renders the ensemble stable up to a certain size
N, such that

ℜ [λ1 (MN − d1N)]< 0, (7)

for N< N, while

ℜ [λ1 (MN − d1N)]> 0, (8)

for N> N, and we speak of size-dependent stability of linear systems.
Although linear systems simplify significantly the dynamics of complex systems, they can be insightful

for the study of complex systems, such as, ecological systems [11], neural networks [40, 41], chemical
interaction networks [42], and economic models [43], whenever the interest is to understand the transient
dynamics of systems in the vicinity of a stable fixed point by linearising the system of dynamical equations
around the fixed point. We discuss the connection to more general nonlinear dynamics in more detail in the
following section, where other types of stability properties for dynamical systems are reviewed on an example
of an ecological model and we will generalise absolute stability and size-dependent stability to those cases.

2.2. Stability in ecology
The possibility to predict and control the fate of ecosystems is of immediate concern for our lives, which
strongly depend upon them. Therefore the concept of their stability in theoretical ecology has been
investigated for decades leading to the classification of different types of stability of potential practical
relevance.

We give a brief overview of the different notions of stability studied in the literature. Famously modelled
by dynamical systems, ranging from simple one- or two-species population evolution [44, 45] to more recent
studies about multi-species interactions [46], ecosystem’s stability with respect to small perturbations
around putative fixed points has been investigated at length with linear stability analyses, [10, 11],
accompanied by considerations on their global or local stability. These approaches assume the existence of at
least one equilibrium of ecological relevance, i.e. with nonnegative species’ abundances. However it has been
pointed out that the conditions for the existence of ecologically meaningful equilibria, called feasibility, are
far from trivial [47, 48]. Note that in feasible equilibria several species of the original pool can be extinct, and
therefore do not enter in the final composition of the ecosystem. Yet, conditions for its (un-)invadability,
corresponding with linear stability with respect to potential immigration of species, must be explicitly looked
at. A different kind of stability is represented by structural stability, which refers to the sensitivity of (feasible
and linearly stable) equilibria (and of their stability and invadability) to changes in the ecological parameters.
The present paper discusses in the same general context feasibility, structural and linear stability of model of
ecosystems defined by several types of (sparse) interaction graphs.

The well-known complexity-stability trade-off in models of ecological systems generally affects their
feasibility [47–50], linear stability [10, 11, 51, 52] and structural stability [47, 53–57]. Specifically, many
models of ecosystems assembled from a pool of S interacting species show a dependence of their stability
properties on S. We will refer in short to this situation by calling it size-dependent stability. Conversely, we
define absolute stability the stability property of a system if it is not affected by its system size. A formal
definition of size-dependent stability in linear systems can be found in the previous section and its discussion
in the general case is in section 2.3. Note that in many cases absolutely stable models can be trivially
constructed from models with size-dependent stability by simply rescaling the inter-species interactions by S.
However, in absence of direct biological evidences of very weak inter-species interactions, such rescaling can
appear unnatural and forced. Therefore in the following we will call absolutely stable only those models for
which stationary points of the dynamics can be made available and can be stabilised without rescaling the
interactions by the system size.

The natural consequence of size-dependent stability is to severely constraint the possibility for these
models to account for the emergence of a large biodiversity. We will discuss how ecosystems whose
interactions are structured according to sparse, locally tree-like, graphs, in some special cases, can benefit
from absolute stability. Such property will affect for different reasons all the different kinds of stability and
feasibility, previously reviewed, allowing rich biodiversity to emerge.

To illustrate the mathematical implications of the different concepts of stability and the ways to address
questions about them, we refer to a generalised Lotka–Volterra model where the ith species’ abundance
Ni ∈ R+, with i ∈ {1,2, . . . ,S}, obeys the following dynamical equation
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dNi

dt
= Ni

(ri −
Ni

Ki

)
−

S∑
j=1;j ̸=i

αijNj

+ ζ = Nifi
({

Nj

})
+ ζ, (9)

where the {αij} are the entries of the interaction matrix A and where ζ is the immigration rate (to be sent to
zero before extracting the results, but useful to avoid considering ecosystems with trivial extinctions, and
therefore to grant uninvadability). The other parameters of the model, appearing in the first self-regulation
term on the right hand side, are the growth rates in isolation ri and the carrying capacities Ki/ri. Depending
on the choice of the graph structure, determined by the nonzero αij and of their sign and strength, different
type of ecological models can be obtained and studied, from unstructured ecosystems to hierarchical
food-webs, from predator–prey (sign-antisymmetric) types of interactions to mutualistic or competitive
ones.

In this family of models, feasibility requires the existence of fixed points of the dynamics, therefore the
existence of at least one non trivial meaningful solution N⃗∗, with elements {N∗

i }, to the set of equations
fi({Nj}) =− limζ→0 ζ/Ni. All extinct species i will have N∗

i = 0 and fi({N∗
j })< 0, while surviving ones will

be characterised by N∗
i ̸= 0 and fi({N∗

j }) = 0, therefore

ri =
N∗

i

Ki
+

S∑
j=1;j ̸=i

αijN
∗
j . (10)

The existence of a solution to the last equation is granted by the invertibility of the matrix B with elements

Bij =
δij
Ki

+αij (11)

restricted to the S∗ surviving species:

N⃗∗ = B−1r⃗ . (12)

For B to be invertible, it is needed that none of its eigenvalue is null or, alternatively, that, in the infinitely
large S limit, the continuous part of the spectrum does not include the origin of the complex plane and none
of the isolated eigenvalues is null.

Feasibility also requires that all elements in N⃗∗ are non negative. Explicit characterisation of the
probability to observe a feasible equilibrium are determined for ecosystems on dense unstructured graphs
[48], some special ecologically inspired structure of the graph [54, 58], and can be studied numerically in
some more contexts, but no result is known in general. Naturally, the requirement of having nonnegative
abundances is more stringent than the condition for the existence of a solution to equation (10), yet in the
case previously studied the failing of the first condition closely anticipate the breaking of the second [48].
Following this observation and in absence of a general rule able to asses full-fledged feasibility, we will
consider the condition for the existence of a non trivial N⃗∗ as a good proxy for feasibility.

Interestingly, the matrix B is also directly relevant for structural stability, defined as the stability of the
abundances of surviving species, N⃗∗, to small perturbations of the ecological parameters. In fact, as we show
in appendix A, the susceptibility of N∗

i to little variations ξi, ηi and ϵij of the three ecological parameters ri, Ki

and αij, respectively, is directly related to the inverse of B:

ri → ri + ξi =⇒ ∂N∗
i

∂ξj
=
(
B−1

)
ij
, (13)

Ki → Ki + ηi =⇒ ∂N∗
i

∂ηk

∣∣∣∣∣
η⃗=0

=
(
B−1

)
ik

N∗
k

K2
k

, (14)

αij → αij + ϵij =⇒
∂N∗

i

∂ϵkℓ

∣∣∣∣∣
ϵ=0

=−
(
B−1

)
ik
N∗

ℓ . (15)

Again, in all the three cases above, a singular behaviour emerges if the spectrum of B contains the origin of
the complex plane hinting to a large susceptibility of the solution of N⃗∗ to ecological parameters.

Finally, the classical information on linear stability (stability with respect to dynamical fluctuations as
induced by demographic noise, for instance), or Lyapunov stability concerning the domains of attraction of
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fixed point of the dynamics, is obtained by linearising the system of dynamical equations around the fixed
point N⃗∗ hence therein evaluating the Jacobian J, a.k.a. the community matrix, with elements

Jij =
∂
[
Ni fi

({
Nj

})]
∂Nj

∣∣∣∣∣
{N∗

j }
= δijfi

({
N∗

j

})
+N∗

i

∂fi
({

Nj

})
∂Nj

∣∣∣∣∣
{N∗

j }
. (16)

Note that contributions to the Jacobian coming from extinct species is diagonal and negative. The non trivial
part comes from the S∗ surviving species and it gives rise to the S∗ × S∗ matrix

J∗ij =−N∗
i Bij , (17)

with a non trivial stripy structure where the elements in each row are all rescaled by the same factor N∗
i . As

discussed in the section about linear dynamical systems, linear stability requires that the real part of the
leading eigenvalue λ1(J) is negative, and a nonzero imaginary part gives rise to oscillatory dynamics in the
vicinity of the fixed point with frequency of oscillations inversely proportional to |ℑ[λ1(J)]|.

The generalised Lotka–Volterra model discussed in this section provides an example of the structure of
the matrices of interest when focusing on different facets of the stability of ecological systems. In these
structures the interaction matrix A always plays an important role on the elements outside the diagonal,
while the self regulation mechanism represented by the carrying capacities contributes to the non trivial
diagonal. Moreover, in the Jacobian, each row is multiplied by the abundance of the corresponding species at
the fixed point. Note that different examples of single species self-regulation mechanisms contained in the
definition of fi, such as those including the so called Allee effect [59] for instance, can lead to less
straightforward connections between feasibility, structural and linear stability.

A nowadays widespread approach to model ecosystems with large number of species is to account for the
large variety of self-regulation and interaction mechanisms by introducing random parameters, so that the
matrices A, B, Jmay be represented by random matrices [10, 11, 46, 60]. In the simple generalised
Lotka–Volterra model considered above, this choice would require to introduce at least one probability
distribution p(α) for the amplitudes of inter-species interactions αij. When referring specifically to feasibility
or structural stability determined by B, the simplest setting would imply assuming uniform growth rates
across different species and unitary carrying capacities so that BId = A+ 1. However, more generally it can be
important to include in B the contribution of non trivial diagonal terms of a diagonal matrix D, which are
extracted from a second distribution pD(d) to describe the variability of carrying capacities B= A+D.
Recall that the important stability trait of B or BId is whether the spectrum contains or not the origin, which
is answered by checking that the smallest real eigenvalue is positive. Under this perspective it is completely
equivalent to check whether the largest real eigenvalue of−B or−BId, or equivalently (as long as the spectra
of A is symmetric around the origin) of A− 1 or of A−D, is negative. When focusing on J, instead, the
variability of the stationary abundances N∗

i becomes a more relevant factor in the structure of the matrix.
For simplicity, the carrying capacities are then set to the unity, pD(d) represents the distribution of the
abundances, placed on the elements of a diagonal matrix D, and we look at J=−DBId, or equivalently at
J=D(A− 1), checking also in this case that the real part of its leading eigenvalue is negative.

Other key ingredients for model selection are the choice of the sign of interactions αij and αji [25, 46, 61]
and the graph structure of inter-species interactions [25, 62]. The first aspect is related to which type of
ecological behaviour determines the inter-species interactions: mutualistic (both positive), competitive (both
negative), or predator–prey (of opposite sign). The first two cases will be also called sign-symmetric and the
last sign-antisymmetric. The interaction graph structure that can be considered spans from fully connected
graphs to several types of sparse graphs. In this work we focus on the influence of short and long cycles on
sparse graphs, therefore we will discuss and compare the results obtained on tree graphs (no cycles),
Erdős–Rényi graphs (typical cycles with a length of the order O(log(S∗)), and only a finite number of cycles
of fixed length [63]), and pure Husimi trees (cycles of fixed, short, length).

All the ecologically motivated characteristics of the random matrices BId, B and J highlighted and
discussed in this section will be encoded in the different types of random matrix models introduced in the
next section. In that context the ecological notation is abandoned in favour of a more general random matrix
notation where N is the size of the matrix instead of S or S∗, and a random diagonal matrix called D can
either represent the diagonal matrix of inverse carrying capacities, or contain the elements of the vector of
abundances N⃗∗.

2.3. Absolute stability and size-dependent stability for interaction-like and Jacobian-like ensembles
For all the ensembles of random matrices introduced in the previous section, and defined more generally in
the next section, we are interested in behaviour of their spectra when the matrix size is large, i.e. N≫ 1. The

6



J. Phys. Complex. 5 (2024) 015017 P Valigi et al

stability of the corresponding dynamical system is assured if the spectrum of the associated interaction-like
matrix does not include the origin of the complex plane and if the spectrum of the corresponding
Jacobian-like matrix has leading eigenvalue with negative real part.

As discussed in the previous sections, we distinguish between models whose stability properties are not
affected by their system size N, which we call absolutely stablemodels, and models whose stability is lost for N
larger than a finite size N, and hence their stability is size-dependent.

Absolute stability, in terms of feasibility, linear, and structural stability, is granted if the real part of all
eigenvalues of the corresponding relevant matrix is negative for all N, as discussed in section 2.2. In other
words, we require that ℜ[λi]< 0, ∀i ∈ {1,2, . . . ,N} and ∀N ∈ N. Therefore, a necessary condition for
absolute stability is that the spectra have a real part bounded from above in the large size limit, which implies
that ℜ[λi]< a, ∀i ∈ {1,2, . . . ,N} and ∀N, where a is a finite constant. In such settings, absolute stability is
obtained whenever, for all N, the matrix is equipped with a diagonal that has elements that are smaller than
some finite−d< 0, such that all eigenvalues have negative real part.

