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We perform simulations, by means of an envelope-function based approach, of shot noise in disordered mono-

layer graphene devices, as a function of the gate bias voltage. In order to approach the experimental conditions,

large graphene samples, with characteristic sizes of the order of hundreds of nanometers or microns have been

considered. We investigate different device geometries, including back-gated graphene samples with different

aspect ratios and a graphene constriction biased by two side gates. We compare our results with available ex-

perimental data that were collected by a few authors in an attempt to validate an interesting prediction made

by Tworzydło et al. on the shot noise dependence on carrier density in samples with a large aspect ratio. On

the basis of the comparison of our results with the experimental data, we conclude that the effect predicted by

Tworzydło et al. (resulting from the distribution of the transmission eigenvalues associated with propagation

via evanescent modes) has not been observed yet. Finally, we provide some guidelines for the design of new

experiments aimed at the verification of such an effect.

PACS numbers: 72.80.Vp,72.70.+m

I. INTRODUCTION

Graphene, the most recently isolated allotrope of carbon,

has been the focus of many research efforts in the last decades.

Its lattice structure, consisting of a planar honeycomb lattice

of sp2 hybridized carbon atoms, gives rise to a very peculiar

transport behavior and establishes unexpected links with other

fields of physics1–4. Indeed, its envelope functions satisfy

the Dirac-Weyl equation2,5, which also describes relativistic

massless spin-1/2 particles. As a consequence, in graphene,

charge carriers experience relativistic-like phenomena6, such

as Klein tunneling and Zitterbewegung, at velocities much

lower than that of light (the Fermi velocity in graphene is of

the order of 106 m/s).

Moreover, this one-atom thin and very stable material com-

bines large charge carrier mobility with high thermal conduc-

tivity, transparency, mechanical flexibility and strength. These

properties make it very appealing for a broad spectrum of ap-

plications, spanning from electronic and optoelectronic de-

vices to electrodes, sensors, energy and gas storage, lubri-

cants, membranes, and coatings7,8.

Significant theoretical and experimental efforts have fo-

cused on the possible application of graphene for the fabri-

cation of electron devices9. The absence of an energy gap and

the difficulty in introducing it in a controlled and reproducible

way have been hampering the usage of graphene for the im-

plementation of field effect devices for digital electronics and

this has tempered the enthusiasm about it in the device com-

munity. However, different approaches, based for example on

the use of alternative device concepts, such as tunnel FETs,

are presently investigated, and applications in other fields of

electronics, such as radio-frequency circuits and sensors, have

been proposed and are being actively developed. This interest

is motivated by the very high mobility of graphene at room

temperature and by the possibility to widely tune the transport

properties by properly biasing gates located close to it.

In order to increase the signal-to-noise ratio of graphene-

based devices, it is important to examine the properties of this

material in terms of noise. Several studies have been per-

formed on noise in graphene10–12 and in particular on shot

noise (the noise deriving from the granularity of charge)13–36.

A commonly used parameter which provides information

about the correlation between charge carriers is the Fano fac-

tor, i.e. the ratio of the actual shot noise to the full shot noise

2eI that would be expected in the case of a Poissonian dis-

tribution of the charge carrier crossing events (e is the unit

charge, while I is the average current flowing through the de-

vice).

In their seminal paper13, Tworzydło et al. showed, with an

analytical envelope-function calculation, that the Fano factor

for a short and wide ideal graphene strip takes on the maxi-

mum value of 1/3, which is reached at the Dirac point. In this

condition, charge transport through the strip occurs only via

evanescent modes: these modes, tunneling through the short

graphene sample (which actually represents a thin potential

barrier for charge carriers flowing from the input contact to

the output one), make the conductance value non zero, despite

the vanishing density of states in the sample.

Tworzydło et al. demonstrated that this relevant result holds

as long as there is a very large number of modes propagating

in the leads and the aspect ratio of the strip, i.e. the ratio of its

width to its length, is around 4 or larger. The value 1/3 is the

same as the one characteristic for the Fano factor in disordered

conductors37–39.

It was suggested13 that the reason of this similarity could be

the presence of rapid oscillations of the charge carriers, deriv-

ing from the interference between the positive- and negative-

energy components of the wave packet (this phenomenon,

defined “Zitterbewegung,” is characteristic of the relativistic

quantum dynamics of confined Dirac fermions). These oscil-

lations could give rise to a distribution of transmission eigen-

values analogous to that observed in coherent diffusive con-

ductors, thus resulting in the same value of the Fano factor.

Due to the relevance of the prediction by Tworzydło et al.,

there have been a few experimental efforts aimed at verify-

ing it by measuring the Fano factor in graphene stripes with

different aspect ratios and different geometries.
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Two papers were published almost simultaneously in 2008,

one by DiCarlo et al.17 and the other by Danneau et al.14. Both

papers focused on the measurement of the Fano factor in large

aspect ratio graphene samples, obtained by means of exfolia-

tion from highly-oriented pyrolytic graphite and deposited on

a 300 nm thick silicon oxide layer grown on top of a heav-

ily doped silicon substrate, which was used as a back-gate

to control the carrier density in graphene. While DiCarlo et

al. performed measurements at a temperature of 0.3 K and

at a frequency of 1.5 MHz, applying a bias of 300 µV to the

device, Danneau et al. had a sample temperature of 8.5 K,

which required a larger applied bias (40 mV) to obtain a preva-

lence of shot noise over thermal noise. An increase by about

2 orders of magnitude of the bias current (resulting from an

increase by 2 orders of magnitude of the bias voltage) im-

plies an increase by 2 orders of magnitude of the shot noise

power spectral density and by 4 orders of magnitude of the

flicker noise power spectral density (which is proportional to

the square of the mean current through the device). Thus,

in order to be above the flicker noise corner frequency (the

frequency at which the flicker noise power spectral density

equals the white noise floor, corresponding to the shot noise

power spectral density in the case of interest), the measure-

ment frequency had to be increased by about 2 orders of mag-

nitude, up to the 600− 850 MHz range14,15. This was done

with a very careful approach15, but the overall accuracy is un-

avoidably decreased by the increased difficulty in measuring

differential resistances and parasitic parameters at higher fre-

quencies.

