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Abstract: The mechanical response of materials such as fiber and particle composites, rocks, concrete,
and granular materials, can be profoundly influenced by the existence of voids. The aim of the present
work is to study the dynamic behavior of hexagonal microstructured composites with voids by using
a discrete model and homogenizing materials, such as micropolar and classical Cauchy continua.
Three kinds of hexagonal microstructures, named regular, hourglass, and skew, are considered with
different length scales. The analysis of free vibration of a panel described as a discrete system,
as a classical and as a micropolar continuum, and the comparison of results in terms of natural
frequencies and modes show the advantage of the micropolar continuum in describing dynamic
characteristics of orthotropic composites (i.e., regular and hourglass microstructures) with respect to
the Cauchy continuum, which gives a higher error in frequency evaluations for all three hexagonal
microstructured materials. Moreover, the micropolar model also satisfactorily predicts the behavior of
skewed microstructured composites. Another advantage shown here by the micropolar continuum is
that, like the discrete model, this continuum is able to present the scale effect of microstructures, while
maintaining all the advantages of the field description. The effect of void size is also investigated
and the results show that the first six frequencies of the current problem decrease by increasing in
void size.

Keywords: composite materials; porous materials; cosserat; dynamic behavior

1. Introduction

The presence of pores in many materials, such as crystals, rocks, concrete, and some
manufactured porous substances, can pose difficulties in the understanding of the me-
chanical behavior of such materials from numerical, as well as experimental aspects. In
particular, more complicated situations would arise if the porous material show another
kind of microstructures, which can bring the researcher’s attention to the studies on mi-
cromechanical and multiscale strategies due to the scale variety of the microstructures [1].
In order to modelling the response of such materials and investigating the influence of the
microstructure, it is possible to consider a discrete model to have a detailed description.
Although such an approach reaches accurate results, it requires considerable computational
cost [2,3], for this reason it is preferable to use a coarse-grained/homogenization technique,
which exploit the advantages of field descriptions and are less expensive in terms of compu-
tation. With this multiscale technique the heterogeneous and discontinuous materials are
considered equivalent to a continuum that keeps the characteristics of the microstructure.
The application of homogenization approaches can be widely found in the literature to
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account for the effect of voids and/or cracks on the mechanical behavior of different kinds
of materials, such as advanced materials [4] and ceramics [5,6]. Leonetti et al. [7] presented
an accurate prediction for a multiscale damage analysis of periodic composites [8,9]. The
key to a successful application of homogenization techniques for microstructured materials
is the selection of a suitable macroscopic continuum that is able to consider the effects of
the internal lengths [10,11]. It is well-known that the classical Cauchy continuum fails
in the case in which the microstructure length becomes comparable to the macroscopic
length, as in problems of strain localization with related mesh dependency in numerical
solutions [12]. Moreover, the noticeable difference can be observed in dynamical analysis
when comparing results of classical elastic continuum and experiments [13–16]. Therefore,
the modeling of materials having internal microstructures has to take into account a non-
local description. A non-local model, by definition, implies the presence of internal lengths
in the field equations and spatial dispersion in wave propagation [17]. Among non-local
models it is possible to distinguish between explicit and implicit non-local descriptions,
both including internal length parameters in different ways in their formulation and show-
ing dispersion properties [18–21]. Incorporating internal length parameters with classical
kinematics, the explicit non-local description have been defined and used to evaluate the
behavior of elastic composites, as shown in [22–24]. A non-local continuum considering
the internal length have been also proposed to deal with the multiscale computational
homogenization problem in [25–29]. In the implicit non-local description, the non-locality
of material is covered by introducing additional degrees of freedom that keep memory of
the microstructure in the material [15,30,31]. The micropolar, or Cosserat, continuum is an
example of implicit non-locality satisfactorily used to describe behavior of materials [32–
35]. The additional degree of freedom is the rotation of each material point, microrotation,
independent of the classical displacement field. The microrotation generally differs from
the local rigid rotation experienced by the macro-continuum and the difference between
the two rotations, relative rotation, corresponds to the skew-symmetric part of the strain.
The micropolar continuum is able to account for the size effect, as length scales are in-
cluded in the constitutive equations, in particular the ones relating the rotations gradient
of microrotation, curvature, and the stress and couple stress, therefore showing implicit
non-locality [36]. The micropolar continuum has been widely used for representing the
microstructure in various materials [37–40] and shows its acceptance when it describes the
mechanical behavior of materials in the field of localization problems [41], fracture mechan-
ics [42], and dynamic behavior for microstructured composites [35], masonry structures [43],
granular materials [44], etc. As for the material with voids, fundamental solutions of the
elastic Cosserat material with voids have been discussed in [45–47]. Janjgava et al. [48]
solved some boundary value problem for porous materials by considering the Cosserat
theory. Lakes [49] performed torsion and bending experiments of cylindrical rods on
two porous materials. They found that the results can be described by the elastic Cosserat
model. With a homogenization technique, Bacigalupo and Gambarotta [50] studied auxetic
and acoustic properties of a composite with voids as a Cosserat continuum, where the
composite is made of hexagonal blocks and elastic interfaces. The effect of void size can
be found in this study. Other examples studying porous materials with the micropolar
continuum can be also seen in cellular solids, such as bone [51], shells [52], and foams [53].
In the current study, based on authors’ previous works about microstructured composites
consisted of rigid blocks and elastic interfaces [54–56], extended numerical investigations
are conducted by considering the presence of additional voids in such a composite. The
homogenization procedure proposed in [11] is tested for three different anisotropic materi-
als which are obtained by changing the geometry of the hexagonal blocks. Different scales
of the microstructure are also considered. Numerical results from dynamic analyses on a
rectangular composite panel are shown in terms of two continuous models (micropolar
and classical Cauchy continuum) and the discrete model for a detailed comparison.