Previous works [11, 61, 64] have shown that the stability of densely connected models does not depend
on their sign pattern. Hence, dense matrices are either size-dependent, or become absolutely stable if their
matrix entries are properly rescaled by N. Instead, we focus in this paper on sparsely connected models for
which, interestingly, the sign pattern of interactions determines whether the matrix is absolutely stable or
exhibits size-dependent stability [25]. Indeed, as we are going to discuss in detail in the next sections, for
large, sparse, random matrices the existence of a finite upper bound for the real part of all eigenvalues may
arise in specific settings without the need of any ad-hoc global rescaling by system size, contrarily to the case
of dense models.

2.4. Randommatrix models built from graphs
We define the random matrix models that we study in this paper. All the random matrix models are built
from underlying graphs by using the weights of the edges as matrix entries. In particular entries opposite to
the diagonal represent the weights of edges pointing to opposite directions. The matrix entry is zero if the
corresponding directed edge is absent. An edge is called nondirected if the two corresponding entries of the
matrix are both nonzero.

2.4.1. The model structure
We distinguish two type of random matrices defined on sparse random graphs, namely, interaction-like
matrices B, and Jacobian-likematrices J. Both matrices B and J are obtained from an interactionmatrix A
that is the adjacency matrix of a weighted graph, and which specifies the network of interactions between the
system constituents.

Interaction-like matrices are the sum of the interaction matrix A and a diagonal matrix D, i.e.

B := A−D, (18)

where the entries Di ⩾ 0 are independent and identically distributed random variables drawn from a
distribution pD(d) with d ∈ R+, and the interaction matrix A will be defined in the next subsection. In the
special case of Di = 1, for all i, we get what we call the shifted interactionmatrix

BId := A− 1, (19)

where 1 is the identity matrix.
Instead, Jacobian-likematrices J are defined as the product of BId with D, viz.,

J :=DBId, (20)

where the entries Di ⩾ 0 are as before independent and identically distributed random variables drawn from
a distribution pD(d) with d ∈ R+ and finite second moment.

2.4.2. The interaction matrix A
The random matrices A have elements

Aij := Cijαij, (21)

where Cij ∈ {0,1} are the entries of the adjacency matrix of a nonweighted, nondirected, random graph, and
the αij ∈ R are the weights of the edges of the graph, which represent the strengths of the interactions.
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The weights αij and αji are pairs of random variables extracted from a probability distribution pα(u, l)
that is symmetric under the exchange of its arguments, viz.,

pα (u, l) := p(|u|)p(|l|) θ⃗ (u)Π
(
πS,πO

)
θ⃗ T (l) , (22)

where θ⃗(x) = {ϑ(x),ϑ(−x)}, ϑ(x) is the Heaviside function,

Π
(
πS,πO

)
:=

(
πS

(
1−πO

)
0.5πO

0.5πO
(
1−πS

)(
1−πO

) )
, (23)

and p(x) is a probability distribution supported on R+ and with finite second moment; notice that we are
particularly interested in models with unbounded support as their norm diverges in the infinite size limit,
which is important for the findings in this paper. The constants πO and πS determine the (anti)correlation
between the sign of αij and the sign of αji (their absolute values are uncorrelated). For πO = 1 elements
opposite to the main diagonal of A have opposite signs, i.e. αijαji < 0, which we call sign-antisymmetric
interactions. In this case, we speak of antagonistic model. If πO = 0, then elements opposite to the main
diagonal have the same sign, i.e. αijαji > 0, and we speak of sign-symmetric interactions. The elements are
positive if πS = 1 and negative if πS = 0, sometimes referred to as mutualistic and competitive interactions,
respectively [61]. For intermediate values of πO ∈ (0,1), we speak of amixturemodels, as it contains a
mixture of sign-antisymmetric and sign-symmetric interactions.

For the adjacency matrix Cij we focus in this paper on two models. One is a random graph model that is
locally tree-like, i.e. it has a small number of cycles of small length. The second model is deterministic and
has many cycles of small length. In this way, we will be able to address the effect of cycles on our results. The
models considered are:

• Erdős–Rényi graphs: There are two closely related variants of the Erdős–Rényi (ER) random graph model
[65, 66]. In the first model, a graph is chosen uniformly at random from the collection of all graphs which
haveN nodes andM edges. In the second model, the number of nodesN is fixed and each edge connecting
two of them exists with a probability q, which is fixed and independent from every other edge. The Erdős–
Rényi graphsweuse are built according to the secondmodel, thatwe denote asG(N,q), setting q= c/(N− 1)
where c is it is the average number of edges on a single node, also called connectivity of the node. In the
limit N→∞, with c fixed, Erdős–Rényi graphs are locally tree-like graph in the sense that with probability
one the finite neighbourhood of a randomly selected node is a tree, the typical cycles length ℓ grows like
logN [33–35], and they have only a finite number of cycles of fixed length [63]).

• Husimi trees: Husimi trees are connected graphs for which no edge lies onmore than one cycle [67]. Loosely
said, Husimi trees are trees built out of edges and cycles, such as, triangles, quadrilaterals, pentagons,
etc. Husimi trees were introduced by Harary and Uhlenbeck [67], who recognised this graph structure in
Husimi’s virial expansion of the equation of state of a nonideal gas [68], and whose terminology we adapt in
this paper. If Husimi trees are built out of one type of cycle, then one speaks of pure Husimi trees, as in panel
(c) of figure 1, while otherwise they are mixed Husimi trees. If the cycles are triangles, then one speaks of a
Husimi cactus. If the tree structure is regular with coordination number c, a pure Husimi tree with cycles of
length ℓ can be defined by using the notation (c, ℓ)-pure Husimi tree. For instance, a (c,1)-pure Husimi tree
is a Cayley tree or a Bethe lattice. Note that (c, ℓ)-pure Husimi trees have a number of cycles of fixed length
ℓ growing linearly with the system size.

As a recap, the models studied across this work can be identified from the matrix structure (interaction-like
B, shifted interaction BId, Jacobian-like J), the choice of the distributions p and pD, the interactions sign
pattern (antagonistic, mixture), and the graph structure encoded in C (tree, G(N,q) Erdős–Rényi graphs,
(c, ℓ)-pure Husimi tree).

2.4.3. Canonical model parameters
Here we list the parameters that we use in the numerical results shown in the following sections. Any
variations on these will be reported in the figures captions.

As anticipated, we deal with three matrix structures, viz., shifted interaction matrices BId = A− 1,
interaction-like matrices B= A−D and Jacobian-like matrices J=DBId. In numerical examples, we need to
specify the adjacency matrix C, the distribution pα of weights (αij,αji), and the distribution pD of diagonal
entries Di.

We consider two ensembles of adjacency matrices C, viz., sparse, Erdős–Rényi graphs and Husimi trees.
Erdős–Rényi graphs are drawn from the G(N,q)model with q= c/(N− 1). Since we are interested in sparse
graphs, the connectivity is kept fixed at c= 2, and thus does not scale with the graph size N. The Husimi trees
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that we employ are (4, 4)-pure Husimi tree, and hence all cycles have length ℓ= 4, as shown in panel (b) of
figure 2 for the case of a Husimi tree dressed with sign-antisymmetric interactions.

For the probability distribution p of the absolute values |αij| of the off-diagonal matrix entries αij, which
appears in equation (22), we use a truncated Gaussian distribution. In particular, we truncate a Gaussian
distribution with mean µG = 1.0 and variance σG = 0.6 so that it is supported on the positive part of the real
line, viz.,

p(x) =
2

1+ erf

(
µG√
2σ2

G

)ϑ(x)GµG,σG (x) (24)

where GµG,σG(x) is a Gaussian distribution with mean µG and variance σG, erf(x) is the error function, and
ϑ(x) is the Heaviside function.

Notice that the first two moments of the truncated Gaussian distribution take the expressions

µTG := ⟨x⟩TG = µG +

√
2

π
σG

exp
(
−µ2

G

σ2
G

)
1+ erf

(
µG√
2σ2

G

) (25)

and

⟨x2 ⟩TG = µ2
G +σ2

G +

√
2

π
µGσG

exp
(
− µ2

G

2σ2
G

)
1+ erf

(
µG√
2σ2

G

) , (26)

where ⟨·⟩TG denotes the average with respect to the truncated Gaussian distribution. From equations (22),
(25), and (26), the first two cumulants of the distribution pα(u, l) of the off-diagonal element pairs follow
readily as

µ := ⟨u⟩= ⟨ l⟩= 0, (27)

σ2 := ⟨u2 ⟩= ⟨ l2 ⟩= ⟨x2 ⟩TG, (28)

and

⟨ul⟩=
(
1− 2πO

)
µ2

TG (29)

where ⟨·⟩ denotes the average with respect to pα(u, l).
The matrix sign pattern is set by the choices of πO and πS as defined in equation (23). In our work we

focus on antagonistic models with πO = 1 in which the interactions are sign-antisymmetric and mixture
models with πO = 0.9 and πS = 0.5, characterised by a majority of sign-antisymmetric interactions and a
smaller portion of sign-symmetric ones.

In numerical examples we are using for pD a uniform distribution supported on [dmin,dmax], i.e.

pD (d) =
1

dmax − dmin
ϑ(x− dmin) ϑ(dmax − x) (30)

where dmin and dmax are, respectively, the minimum and maximum values of the uniform distribution.
Notice that

dmin = µD −σD

√
3 and dmax = µD +σD

√
3, (31)

where µD and σD are the mean and standard deviation of pD, respectively.
We choose µD > 0 and σD < µD/

√
3 such that pD(d) is supported on a subset of the positive real axis

and, thereby, all the Di are positive. More specifically, in section 4 we set µD = 1 and σD = 0.5, whereas in
section 5 we set µD = 1 and σD takes values equally spaced between 0 and 0.30.

We diagonalise matrices with linear algebra routines of the Numpy submodule linalg of Python3.
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3. Sign stable matrices

We review sign stability of matricesM ∈ RN×N, which plays an important role in this paper, as we extend this
concept to random graphs in the next section. As anticipated in the Introduction, sign stability refers to all
matrices with the same topology and sign pattern, independently from the value of their nonzero elements.
Therefore, sign stability was introduced in studies on qualitative economics in the 1960s [3, 4, 30], and found
a decade later applications in, among others, qualitative ecology [26–29], and chemistry [31].

We say that a matrixM is sign stable if any matrixM ′ with the same sign pattern is stable. Note that sign
stability is a stronger condition than stability, as it requires that the real part of the eigenvalues of all matrices
M ′ in the equivalence class

M(M) :=
{
M ′ ∈ RN×N : sign

(
M ′

ij

)
= sign

(
Mij

)}
(32)

are negative, where sign(x) ∈ {−,0,+}. Note that matricesM ′ in the equivalence classM(M) can be
generated fromM through

M ′
ij = yijMij, (33)

where yij > 0. Also, note thatM(M1) =M(M2), for allM2 ∈M(M1).
On first sight, sign stability may appear as a too strong condition to be useful. However, as will become

soon evident, there exist several, interesting examples of equivalence classesM that are sign stable.
Moreover, antagonistic, sign stable matrices have a tree structure, which will make them important for the
spectral theory of random graphs that we discuss in the next section. In what follows we discuss necessary
and sufficient conditions for the sign stability of the equivalence classM generated by the matrixM.

In the case whereMii < 0 for all i, sufficient and necessary conditions for sign stability have been derived
by Quirk and Ruppert [3]. These are (see theorem 3 in [3]):

MijMji ⩽ 0, ∀i ̸= j, (34)

and for allm⩾ 3,

Mimi1 = 0, ∀i1 ̸= i2 ̸= · · · ̸= im, such that, Mi1i2Mi2i3 . . .Mim−1im ̸= 0. (35)

Condition (34) implies that edges are either directed or nondirected with sign-antisymmetric weights, and
condition equation (35) states that there are no directed cycles of lengthm⩾ 3.

In the case whereMii ⩽ 0, the conditions equations (34) and (35) are sufficient and necessary conditions
for marginal, sign stability (see lemma 5 in [3]). In [27, 32, 69] the marginal stable case has been studied in
more detail, in particular to determine the conditions for which limt→∞ ∥⃗x(t)∥ diverges.

We will not discuss the derivation of the conditions equations (34) and (35), as these can be found in
detail in [3, 32]. Nevertheless, we mention three notable examples of sign stable matrices and show that they
are sign stable:

• Nondirected antagonistic tree graphs: this is a tree graph with sign-antisymmetric edges, i.e.Mij > 0⇔Mji <
0 for all i ̸= j, as illustrated in panel (a) of figure 1. The condition (34) ensues from the sign-antisymmetric
nature of the edges, and the condition (35) from the absence of cycles in a tree graph implies condition.
The sign stability of nondirected antagonistic tree graphs follows from the fact that (i) tree graphs with
sign-antisymmetric interactions and negative diagonal elements have eigenvalues with negative real part,
as we show in appendices B and C; (ii) the sign-antisymmetric nature of the interactions is preserved in
the equivalence classM generated by an antagonistic tree graph. Note that this example will be referred to
extensively in the remainder of the paper. Importantly, simply lifting the constraint of sign-antisymmetric
edges, as shown in panel (a) of figure 2, will determine also in the case of a tree graph the failing of condition
equation (34). The corresponding matrices are not sign stable anymore.