DiCarlo et al. measured, for all but one of their samples

(which likely did not consist of monolayer graphene) a Fano

factor of about 1/3, which, however, did not exhibit any sub-

stantial dependence on the back-gate voltage (and thus on the

carrier concentration).

Danneau et al. obtained instead quite a different result, ob-

serving a variation of the Fano factor as the back-gate voltage

was varied, which they attributed to the effect predicted by

Tworzydło et al., although the variation occurred over a range

of back-gate voltage much larger than the one that could be

derived from Ref.13, as pointed out also by Lewenkopf et al.20.

Lewenkopf et al. performed simulations of transport and

noise in disordered graphene samples using a tight-binding

approach implemented with the recursive Green’s function

method. The atomistic scale of the approach limited the max-

imum nanoribbon width that they could simulate to about

20 nm. They considered a disorder formed by a superposition

of Gaussian functions and presented their results as a function

of a parameter K0 quantifying the disorder strength40. They

observed that, as the strength of the disorder is increased, the

effect predicted by Tworzydło gradually disappears and the

Fano factor becomes substantially constant as a function of

the charge density, in reasonable agreement (as long as one

assumes that the disorder in the measured samples is strong

enough) with what has been observed in the experiment by

DiCarlo et al., but not with the results by Danneau et al..

A large aspect ratio graphene ribbon was more recently

investigated by Mostovov19. The ribbon was obtained by

lithographically defining a constriction in a larger, exfoliated

graphene sample. The electrostatic potential in the constric-

tion region (which, being much narrower than the rest of the

ribbon, dominates the overall conductance and noise behav-

ior and represents the actual sample under analysis) was con-

trolled by means of two side gates. Measurements were per-

formed at a temperature of about 7.5 K (this is the estimated

temperature of the electron gas, which is higher than the cryo-

stat base temperature, 4.2 K, due to Joule heating of the sam-

ple) using a cross-correlation technique, with an applied bias

of 4 mV and at a frequency of 3.33 MHz. The observed be-

havior of the Fano factor exhibited a smooth variation as a

function of the bias voltage applied to the gates, with a max-

imum at the Dirac point which was less than 1/3 (approxi-

mately 0.24-0.25).

Our purpose in this paper is to overcome the sample size

limitation that affected previous simulations, treating devices

with a size corresponding to those used in the experiments,

i.e. with a length of a few hundreds of nanometers and a

width up to about one micron. This has been possible with an

envelope-function (~k ·~p) based5 approach that we have previ-

ously developed41. While this approach may miss some effect

deriving from atomistic-level details, it has proven to be valid

in the low energy range as far as potentials varying slowly

with respect to the lattice constant are considered41.

On the basis of the outcome of our simulations, we seek to

find a common interpretation of the experimental data, reach-

ing the conclusion that in none of them the effect predicted by

Tworzydło et al. has been observed yet, and we provide sug-

gestions for new experiments aiming at the detection of such

an effect, because we believe that it would be important, also

from the point of view of basic theory, to finally achieve an

experimental confirmation.

The paper is organized as follows. In Section II, we de-

scribe the simulation model. In Section III, we present the

results obtained for back-gated samples and compare with the

results of the experiments by DiCarlo et al. and by Danneau

et al.. In Section IV, we report the simulation of the structure

experimentally investigated in Ref.19. Finally, in Section V,

we draw our concluding remarks and discuss guidelines for

future experiments for the detection of the effect predicted in

Ref.13.

II. TRANSPORT SIMULATION APPROACH

The numerical simulations that we have performed are

based on an envelope-function approach that we have

developed41 for the investigation of transport in graphene

samples up to a few microns in size.

In monolayer graphene, the wave function near the Dirac

points can be written in terms of four envelope functions

F~α
β (~r), each one corresponding to one of the two graphene

sublattices β = A,B and of the two inequivalent Dirac points
~α = ~K, ~K′. As previously mentioned, it can be proven that

these four functions satisfy the Dirac-Weyl equation5:

[− i~vF (∂xσx+∂yσy)+U(~r)I]~F
~K(~r) = E ~F

~K(~r) (1)

[− i~vF (∂xσx−∂yσy)+U(~r)I]~F
~K′
(~r) = E ~F

~K′
(~r) , (2)



3

z x

y

L

Source Drain
W

Figure 1. Sketch of aW -wide and L-long armchair graphene ribbon

connected to source and drain contacts.

where ~F~α(~r) = [F~α
A (~r),F

~α
B (~r)]

T , ~ is the reduced Planck con-

stant, vF is the Fermi velocity of graphene, ∂x = ∂/∂x, ∂y =
∂/∂y, the matrices σ are the Pauli matrices, E is the energy

of the charge carriers, and U is the potential energy (which

depends on the position ~r). We consider W -wide armchair

graphene ribbons, for which x denotes the transport direction

and y the in-plane transversal one (see Fig. 1).

Our transport simulation code41 relies on a recursive scat-

tering matrix algorithm. The graphene ribbon is first sub-

divided into a series of cascaded slices (each one parallel

to the y direction), sufficiently thin that we can neglect the

dependence of the potential energy U on x. Therefore, in

each slice the four envelope functions can be factorized as

F(x,y) = eiκxxΦ(y). By substituting this form into the Dirac-

Weyl equation and enforcing Dirichlet boundary conditions

on the overall wave function at the edges of the ribbon, we

obtain the following system:

(σx f (y)+σz∂y)~ϕ
~K(y) =−κx~ϕ

~K(y) (3)

(σx f (y)−σz∂y)~ϕ
~K′
(y) =−κx~ϕ

~K′
(y) (4)

~ϕ
~K(0) =~ϕ

~K′
(0) (5)

~ϕ
~K(W ) = ei2K̃W~ϕ

~K′
(W ) , (6)

where Eqs. (5)-(6) represent the boundary conditions,

~ϕ
~K(y) = [Φ

~K
A (y),Φ

~K
B (y)]