The layout of the present study is as follows. In Section 2, the micropolar theory
is briefly introduced in the two-dimensional (2D) case and its finite element method



Materials 2022, 1, 0 3 of 20

(FEM) implementation is also presented for the dynamic analysis. In order to apply the
homogenization procedure, Section 3 gives representative volume elements (RVEs) of three
different microstructured composites with voids. According to the constitutive relations
obtained from homogenization, the numerical results of the above three composites and
the effect of void size are presented in Section 4 by conducting dynamic analyses. In the
end, conclusions are drawn in Section 5.

2. Micropolar Continuum and FEM Implementation

The micropolar continuum provides extra degrees of freedom to account for internal
length parameters as an implicit non-local continuum. For the case of 2D, one extra degree
of freedom, i.e., the micro-rotation field (ω) is considered apart from the classical transla-
tional degrees of freedom (u1 and u2). Therefore, in a linearized 2D Cosserat framework,
a material particle displacement field can be characterized by two translations and one
micro-rotation, collected in the vector {u} =

{
u1 u2 ω

}>. The strain and stress vector
are represented by the vectors:

{ε} =
{

ε11 ε22 ε12 ε21 κ1 κ2
}>,

{σ} =
{

σ11 σ22 σ12 σ21 µ1 µ2
}>,

(1)

where σij and εij correspond to normal and shear components of stress and strain measures.
µi and and κi refer to couple stresses and micro-curvatures. It should be noted that
differently from classical continuum, the micropolar shear components are not reciprocal,
that is σ12 6= σ21 and ε12 6= ε21, because of the introduction of the micro-rotation field that is
different from its macro-rotation counterpart θ = 1

2 (
∂u2
∂x1
− ∂u1

∂x2
). The kinematic compatibility

relation for micropolar continuum can be represented as:

{ε} = [D] {u}, (2)

where the matrix operator [D] is reported below:

[D] =



∂

∂x1
0 0

0
∂

∂x2
0

∂

∂x2
0 1

0
∂

∂x1
−1

0 0
∂

∂x1

0 0
∂

∂x2


. (3)

Here, a linear constitutive relation between the vector {ε} and {σ} is considered as:

{σ} = [C] {ε}, (4)

where in the 2D case the constitutive matrix can be written as if consider a hyperelastic
material ([C] ∈ Sym) [11]:

[C] =



A1111 A1122 A1112 A1121 B111 B112
A2222 A2212 A2221 B221 B222

A1212 A1221 B121 B122
A2121 B211 B212

D11 D12
sym D22

 =

[
A B
B> D

]
. (5)
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In order to implement dynamic analysis with the micropolar continuum, the Hamil-
ton’s principle for the equilibrium of the body should be considered as follows:

δ
∫ t2

t1

(K−U) dt = 0, (6)

where K, U refer to the kinetic energy and strain energy, respectively. Potential energy is
not included since, in this work, free vibrations are considered only. The variational forms
of these functionals take the forms:

δK =
∫

V
ρδ{u̇}>{u̇} dV = h

∫
S

δ{u̇}>[m]{u̇} dS = −h
∫

S
δ{u}>[m]{ü} dS,

δU =
∫

S
δ{ε}>{σ} dS,

(7)

where ρ is the material density. h is the material thickness that is assumed to be unit in
subsequent context. {u̇} and {ü} are the velocity and acceleration vectors. The equivalent
mass matrix [m] is:

[m] = ρ

h 0 0
0 h 0
0 0 Jc

, (8)

where Jc is the rotation inertia of the material point.
Considering Equations (2) and (4) and substituting Equation (7) into Equation (6),

the Hamilton principle can be rewritten as:∫ t2

t1

δ{u}>
(∫

S

(
[m]{ü}+ [D]> [C][D]{u}

)
dS
)

dt = 0. (9)

Next, in order to accomplish the finite element analysis for above dynamic micropolar
theory, the displacement based formulation is implemented. Firstly, the displacement field
should be approximated by the nodal values as:

{u} = [N] {de} , (10)

In this study, 4-nodes element is used for the FEM analysis. Thus, the nodal displace-
ment vector {de} has the form as:

{de} =
{

u1
1 . . . u4

1 u1
2 . . . u4

2 ω1 . . . ω4}> . (11)

Substituting Equation (10) into the Equation (9), we can obtain the kinetic energy as:

δK = −δ{de}>
∫

S
[N]>[m][N] dS {d̈ e} , (12)

where the mass matrix takes the form as:

[Me] =
∫

S
[N]>[m][N] dS. (13)

The strain energy reads:

δU = δ{de}>
∫

S
([D] [N])>[C]([D] [N]) dS {de} = δ{de}>

∫
S
[B]>[C] [B] dS {de} , (14)

where the strain matrix is defined as [B] = [D][N] and the element stiffness matrix reads:

[Ke] =
∫

S
[B]>[C] [B] dS . (15)
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Finally, considering arbitrary δ{de}, the Hamilton principle becomes:∫ t2

t1

[Me]{d̈ e}+ [Ke]{de} dt = 0. (16)

Numerical implementation of the above dynamic finite element formulation for the
micropolar continuum can be accomplished by an in-house finite element MATLAB code
that is extended from a 2D dynamic code for the classical Cauchy continuum, as presented
in [57], where the integrals obtained above are approximated by using 2× 2 Gauss-Legendre
integration points and reduced integration for the shear components, as suggested in the
literature [58].

3. Representative Volume Element

In this study, the porous medium, represented by composite materials made of hexag-
onal microstructures with voids, are taken into consideration in order to investigate their
dynamic behavior. The definition of the geometry for a single hexagonal microstructures
(Figure 1a) can be controlled by parameters as follows: a relative length lr defined as length
ration between AE and BG; three angles α1, α2, α3, and a scale parameter s control the size of
microstructures by multiplying the relative length lr · s. One can refer to the previous study
for a detailed definition of the geometry [58]. The microstructure is made by hexagonal
blocks which are considered to be rigid and interact with one another via elastic interfaces
(elastic springs). The blocks are in contact by their interface which is the one considered
without voids, as shown in Figure 1b. The void can be obtained by translating blocks in
horizontal and vertical directions (Figure 1c). The 7-blocks representative volume element
(RVE) is used for the homogenization procedure as highlighted in Figure 1b. With reference
to the coordinate system (x1, x2), translations of each block (B1–B7) of the RVE to obtain the
voids can be read as follows according to a translation parameter γ:

B1 =(0, 0),

B2 =(0, γ),

B3 =

(
γ

2 tan(90◦ − α4)
,

γ

2

)
,

B4 =

(
γ

2 tan(90◦ − α4)
,−γ

2

)
,

B5 =(0,−γ),

B6 =

(
γ

2 tan(90◦ + α3)
,−γ

2

)
,

B7 =

(
γ

2 tan(90◦ + α3)
,

γ

2

)
.

where γ should be selected to make sure there is a contact portion among blocks. As a
result, a parameter η that can be termed as contact coefficient defining ratio between contact
length and full microstructure length arises for a selected reasonable value of γ. Since the
void size varies with γ, the contact coefficient η can be used to characterize the void size in
the following text. It is worth to be noted that the RVE for the material with voids is made
of 5 blocks (see Figure 1b), whereas when voids are not considered 7 blocks should be used
as shown in Figure 1b.