• Oriented tree graphs: these are the adjacency matrices of tree graphs with unidirectional edges, as sketched
in panel (b) of figure 1. The unidirectionality of the edges implies

MijMji = 0, ∀i ̸= j, (36)

and hence equation (34), and the absence of cycles in a tree graph implies condition equation (35). The sign
stability of oriented tree graphs follows readily from the following two facts: (i) all eigenvalues of oriented
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Figure 1. Canonical examples of sign stable graphs. The arrows show the orientation of interactions. The colour/style shows the
sign of the weights associated with the edges.

Figure 2. Examples of graphs that are not sign stable due to the type of interactions (a) or graph topology (b). The arrows show
the orientation of interactions. The colour/style shows the sign of the weights associated with the edges.

tree graphs are equal to zero [21, 70], which is a direct consequence of the Coefficients Theorem for Directed
Graphs, see appendix D; (ii) the oriented tree property is preserved in the equivalence class M generated
by an oriented tree graph.

• Husimi trees built out of unidirectional feed-forward cycles: these are Husimi trees built out of motifs that
are feedforward cycles, as illustrated in panel (c) of figure 1. Adjacency matrices of such graphs are sign
stable for exactly the same reason as the adjacency matrices of oriented tree graphs: (i) λj = 0 for all values
of j, see appendix D; (ii) the orientedness and feedforward structure are preserved in the equivalence class
M generated by Husimi trees built out of unidirectional feed-forward cycles. Note that, if on this graph
structure we consider instead antagonistic interactions, as shown in panel (b) of figure 2, the condition
equation (35) will not be satisfied anymore as feedback loops are created, and the corresponding ensemble
of matrices cannot be said to be sign stable.

Note that not all sign stable matrices are tree graphs or Husimi trees. Let’s comment on a couple of
simple notable examples to illustrate how general is the concept of sign stability. An upper-diagonal matrix
with negative entries on the diagonal is a sign stable matrix on any graph structure, even fully connected, as
all eigenvalues correspond to the element on the diagonal. On the other hand, antisymmetric matrices for
which the entries satisfyMij =−Mji andMii = 0, are not sign-(marginally)stable, although having all
imaginary eigenvalues, similarly to antagonistic tree graphs with zero diagonal entries (see appendix B). The
reason is that, at variance with antagonistic tree graphs with zero diagonal entries, most matrices in the
corresponding equivalence classM of antisymmetric matrices are not marginally stable, because they are not
antisymmetric and their eigenvalues can have nonnull (positive and negative) real parts.
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A further comment on the extension of sign stable ensembles is that adding negative terms to the
diagonal of matrices in a sign stable random matrix ensemble does not affect their stability. This leads to an
asymmetry in the spectra of sign stable matrices, as the real part of the eigenvalues is bounded from above,
but can extend towards infinity on the negative real axis.

Finally, the two examples of graphs shown in figure 2 refer to ensembles which will not be characterised
by sign stability due to the fact that either the condition equation (34) or the condition equation (35),
respectively, are not satisfied.

4. Implications of local sign stability on the spectra of random graphs

In this section, we identify a useful criterion, which we call strong local sign stability, for the finiteness of the
ensemble average of the real part of the leading eigenvalue of infinitely large, sparse, random graphs, i.e.
limN→∞⟨ℜ[λ1]⟩<∞; such random matrix models can be made absolutely stable through a constant shift of
the diagonal entries, as we discussed in section 2.3.

To introduce local sign stability and strong local sign stability, we first review the results of [25] on the
asymptotic behaviour of the real part of the leading eigenvalue of Erdős–Rényi graphs. This paper shows that
the average, real part of the leading eigenvalue of an Erdős–Rényi graphs with sign-antisymmetric weights
converges to a finite limit as a function of N. This result came as a surprise as the norm of the associated
adjacency matrix diverges in the infinite size limit. Moreover, it is sufficient to decorate the Erdős–Rényi
graph with a finite fraction of sign-symmetric weights to have a ⟨ℜ[λ1]⟩ that diverges as a function of N, as
expected for an Erdős–Rényi ensemble with diverging norm.

In what follows, we identify the property underlying the finiteness of the real part of the leading
eigenvalue in Erdős–Rényi graphs with sign-antisymmetric weights, and we aim to extend this property so
that it can be applied to other random graph ensembles. To understand the distinction between Erdős–Rényi
graphs with sign-antisymmetric and sign-symmetric weights, we build on the locally tree-like property of
Erdős–Rényi graphs, see e.g. [33–35]. We say that a random graph is locally tree-like if for large enough
values of N the finite neighbourhood of a randomly selected node is almost certainly a tree. As discussed in
section 3, trees with sign-antisymmetric weights are sign stable, whereas this property does not hold for trees
with sign-symmetric weights. However, in general, random graphs have simple cycles and hence, given the
condition in equation (35), are not sign stable. As a consequence, we can not rely directly on the concept of
sign stability introduced in the previous section to understand the distinction between antagonistic and
mixture Erős-Rényi graphs.

This limitation leads us to introduce the weaker condition of local sign stability: let MN be a sequence of

matrices built from weighted graphs of N nodes. Let M(i)
N (d) be the matrix of the weighted subgraph generated by

a uniformly and randomly selected node i and all of its nodes located within a distance d of i. We say that MN is

locally sign stable if for all fixed d, the probability that M(i)
N (d) is sign stable converges to one as a function of N.

In the above definition we consider a matrix built from the graph as explained in section 2.4. In full
generality this definition of local sign stability remains valid for graphs that are not locally tree-like as long as
the short cycles satisfy the condition given by equation (35). However, for nondirected graphs local sign
stability requires locally tree-likeness, as cycles with nondirected edges cannot satisfy the equation (35).

For nondirected graphs we make a step further and introduce the condition of strong local sign stability:
let MN be a sequence of matrices locally sign stable. We say that MN is strongly locally sign stable if in addition
the average number of cycles of fixed length does not asymptotically increase with N, which for nondirected
graphs is a more stringent requirement than the locally tree-likeness.

Since (strong) locally sign stable matrices are not sign stable, they can have a leading eigenvalue with a

positive real part. Nevertheless, finite neighbourhoodsM(i)
N (d) of large tree-like antagonistic graphs are

almost certainly sign stable. Thus, sign stability is broken by either cycles of length ln(N), which diverge for
large enough size N, or by a small number of cycles of finite length. Moreover, if the number of finite cycles is
small but still growing with N [63], the leading eigenvalue can also still grow with N. Conversely, here we
claim that if the number of finite cycles remains finite, as required by the strong local sign stability condition,
the real part of the leading eigenvalue can be positive, but will not grow indefinitely when N increases.

We summarise this implication as follows. Consider a set M of sequences {MN}N∈N of random graph
models, as defined in section 2.4. Then,

{MN}N∈N is strongly locally sign stable=⇒ lim
N→∞

⟨ℜ [λ1 (MN)]⟩<∞. (37)

This implication holds (trivially) if the matrix norm ∥MN∥ is bounded. Indeed, the matrix norm is always
larger or equal than the real part of the leading eigenvalue, i.e. ∥MN∥⩾ ℜ[λ1(MN)] [71]. The interesting
cases arise when limN→∞ ∥MN∥=∞, e.g. for the weighted Erdős–Rényi graphs that we consider in this
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paper. If the matrix norm diverges with the system size, equation (37) remains valid provided that the
elements of the matrix have finite second moment.

Equation (37) characterises a sufficient condition, but strong LSS is not necessary to have finite ℜ[λ1].
Indeed, for instance, for antisymmetric matricesMN it holds that ℜ[λ1] = 0, as all eigenvalues are
immaginary, irrespectively of strong local sign stability. Nevertheless, strong LSS can be used as a condition
to predict if the leading eigenvalue will have a finite real part and hence whether the corresponding
dynamical system can be made absolutely stable or not. To confirm the validity of this condition we rely on
known results from the literature on spectra of graphs and we show new numerical results further
corroborating the stated condition.

First, let us consider known results on spectra of random graphs. For weighted random oriented graphs
an explicit expression for the leading eigenvalue was derived in [21–23], which shows that the leading
eigenvalue of large graphs is a growing function of the branching ratio and of the first or the second moment
of the weights. Interestingly, the average number of cycles of finite length ℓ also is a growing function of the
branching ratio [21]. Hence, for finite second moment of the distribution of weights, both diverge as soon as
the branching ratio diverges with the system size. Therefore, in this example strong local sign stability,
granted by a finite number of small cycles, implies that the leading eigenvalue is finite, provided that the
distribution of weights has a well defined second moment. Another example of a strongly locally sign stable
random graphs are Erdős–Rényi graphs (which have finite number of cycles of fixed length) with
sign-antisymmetric weights: [25] shows that the real part of the leading eigenvalue is finite as well in this
case. On the other hand, symmetric Erdős–Rényi graphs do not satisfy local sign stability condition
equation (34) and their spectra contain the whole real axis in the infinitely large limit, see e.g. [12, 13, 72, 73].

In absence of full proof in the general case, and since examples already present in literature are limited,
we now employ new numerical simulations to further verify equation (37) for different types of matrix
structure. To illustrate the significance of the condition in equation (37) we also explore two settings in
which LSS does not hold and the leading eigenvalue grows with the system size. In particular we break strong
LSS and LSS in two different ways by removing one of their two fundamental ingredients at a time:
sign-antisymmetric entries and the locally tree-like structure. We compare spectral results for antagonistic
(i.e. purely sign-antisymmetric) Erdős–Rényi graphs, which according to our definition are strongly locally
sign stable, with two matrix ensembles that are not LSS, namely, mixture Erdős–Rényi graphs (i.e. locally
tree-like but with a small fraction of sign-symmetric links) and antagonistic Husimi trees (i.e. keeping the
sign-antisymmetric links, while dropping the locally tree-like structure).

Since different stability criteria rely on different type of matrices, we consider three cases, as introduced
in section 2, namely, shifted interaction matrices BId in section 4.1, interaction-like matrices B in section 4.2,
and Jacobian-like matrices J in section 4.3.

4.1. Shifted interactionmatrices BId
First, we illustrate the implication in equation (37) on shifted interaction matrices, BId = A− 1, as defined in
section 2.4. The BId matrices are the simplest class of matrices that we consider, as the diagonal entries are
constant, and hence we can focus on the contribution of the off-diagonal matrix entries to the spectrum.
Note that this matrix structure was also studied in [25], but here for convenience we present again its results
(obtained with a different weights distribution) also in comparison with the spectra of antagonistic Husimi
trees that has not been considered before.

Figure 3 plots the average value of the real part of the leading eigenvalue, ⟨ℜ[λ1(BId)]⟩, as a function of N
for the three ensembles under study, i.e. antagonistic Erdős–Rényi graphs, mixture Erdős–Rényi graphs, and
antagonistic Husimi trees. These results, obtained by numerically diagonalising matrices, confirm that strong
local sign stability implies that the leading eigenvalue does not diverge with the system size, while violating
one of the conditions of LSS leads to its divergence. In fact, figure 3 shows a qualitative difference in the
behaviour of the real part of the leading eigenvalue as a function of the matrix size N: for mixture
Erdős–Rényi graphs and antagonistic Husimi trees, ⟨ℜ[λ1]⟩ increases monotonically as a function of N, while
for antagonistic Erdős–Rényi graphs, ⟨ℜ[λ1]⟩ quickly converges to a finite value. Note that the theoretical
results in [25] for the boundary of the spectrum of infinitely large graphs obtained with the cavity method
support the numerical observation that in the antagonistic Erdős–Rényi case the leading eigenvalue has a real
part which remains finite in the large N limit. Therefore the saturation observed from direct diagonalisation
results in the antagonistic case turns out to be representative of the large N behaviour. Based on these
grounds, in the following, we will rely on direct diagonalisation results to extrapolate the large N behaviour
also for interaction-like and Jacobian-like matrices.

So far, we have considered how strong local sign stability affects the leading eigenvalue of BId. Instead
now, we investigate the effect of strong local sign stability on the full spectra of matrices BId, which are
plotted in figure 4.
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Figure 3. Average real part of the leading eigenvalue, ⟨ℜ[λ1]⟩, as a function of the matrix size N for shifted interaction matrices
BId. Results shown are for antagonistic Erdős–Rényi graphs (red circles), mixture Erdős–Rényi graphs (blue diamonds) and
antagonistic pure Husimi trees (orange squares). Markers are sample means obtained from numerically diagonalising 300 matrix
realisations, and error bars denote the error on the mean. The parameters used for the matrix ensembles are detailed in
section 2.4.3.

Figure 4. Spectra of shifted interaction matrices BId for antagonistic Erdős–Rényi (red, left), mixture Erdős–Rényi (blue, centre)
and antagonistic pure Husimi tree (orange, right). Markers denote the eigenvalues of a single matrix BId of size N= 8000. The
parameters used are those detailed in section 2.4.3.