T , ~ϕ
~K′
(y) = i[Φ

~K′

A (y),Φ
~K′

B (y)]T ,
f (y) = (U(y)−E)/(~vF), K̃ =K−(π/W ) round(K/(π/W )),

and K = |~K|. By defining, within a suitably enlarged domain

[0,2W ], the two-component function41:

~ϕ(y)=

{

~ϕ
~K(y) for y∈ [0,W ]

ei2K̃W~ϕ
~K′
(2W − y) for y∈ [W,2W ] ,

(7)

the system can be rewritten, over [0,2W ], in the following

form:

[σz∂y+σx f (W −|W − y|)]~ϕ(y) =−κx~ϕ(y) (8)

e−i2K̃W~ϕ(2W ) =~ϕ(0) . (9)

Eqs. (8)-(9) define a differential eigenvalue problem (with pe-

riodic boundary conditions on the function e−iK̃y~ϕ(y)), which
can be efficiently solved in the Fourier domain41,42. Once

the eigenvalues and eigenmodes have been computed in all

the slices, we enforce the continuity of the components of the

wave function at each interface between adjacent slices. More

in detail, we inject a single transport mode at a time into the

region straddling the interface and we write the resulting wave

function on both sides of the interface as a linear combination

of the modes, with unknown transmission and reflection co-

efficients. Then, we project this set of continuity relations

onto a basis set of sine functions, obtaining a system of linear

equations with the transmission and reflection coefficients as

unknowns. Solving this system, we obtain the scattering ma-

trix of the region which includes the interface. If the width of

the ribbon is not uniform (as in the structure of Ref.19), the

ribbon boundary includes vertical zigzag edges along a por-

tion of each interface between slices of different width. Along

such edges, the continuity of the wave function has to be en-

forced only for one of the two sublattice components. This is

achieved by projecting the set of the continuity equations for

the other sublattice onto the sine basis of the narrower slice43.

The overall scattering matrix, and therefore the transmission

matrix t of the ribbon, is obtained by recursively composing

all the scattering matrices associated to the interfaces between

adjacent slices. Finally, the conductance G, the shot noise

power spectral density SI , and the Fano factor F are computed

using the formulas due to Landauer and Büttiker44,45:

G=
2e2

h
∑
n,m

|tnm|
2 , SI = 4

e3

h
|V |∑

i

wi(1−wi) , (10)

F =
SI

2eI
=

∑iwi (1−wi)

∑iwi

, (11)

where n and m run over the modes propagating in the input

and output leads, h is the Planck constant, the wi’s are the

eigenvalues of the matrix t†t, V is the average voltage applied

between the input and output lead, and I = GV is the average

current flowing through the sample. This numerical approach

has already been successfully applied to the study of different

graphene properties and devices43,46–49.

The numerator and the denominator of Eq. (11) must be av-

eraged over energy within the transport window before taking

their ratio. If the bias voltage is such that eV ≫ kT , the trans-

port window eV is much wider than the interval over which the

Fermi function undergoes an almost unitary variation. There-

fore, the Fermi function can be approximated with a step func-

tion and the energy averages can be computed as uniform av-

erages over the transport window eV . For shot noise measure-

ments the condition eV ≫ kT is usually verified, in order to

make the thermal noise component negligible with respect to

the shot noise component.

Let us now discuss the model that we adopt for the descrip-

tion of the contacts and of the potential disorder.

It has been shown50 that, for large and weakly doped

graphene samples, a wide range of contact models leads to

analogous transport results. In general, however, it is neces-

sary to guarantee, in every bias condition, a number of prop-

agating modes in the leads sufficiently larger than the one in

the sample. This is crucial in order to correctly take into ac-

count the contribution of evanescent modes, which do play a

dominant role when transport in a large aspect ratio sample

at energies close to the Dirac point is considered. Indeed, in
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Eqs. (10)-(11) the sums run only over the modes propagat-

ing in the input and output leads. Let us consider the simple

case of a thin and wide clean graphene sample connected be-

tween the two leads. If we considered the same potential in the

contacts and in the sample, when the Fermi energy coincides

with the Dirac point (and thus there is no propagating mode

in the sample) Eqs. (10)-(11) would yield a null conductance

and shot noise. The correct physical result (with a nonzero

conductance and a 1/3 Fano factor, deriving from the contri-

bution of the evanescent modes) is recovered using a model

which guarantees a sufficient number of propagating modes

in the contacts. Accordingly, we have set the (constant) po-

tential energy in the leads at a value sufficiently far from the

Fermi energy. In particular, for the bias conditions for which

the dominant injected/extracted carriers are electrons (holes)

we have chosen a potential energy value in the contacts lower

(higher) than the Fermi energy. This ensures that a large num-

ber of propagating modes is injected into the sample in all op-

erating conditions, with a symmetric treatment for electrons

and holes. Two alternative descriptions have been considered

to model the interfaces between the leads and the sample. We

have considered either an abrupt, step-like transition or a grad-

ual transition of the potential, with a continuous profile given

by the expression (1+ tanh(x/x0)). The latter choice, in which
the transition takes place over a range of about 6x0, reduces

the reflections at the interfaces.

Such contact models are consistent with physisorbed con-

tacts, in which the interaction energy is very small, and the

transfer of charge between the graphene and the metal low-

ers the graphene Fermi level in the contact area, while the

electronic structure of graphene is left substantially unper-

turbed51,52. In the approach by Tworzidło et al., contacts

are represented with graphene regions with infinite potential

steps, which involve an infinite number of propagating modes,

a situation that can be handled in an analytical calculation but

not in a numerical one. This is the reason why we have con-

sidered a finite potential step, which is also consistent with

actual physisorbed contacts51. We have also verified that the

sensitivity of the results for the Fano factor on the height of

the potential step is substantially negligible, as long as a value

of at least 100 meV is assumed.

We do not consider chemisorbed contacts in our simula-

tions because they involve a much larger interaction energy,

with the hybridization of metal and graphene orbitals, to the

extent that the conical K points may be destroyed51. Thus

the model by Tworzidło is not directly applicable to the case

of chemisorbed contacts and physisorbed contacts should be

chosen in experiments seeking to validate it.