Here, with fixed parameters lr = 0.634 and α1 = 0◦ three kinds of hexagonal mi-
crostructures, termed regular (α2 = α3 = 30◦), hourglass (α2 = α3 = −20◦), and skew
(−α2 = α3 = 30◦) are considered for the dynamic analysis. RVEs of these microstruc-
tures with voids are shown in Figure 2, where the blue crosses indicate centroids of the
blocks, green lines represent the contact interfaces, and red lines are the outer normal to the
contact interfaces.
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Different scales of microstructures and contact coefficients representing the size of the
voids will be considered in the numerical simulations, whereby the corresponding RVE can
be identified for a homogenization technique proposed in [11], which allows us to identify
the elastic components in Equation (5). A linear elastic constitutive law is considered for
the contact interfaces. Since we refer to microstructured materials made of rigid particles
with elastic interfaces (ceramic materials, such as Zirconia, Alumina [59]), we have that
the rigid blocks interact among the contact interfaces with a normal stiffness kn = 0.785η
mN/µm, shear stiffness kt = 0.3925η mN/µm and rotation stiffness kr = kn(l/2)2, where
l refers to the length of contact interfaces. Note that, in this case, dilatancy effect is not
considered.

With this interface elasticity, the homogenization procedure can provide constitutive
components of [C] in Equation (5) for the micropolar continuum. The homogenization
technique is based on an equivalence energy criterion and it generalizes Voigt molecular
approach and it is based on the Cauchy–Born rule [11,60,61].

The constitutive components for the classical Cauchy continuum can be determined
by the following relation:

[C]Cauchy =

A1111 A1122 (A1112 + A1121)/2
A2222 (A2212 + A2221)/2

sym (A1212 + A2121 + 2A1221)/4

 . (17)

It can be seen that there are only components of A. Microstructure-related matrices B
and D are not considered for the Cauchy continuum.

A
b

B
c
C

d

D
e

E
f

F
a

G

α1α2

α3

(a)

B1

B2

B5

B3

B4

B7

B6

(b)

B1

B2

B5

B3

B4

B7

B6

B3

B7

(c)

Figure 1. (a) Representative single hexagonal microstructures. (b) General assembly without voids.
(c) General assembly with voids. Selected RVEs are highlighted by gray color in (b,c).
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-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b)
-0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(c)

Figure 2. The 5-blocks RVEs of three hexagonal microstructures with voids when s = 1 and η = 0.5.
(a) Regular; (b) Hourglass; and (c) Skew.

4. Numerical Simulations

In this section simulations are carried out to study the dynamic behavior of the three
composite configurations (displayed in Figure 2) with voids by analysing free vibrations
for a rectangular panel (Figure 3) of size Lx and Ly with respect to x1 and x2 directions,
respectively. For a better comparison, discrete analysis is also carried out in ABAQUS® as a
benchmark where for the contact interfaces the same elastic properties mentioned above are
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used. The sketch diagrams of discrete system are presented in Figure 4. The implementation
details of the discrete simulations can be found in the authors’ previous research [62].

Ly

Lx

x1

x2

Figure 3. Sketch of composite panel for dynamic analysis.

(a) (b) (c)

Figure 4. Material microstructures with voids when s = 1 and η = 0.5 in ABAQUS environment.
(a) Regular; (b) Hourglass; and (c) Skew.

At first, the scale effect for the three kinds of microstructured composites with voids
will be numerically studied. Here, the relative length lr is multiplied for the three scale
parameter s = 1, 0.75, and 0.5 in order to obtain three different internal sizes of the
microstructure. In such a case, the contact coefficients (η) of 0.5 is used for all three
composites. Then, considering s = 1 for hexagonal microstructures, the effect of void size
is studied with five contact coefficients, i.e., η = 0.2, 0.4, 0.5, 0.6, and 0.8.

4.1. Regular Shape

For the regular shape, the panel dimension is set as Lx = 22 µm and Ly = 23 µm.
Equations (18)–(20) list the constitutive matrices for three scales. It is obvious that the scale
only has an impact on the D matrix. B = 0 denotes centrosymmetric characteristic of the
material [11] and the absence of couplings between couple stresses and strains, as well
as between couple stresses and curvatures. Additionally, there is no coupling between
normal and shear measures (A1112, A1121, A2212, A2221 = 0) and D12 = 0.