Figure 4 shows a qualitative difference between, on one hand, the spectra of antagonistic Erdős–Rényi
graphs (red), and on the other hand, the spectra of mixture Erdős–Rényi graphs (blue) and antagonistic
Husimi trees (orange). Indeed, in the latter two cases the spectrum develops long tails on the real axis, while
in the former case the tails are absent.

Analysing how the spectra evolve as a function of the matrix size N, we have found that the tails on the
real axis elongate as the matrix size increases, populating larger and larger portions of the real axis (results
not shown), which is in agreement with the results on the divergence of the leading eigenvalue in figure 3. On
the other hand, the antagonistic Erdős–Rényi graph has a spectrum that remains confined in a part of the
complex plane that has finite width along the real axis, even when the matrix size increases.

Focusing on the imaginary parts of the spectra, we have found that for all three ensembles under study
the spectra grow vertically as a function of N, covering an ever larger portion of the imaginary axis. Notice
that the latter result is naively expected as the matrix norm diverges as a function of N, and, since
∥M∥⩾ |λi(M)| ∀ i, there is no simple reason why the eigenvalue should be confined within a finite portion
of the complex plane. Hence for the antagonistic, Erdős–Rényi ensemble the divergence of the norm
materialises exclusively into the growth of the tails of the spectrum parallel to the imaginary axis.

In light of what we outlined in section 2, the observed qualitative difference in the width of the spectrum
on the real axis between ensembles that are strongly locally sign stable and those that are not, indicates that
strong local sign stability may be an important characteristic of stability in ecological models. In fact, both

14



J. Phys. Complex. 5 (2024) 015017 P Valigi et al

Figure 5. Average real part of the leading eigenvalue, ⟨ℜ[λ1]⟩, as a function of the matrix size N for interaction-like matrices B.
Results shown are for antagonistic Erdős–Rényi graphs (red circles), mixture Erdős–Rényi graphs (blue diamonds) and
antagonistic pure Husimi trees (orange squares). The green stars are the averages of the diagonal elements minima. Markers are
sample means obtained from numerically diagonalising 300 matrix realisations, and error bars denote the error on the mean. The
parameters used for the matrix ensembles are detailed in section 2.4.3.

structural stability and feasibility require that the origin of the complex plane is not part of the spectrum of
interaction-like matrices, and therefore, are not compatible with spectra that exhibit tails covering the whole
real axis. On the contrary, the spectrum of antagonistic Erdős–Rényi graphs contains a finite portion of the
real axis and, therefore, as explained in section 2, the origin of the complex plane can be excluded from the
spectrum after a finite shift of the diagonal entries leading to absolutely stable models of ecosystems.

Another interesting feature that we observe in figure 4 is a, so-called, reentrance effect in the spectrum of
antagonistic Erdős–Rényi graphs. The reentrance effect implies that the width of the spectrum is small for
eigenvalues with ℑ[λ]≈ 0. Increasing ℑ[λ], the width of the spectrum increases until it reaches a maximum
at ℑ[λ] = ℑ[λ1], after which the width of the spectrum decreases again to vanish at large values of ℑ[λ]. As a
consequence, the leading eigenvalue of antagonistic Erdős–Rényi has typically a finite imaginary part, i.e.
ℑ[λ1] ̸= 0, and hence the leading eigenvalue comes in pairs with its complex conjugate. This reentrance
effect, which was already observed in [25], will be discussed in-depth in section 5.

4.2. Interaction-like matrices B
In the present section, we confirm the validity of equation (37) also for interaction matrices with fluctuating
(negative) diagonal entries, i.e. B= A−D, with Dis drawn independently from a distribution pD supported
on a subset of the positive real axis. In particular we choose for simplicity a uniform distribution pD(d)
supported on [dmin,dmax], with dmin > 0, even though the main results we obtain for the leading eigenvalue
also holds for more general distributions pD as long as it is supported on R+.

Figure 5 plots ⟨ℜ[λ1(B)]⟩ as a function of the matrix size N in the three cases considered before in
figure 3, albeit now with a distribution pD that has a nonzero variance. The results of figure 5 are in
correspondence with those of figure 3, further establishing the connection between strong local sign stability
and the asymptotic finiteness of the leading eigenvalue. Indeed, for mixture, Erdős–Rényi graphs and
antagonistic, Husimi tree graphs the real part of the leading eigenvalue is steadily growing with N, whereas
for antagonistic, Erdős–Rényi graphs it converges to a finite value (as a function of N). See more on this
comparison in appendix E.

A more detailed look at figure 5 reveals that for small values of N< 102, the average leading eigenvalue,
⟨ℜ[λ1]⟩, of the antagonistic Erdős–Rényi graph increases as a function of N, before it eventually saturates at
its asymptotic value for N≳ 102. The transient behaviour of ⟨ℜ[λ1(B)]⟩ at small values of N is different from
the immediate convergence of ⟨ℜ[λ1(B)]⟩ in figure 3. Moreover, according to figure 5 the asymptotic value is
approximately equal to−dmin, the largest possible value of the diagonal entries; notice that to consider finite
size effects, figure 5 shows in fact ⟨−Dmin⟩ (green stars), with

Dmin =minj∈{1,2,...,N}Dj. (38)
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Figure 6. Spectra of Interaction-like matrices B for antagonistic Erdős–Rényi (red, left), mixture Erdős–Rényi (blue, centre) and
antagonistic pure Husimi tree (orange, right). Markers denote the eigenvalues of a single matrix BId of size N= 8000. The green
dotted line displays−Dmin, the maximum diagonal entry of B. The parameters used are those detailed in section 2.4.3.

This result is reminiscent of a related result for antagonistic tree graphs with fluctuating diagonal entries,
which states that the leading eigenvalue of a interaction matrix associated with an antagonistic, tree graph is
smaller or equal than−Dmin, see C.3. Figure 5 shows that the same principle applies for antagonistic,
Erdős–Rényi graphs, and moreover, for the specific parameters chosen it holds that the leading eigenvalue of
a large antagonistic Erdős–Rényi graph is approximately equal to the largest possible diagonal element−dmin.

Note that−dmin does not always determine the leading eigenvalue of antagonistic Erdős–Rényi graphs.
For example, let us consider the limiting case of a trivial diagonal with no disorder, i.e. pD(d) = δ(d− 1), as
discussed in the previous section 4.1. The results of figure 3 show that ⟨ℜ[λ1]⟩ is larger than−dmin =−1, and
hence its value is not directly related to dmin. Thus, depending on the model parameters, the asymptotic
behaviour of the leading eigenvalue of antagonistic Erdős–Rényi graphs is either set to−dmin or it is
determined by a complex interplay of various parameters.

In section 5, we will study the transition between these two regimes in more detail. Nevertheless, we
emphasise that in both cases the real part of the leading eigenvalue converges to a finite value, marking a
qualitative difference with respect to mixture Erdős–Rényi graphs and antagonistic Husimi trees.

At variance with shifted interaction matrices, we do not have theoretical results valid at infinite N to
confirm that the numerical results for the antagonistic case converge to a finite value. However, note that the
real part of the leading eigenvalue for the largest Ns observed converges to the upper boundary−dmin of the
distribution of the elements on the diagonal (see in figure 5 the trend of the average−Dmin for comparison),
strongly suggesting that the right boundary of the spectrum on the real axis in the antagonistic case is simply
determined by the disorder on the diagonal and therefore by definition does not diverge with N.

Figure 6 shows the full spectra of the matrices considered in figure 5. Comparing the spectra in figure 6
with those in figure 4, we observe again tails of eigenvalues on the real axis for the mixture Erdős–Rényi and
antagonistic (4, 4)-pure Husimi tree ensemble. Note that in figure 6 we also observe a segment on the real
axis in the spectrum of the antagonistic Erdős–Rényi graph. However, in the latter case, the segment of
eigenvalues does not grow indefinitely as a function of N, and instead it is confined to the interval
[−dmax,−dmin], in agreement with the results in figure 5. Therefore, also for interaction-like matrices, strong
LSS yields a finite segment of eigenvalues on the real axis4 with direct consequences on the possibility to use
strong LSS to predict structural stability and feasibility of models of ecosystems, irrespectively from system
size, i.e. absolute stability.

Another difference between figures 4 and 6 is that in the latter we do not observe a reentrance effect in
the spectrum of the antagonistic Erdős–Rényi graph. We stress however that this is due to the choice of
model parameters, and that in general interaction-like matrices can also exhibit reentrance effects. In
section 5, we will discuss in detail how reentrance effects appear in models with diagonal disorder, and how
they depend on the model parameters.

4.3. Jacobian-like matrices J
Lastly, we investigate the validity of equation (37), on Jacobian-like matrices, J=DBId =D(A− 1), that
have a distinctive stripy structure and negative diagonal, which is relevant for linear stability analysis in

4 Note that in general if the distribution pD is unbounded onR+, there will not be a finite segment of eigenvalues on the real axis, but the
real part of the eigenvalues will still have a finite upper bound.
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Figure 7. Average real part of the leading eigenvalue, ⟨ℜ[λ1]⟩, as a function of the matrix size N for Jacobian-like matrices J.
Results shown are for antagonistic Erdős–Rényi graphs (red circles), mixture Erdős–Rényi graphs (blue diamonds) and
antagonistic pure Husimi trees (orange squares). The green stars are the averages of the largest element of the diagonal matrix
−Dmin. Markers are sample means obtained from numerically diagonalising 300 matrix realisations, and error bars denote the
error on the mean. The parameters used for the matrix ensembles are detailed in section 2.4.3.

ecology as explained in section 2. In order to have a negative diagonal, we extract the entries of the diagonal
matrix D from a uniform distribution pD(d) supported on [dmin,dmax], with dmin > 0. Further details on the
various parameters can be found in section 2.4.3.

Figure 7 depicts the average, real part of the leading eigenvalue, ⟨ℜ[λ1(J)]⟩, as a function of the matrix
size N in the three canonical models of interest, mirroring the analysis in figures 3 and 5 (see more on this
comparison in appendix E). The numerical results confirm the connection between strong LSS and finiteness
of leading eigenvalue, viz., ⟨ℜ[λ1(J)]⟩ rapidly converges to a finite value for antagonistic, Erdős–Rényi graphs,
while ⟨ℜ[λ1(J)]⟩ diverges as a function of N for mixture, Erdős–Rényi graphs and antagonistic, Husimi trees.
In addition, in agreement with the results in figure 5 and 7 shows that for antagonistic Erdős–Rényi graphs
the average leading eigenvalue saturates at a value that is approximately equal to−Dmin (after a transient
regime for small values of N). For antagonistic tree graphs, C.3 shows that the leading eigenvalue is smaller
or equal than−Dmin. Figure 7 shows that this principle also applies to Jacobian-like matrices defined on
antagonistic Erdős–Rényi graphs. Taken together, as discussed previously for the interaction like matrices, for
the model under study the right boundary of the spectrum on the real axis in the antagonistic case is
determined by the disorder on the diagonal and therefore by definition does not diverge with N.

In appendix F we refine the results of figure 7 for ⟨ℜ[λ1(J)]⟩ as a function of N, by considering the limit
dmin → 0. In this limit, the antagonistic, Husimi tree exhibits strong transient effects, which we call the
Husimi plateau. Nevertheless the results remain consistent with figure 7 as they eventually show a growth of
⟨ℜ[λ1(J)]⟩ with N. Note however that we do not expect that the conclusion about the finiteness of the
boundary of the spectrum on the real axis at large N in the antagonistic Erdős–Rényi case could be just the
result of a finite size effect in correspondence of a long Husimi-like plateau, because the Husimi plateau only
forms for fine-tuned values of dmin, while in the antagonistic Erdős–Rényi case the leading eigenvalue seems
to always converge to a finite value as we could not observe any divergence for any choice of the dmin studied.

The results in figure 7 have interesting implications for the linear stability of ecosystems. Recalling the
classical linear stability condition ℜ[λ1(J)]< 0, the results in figure 7 imply that system size N is not an
important parameter for the linear stability of systems defined on strongly locally sign stable graphs, which
therefore are absolutely stable. On the other hand, system size N is an important parameter in the general
case of models defined on graphs with sign-symmetric interactions or with a number of short cycles growing
with N, as in the latter cases stability is only attained for small enough values of N.

Figure 8 shows the spectra of Jacobian-like matrices for the three canonical models under study. The
Jacobian-like spectra have an arrow-like shape, which resembles those already observed for the dense version
of Jacobian-like matrices [60, 74]. However, importantly in the sparse case a clear distinction is observed
between, on one hand, antagonistic Erdős–Rényi graphs, and on the other hand, mixture Erdős–Rényi
graphs and antagonistic Husimi trees. The latter two exhibit long tails on the real axis that increase with
system size, while the former does not exhibit such tails. Hence again, the divergence of the real part of the
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Figure 8. Spectra of a single realisation of Jacobian-like matrix J with size N= 8000 for antagonistic Erdős–Rényi (red, left),
mixture Erdős–Rényi (blue, centre) and antagonistic pure Husimi tree (orange, right). The green dotted line displays−Dmin, the
largest element of the diagonal matrix. The other parameters employed are discussed in section 2.4.3.

leading eigenvalue is due to tails that develop on the real axis of the spectra of sparse random graphs, and
such tails are absent in strongly locally sign stable ensembles.