Potential disorder has been modeled with a superposition

of Gaussian functions, each one corresponding to the elec-

trostatic action of one impurity or defect53. These Gaussians

have been randomly spread all over the graphene sample, with

a surface concentration cimp, which represents the surface im-

purity density of Coulomb scatterers. In particular, the two

coordinates on the graphene plane of the centers of the Gaus-

sians have been numerically generated according to random

uniform distributions. Each Gaussian is characterized by a

half-width at half-maximum (HWHM), which is assumed to

be the same for all the scatterers of a disorder distribution, and

by an amplitude which in general differs for the various scat-

terers and is given by a random number uniformly distributed

between−δ and δ. Therefore, the disorder distribution is char-
acterized by the three parameters cimp, HWHM, and δ. The

potential landscape given by the superposition of these Gaus-

sians has a Gaussian autocorrelation function54. The relation

between the amplitude and variance of this autocorrelation

function and the parameters cimp, HWHM, and δ of the dis-

tribution of Gaussian scatterers has been reported by Koschny

and Schweitzer in Ref.54. On the other hand, Adam et al.55,56,

using a self-consistent random-phase-approximation method,

have found the relation between the parameters which char-

acterize the sample and the amplitude and variance of the re-

sulting autocorrelation function. Combining these two sets of

relations53, it is possible to relate cimp, HWHM, and δ to the

actual sample parameters.

III. SIMULATION OF BACK-GATE BIASED GRAPHENE

SAMPLES

In order to obtain a preliminary validation of our approach,

we have first simulated a structure similar to the one studied

by Tworzydło et al.13. In detail, we have considered a clean

40 nm long and 200 nmwide semiconducting graphene ribbon

(therefore, with aspect ratioW/L= 5) with constant potential

energy, contacted with two doped graphene leads of the same

width. The potential energy in the two leads is assumed to

be equal, in absolute value, to 0.8 eV, while the Fermi energy

is set at 0 eV. The effect of the bias applied to the back-gate

is taken into account through a shift of the potential energy

µ in the ribbon. The simulation has been performed for 201

uniformly spaced values of µ between -0.1 and 0.1 eV. By as-

suming a geometrical capacitance between the back-gate and

the graphene sheet of ∼ 0.1151 mF/m2, as in Refs.14,15,17,18,

the interval spanned by µ corresponds to a back-gate voltage

window with a width of about 55 V. The mobile charges in the

ribbon are holes for µ> 0, electrons for µ< 0, while for µ= 0

(charge neutrality point) the current is sustained by evanes-

cent modes. The Fano factor as a function of µ, obtained by

considering an abrupt potential transition at the lead-sample

interfaces (as in the model investigated by Tworzydło et al.) is

plotted in Fig. 2 with dotted black lines. These results are sub-

stantially coincident with those reported by Tworzydło et al.

in Ref.13. The corresponding plot for smooth lead-sample in-

terfaces (with x0 = 20 nm) is shown in Fig. 3. This model en-

tails an increase of the effective length of the sample and, as a

consequence, the central lobe of the plot narrows with respect

to the abrupt interface case (we will observe a similar behav-

ior considering abrupt interfaces and increasing the sample

length). Furthermore, the value of the Fano factor for increas-

ing modulus of the potential energy µ drops down to zero in-

stead of reaching an asymptotic value around 0.1, which can

be explained as a result of the reduced scattering in the case

of a smooth interface.

In order to test to what extent this behavior is preserved

in the presence of disorder, we have first repeated our simu-
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Figure 2. Fano factor as a function of the potential energy µ in

a 40 nm long and 200 nm wide armchair ribbon. The Fermi en-

ergy is set to 0 eV and abrupt lead-sample interfaces are assumed.

The dotted black curves have been obtained in the absence of dis-

order, the solid red ones in the presence of a disorder with cimp =

5× 1011 cm−2, HWHM = 5 nm and δ = 120 meV, and the dashed

blue ones in the presence of a disorder with cimp = 5× 1011 cm−2,

HWHM = 5 nm and δ = 400 meV. Panel (a) reports the results ob-

tained for a single impurity distribution, while the results in panel (b)

have been obtained by averaging over 48 different impurity distribu-

tions.

lations including a random distribution of charged impurities

with cimp = 5×1011 cm−2, HWHM= 5 nm and δ= 120 meV.

According to Adam’s relations, these parameters coherently

describe the effect of a distribution of impurities with a con-

centration of 5×1011 cm−2 and located at an average distance

of 1 nm from the graphene sample. The results are shown with

solid red lines in Fig. 2 and Fig. 3, for the case of abrupt and

smooth contact-sample interfaces, respectively, as a function

of the average value µ of the potential energy in the sample.

In the panels (a) of these figures we report the results obtained

for a single impurity distribution. Then, in order to achieve a

representative mean behavior, we have averaged the Fano fac-

tor over 48 different impurity distributions; the corresponding

results are reported in the panels (b) of Fig. 2 and Fig. 3. It

can be noticed that the main features observed in the case of a

clean graphene sample are preserved, with a main lobe of the

shot noise behavior around the Dirac point, although with a

maximum value slightly lower than 1/3.
Qualitatively different results are obtained by increasing

the maximum disorder amplitude to a much larger value of

δ= 400 meV.We report the corresponding results with dashed

blue lines in Fig. 2 and Fig. 3, for abrupt and smooth contact-
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δ =120 meV

=0δ

δ =120 meV

=0δ

=400 meVδ

W/L =5

single disorder realization

smooth interfaces

W/L =5

average behavior

smooth interfaces

(eV)µ

(eV)µ

(a)

(b)

 0.5

 0.4

 0.3

 0.2

 0.1

 0
−0.1 −0.05  0  0.05  0.1

F

−0.1 −0.05  0  0.05  0.1

 0.4

 0.3

 0.2

 0.1

 0

F

Figure 3. Same as Fig. 2 for smooth lead-sample interfaces.

sample interfaces, respectively. Also in this case, the panels

(a) refer to a single impurity distribution, while the panels (b)

to the average over 48 different distributions. Here, disorder

completely washes out the behavior predicted in Ref.13 and an

average Fano factor almost independent of µ is found.