Dynamic analysis results of the regular microstructured panel with voids is present
in terms of the first six modes in Table 1 for discrete, Cosserat, and Cauchy models. The
table also reports the relative errors by comparing frequencies of two continuum models
(Cosserat and Cauchy) with respect to that of the discrete model. Figures 5–7 also graph-
ically show the first six modes shapes for the three models at different scales. From the
observation, the dynamic behavior obtained from the Cosserat continuum agrees well with
that from the discrete model with small relative error (|Error| ≤ 1.02%). The Cauchy con-
tinuum is also able to provide a satisfactory dynamic characterization, showing consistent
modes with the discrete model for all three scales. |Error| of frequencies in this continuum
have the maximum value of 2.16% when compared to the discrete model, which is larger
than that in the Cosserat continuum but still acceptable. This result is reasonable since it
has been shown in previous works that regular microstructures have an orthotetragonal
constitutive symmetries [55,58].
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There is no scale effect on the dynamic behavior for the Cauchy continuum. For the
discrete and Cosserat model, the error varies with the scale differently among modes. The
difference in frequencies for all modes is within 0.06 MHz as scale changes. Therefore, from
Figures 5–7, with the scale decreases, all modes of the Cosserat and Cauchy continuum
match well with the discrete one.

Cs=1 =



0.4131 0.1062 0 0 0 0
0.1062 0.3187 0 0 0 0

0 0 0.4461 0.1062 0 0
0 0 0.1062 0.2951 0 0
0 0 0 0 0.0311 0
0 0 0 0 0 0.0341

 . (18)

Cs=0.75 =



0.4131 0.1062 0 0 0 0
0.1062 0.3187 0 0 0 0

0 0 0.4461 0.1062 0 0
0 0 0.1062 0.2951 0 0
0 0 0 0 0.0175 0
0 0 0 0 0 0.0192

 . (19)

Cs=0.5 =



0.4131 0.1062 0 0 0 0
0.1062 0.3187 0 0 0 0

0 0 0.4461 0.1062 0 0
0 0 0.1062 0.2951 0 0
0 0 0 0 0.0078 0
0 0 0 0 0 0.0085

 . (20)

Table 1. Natural frequencies (MHz) for the regular shape.

Model Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

s = 1

Discrete 2.7393 5.9379 8.0329 12.4005 13.9150 15.5230
Cosserat 2.7345 5.9220 8.0576 12.4892 13.8884 15.5679
Error (%) 0.18 0.27 −0.31 −0.71 0.19 −0.29
Cauchy 2.7453 5.9198 8.1267 12.6091 13.9262 15.8579

Error (%) −0.22 0.30 −1.17 −1.68 −0.08 −2.16

s = 0.75

Discrete 2.7389 5.9385 8.0343 12.4100 13.9160 15.5360
Cosserat 2.7325 5.9209 8.0515 12.5243 13.9000 15.5713
Error (%) 0.23 0.30 −0.21 −0.92 0.11 −0.23
Cauchy 2.7453 5.9198 8.1267 12.6091 13.9262 15.8579

Error (%) −0.23 0.31 −1.15 −1.60 −0.07 −2.07

s = 0.5

Discrete 2.7404 5.9381 8.0354 12.4220 13.9170 15.5470
Cosserat 2.7306 5.9199 8.0434 12.5491 13.9084 15.5706
Error (%) 0.36 0.31 −0.10 −1.02 0.06 −0.15
Cauchy 2.7453 5.9198 8.1267 12.6091 13.9262 15.8579

Error (%) −0.18 0.31 −1.14 −1.51 −0.07 −2.00
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Figure 5. Vibration modes of regular hexagonal microstructure with scale s = 1.
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Figure 6. Vibration modes of regular hexagonal microstructure with scale s = 0.75.
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Figure 7. Vibration modes of regular hexagonal microstructure with scale s = 0.5.

4.2. Hourglass Shape

In the case of an hourglass shape, the panel dimension is set as Lx = 14.8 µm and
Ly = 23 µm. The homogenized constitutive matrices are given in Equations (21)–(23) for
the three scales. Similar to the regular case, no couplings between classical and micropolar
measures and between normal and shear measures can be observed and also D12 = 0.
However, a negative Poisson effect is shown for such composite with voids.

Table 2 and Figures 8–10 show the dynamic results by comparing discrete, Cosserat,
and Cauchy models. It is clear again that the Cosserat continuum can give satisfactory
results with |Error| ≤ 2.10%, although the maximum |Error| of the present results is greater
than that of the regular case. For the Cauchy model, only mode 2—corresponding to the
axial vibration—shows reliable results within an error margin of 0.50%. Other modes
provide a worse assessment of natural frequencies, with the absolute frequencies error
|Error| ranging from 3.17% to 18.05%, which is also much greater than the regular case.
However, from Figures 8–10 vibration modes of the two continuum models both show a
good match with the discrete model. In order to achieve this matching, it should be noted
that mode 7 and 5 are used to represent the mode 5 and 6, respectively, for the Cauchy
results, and for Cosserat results at s = 1 the 5th and 6th modes are switched (see Table 2).
The change in scale results in the frequencies of all modes vary monotonously for both
discrete and Cosserat models. For the Cosserat model, as the scale decreases the maximum
frequency difference is 0.23 MHz which is larger than that in the regular case, indicating
that the scale has a greater effect on the behavior of hourglass case.