Note that the spectrum of the antagonistic, Erdős–Rényi graph in the left panel of figure 8 does not
exhibit a reentrance effect, similar to the spectrum of the interaction-like matrix in the left panel of figure 6,
but different from the spectrum of the shifted interaction matrix in the left panel of figure 4. We stress that
this is due to the choice of model parameters, and in fact Jacobian-like matrices can also exhibit reentrance
effects. In the next section we will investigate how reentrance in the spectra of Jacobian-like matrices is
governed by an interplay between diagonal disorder and network structure.

5. Discontinuous transition in the imaginary part of the leading eigenvalue

As shown in the left panel of figure 4, the boundary of the spectrum of antagonistic Erdős–Rényi graphs
exhibits a reentrance in correspondence of the real axis. In this case, the leading eigenvalue comes in a pair of
complex conjugate values with finite imaginary part. From a dynamical systems point of view, the reentrance
effect is interesting, as the imaginary part of the leading eigenvalue determines the frequency of oscillations
of the slowest mode of relaxation towards the fixed point. Hence, if the leading eigenvalue has a nonzero
imaginary part, then the leading, relaxation mode is oscillatory, while for leading eigenvalues that are real the
leading mode is nonoscillatory. As a consequence, a transition from a phase in which the leading eigenvalue
comes in a pair of two conjugate, complex values to a phase in which it is real corresponds, from a dynamical
perspective, to a transition from an oscillatory to a nonoscillatory relaxation dynamics. For this reason we
call it a dynamical transition.

Note that in general reentrance effects can be interesting both for interaction-like matrices and
Jacobian-like matrices. In the latter, they identify oscillatory dynamics in nonlinear systems of the generalised
Lotka–Volterra type in the vicinity of a fixed point. In the former, they may simply identify oscillatory
dynamics of corresponding linear systems. However, for the generalised Lotka–Volterra model discussed in
this paper, the dynamical behaviour is partially accessible by studying the Jacobian-like matrix only, and the
reentrance effect visible in the spectrum of interaction-like matrix does not have any dynamical
consequences. On the other hand, the emergence of a reentrance in the spectrum of the interaction-like
matrix for the generalised Lotka–Volterra model can still represent an interesting piece of information in
situations where the system is feasible/structurally stable, because the spectrum does not include the origin,
although (complex) eigenvalues happen to have real parts of both positive and negative sign. In such cases
the sign of the leading eigenvalue cannot directly determine structural stability or feasibility, as otherwise
naively expected.

Antagonistic Erdős–Rényi graphs with constant diagonal entries, i.e. shifted interaction matrices, exhibit
a dynamical transition as a function of the mean degree c, as shown in [25]. Indeed, for large c the boundary
of the spectrum resembles the elliptic law, and thereby the leading eigenvalue is typically real in the large size
limit. On the other hand, for small c the boundary of the spectrum shows a reentrance effect, as shown in the
left panel of figure 4, and the leading eigenvalue is typically complex. In addition, [25] shows that the
dynamical transition is a continuous transition in the following sense: the imaginary part ℑ[λ⋆

1 ] of the typical
value λ⋆

1 of the leading eigenvalue, for which we provide a mathematical definition later, equals zero at the
transition, and therefore the frequency of the oscillations near the transition is small.
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In the present section, we also study the dynamical transition in the leading eigenvalue, but now for the
interaction-like and Jacobian-like matrices with sign-antisymmetric weights. Note that in figures 6 and 8 we
have not observed reentrance effects for interaction-like and Jacobian-like matrices, and consequently their
leading eigenvalue is real. Instead, in figure 4 we have observed a reentrance in the spectra of shifted
interaction matrices with sign-antisymmetric weights, and consequently in this case the leading eigenvalue
comes in a pair of two conjugate, nonreal eigenvalues. Since the latter random matrix ensemble can be
obtained from the former ensembles in the limit of small σD, a transition, possibly related to the reentrance
of the spectra in correspondence of the real axis, is to be expected at intermediate values of σD.

Interestingly, the dynamical transition we find in this section for interaction-like and Jacobian-like
matrices occurs while the spectrum is still reentrant in correspondence of the real axis, and hence it features a
discontinuous jump in the imaginary part ℑ[λ⋆

1 ] of the leading eigenvalue, at variance with the nature of the
transition studied in [25]. This section is devoted to a careful study of this transition. In particular, we
further discuss the definition of a suitable control parameter for the transition, both in the interaction-like
and Jacobian-like matrices, involving σD and other relevant parameters of the model. For both cases, in
section 5.1 we locate the transition point through a finite size scaling analysis and in section 5.2, by some
additional finite size scaling studies reported in appendix G, we also show that the transition takes place with
a discontinuous jump.

5.1. Locating the transition point
As anticipated by the results of the previous section, a change in the strength of the diagonal disorder, as
quantified by σD, can have a direct impact on the imaginary part of the leading eigenvalue of interaction-like
and Jacobian-like matrices, determining a qualitative change in the relaxation dynamics of a corresponding
dynamical system.

Concerning other model’s parameter, in the interaction-like case, µD is only responsible of a global shift
of the spectrum and cannot affect the imaginary part of the leading eigenvalue. A global rescaling of all
matrix elements also affects trivially the spectrum. First non trivial changes in the spectrum emerge when σD

changes with respect to the scale of the off-diagonal elements, represented by their variance σ, and therefore
the relevant control parameter for the dynamical transition must be σD/σ

5.
For Jacobian-like matrices the situation is more involved as their off-diagonal elements are the result of

the product of pairs of random variables Di,Aij, with probability distribution pD and p. In this case, a global
rescaling of the Di gives also a trivial global rescaling of all the elements of the matrix. Any other
modification of the parameters of pD and p induces a non trivial modification of the probability distribution
of the off-diagonal elements, which cannot be exactly recast in terms of the variation of a simple control
parameter. However, it is possible to derive a rough estimate of the scale of the off-diagonal elements via their
variance σO = σ

√
µ2
D +σ2

D, which suggests that the relevant control parameter is approximately given by the
ratio σD/σO = σ−1/

√
1+µ2

D/σ
2
D.

We analyse in figure 9 the probability P[λ1 ∈ R] that the leading eigenvalue is real as a function of the
control parameters

sB := σD/σ and sJ := σD/σO, (39)

defined respectively for interaction-like and Jacobian-like matrices of antagonistic Erdős–Rényi graphs. For
small values of sB and sJ, P[λ1 ∈ R]≈ 0.1, and hence with high probability the leading eigenvalue has a
nonzero imaginary part. On the other hand, for large values of sB and sJ, P[λ1 ∈ R]≈ 1, and hence the
leading eigenvalue is typically real. Because of the aforementioned dynamical significance of ℑ[λ1], we call
the former the oscillatory phase and the latter the nonoscillatory phase.

To show that the transition from an oscillatory to a nonoscillatory phase is a proper phase transition, we
also plot in figure 9 the probability P[λ1 ∈ R] for different system sizes N. Notably, the transition becomes
sharper as the system size increases, and the curves for different values of N intersect at one single point,
which we denote by sd, indicating where the dynamical transition takes place. We also show results obtained
at different values of σ,σD,µD, which all collapse when plotted as function of sB and sJ. In particular, this
evidence confirms that sJ can be effectively used as relevant control parameter for the transition6.

5 Additional non trivial modifications of the spectra are introduced by changes in the relative importance of µG and σG for fixed σ, as
well as in general every change in the distribution of the diagonal and off-diagonal elements. Conversely, here we consider cases in which
changes in σ are only obtained by changing both µG and σG, with µG/σG fixed.
6 Be warned that for Jacobian-like matrix, sJ can be safely considered the relevant control parameter only as long as the modifications in
the model parameters σ,µD,σD do not give rise to a significant change in the shape of the distribution of the off-diagonal elements when
the transition takes place, as it is the case for the two series of data for the largest system size in the right panel of figure 9.
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Figure 9. Probability P[λ1 ∈ R] that the leading eigenvalue is real as a function of the control parameter, defined in equation (39),
for interaction-like B (on the left) and Jacobian-like J (on the right) matrices of antagonistic Erdös–Rényi graphs. The vertical
dotted line shows the value sd ≃ 0.08 at which P[λ1 ∈ R]≃ 0.5 and therefore indicates the transition from the complex phase to
the real phase. Averages are performed over 1000 matrix realisations. The error bars depict the Wilson score interval at 95%
confidence, which is an asymmetric interval that does not exhibit overshoot phenomena and does not underestimate the
uncertainty around the endpoints, see [75–77]. The empty markers are obtained by employing the parameters discussed in
section 2.4.3 and for given values of N, and the filled ones are obtained for parameters µG = 1.5, σG = 0.9, µD = 1.2, ten values
of σD equally spaced in [0,0.45], and for N= 4000.

Figure 10. Histograms of the imaginary part of the leading eigenvalues of interaction-like B (on the left) and Jacobian-like J (on
the right) matrices of antagonistic Erdös–Rényi graphs for N= 4000 and different values of the strength of the diagonal disorder:
σD = 0.05 (corresponding to sB ≃ 0.04 and sJ ≃ 0.04) in red, σD = 0.10 (corresponding to sB ≃ 0.08 and sJ ≃ 0.08) in orange,
and σD = 0.15 (corresponding to sB ≃ 0.13 and sJ ≃ 0.12) in green; the other parameters employed are as discussed in
section 2.4.3. The solid lines are γ-distributions fitted to the histograms (see main text for detailed explanations), and the dashed
vertical lines denote the mode of these fitted distributions, which provide the estimates forℑ[λ⋆

1 ]. The delta peaks in zero denote
the probability P[λ1 ∈ R] that an eigenvalue is real.

Note that in the oscillatory phase P[λ1 ∈ R]≈ 0.1 for large values of N, and hence there is a small
nonzero probability that the leading eigenvalue is real. Hence, the imaginary part of the leading eigenvalue is
not a self-averaging quantity (i.e. it does not converge to a deterministic number in the infinite size limit),
which is in correspondence with the numerical results from [25].

5.2. Characterising the discontinuity of the transition
In this section, we determine whether the dynamical transition occurs with a continuous or discontinuous
variation of the imaginary part of the leading eigenvalue.

Figure 10 displays the distribution pℑ[λ1](x) of the imaginary parts of the leading eigenvalue obtained by
generating a large sample of interaction-like matrices B (left panel) and Jacobian-like matrices J (right panel);
notice that for each pair of conjugate leading eigenvalues with nonzero imaginary part we only focus on the
one with ℑ[λ1]> 0. From figure 10, we observe that the distribution pℑ[λ1](x) consists of two parts, viz., a

20



J. Phys. Complex. 5 (2024) 015017 P Valigi et al

Figure 11. Imaginary partℑ[λ⋆
1 ] of the typical, nonreal, leading eigenvalue as a function of the control parameters, as defined in

equation (39), for interaction-like B (on the left) and Jacobian-like J (on the right) matrices of antagonistic Erdös–Rényi graphs.
The values ofℑ[λ⋆

1 ] are estimated as shown in figure 10, viz., as the mode of a γ-distribution fitted to a histogram built out of
1000 matrix realisations. The error bars are computed by standard error propagation from the fitting parameters. The parameters
employed for empty and filled markers are the same as those used in figure 9, respectively. The vertical dotted line depicts the
transition value sd. Note that the markers after the transition are denoted in a lighter shade because they represent data which are
merely the result of finite size effects: in the nonoscillatory phase the frequency of complex leading eigenvalues decreases with
system size. After the transition the eigenvalues are instead typically real, as represented by the solid red line (ℑ[λ⋆

1 ] = 0). Its left
dashed continuation shows rare real leading eigenvalues also present in the oscillatory phase.

delta distribution at zero carrying the fraction P[λ1 ∈ R] of matrix realisations that have a real-valued leading
eigenvalue, and a continuous distribution corresponding with eigenvalues that have nonzero imaginary part:

pℑ[λ1] (x) = P [λ1 ∈ R]δ (x)+ (1− P [λ1 ∈ R]) p̃ℑ[λ1] (x) . (40)

We define

ℑ [λ⋆
1 ] := argmaxx∈R+ p̃ℑ[λ1] (x) , (41)

as the typical value of the imaginary part of the leading eigenvalue.
As the control parameter changes from s< sd, to s≈ sd and to s> sd (obtained for σD = 0.05, σD = 0.10

and σD = 0.15 in correspondence of σG = 0.6 and µG = 1.0) it can be observed that the maximum of the
continuous part of the distribution, indicated by the vertical dashed line, is mostly independent on the
control parameter both for interaction-like and Jacobian-like matrices. The change in the control parameters
mainly affects the weight P[λ1 ∈ R] carried by the two parts of the distribution pℑ[λ1](x), as it is usual with
discontinuous phase transitions and at variance with the continuous dynamical transition found in [25] for
shifted interaction matrices as a function of c. Since the numerical results in figure 10 are obtained at finite
N, we perform in appendix G a detailed, finite size scaling analysis of the distribution pℑ[λ1](x), which
confirms that the discontinuity in ℑ[λ⋆

1 ] at the transition is to be expected also in the large N limit.
Following the approach implemented in [25], to get an estimate of the typical value, ℑ[λ⋆

1 ], of the portion
of the distribution corresponding to nonzero imaginary part we take the mode of a γ-distribution

γ(x;α,β) = βαxα−1e−βx

Γ(α) fitted on the histogram of ℑ[λ1]> 0. Here Γ(α) is the gamma function with

parameters α,β ∈ R+ real and positive.
The typical value ℑ[λ⋆

1 ] for different sizes N is plotted in figure 11 as a function of the control parameter
for the interaction-like and Jacobian-like case and with the same settings as in figure 9. As it can be observed
again, ℑ[λ⋆

1 ] is an almost constant function of the control parameter and its value at the transition point is
positive until it vanishes at sd, showing the discontinuous nature of the transition and the associated finite
size effects. For further evidence, the lighter markers show that ℑ[λ⋆

1 ] is nonzero also in the nonoscillatory
phase (the dynamical transition point is indicated by the vertical dotted line) when the leading eigenvalue is
typically real. Finally, notice that while the location of the transition is only controlled by sB or sJ, respectively,
the value of ℑ[λ⋆

1 ] depends on the particular choice of the model parameters. This value reflects the global
rescaling of the matrix as discussed at the beginning of section 5.1.