We have then extended our numerical analysis to graphene

samples with lower aspect ratios, but larger sizes. Fig. 4

shows the results, averaged over 48 impurity distributions, ob-

tained for a square sample withW = L = 200 nm (W/L = 1,

panel (a)) and for a rectangular sample withW = 200 nm and

L = 600 nm (W/L = 1/3, panel (b)). Abrupt lead-sample

interfaces and the same set of δ values previously adopted

have been considered (the dotted black, solid red, and dashed

blue curves have been obtained for δ = 0, δ = 120 meV,

δ = 400 meV, respectively). Fig. 5 illustrates the correspond-

ing results in the case of smooth lead-sample interfaces.

In Fig. 4 and Fig. 5 we observe that, for a given set of dis-

order parameters, as the length of the sample increases (and

therefore the aspect ratioW/L decreases) the value of the Fano
factor raises. This is a consequence of the decrease of the

transmission probability for increasing ribbon length, and is

particularly evident in clean samples close to the Dirac point.

It is also consistent with the results in Fig. 2(b) of Ref.13.

Since in this case transport only occurs via modes which ex-

ponentially decay along the device, an increase of the length

implies a rapid fall of the transmission to zero. As a conse-

quence, already for L= 600 nm the shot noise power spectrum

exhibits a Poissonian behavior (F = 1). For a given aspect ra-

tio of the ribbon, increasing the disorder strength results in
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Figure 4. Fano factor as a function of the potential energy µ in a

200 nm wide armchair ribbon with a length of 200 nm (panel (a)) and

600 nm (panel (b)). The Fermi energy is set to 0 eV and abrupt lead-

sample interfaces are assumed. The dotted black curves have been

obtained in the absence of disorder, the red solid ones in the presence

of a disorder with cimp = 5× 1011 cm−2, HWHM = 5 nm and δ =
120 meV, and the blue dashed ones in the presence of a disorder

with cimp = 5×1011 cm−2, HWHM = 5 nm and δ = 400 meV. The

results have been obtained by averaging over 48 different impurity

distributions.

a decrease of the Fano factor close to the Dirac point, while

it increases far away from the Dirac point. This is the con-

sequence of the fact that disorder increases the transmission

probability close to the Dirac point, by enabling transport via

localized states. On the contrary, away from the Dirac point,

where many transport channels are open, the effect of disorder

is to enhance the backscattering, which results in a decrease of

the transmission probability and therefore in an increase of F .

We also notice that a significant dependence of the results on

the sample-lead interface model is only found for clean sam-

ples and moderately disordered 40 nm-long samples. Indeed,

this dependence disappears as soon as the scattering induced

by the disorder becomes dominant with respect to the reflec-

tions at the lead-sample interfaces.

We now move on to a semiconducting graphene ribbon

with a size analogous to that considered in the experiments

(W = 1 µm, L = 200 nm, and thus W/L=5). We consider

abrupt boundary conditions (with a potential step of 0.25 eV)

and in Fig. 6 we report the Fano factor as a function of the po-

tential energy µ for no disorder (purple curve), for an interme-

diate disorder with cimp = 5× 1011 cm−2, HWHM = 10 nm

and δ = 50 meV (green curve), and for a stronger disorder

(eV)µ

=0δ

δ =120 meV

=400 meVδ
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Figure 5. Same as Fig. 4 for smooth lead-sample interfaces.
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F

Figure 6. Fano factor as a function of the potential energy µ for a

200 nm long and 1000 nm wide graphene flake (W/L = 5) in the

absence of disorder (purple line), in the presence of an interme-

diate disorder with cimp = 5× 1011 cm−2, HWHM = 10 nm and

δ = 50 meV (green line), and in the presence of a stronger disorder

with cimp = 5×1011 cm−2, HWHM = 5 nm and δ = 120 meV (red

line).

with cimp = 5×1011 cm−2, HWHM= 5 nm and δ = 120 meV

(red curve). Using the relations obtained by Adam, these val-

ues reproduce the electrostatic effect of a distribution of im-

purities, with concentration cimp, at an average distance from

graphene equal to 2.15 nm and 1 nm, respectively.

This result is directly comparable with an experiment per-
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Figure 7. Fano factor, obtained averaging both noise and conduc-

tance over a window of 30 meV before taking their ratio, represented

as a function of the potential energy µ for a 200 nm long and 1000 nm

wide graphene flake (W/L = 5) in the absence of disorder (purple

line), and in the presence of the intermediate disorder (green line),

and of the stronger disorder (red line) specified in Fig. 6.

formed with a very small applied bias (less than 1 mV, as in

the measurements by DiCarlo et al.), while we need to aver-

age over the transport window for larger values of the applied

bias. In particular, if we want to compare with the experiment

by Danneau et al., in which a bias of the order of a few tens

of millivolts has been applied, we have to average the numer-

ator and the denominator of Eq. (11) over the transport win-

dow. In Fig. 7 we report the Fano factor obtained averaging

over 30 meV (the results by Danneau et al. are actually for a

slightly larger applied bias, 40 mV, corresponding to a slightly

larger transport window): it is apparent that the narrow feature

expected from Tworzydło’s theory is almost washed out as a

result of the averaging.

This implies that a maximum bias voltage of around 2 mV

should be used in an experiment seeking to detect the effect

predicted in Ref.13, at least for samples with a length of the

order of a few hundreds of nanometers.

In order to perform a more direct comparison with experi-

mental data, in Figs. 8 and 9 we plot the results of Figs. 6 and

7 as a function of the applied back-gate voltage. An approx-

imate but reliable relationship between the potential energy µ

and the gate voltageVG can be obtained with an analytical pro-

cedure. Under the hypotheses that there is a single back-gate,

that the graphene sheet is uniform, that the modulus of the

potential energy variation |∆µ| is small compared to |e∆VG|
(where ∆VG is the variation of the gate voltage in V), and that

the oxide thickness is 300 nm, a very simple expression can

be obtained53,57:

∣

∣

∣

∣

∆µ

−e

∣

∣

∣

∣

=

√

π(~νF)2CG

e3

√

|∆VG|= 27.322×10−3
√

|∆VG| ,

(12)

where ∆µ is the variation of the potential energy (and ∆µ/(−e)
is expressed in V).