Cs=1 =



0.4422 −0.1164 0 0 0 0
−0.1164 0.6237 0 0 0 0

0 0 1.0515 −0.1164 0 0
0 0 −0.1164 0.2623 0 0
0 0 0 0 0.0399 0
0 0 0 0 0 0.0911

 . (21)
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Cs=0.75 =



0.4422 −0.1164 0 0 0 0
−0.1164 0.6237 0 0 0 0

0 0 1.0515 −0.1164 0 0
0 0 −0.1164 0.2623 0 0
0 0 0 0 0.0224 0
0 0 0 0 0 0.0512

 . (22)

Cs=0.5 =



0.4422 −0.1164 0 0 0 0
−0.1164 0.6237 0 0 0 0

0 0 1.0515 −0.1164 0 0
0 0 −0.1164 0.2623 0 0
0 0 0 0 0.0100 0
0 0 0 0 0 0.0228

 . (23)

Table 2. Natural frequencies (MHz) for the hourglass shape. Numbers in brackets represent actual
mode shape obtained by continuum models.

Model Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Scale s = 1

Discrete 2.6390 8.4401 8.4640 16.4650 19.3790 19.5590
Cosserat 2.6478 8.3997 8.6419 16.7402 19.8063 (6) 19.6702 (5)
Error (%) −0.33 0.48 −2.10 −1.67 −2.21 −0.57
Cauchy 2.8119 8.3991 9.5843 19.4374 22.7869 (7) 20.1853 (5)

Error (%) −6.55 0.49 −13.24 −18.05 −17.59 −3.20

Scale s = 0.75

Discrete 2.6402 8.4389 8.4646 16.4880 19.3990 19.5650
Cosserat 2.6377 8.3976 8.5809 16.6601 19.6879 19.7209
Error (%) −0.09 0.49 −1.37 −1.04 −1.49 −0.80
Cauchy 2.8119 8.3991 9.5843 19.4374 22.7869 (7) 20.1853 (5)

Error (%) −6.50 0.47 −13.23 −17.88 −17.46 −3.17

Scale s = 0.5

Discrete 2.6423 8.4376 8.4630 16.4950 19.4080 19.5530
Cosserat 2.6291 8.3954 8.5233 16.5870 19.5770 19.7567
Error (%) 0.50 0.50 −0.71 −0.56 −0.87 −1.04
Cauchy 2.8119 8.3991 9.5843 19.4374 22.7869 (7) 20.1853 (5)

Error (%) −6.42 0.46 −13.25 −17.84 −17.41 −3.23
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Figure 8. Vibration modes of hourglass hexagonal microstructure with scale s = 1.
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Figure 9. Vibration modes of hourglass hexagonal microstructure with scale s = 0.75.
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Figure 10. Vibration modes of hourglass hexagonal microstructure with scale s = 0.5.

4.3. Skew Shape

For the skew shape, the panel dimension is set as Lx = 13.2 µm and Ly = 17.2 µm. The
homogenized constitutive matrices of the Cosserat continuum are given in Equations (24)–(26)
for three scales. Negative Poisson effect and D12 = 0 can be also observed. However,
different from the regular and hourglass cases, in this case B 6= 0 meaning that the material
is not centrosymmetric [11] and couplings between stresses and curvatures, as well as
between couple stresses and strains can be observed.

It can be seen from Table 3 that the Cosserat and Cauchy continuum give worse
frequency evaluations to the dynamic behavior of skew microstructured composite with
void compared with regular and hourglass ones. The absolute frequencies error for the
Cosserat continuum range from 1.02% to 4.35%, which is greater than two previous cases.
We suppose that the lack of ability for the Cossearat model to give a satisfactory result
may be attributed to the coupling between classical and micropolar measures (B 6= 0). The
Cauchy continuum has frequency error with 3.68–7.48%. From Figures 11–13, except for
mode 4, other modes in the Cauchy continuum can catch good approximation to the
results of the discrete model. For the Cosserat continuum, modes 4 and 5 are not able to
match well with the modes from the discrete model, even though the modes of the 4th
and 5th frequencies are switched. However, as the scale decreases, mode 5 of the Cosserat
continuum is closer to that of the Cauchy continuum, therefore catching the result of the
discrete model. Since the change in scale of the microstructures has effect on matrices B
and D, as the scale decreases natural frequencies obtained from the Cosserat continuum
also vary monotonously with a maximum frequency difference of 0.1 MHz.