Lastly, to develop a better understanding about the mechanism of the discontinuity in the dynamical
transition of interaction-like and Jacobian-like matrices, we investigate their spectra in figures 12 and 13 at
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Figure 12. Spectra of single realisations of antagonistic, Erdős–Rényi, interaction-like matrices B= A−D of size N= 8000. The
diagonal entries of D are drawn from a uniform distribution with σD as depicted in the legend, corresponding to values of sB = 0,
sB ≃ 0.4, sB ≃ 0.8, sB ≃ 0.13, sB ≃ 0.17 and sB ≃ 0.21 (left to right, up to bottom). The green dotted line displays−Dmin. The
other parameters employed are as discussed in section 2.4.3.

different values of the control parameters. Let us first discuss the spectra of antagonistic, interaction-like
matrices in figure 12. We observe that the spectrum contains two parts, viz., a cloud of eigenvalues that have
a nonzero imaginary part and a segment of real-valued eigenvalues. In particular, the width of the segment of
real eigenvalues is approximately equal to [−Dmax,−Dmin], and hence the segment width increases as a
function of σD (or as a function of sB, for fixed σ). The discontinuous nature observed for the dynamical
transition is originated from the competition between the width of the cloud of complex eigenvalues and the
width of the segment on the real axis. It can be observed that for sB < sd, the leading eigenvalue belongs to
the cloud of complex eigenvalues, and since the shape of this cloud is reentrant the imaginary part of the
leading eigenvalue in this regime is nonzero. On the other hand, for sB > sd, the leading eigenvalue belongs to
the segment of real eigenvalues, and hence has null imaginary part. Since the eigenvalue cloud is still
reentrant at the point sB = sd when the segment width overtakes the width of the cloud, the transition is
discontinuous. This behaviour is different from the continuous transition driven by the connectivity c at
sB = 0, as discussed in [25]. In this case, the transition in the imaginary part of the leading eigenvalue is the
result of a gradual reshaping of the spectrum resulting in the progressive disappearance of the reentrance in
correspondence of the real axis at large c.

For the spectra of Jacobian matrices, shown in figure 13, the qualitative picture is similar to what we have
discussed for figure 12 for interaction-like matrices, viz., the spectrum consists of two parts, one being a
cloud of complex eigenvalues reentrant in correspondence of the real axis and the other is a segment of real
eigenvalues approximately supported on [−Dmax,Dmin]. Again, a discontinuous transition on the imaginary
part of the leading eigenvalue takes place as the cloud of eigenvalue is reentrant when the width of the
segment overtakes the width of the cloud of eigenvalues.

In both cases, in the nonoscillatory phase, ℜ[λ1]≈−Dmin, as the support of the real eigenvalues is well
approximated by [−Dmax,−Dmin], which is consistent with the results in figures 5 and 7.

Moreover, in both cases, it emerges that the reentrance of the cloud of complex eigenvalue in
correspondence of the real axis also becomes slightly less pronounced if σD increases, which hints to the
possibility that, for specific settings, the disappearance of the reentrance could take place before the largest
real eigenvalues become the leading one. In such situation a continuous transition of the imaginary part of
the leading eigenvalue is to be expected, instead of the discontinuous transition observed here. In general, by

22



J. Phys. Complex. 5 (2024) 015017 P Valigi et al

Figure 13. Spectra of single realisations of antagonistic, Erdős–Rényi, Jacobian-like matrices J=−DBId of size N= 8000. The
diagonal entries of D are drawn from a uniform distribution with σD as depicted in the figure legends, corresponding to values
sJ = 0, sJ ≃ 0.4, sJ ≃ 0.8, sJ ≃ 0.12, sJ ≃ 0.16 and sJ ≃ 0.20 (left to right, up to bottom). The green dotted line displays−Dmin.
The other parameters employed are as discussed in section 2.4.3.

modifying the parameters contained in the distributions p and pD and the connectivity of the graph, it
should be possible to obtain a phase diagram containing a line of discontinuous transition ending in a
continuous transition point. This interesting endeavour is left for future work. Finally, there is one notable
distinction between figures 12 and 13, namely, for large values of σD the spectra of interaction-like matrices
have a round shape, albeit not circular, while the spectra of Jacobian-like matrices has a characteristic arrow
shape, which has also been observed before for dense matrices, see [60, 74]. This different behaviour can
produce a qualitative difference in the phase diagram containing discontinuous and continuous dynamical
transitions of interaction-like and Jacobian-like matrices, which will be also interesting to study.

6. Discussion

In this paper, we have focused on two interesting features of the spectra of sparse random graphs. First, we
have analysed how the leading eigenvalue of random graphs depends on the system size, taking into account
the sign pattern of matrix entries and the graph topology. Second, we have studied how the imaginary part of
the leading eigenvalue transitions from zero to a nonzero value as a function of the model parameters in the
large system limit. These features are specific to sparse network topologies and do not appear in highly
connected graphs.

More specifically, this paper presents a simple, general criterion for predicting the asymptotic behaviour
of the leading eigenvalue of infinitely large, sparse, random graphs, based on the concept of strong local sign
stability. Although in some previous examples ([21, 25]) the importance of the sign pattern and network
topology on the stability of some matrices was emerging, here we also systematically investigate the validity
of the proposed criterion with additional numerical examples on sparse random graphs with different
topologies and sign patterns, and for different types of matrices such as adjacency matrices and Jacobian-like
matrices.

Aside the numerical evidence, we can also provide an intuitive explanation for the relation between
strong local sign stability and the finiteness of the real part of the leading eigenvalue within the context of
linear, dynamical system defined on a strongly locally sign stable graph. For locally sign stable graphs, when a
perturbation is applied to a random node its neighbours react. However typically the finite neighbourhood
is, by definition, stable, therefore the perturbation will be damped. This scenario could, in principle, be
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overturned by cycles of length O(log(N)) that break sign stability, but since they are long we do not expect
their effect to be strong enough to destabilise the system in all cases. The situation is different for large,
random graphs that are not locally sign stable. In such graphs there exist nodes that are not locally stable, and
hence perturbations applied to these nodes will always locally grow and destabilise the system. In addition,
whenever the random graph is locally sign stable but not strongly locally sign stable and short cycles are
growing in number with system size, there may exist few nodes that belong to a large number of short cycles
and lead again to a local instability.

One very interesting feature of strong local sign stability, following from the concept of sign stability, is
that it is not affected by the absolute values of the matrix elements and thus it refers to the set of graphs with
the same network topology and sign pattern, provided that the distribution of the off-diagonal elements has
finite second moment. As a consequence, whenever the interaction matrix A of an ecosystem is strongly
locally sign stable, then also the corresponding interaction-like B and Jacobian-like Jmatrices are strongly
locally sign stable, potentially ensuring at once feasibility, structural stability and linear stability. This aspect
is particularly interesting in the ecological context where, as anticipated in the Introduction, it is difficult to
quantify the strength of interactions between species [2, 36]. In this regard, [29] has shown that for a general
predator–prey model defined on a tree, the Jacobian matrix (with negative elements on the diagonal)
evaluated on an isolated, feasible equilibrium point has eigenvalues with negative real parts, and hence the
equilibrium point is linearly stable for such systems. The concept of strong local sign stability that we have
introduced in the present paper generalises the results in [29], as it applies to a broader class of systems,
including predator–prey ecosystems defined on random graphs that are locally tree-like, have a finite number
of short cycles, and have diagonal elements that are negative and below a finite threshold. The last condition
is needed to have all eigenvalues with negative real part despite the finite width of the spectrum.

Our results challenge the classical notion that complex, dynamical systems exhibit a trade-off between
size and stability, mostly discussed for fully connected models [10, 11, 36, 51, 78]. Indeed, in dense graphs
the sign pattern does not alter how the leading eigenvalue scales with system size [11, 61, 64]. Instead, for
sparse graphs we find that this trade-off depends on the sign pattern and topology of the graph. More
specifically, [25] showed that the real part of the leading eigenvalue of infinitely large, antagonistic
Erdős–Rényi graphs with shifted interaction matrix is finite, also by means of theoretical predictions on the
boundary of the spectrum in the limit N→∞. The present work generalises this result with numerical
evidences by extending it to various matrix structures relevant in ecology and by identifying the common
feature the convergence of the real part of the leading eigenvalue to a finite value for large system size. It will
be interesting to extend the theoretical predictions from interaction-like matrices [25] to more general
matrices to put on a firmer grounds the extrapolation of numerical results to infinite N. In general it is also
interesting to consider models for which the fraction of sign-symmetric interactions is vanishing with N, or
antagonistic models defined on graphs with power law degree distribution, which are locally sign stable but
not strongly locally sign stable (due to a growing number of finite cycles albeit a vanishing fraction of them),
to understand whether the conditions to grant finite leading eigenvalue can be relaxed.

It is important to emphasise that the strong LSS criterion (37) applies to matrices built from graphs as
explained in section 2.4, i.e. without correlations among network topology, sign pattern and interaction
weights. In fact, including correlations between network topology and interaction weights, the leading
eigenvalue can diverse with the system size even though the graph is strongly LSS. As an example, consider a
sequenceMN in which the two entries with the largest absolute values concentrate with the same sign on the
same edge, sayM12 =maxi,j

{
|Mij| : i, j ∈ V

}
andM21 =maxi,j

{
|Mij| : i, j ∈ V

}
\ {M12}. If the entries are

also drawn from a distribution with unbounded support, these largest valuesM12 andM21 diverge as a
function of N. Then in the limit of large N, the leading eigenvalue λ1 ≈

√
M12M21 and thus it diverges as a

function of the system size N. At the same time, since we are only imposing the weights of a single edge the
sequenceMN may still be strongly locally sign stable. Another possible example is a graph in which the node
with the largest degree has all sign-symmetric edges. Also in this case, as long as the degree distribution has
unbounded support, the leading eigenvalue diverges with the system size N, although the graph may be
strongly locally sign stable.

Systematic studies of the stability properties of sparse systems are far from being achieved, although
potentially relevant for many applications of dynamical systems. In particular new interest is arising on the
rich phenomenology of sparse ecosystems [62]. We believe that our paper gives an important contribution
by grasping a general criterion for stability of sparse ecosystems.

The second main result presented in this paper concerns the imaginary part of the leading eigenvalue
ℑ[λ1] of antagonistic Erdős–Rényi graphs. The spectra of antagonistic Erdős–Rényi interaction-like and
Jacobian-like matrices display a transition driven by the strength of the diagonal disorder σD from a low
σD-phase in which the leading eigenvalue typically has nonzero imaginary part to a large σD-phase in which
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it is real. In the first phase the spectrum is characterised by a reentrance effect around the real axis and this is
the cause for it to have a pair of complex conjugate leading eigenvalues.

This reentrance effect is specific to sparse, low connectivity graphs with sign-antisymmetric weights. In
fact, as soon as we move away from the low connectivity limit the spectra tend, under fairly general
conditions, to have an elliptic shape. It is worth noting that the spectral reentrance observed in sparse
random graphs is a qualitatively new feature, which has only been previously observed in the recent work
[25]. That paper identifies a transition in the spectra of antagonistic Erdős–Rényi graphs with zero diagonal
entries driven by the connectivity c, from a large c phase where ℑ[λ1] = 0 to a small c phase where typically
ℑ[λ1] ̸= 0, and which also displayed a reentrance effect. The present paper generalises this result by
extending it to more elaborate matrix structures. In particular, we have shown that the reentrance effect
persists even in the presence of a disordered diagonal or a stripy, Jacobian-like, structure, but only as long as
their disorder is not too large.