In Fig. 8 we report the Fano factor as a function of the back-

gate voltage for the same cases as in Fig. 6: for no disorder

−60  60 40 20 0−20−40

 0.35

 0.3

 0.25

 0.2

 0.15

 0.1

 0.05

V (V)G

F

Figure 8. Fano factor as a function of the applied back-gate voltage

VG for a 200 nm long and 1000 nm wide graphene flake (W/L =
5) in the absence of disorder (purple line), in the presence of the

intermediate disorder (green line), and in the presence of the stronger

disorder (red line) specified in Fig. 6.
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 0.05
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F

Figure 9. Fano factor, obtained averaging both noise and conduc-

tance over a window of 30 meV before taking their ratio, represented

as a function of applied back-gate voltage VG for a 200 nm long and

1000 nm wide graphene flake (W/L = 5) in the absence of disor-

der (purple line), in the presence of the intermediate disorder (green

line), and in the presence of the stronger disorder (red line) specified

in Fig. 6.

(purple curve), for the intermediate disorder (green curve) and

for the stronger disorder (red curve). It is apparent that for a

realistic device length (in this case 200 nm) the peak resulting

from the “Zitterbewegung” effect is extremely narrow, while

a much wider peak results from the presence of disorder. In-

deed, the expected width of the peak predicted by Tworzydło

et al. is inversely proportional to the device length L, because

in their Eq. (5) the argument of the sine and cosine functions is

knL, where kn is the longitudinal wave vector of the associated

mode. Thus the peak seen in the experiments by Danneau et

al., if attributed to the “Zitterbewegung” effect would be asso-

ciated with a much shorter and unrealistic device length, but

can instead be simply explained with the action of the dis-

order. Furthermore, we notice that the Fano factor variation
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Figure 10. Conductance as a function of the potential energy µ for

a 200 nm long and 1000 nm wide graphene flake (W/L = 5) in the

absence of disorder (purple line), in the presence of the intermediate

disorder (green line), and in the presence of the stronger disorder (red

line) specified in Fig. 6.

over the considered bias voltage interval decreases (with the

exception of a very narrow region around the Dirac point) as

the disorder is increased. In Fig. 9 we plot the Fano Factor

for the very same cases, but after averaging over a transport

window of 30 meV. We notice that in the absence of disorder

we have an even more suppressed peak, while the peak in the

presence of disorder, in particular for the case of the lowest

disorder amplitude, has a behavior resembling that observed

in the experiments by Danneau et al., although with a smaller

maximum value. It is interesting to observe the behavior of

the conductance for the same sample withW/L= 5: it is plot-

ted in Fig. 10, with the same association between colors and

disorder strength: the purple curve is for the situation without

disorder, the green curve for the lower disorder strength and

the red curve for the higher disorder strength.

Far away from the Dirac point a higher disorder strength

leads to a lower conductance, as a result of increased scat-

tering, but around the Dirac point, as it is possible to observe

from the inset (containing an enlargement of the region around

the origin), we notice that disorder increases conductance, be-

cause the irregular fluctuations of the potential create puddles

with a potential energy below the Fermi level, among which

electrons can tunnel. We point out that the maximum conduc-

tance is achieved for the lower disorder strength, since there is

a trade off between the conductance increase due to the pres-

ence of the electron (or hole, depending on the sign of the po-

tential energy shift) puddles and the conductance suppression

resulting from the scattering associated with the disordered

potential landscape.

A better understanding of the overall behavior of the Fano

factor can be obtained from an analysis of the noise behav-

ior, too. In Fig. 11, we report the behavior of the shot noise

power spectral density, in units of 4e3|V |/h, as a function of

the potential energy µ for the same cases as for the previous

figures: the purple curve is in the absence of disorder, the

green curve for the intermediate disorder, and the red curve

for the stronger disorder. We see that, while for conductance
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Figure 11. Shot noise power spectral density as a function of the po-

tential energy µ for a graphene flake 200 nm long and 1000 nm wide

(W/L = 5) in the absence of disorder (purple line), in the presence

of the intermediate disorder (green line), and in the presence of the

stronger disorder (red line) considered in Fig. 6.

the fastest growing curve is the one for no disorder, the oppo-

site is true for noise, which means that, as we move away from

the Dirac point, the Fano factor, corresponding to the ratio of

noise to conductance, will have a larger value for stronger dis-

order. It will however decay for increasing module of the po-

tential energy, because of the decreasing slope of noise and

the increasing slope of conductance. The situation is different

close to the Dirac point, because the significant conductance

increase in the presence of disorder may lead to a minimum of

the Fano factor at the Dirac point, as in the case of the disorder

with largest amplitude.

Going back to Fig. 10, we notice that the value of the con-

ductance at the Dirac point in the absence of disorder is ap-

proximately 3.25×2e2/h, which, dividing by the aspect ratio

W/L= 5, yields a conductivity σ = 1.3e2/h, which is in good
agreement with the value of 4e2/(πh) = 1.273e2/h obtained

by Tworzydło et al..

A relevant difference between the experimental results by

DiCarlo et al. and those by Danneau et al. is that, in their

most significant samples, they obtain quite different conduc-

tivities at the Dirac point: while DiCarlo et al. report a

value of approximately 4e2/h for their sample (A1), the one

with the largest aspect ratio (W/L = 5.71, with W = 2 µm

and L = 0.35 µm), which is the value usually found in bulk

graphene samples58, Danneau et al. report, for their device

with W/L = 24, a value of about 4e2/(πh), which is consis-

tent with the predictions by Tworzydło for large aspect ratios

(W/L & 4) and with the results of our simulations. Measure-

ments performed on graphene samples with several different

values of the aspect ratio59 appear to confirm the theoreti-

cally predicted13 dependence of the minimum conductivity on

W/L. More recent numerical models60 predict a minimum

conductance raising to about 4e2/h as disorder is increased,

regardless of the aspect ratio of the sample.