Cs=1 =



0.4214 −0.0319 0 0 0 0.0306
−0.0319 0.4780 0 0 0 −0.0219

0 0 0.6692 −0.0319 0.0306 0
0 0 −0.0319 0.3010 −0.0397 0
0 0 0.0306 −0.0397 0.0470 0

0.0306 −0.0219 0 0 0 0.0655

 . (24)
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Cs=0.75 =



0.4214 −0.0319 0 0 0 0.0230
−0.0319 0.4780 0 0 0 −0.0164

0 0 0.6692 −0.0319 0.0230 0
0 0 −0.0319 0.3010 −0.0298 0
0 0 0.0230 −0.0298 0.0264 0

0.0230 −0.0164 0 0 0 0.0368

 . (25)

Cs=0.5 =



0.4214 −0.0319 0 0 0 0.0153
−0.0319 0.4780 0 0 0 −0.0109

0 0 0.6692 −0.0319 0.0153 0
0 0 −0.0319 0.3010 −0.0198 0
0 0 0.0153 −0.0198 0.0117 0

0.0153 −0.0109 0 0 0 0.0164

 . (26)

Table 3. Natural frequencies (MHz) for the skew shape. Numbers in brackets represent actual mode
shape obtained by continuum models.

Model Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Scale s = 1

Discrete 3.5949 9.6323 11.1940 21.1430 21.4230 24.1400
Cosserat 3.7214 10.0285 11.5667 22.0620 (5) 21.6435 (4) 24.9388
Error (%) −3.52 −4.11 −3.33 −4.35 −1.03 −3.31
Cauchy 3.7815 10.0283 11.8635 22.3742 23.0256 25.0461

Error (%) −5.19 −4.11 −5.98 −5.82 −7.48 −3.75

Scale s = 0.75

Discrete 3.5939 9.6279 11.1880 21.2180 21.4380 24.1440
Cosserat 3.7101 10.0284 11.5178 22.0769 (5) 21.6990 (4) 24.9708
Error (%) −3.23 −4.16 −2.95 −4.05 −1.22 −3.42
Cauchy 3.7815 10.0283 11.8635 22.3742 23.0256 25.0461

Error (%) −5.22 −4.16 −6.04 −5.45 −7.41 −3.74

Scale s = 0.5

Discrete 3.6133 9.6245 11.2070 21.2410 21.4860 24.1560
Cosserat 3.7005 10.0283 11.4676 22.1155 (5) 21.7045 (4) 24.9937
Error (%) −2.41 −4.20 −2.32 −4.12 −1.02 −3.47
Cauchy 3.7815 10.0283 11.8635 22.3742 23.0256 25.0461

Error (%) −4.66 −4.20 −5.86 −5.33 −7.17 −3.68
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Figure 11. Vibration modes of skew hexagonal microstructure with scale s = 1.
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Figure 12. Vibration modes of skew hexagonal microstructure with scale s = 0.75.
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Figure 13. Vibration modes of skew hexagonal microstructure with scale s = 0.5.

4.4. Effect of Void Size

The first six natural frequencies of free vibration analysis as a function of contact
coefficients η are presented in Figures 14–16 for three composites when the scale of mi-
crostructures s is equal to 1, where higher contact coefficient refers to a smaller size of void.
For the sake of simplicity, constitutive matrices for different η are not presented here since
they follow the same homogenization procedure as mentioned above. Although dynamic
results from the Cauchy continuum are not satisfactory when the contact coefficient equals
0.5, when the contact coefficient increases, the frequencies of the first six modes from this
model have the same trend as the results of the Cosserat model. That is, frequency increases
monotonically to an asymptotic value as the contact coefficient increases, indicating that
the result is closer to that of material without voids. The constitutive parameters depend
on the void size. This can also be found in the study by Bacigalupo and Gambarotta [50]
where the regular microstructured composite with voids was studied but with an alterna-
tive void-generation approach. They found that the so-called overall elastic modulus and
Poisson’s ratio decrease as the void size increases.