It is important to stress once more that while the transition described in [25] is continuous, the one
discussed in the present paper is discontinuous. In the former case, the reentrance disappears progressively as
the connectivity increases. On the other hand, in the latter case, the spectrum is composed of a cloud of
complex eigenvalues and of a segment lying on the real axis. In the low σD phase, the leading eigenvalue is
determined by the cloud and is therefore complex. As σD increases, both of these components gradually
change: the cloud reshapes, reducing the reentrance effect, while the real segment elongates. At the
transition, the right tip of the real segment reaches the convex hull of the cloud, and the leading eigenvalue
starts to be real. This overtaking occurs before the reentrance has completely disappeared, and therefore we
observe a jump in the leading eigenvalue imaginary part, giving rise to a discontinuous transition. At the
same time it is possible that, for specific settings, the reentrance effect could disappear completely before (or
together with) the overtaking by the segment on the real axis thus making the transition continuous. A more
detailed study of the phase diagram describing both the reentrance effect and the transition in ℑ[λ1] is left
for future work. Moreover, since this reentrance effect is peculiar to sparse graphs, we expect the network
topology to be relevant and therefore it would be interesting to investigate its impact.

The transition in ℑ[λ1] discussed in this paper, especially with regard to Jacobian-like matrices, is of
interest in the context of dynamical systems. In this framework, the imaginary part of the Jacobian leading
eigenvalue determines the oscillation frequency of the slowest mode of relaxation towards the related fixed
point. Accordingly, the response to a perturbation around a fixed point is oscillatory if the leading eigenvalue
has imaginary part different from zero, nonoscillatory otherwise. Our result on the transition indicates that
the dynamical response of a nonlinear system defined on antagonistic Erdős–Rényi is oscillatory only if the
strength of the diagonal disorder σD is small compared to the off-diagonal one σO.

In order to appreciate the actual implication of this dynamical transition it would be interesting to derive
a phase diagram describing the dynamical behaviours of antagonistic systems defined on sparse graphs.
Indeed, in the context of dynamical systems with nonsymmetrical interactions the spectra of Jacobian
matrices can play a role only in the case in which the dynamics is attracted by fixed points while chaos and
limit cycles are not predominant. In dense ecological models such a phase diagram has been derived and it
identifies regions with multiple attractors where solutions are often chaotic [79–82]. An analogous phase
diagram for sparse ecosystems with predator–prey interactions is not known and its derivation is an
interesting endeavour left for future work.

Finally, concerning applications, our findings on the importance of strong local sign stability in
enhancing stability are consistent with empirical observations on real food webs, which are graphs that
represent predator–prey interactions in ecological systems. According to our results, locally tree-like
structures and sign-antisymmetric interactions stabilise large ecosystems, and hence, these are the structures
we expect to observe. Empirical studies have shown that food webs are indeed locally tree-like, with a
number of cycles that is similar to those found in locally tree-like Erdős–Rényi graphs [83]. Notably, other
networks such as social and technological networks have a significantly larger number of cycles, a feature
unique to food webs [83]. In addition, [84] found that the weights of long cycles in real food webs are
typically smaller than in random matrices, further underlying the importance of locally tree-like structures
for large ecosystems.
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Appendix A. Structural stability to perturbations of various ecological parameters

In this appendix we derive the expression for structural stability, defined as the stability of the abundances of
surviving species N⃗∗, as defined in equation (10), with respect to small perturbations of the three different
ecological parameters of our model ri, Ki and αij. In particular, we show that in all three cases the

susceptibility of N⃗∗ to perturbations of ecological parameters is related to the inverse of the matrix B, defined
in equation (11) and therefore it is singular if the spectrum of B contains the origin of the complex plane.

Let’s start with the simplest case of a perturbation applied to the growth rates ri → ri + ξi. The perturbed
equations for the N∗

i then read

ri + ξi =
N∗

i

Ki
+

S∑
j=1;j̸=i

αijN
∗
j , (A.1)

which can be derived with respect to ξk

δik =
1

Ki

∂N∗
i

∂ξk
+

S∑
j=1;j̸=i

αij

∂N∗
j

∂ξk
=

S∑
j=1

Bij

∂N∗
j

∂ξk
, (A.2)

revealing that the susceptibility of N∗
i to little variations of rk is directly determined by the inverse of B:

∂N∗
i

∂ξk
=
(
B−1

)
ik
. (A.3)

Let’s now consider a perturbation applied to the parameter Ki → Ki + ηi, after which the perturbed
equations for the N∗

i read

ri =
N∗

i

Ki + ηi
+

S∑
j=1;j̸=i

αijN
∗
j . (A.4)

Deriving with respect to ηk and evaluating the derivative at η⃗ = 0

0=−δik
N∗

i

K2
i

+
S∑

j=1

(
δij
Ki

+αij

)
∂N∗

j

∂ηk
=−δik

N∗
i

K2
i

+
S∑

j=1

Bij

∂N∗
j

∂ηk
, (A.5)

we find the susceptibility of N∗
i to little variations of Kk which is determined the inverse of Bmultiply

row-by-row by N∗
k

K2
k
:

∂N∗
i

∂ηk

∣∣∣∣∣
η⃗=0

=
(
B−1

)
ik

N∗
k

K2
k

. (A.6)

Finally we consider a perturbation applied to the interaction αij → αij + ϵij which lead to

ri =
N∗

i

Ki
+

S∑
j=1;j ̸=i

(
αij + ϵij

)
N∗

j . (A.7)

Deriving with respect to ϵkl and evaluating the derivative at ϵkl = 0 ∀ k ̸= l

0=
S∑

j=1

(
δij
Ki

+αij

)
∂N∗

j

∂ϵkl
+N∗

l δik =
S∑

j=1

Bij

∂N∗
j

∂ϵkl
+N∗

l δik , (A.8)
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we find the susceptibility of N∗
i to little variations of αkl which is again related to the inverse of B:

∂N∗
i

∂ϵkl

∣∣∣∣∣
ϵ=0

=−
(
B−1

)
ik
N∗

l . (A.9)

In conclusion, a singular behaviour emerges if the spectrum of B contains the origin of the complex
plane hinting to a large susceptibility of the solution of N⃗∗ to all three ecological parameters.

Appendix B. The eigenvalues of antagonistic trees have zero real part

We show that the adjacency matricesM ∈ RN×N of trees weighted with sign-antisymmetric interactions have
purely imaginary eigenvalues, i.e.

ℜ [λi] = 0 (B.1)

for all i = 1,2, . . . ,N. As interactions are sign-antisymmetric, it holds that

MijMji < 0 (B.2)

for all pairs (i, j) for which eitherMij ̸= 0 orMji ̸= 0. The tree condition implies that equation (35) holds. We
assume thatMii = 0.

The arguments we present are adapted from [3], albeit applied to the case of antagonistic, tree graphs.
First we define a general class of, so-called, strictly quasi-antisymmetric matrices, and we show that these

matrices have purely imaginary eigenvalues. Second, we show that antagonistic trees are strictly
quasi-antisymmetric.

B.1. Eigenvalues of strictly quasi-antisymmetric matrices are imaginary
We say that a matrix Q ∈ RN×N is strictly quasi-antisymmetric if

QT =−ηQη−1, (B.3)

where η is a symmetric, positive definite matrix; notice that [85, 86] define strictly quasi-symmetric
matrices, which are related to PT-symmetric matrices in quantum mechanics [87].

Strictly quasi-antisymmetric matrices have imaginary eigenvalues as they are similar to an antisymmetric
matrix K. Indeed, since η is positive and symmetric, it is a diagonalisable matrix with positive eigenvalues.
We define

√
η as the square root of η that is positive definite, which is the (unique) symmetric, matrix that

has eigenvalues that are equal to the positive square roots of the eigenvalues of η. Consequently, we may
define the matrix

K=
√
ηQ

√
η
−1

, (B.4)

which has real-valued entries as
√
η has real-valued entries. The matrix K is antisymmetric, as

K=
√
ηQ

√
η
−1

=
√
η
−1

ηQη−1√η =−√
ηQT√η = (

√
ηQ

√
η)

T
=−KT , (B.5)

where in the last step we have used that
√
η is a symmetric matrix. Hence, since Q is similar to K, both

matrices share the same eigenvalues [71], and since K is an antisymmetric with real-valued entries, the
eigenvalues of Q are purely imaginary.

B.2. Adjacency matrices of trees with sign-antisymmetric weights are strictly-quasi-antisymmetric
We show that the adjacency matricesM of antagonistic trees are strictly quasi-antisymmetric i.e. they satisfy
equation (B.3). To this aim, following [3], we explicitly construct the matrix η.

We select a random node in the graph, which we call the root node, and we label it as i0. Subsequently, we
consider (i) the set of nodes V1 that are neighbours of i0; (ii) the set of nodes V2 that are neighbours of nodes
in V1 excluding the root node; (iii) the set of nodes V3 that are neighbours of V2 and are not part of V1, etc.
Eventually we obtain a partitioning V= {i0}∪V1 ∪V2 ∪ . . .Vℓ of the set of vertices of the tree graph
G= (V,E) associated withM, where ℓ is the depth of the tree rooted at i0.

The matrix η is a diagonal matrix with elements on the diagonal defined as follows. We set the matrix
entry associated to the root node to unity,

ηi0i0 = 1, (B.6)
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Figure B1. Illustration of the partitioning of nodes in a tree with root node i0. The sets V1, V2, and V3 contains nodes that are a
distance 1, 2, are 3 separated from the root node i0.

and determine the other nodes through a recursion. In particular, we set

ηjj =−
Mij

Mji
ηii, (B.7)

for i ∈ Vk and j ∈ Vk+1. SinceMijMji < 0, the elements ηii > 0, and η is a symmetric, positive definite matrix.
The procedure of constructing η is sketched in figure B1. Notice that the value of each element ηii is
determined by its path to the root node i0, and this path is unique, as the graph is a tree.

Next, we show that

MT =−ηMη−1, (B.8)

so thatM is strictly quasi-antisymmetric. Components wise, the right-hand side of equation (B.8) reads

−
[
ηMη−1

]
ij
=

N∑
ℓ=1

N∑
k=1

ηiℓMℓkη
−1
kj = ηiiMijη

−1
jj . (B.9)

If i= j, or i ̸= j and the nodes are not each other’s neighbours, then

−
[
ηMη−1

]
ij
=−ηiiMijη

−1
jj = 0=Mji. (B.10)

On the other hand, if i ∈ Vk and j ∈ Vk+1, then equation (B.7) applies, and we obtain

−
[
ηMη−1

]
ij
=−ηiiMijη

−1
jj =Mji. (B.11)

Equations (B.10) together with (B.11), imply equation (B.8), which is what we were meant to show.

Appendix C. Sign stability of antagonistic trees with nonzero diagonal elements

In appendix B, we have shown that all eigenvalues of the adjacency matrices of weighted, antagonistic tree
matrices are purely imaginary. Now, we consider matrices of the form

M ′ =M−D (C.1)

whereM is the adjacency matrix of a weighted, antagonistic tree as in appendix B, and D is a diagonal matrix
with nonnegative diagonal entries, i.e. [D]ii = Dii ⩾ 0. Hence, the distinction with the matrixM in
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appendix B is that the diagonal entries ofM ′ can be nonzero, and therefore for clarity we added the prime.
We show that for this ensemble all eigenvalues have nonpositive real parts, i.e.

ℜ [λi (M
′)]⩽ 0 (C.2)

for all i = 1,2, . . . ,N.
The derivation consists of two parts. First, in section C.1, we perform a standard linear algebra

computation to show that equation (C.2) holds for matrices K ′ built from subtracting a nonnegative
diagonal matrix to an antisymmetric matrix. Second, in section C.2, we show thatM ′ is related to a matrix
K ′ by a similarity transformation, and hence they share the same eigenvalues. We end this appendix with a
related result: in C.3 we show that the width spectrum of a diagonal matrix shrinks if we add to it an
antisymmetric matrix.