Therefore it is possible that the effective aspect ratio of de-

vice A1 by DiCarlo et al. is actually smaller than expected

from the fabrication, and/or that such device is characterized
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Figure 12. Geometry of the simulated side-gate structure, modeling

the device experimentally studied by Mostovov19.

by a very strong disorder. This could also explain the observed

independence on carrier density of the measured noise.

Finally, we notice that there are indeed other possible situ-

ations leading to a minimum conductivity of 4e2/(πh), such
as the presence of a relatively low concentration of resonant

impurities or vacancies61,62. However, in experiments aim-

ing to reproduce the effect predicted in Ref.13, such a mini-

mum value should derive, as in the analytical calculations by

Tworzydło et al., from the transmission of evanescent modes

through the potential barrier represented by the high aspect ra-

tio graphene sample between the contacts. Thus, in our simu-

lations we have not included resonant scatterers (which would

also be very hard to treat with our envelope-function model),

but only the electrostatic scattering induced by charged impu-

rities.

IV. SIMULATION OF A SIDE-GATE BIASED GRAPHENE

SAMPLE

More recently, Mostovov19 sought to achieve an experi-

mental demonstration of the effect predicted by Tworzydło et

al. with a different type of device: a graphene constriction

modulated with side gates.

The representation of their device that we have consid-

ered for our simulations is sketched in Fig. 12. It consists

of a 1600 nm wide graphene sample with a 200 nm long

and 500 nm wide constriction in the center. The size of the

constriction was approximately deduced from Fig. 5.11(b) of

Ref.19. The constriction is biased by means of two gates, de-

posited around it on the SiO2 substrate. The gates have been

assumed to be 140 nm wide along the x direction and 50 nm

thick along z. The distance between them and the graphene

sample is set to 30 nm, both in the x and in the y direction.

In the previous simulations we have taken into account the ef-

fect of the back-gate by shifting the potential energy in the

sample with respect to the Fermi energy in the contacts. In

the present case, however, due to the more complex electro-

statics, the potential profile as a function of the gate voltage

has been obtained by means of an approximate self-consistent

procedure.

A complete numerical self-consistent computation of the

electrostatic potential typically requires the solution through

a fixed point iterative algorithm of the system of the transport

and Poisson equations. At each iteration, the mobile charge

density is extracted from the transport results and passed on

to the Poisson solver. The latter provides an updated poten-

tial profile, to be used in the transport computations at the

next iteration. The loop ends when the variation of the po-

tential between two consecutive iterations is smaller than a

predetermined threshold. Here, we have instead followed the

simplified approach of Refs.46 and53, which considerably re-

duces the computational burden with respect to the previously

outlined self-consistent procedure. In detail, the effect in the

ribbon of the potential U(x,y), slowly varying in space, can

be approximately described as a local, rigid shift in energy

of the graphene band structure. As a consequence, the lo-

cal density of states can be expressed as LDOS(E,x,y) =
DOS(E−U(x,y)), where DOS(E) is the density of states in

the ribbon. Accordingly, at low temperature, when the Fermi-

Dirac distribution can be approximated with a step function,

and in quasi-equilibrium conditions, the charge density reads:

ρ(x,y) = e

∫ U(x,y)

EF

LDOS(E,x,y)dE =

= e

∫ U(x,y)

EF

DOS(E−U(x,y))dE . (13)

ρ(x,y) is positive (hole puddle) for EF < U(x,y) and neg-

ative (electron puddle) for EF > U(x,y). For relatively

large graphene samples, the density of states can be approx-

imated with the one of unconfined graphene63: DOS(E) =
2|E|/(π(~vF)

2). By substituting this expression into Eq. (13),
we obtain

ρ(x,y) = sign(U(x,y)−EF)
e

π(~vF)2
(U(x,y)−EF)

2 . (14)

Eq. (14) directly yields the charge density as a function of the

potential, therefore avoiding the need for the solution of the

transport equation. We assume to know the potential profile

U0(x,y) at a reference gate voltage VG0
. This reference poten-

tial profile U0(x,y), which actually depends on the unknown

properties, such as doping density, of the sample, is chosen in

such a way as to obtain the best fit with the experimental re-

sults at the corresponding gate voltage VG0
. The correspond-

ing charge density profile ρ0(x,y) is given by Eq. (14). In

order to establish a differential relation between the charge

density and the gate bias, we adopt a linearized capacitive

model53,64, which replaces the Poisson equation. Within this

approximation, the deviations ∆ρ(x,y) and ∆U(x,y) of the
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Figure 13. (a) Sketch of the region of the side-gate biased graphene

sample for which transport simulations have been performed. The

represented hexagonal lattice is not to scale. (b) Map (in the re-

gion of the device sketched in panel (a)) of the capacitance per unit

area CG(x,y) between the double side-gate and the point (x,y) of

the graphene sample, as a function of the coordinates x and y of the

point. (c) Map (in the region of the device sketched in panel (a)) of

the graphene potential energy profileU(x,y) obtained forVG = 90 V.

charge density and potential from ρ0(x,y) and U0(x,y), re-
spectively, induced by a deviation ∆VG of the gate voltage

from the reference value VG0
, satisfy the equation:

∆ρ(x,y) =CG(x,y)

(

∆U(x,y)

−e
−∆VG

)

, (15)

where CG(x,y) is the (spatially varying) capacitance per unit

area between the point (x,y) on the graphene ribbon and the

gates. By settingU =U0+∆U and ρ = ρ0+∆ρ, Eq. (14) can
be recast as

ρ0 +CG

(

∆U

−e
−∆VG

)

=

= sign(U0+∆U−EF)
e

π(~vF)2
(U0+∆U−EF)

2 , (16)

which represents a simple quadratic equation in ∆U . At each

point (x,y), the potential energy U(x,y) corresponding to the

gate voltage VG is obtained as U(x,y) =U0(x,y)+∆U(x,y),
where ∆U(x,y) is computed by solving Eq. (16).

This technique requires the knowledge of the electrostatic

capacitance between the graphene sample and the double side-

gate.