Referring to authors’ previous study [56], the Cosserat model can give a good result
for all three kinds of hexagonal microstructured composites without voids. Even for
the skew microstructures, the maximum error of frequencies from the Cosserat model
is about 1%. However, when the voids are introduced as shown in the current work,
the Cosserat model can not properly approximate the results from discrete model anymore.
The frequency error (1.02% to 4.35%) between the Cosserat and discrete model is larger
than 1% as the voids introduced, meaning that the voids can result in an evident effect
on the dynamic behavior of composite with skew microstructures. As shown before,
different from regular and hourglass cases, constitutive relation of skew case has couplings
between stresses and curvatures/couple stresses and strains (B222 6= 0). Furthermore,
for the skew microstructured composite without voids, there is no Poisson effect [62]. As
the voids are introduced, zero constitutive components A1122, A1221, B112, B121, and B211
are activated (become non-zero). Since A1122 and A1221 are negative, such material also
shows a negative Poisson effect as the hourglass case. Another difference of the skew
microstructureed composite is more non-zero components in B matrix are also activated as
voids are introduced.
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As for the frequencies showing an increasing trend with the contact coefficient, Table 4
lists the frequency difference between contact coefficients equal to 0.2 and 0.8 to investigate
the effect of voids for the three composites selected.

It can be seen that the largest difference appears in non-centrosymmetric material,
the skew microstructure, as the void size changes, while for centrosymmetric materials,
regular and hourglass, the gap between the two continuum models is smaller. Finally,
the biggest differences are shown for higher frequencies.

Figure 14. First six natural frequencies as a function of contact coefficients η (void size) for regular
microstructures. Solid and dot lines represent Cosserat and Cauchy continuum, respectively

Figure 15. First six natural frequencies as a function of contact coefficients η (void size) for hourglass
microstructures. Solid and dot lines represent Cosserat and Cauchy continuum, respectively

Figure 16. First six natural frequencies as a function of contact coefficients η (void size) for skew
microstructures. Solid and dot lines represent Cosserat and Cauchy continuum, respectively
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Table 4. Frequency difference between maximum (0.8) and minimum (0.2) contact coefficient, MHz.

Cosserat Cauchy

Freq. Regular Hourglass Skew Regular Hourglass Skew

f1 0.9348 0.7717 1.2201 0.8583 0.7276 1.1173
f2 1.5041 2.1267 2.5776 1.5020 2.1253 2.5780
f3 3.4654 2.7356 4.3863 3.1511 2.5617 3.9315
f4 8.7207 5.7709 10.4737 8.7334 5.5503 10.0237
f5 8.7213 7.3973 10.9115 8.6112 7.5870 9.7834
f6 8.9467 7.0683 12.3076 8.0391 7.4896 12.1548

5. Conclusions

The present paper studied dynamic behavior of three kinds of hexagonal microstruc-
tured composites with voids. The purpose is the extension of the homogenization technique
to periodic microstructured materials with voids and to study the influence of a new in-
ternal parameter, the voids size, on the capability of the continuum model to represent
the discrete system. This aspect has not yet been addressed by the authors for this type of
microstructures. Numerical modelings are conducted on these materials which are homog-
enized as a classical Cauchy and micropolar (Cosserat) continua compared with a discrete
model used as a benchmark. The estimation of frequencies and modes from free vibration
numerical analysis show that the Cosserat continuum can catch a satisfactory approxima-
tion to the discrete results with a scale effect when B = 0 in material’s constitutive relation.
Such a material can be classified as centrosymmetric material, and components in 0 are such
to respect, in particular, the orthotropic symmetry [11]. The Cauchy continuum can give
good approximations for the vibration modes of discrete results for such materials but with
higher frequency errors compared with the Cosserat continuum. When B 6= 0, i.e., skew
microstructured composite without the central symmetry, the Cosserat and Cauchy con-
tinuum both fail in representing the dynamic behavior of the discrete material with voids
(high error in frequency and some fail-matched modes), although the performance of the
Cosserat continuum is good enough for skew microstructured composite without voids
as previously studied [56]. The Cosserat continuum, such as the discrete model, is able to
show a scale effect of microstructures on the frequency and mode shape of free vibration
analysis. As scale decreases, dynamic results of Cosserat continuum change, whereas the
results of Cauchy continuum stay unchanged with the scale. The effect of void size is
investigated by changing a contact area-controlled coefficient which correlates larger void
with a smaller value. The first six frequencies for all study cases here shows a decrease trend
as the void size increases. The current study can be helpful for further studies concerning
wave propagation and dispersion properties in the porous media [8,9,16].
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