C.1. Spectra of antisymmetric matrices with nonpositive diagonal entries
Let us consider matrices of the form

K ′ = K−D, (C.3)

where K is an antisymmetric matrix (instead of the adjacency matrix of an antagonistic tree in
equation (C.1)), and where D is a nonnegative, diagonal matrix. We show that for matrices of this form,

ℜ [λi (K
′)]⩽ 0 (C.4)

for all i = 1,2, . . . ,N.
Indeed, in this case, for any vector z⃗ ∈ CN, it holds that

ℜ
(⃗
z† K ′⃗z

)
= ℜ

(⃗
z† K⃗z

)
−ℜ

(⃗
z† D⃗z

)
⩽ 0. (C.5)

As [K]jk =−[K]kj ∈ R, it holds that

N∑
k=1

N∑
j=1

z∗j [K]jk zk =−
N∑

k=1

N∑
j=1

zj [K]jk z
∗
k , (C.6)

such that

ℜ
(⃗
z† K⃗z

)
= 0, (C.7)

and

z⃗† D⃗z=
N∑

j=1

|zj|2 [D]jj ⩾ 0. (C.8)

Using equations (C.7) and (C.8) in the left-hand side of (C.5), we obtain the right-hand side of
equation (C.5). Lastly, to obtain the inequalities equation (C.4), we set z⃗ in equation (C.5) equal to a right
eigenvector r⃗i of K ′, yielding,

ℜ
(⃗
r†i K

′⃗ri
)
= ℜ

[
λi |⃗ri|2

]
= |⃗ri|2ℜ [λi (K

′)]⩽ 0. (C.9)

C.2. Antagonistic tree matrices with nonpositive diagonal entries
We show that antagonistic tree matricesM ′ with nonpositive diagonal entries, as defined in equation (C.1),
are related by a similarity transformation to a matrix K ′ of the form equation (C.3). To this aim, we use η
defined as in equations (B.6) and (B.7); notice that η is defined withM and not withM′.

Indeed, if we define

K ′ =
√
ηM ′√η

−1 (C.10)

then

K ′ = K−√
ηD

√
η
−1 (C.11)
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with K the matrix as defined in equation (B.4), which is antisymmetric as we have shown in equation (B.5).
Since the matrices

√
η and D are diagonal,

√
ηD

√
η
−1

=D (C.12)

and thus K ′ takes the form equation (C.3), as we were meant to show.
SinceM ′ is related to K ′ by a similarity transformation, they share the same eigenvalues, and since K ′ has

nonpositive eigenvalues, as we have shown in section C.1, alsoM ′ has nonpositive eigenvalues.

C.3. Change in the width of the spectrum after adding an antisymmetric or antagonistic tree matrix to a
disordered diagonal matrix
Let K ′ be the sum of an antisymmetric matrix K and a (not necessarily nonpositive) diagonal matrix−D, as
defined in equation (C.3). It then holds that

ℜ [λ1 (K
′)]⩽−Dmin (C.13)

where λ1(K ′) is the leading eigenvalue of the matrix K ′, and where Dmin is the minimum entry of the Di, as
defined in equation (38). Analogously, it holds that

ℜ [λN (K
′)]⩾−Dmax. (C.14)

Equations (C.13) and (C.14) imply that the width of the spectrum of−D shrinks whenever an
antisymmetric matrix is added to it, and hence adding antisymmetric interactions to a matrix makes it the
matrix more stable. Note that this result does not extend to the more general case of sign-antisymmetric
interactions, as then the matrix gets more stable in the perturbative regime of small interactions, but the
matrix does not get more stable for strong sign-antisymmetric interactions, see [64].

The derivation of the equations (C.13) and (C.14) can be seen as an exercise is matrix analysis [71].
Nevertheless, for the reader’s convenience, we present here a derivation. To derive equation (C.13), we
consider the matrix

K ′ ′ := K ′ +Dmin1= K−D ′ (C.15)

where D ′ :=D−Dmin1 is by construction a diagonal matrix with nonnegative diagonal entries. Therefore,
the results of C.2 apply to K ′ ′, and

ℜ [λ1 (K
′ ′)]⩽ 0. (C.16)

Since,

λ1 (K
′ ′) = λ1 (K

′)+Dmin (C.17)

we obtain the equation (C.13) from combining equation (C.16) with (C.17).
Using a similar line of reasoning it follows that

ℜ [λ1 (M
′)]⩽−Dmin, (C.18)

whereM ′ is now of the form equation (C.1) withM the adjacency matrix of a weighted, antagonistic tree and
D a diagonal matrix with diagonal entries that can be negative and positive.

Appendix D. All the eigenvalues of the adjacency matrices of weighted, oriented graphs
without directed cycles are equal to zero

LetM ∈ RN×N represent the adjacency matrix of a weighted, directed graph. We assume thatMii = 0, so that
there are no self-links. IfMij = 0, then the directed edge from i to j is absent, while ifMij ∈ R \ 0, then there
exists a directed edge from i to j weighted by the value ofMij.

We say that a directed graph is oriented if all of its edges are unidirectional, i.e.

MijMji = 0 (D.1)

for all pairs of indices i, j. Additionally, we say that a graph has no directed cycles if equation (35) holds. Note
that cycles that are nondirected, as for example the feedforward cycles in panel (c) of figure 1, are allowed.
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The characteristic polynomial of an adjacency matrix of an oriented graph without directed cycles is
given by

det(λ1−M) = λN, (D.2)

and consequently all the eigenvalues of M are equal to zero, i.e.

λi (A) = 0 (D.3)

for all i ∈ {1,2, . . . ,N}.
We show that equation (D.2) is true by identifying it as a specific case of the so-called Coefficients

Theorem for directed graphs, which we revisit here. First, we present the Coefficients Theorem for
unweighted graphs, i.e. forMij ∈ {0,1}, which is theorem 1.2 in [70], and then we present the Coefficients
Theorem for weighted graphs, i.e. forMij ∈ R. Before stating the Coefficients Theorem, we need the
following definition: A linear directed graph is a directed graph for which it holds that all vertices have an
indegree and outdegree equal to one. Hence, linear directed graphs are composed out of one or more
directed cycles.

Theorem 1 (Coefficients Theorem for directed graphs (Milic [88], Sachs [89], and Spialter [90])). Let

det(λ1−M) = λN + a1λ
N−1 + . . .+ aN (D.4)

be the characteristic polynomial of an arbitrary directed graph G. Then

an =
∑
L∈Ln

(−1)p(L) , with n= 1,2, . . . ,N, (D.5)

where Ln is the set of all linear directed subgraphs L of G with exactly n vertices; p(L) denotes the number of
strongly connected components of L (i.e. the number of directed cycles of which L is composed).

Theorem 2 (Coefficients theorem for weighted directed graphs (Devadas Acharya [91])). Let

det(λ1−M) = λN + a1λ
N−1 + . . .+ aN (D.6)

be the characteristic polynomial of an arbitrary, weighted, directed graph with adjacency matrixM, then

an =
∑
L∈Ln

(−1)p(L)
∏

(i,j)∈E(L)

Mij, with n= 1,2, . . . ,N, (D.7)

where E(L) is the set of edges in the linear directed subgraph L.

In the case that G has no directed cycles, all coefficients ai in Theorem 1 or Theorem 2 are equal to zero,
and equation (D.2) follows as a corollary of the Coefficients Theorem for directed graphs.

Appendix E. Size dependence of the leading eigenvalues for different ensembles of
sparse randommatrices

In the figure E1 we show the leading eigenvalues shifted by their value at the smallest size and divided by the
trend expected for the symmetric Erdős–Rényi ensemble [92]. The results for the antagonistic Erdős–Rényi
ensemble shows an initial increase due to finite size effects and slight decay at large N, where the leading
eigenvalue it is expected to saturate to a finite value. On the other hand, the results for the rescaled leading
eigenvalues of the other ensembles are seen to increase at all the sizes observed.
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Figure E1. Average real part of the leading eigenvalue, ⟨ℜ[λ1]⟩ also shown in figures 5 and 7, here shifted by their value at the

smallest size and by
√

logN
loglogN

expected in [92] for symmetric Erdős–Rényi graphs. Results shown are for antagonistic Erdős–Rényi
graphs (red circles), mixture Erdős–Rényi graphs (blue diamonds) and antagonistic pure Husimi trees (orange squares).

Figure F1. The distribution pa(d), as defined in appendix F, for three values of the parameter: a= 0 (left), a= 0.1 (centre) and
a= 0.2 (right).

Appendix F. Husimi Plateau in Jacobian-like matrices

We refine the results in figure 7 by analysing ⟨ℜ[λ1(J)]⟩ as a function of N in the limit of dmin ≈ 0, where dmin

is the smallest value of d that belongs to the support set of pD(d). In this limit, the leading eigenvalue of
antagonistic, Husimi trees exhibits strong transient effects as a function of N, and hence it is important to
carefully extrapolate the results to large N.

To study the influence of a value dmin ≈ 0 on the leading eigenvalue, we extract the diagonal entries Di

from a distribution pD(d) = pa(d) that is plotted in figure F1. As illustrated by figure F1, the distribution
pa(d) develops a peak around zero, i.e. d≈ 0, whose weight increases a function a, which is the main reason
why we use pa(d) and not the uniform distribution considered before in figure 7. The distribution pa(d) is
defined by

pa (d) := a pHN (d)+ (1− a) pU (d) (F.1)

where pHN(d) is a (narrow) half-normal distribution centred at zero, obtained by setting µ= 0 and σ= 0.05
on the right-hand side of equation (24), and pU(d) is a uniform distribution with a support that is not
touching zero, and we denote its mean and standard deviation by µU and σU, respectively. We set the
parameters µU and σU such that, as a varies, the first two cumulants of pa(d) are identical to those of pD(d)
used in sections 4.2 and 4.3.
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Figure F2. Average real part of the leading eigenvalue, ⟨ℜ[λ1]⟩, as a function of the matrix size N for Jacobian-like matrices J of
antagonistic, Husimi trees. Numerical results obtained from diagonalising 300 matrix realisations of antagonistic Husimi trees
(orange squares) are compared with the average of the largest element of the diagonal matrix−Dmin (as defined in
equation (38)), and error bars denote the error on the mean. The parameters used for the matrix ensembles are detailed in
section 2.4.3, except for the distribution of diagonal elements which is given by pa(d), defined in equation (F.1).

Figure F2 plots ⟨ℜ[λ1(J)]⟩ as a function of N for antagonistic Husimi trees with diagonal elements drawn
from pa(d) and for three values of a. In the left panel, the support of the diagonal distribution pa(d) does not
include d= 0, and hence the functional behaviour of ⟨ℜ[λ1(J)]⟩ is analogous to the one shown in figure 7.
On the other hand, in the middle and right panels pa(d) develops a peak around d= 0, and consequently the
monotonic increase of ⟨ℜ[λ1(J)]⟩ as a function of N slows down significantly at intermediate values of N,
leading to the appearance of a plateau. Note that the plateau is a transient effect, as for large enough values of
N the steady increase of ⟨ℜ[λ1(J)]⟩ continues. Observe that increasing a only widens the plateau from the left
side, making it appear at smaller sizes of fN. Hence, also when pa(d) is peaked around d= 0, ⟨ℜ[λ1(J)]⟩
diverges as a function of N, albeit with a strong, transient, plateau effect.

We end with some final remarks. Due to the Husimi plateau, we should carefully assess finite size effects
in Husimi trees. In particular, we could wrongly conclude that ⟨ℜ[λ1]⟩ converges to a finite value when not
considering large enough values of N. The Husimi plateau only occurs in Jacobian-like matrices if the
support of the diagonal distribution contains d= 0, and hence we conjecture that it is related to the stripy
structure of Jacobian-like matrices.

Appendix G. Finite size effect for the histograms of the imaginary part distribution of
nonreal leading eigenvalues

In this appendix, we determine the effect of a finite size N on the distribution pℑ[λ1](x) plotted in figure 10.
As we show, increasing the system size N, the discontinuity of the transition becomes more pronounced.
Figure G1 plots the distribution pℑ[λ1](x) for different sizes N when the control parameter s is roughly at the
transition sd (in particular we set s≃ 0.08, in correspondence with σD = 0.10, σG = 0.6 and µG = 1.0).

As shown in figure G1, the typical value ℑ[λ⋆
1 ] of the distribution pℑ[λ1](x) presents in one instance only

a very mild trend (although it is unclear whether it is statistically significant) due to finite size correction, still
consistent with saturation to a finite value and therefore compatible with the discontinuous nature of the
transition found in figure 10 and strongly supported by the reentrant behaviour of the support of the
spectrum shown in figures 12 and 13. Interestingly, as the size N increases, the γ-distribution peaked at
ℑ[λ⋆

1 ] gets more narrow, indicating that in the infinite size limit p̃ℑ[λ1](x), as defined in equation (40),
possibly converges to the delta distribution δ(x−ℑ[λ⋆

1 ]). Moreover, focusing on the behaviour of the nonreal
histogram near the zero (see the insets in the top row of figure G1), we see find that the bin closest to the real
delta peak decreases as a function of N, while the second bin increases as a function of N.
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Figure G1. Histograms of the imaginary part of the leading eigenvalues of interaction-like (left panels) and Jacobian-like (right
panels) matrices of antagonistic Erdös–Rényi graphs. The data shown corresponds with the parameter value σD = 0.10 at which
the dynamical transition takes place in figure 10, albeit now for different matrix sizes N as indicated in the legend. Additionally,
the insets show the histograms for the range [0,0.45] on the x-axis. The other parameters are the same as in figure 10. The figures
at the bottom show, for reasons of clarity, the same data as the figures at the top, except for the absence of the histograms for
N= 250 and N= 1000. The insets show the typical value of the leading eigenvalue imaginary partℑ[λ⋆

1 ] as a function of N.
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