In order to compute this quantity, we have numerically

solved the Laplace equation in a cubic domain with a 4 µm

edge, surrounding the constriction (see Fig. 12). Dirichlet

boundary conditions equal to zero and VG have been enforced

on the ribbon and on the side-gate surface, respectively, while

Neumann conditions have been enforced on the boundary of

the cubic domain. Moreover, the continuity of the normal

component of the electric displacement field has been en-

forced at the interface between the SiO2 substrate and the air

region. According to Gauss’s law, the value of the electrostatic

potential V close to the graphene sample has then been used

to compute the surface charge density σ(x,y) on the ribbon:

σ(x,y) = εair (Ez)|z=0+ − εSiO2
(Ez)|z=0−

= εSiO2
(∂V/∂z)|z=0− − εair (∂V/∂z)|z=0+ (17)

(z is null on the graphene sample and increases in the up-

ward direction, εair is the permittivity of air and εSiO2
that

of silicon oxide). The capacitance CG(x,y) per unit area

which exists between each point (with coordinates (x,y)) of
the graphene sample and the double side-gate is obtained di-

viding the charge density σ(x,y) by the potential difference

−VG between the graphene sample and the double side-gate:

CG(x,y) =−σ(x,y)/VG . (18)

The transport simulation domain is sketched in Fig. 13(a).

In Fig. 13(b) we show a map of CG(x,y) over this domain.

The left and right leads have been modeled as 1600 nm wide

doped graphene regions, with a potential energy equal, in ab-

solute value, to 0.2 eV. A smooth profile (with x0 = 25 nm)

is included to connect the potential energy profile in the leads

with the one in the sample. The reference voltage has been

chosen asVG0
= 60 V, i.e. the value at which the measured re-

sistance of the device is maximum, and therefore corresponds

to the condition in which the lead Fermi energy EF is aligned

with the Dirac point in the sample. The corresponding po-

tential profile U0 has been obtained by adding the effect of a

random impurity distribution to a smooth potential with aver-

age value EF inside the constriction. The best fit with the ex-

perimental measurements has been obtained by assuming for

the impurity distribution cimp = 5× 1010 cm−2, δ = 40 meV

and HWHM = 17 nm. According to Refs.55,56, this set of
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Figure 14. Fano factor F as a function of the gate voltage VG. Our

numerical results are shown with a red solid line, while the exper-

imental results of Mostovov, extracted from Fig. 9.7 of Ref.19, are

reported with blue dots.

parameters describes a realistic distribution of charged im-

purities with concentration 5× 1010 cm−2 and located at an

average distance of 1 nm from the sample. As an example,

in Fig. 13(c) we show a map over the transport simulation

domain of the potential energy obtained for VG = 90 V. In

Fig. 14, the result of our simulation for the Fano factor (red

line), reported as a function of the gate bias, is compared with

the experimental data extracted from Fig. 9.7 of Ref.19. The

simulation results appear to provide a reasonable fit to the ex-

perimental data. It is apparent that also in this case the vari-

ation of the Fano factor visible in the simulation results oc-

curs over a gate bias voltage range far larger than that which

would be characteristic of the effect predicted by Tworzydło,

and therefore can be attributed to an effect analogous to the

one we have discussed for the back-gated disordered sample

withW = 1 µm and L = 200 nm. Such an effect is thus of a

general nature in samples with a relatively low degree of dis-

order and appears to be independent of the specific details of

the sample geometry and electrostatics.

V. CONCLUSIONS

We have performed envelope-function based simulations of

shot noise in disordered gate-biased graphene samples with

the aim of interpreting published measurement results aim-

ing at the experimental verification of the interesting effect on

the Fano factor of large aspect ratio graphene samples pre-

dicted in Ref.13. Contrary to existing atomistic simulations,

our continuum approach has allowed us to study relatively

large graphene structures, with a size of the order of microns,

comparable to that of most of the actually measured samples.

To provide a physical picture as comprehensive as possible,

we have simulated graphene samples with different geome-

tries, levels of disorder, contact models, and gate arrange-

ments. Our conclusion is that in none of the experiments that

we have reviewed the effect predicted by Tworzydło was ac-

tually detected, because either no peak of the Fano factor was

observed as a function of the gate bias voltage or the observed

peak had a width inconsistent by orders of magnitude with that

predicted by Tworzydło and should therefore be attributed to

the interplay of disorder and carrier density.

On the basis of our results, further experiments seeking to

confirm the effect of Ref.13 should follow a few guidelines: a)

the applied bias voltage should be as small as possible, prefer-

ably less than 1 mV (in order to prevent averaging over the

transport window, which would significantly suppress the ex-

pected peak, at least for a reasonable length of the sample,

of the order of a few hundred nanometers) and therefore the

sample temperature should be below 1 K or less (to achieve a

shot noise power spectral density at least an order of magni-

tude larger that that of thermal noise); b) the disorder in the

graphene sample should be as small as possible, because, at

least for samples of a realistic size, disorder leads to a signif-

icant variation of the dependence of the Fano factor on gate

voltage or even to a complete suppression of the sought-after

effect: it would thus be advisable to use suspended samples,

which are not affected by the disorder in the substrate; c) con-

tacts should be physisorbed, because, as discussed in Sec. II,

only physisorbed contacts are fully consistent with the model

in Ref.13, and, in addition, they should exhibit the least possi-

ble resistance, unless the device geometry allows four-probe

measurements; d) the sample conductivity at the Dirac point

should be equal to 4e2/(πh), consistent with the results in

Ref.13 (although this by itself it is not a guarantee that the

same conditions as those considered by Tworzydło et al. are

present, because, as previously mentioned, such a minimum

conductivity could also be the result, for example, of resonant

impurities); e) compatibly with the flicker noise level, mea-

surements should be performed at a frequency as low as pos-

sible, because correction and calibration procedures become

more complex and more susceptible to errors as the frequency

is increased.

A carefully designed experiment following the above

guidelines should allow detection of the peculiar behavior of

shot noise predicted by Tworzydło et al., as long as the para-

sitic effects (in particular those due to disorder) are kept under

control.
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