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Abstract
Consider the operator on L2(Rd) La = (−Δ)α/2 + a|x|−α with 0 < α <

min{2, d}. Under the condition a � − 2αΓ((d+α)/4)2

Γ((d−α)/4)2 the operator is non nega-

tive and selfadjoint. We prove that fractional powers Ls/2
a for s ∈ (0, 2] satisfy

the estimates
∥∥∥Ls/2

a f
∥∥∥

Lp
�
∥∥(−Δ)αs/4 f

∥∥
Lp,

∥∥(−Δ)s/2 f
∥∥

Lp �
∥∥∥Lαs/4

a f
∥∥∥

Lp

for suitable ranges of p. Our result fills the remaining gap in earlier results from
Killip et al (2018 Math. Z. 288 1273–98); Merz (2021 Math. Z. 299 101–21);
Frank et al (Int. Math. Res. Not. 2021 2284–303). The method of proof is based
on square function estimates for operators whose heat kernel has a weak decay.

Keywords: Fractional Laplacian, Hardy inequality, Hardy operator, heat kernel,
square function

Mathematics Subject Classification numbers: 35A23, 46E3, 35K08, 42B20.

1. Introduction

A non negative selfadjoint differential operator L on L2(Rn) generates in a natural way a scale
of Sobolev type norms

∥∥Ls/2u
∥∥

Lp. Establishing the equivalence of such norms with standard
Bessel potential norms ‖u‖Ḣr

p
=
∥∥(−Δ)r/2u

∥∥
Lp is an important problem, with many applica-

tions in spectral theory, linear and nonlinear dispersive equations, and probability. We mention
for instance the equivalence

∥∥L1/2u
∥∥

L2 � ‖u‖Ḣ1 for second order elliptic operators in diver-
gence form, known for a long time as the Kato square root problem and now a theorem [2]; and
the calculus of Schrödinger operators with electromagnetic potentials, which is an essential tool
to investigate scattering for the corresponding time dependent problem [9, 10, 14, 15, 20, 25].
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In this paper, we consider the following generalized Schrödinger operators on L2(Rd)

La = (−Δ)α/2 + a|x|−α with α ∈ (0, 2 ∧ d). (1)

Throughout the paper, we use the notations a ∨ b = max{a, b} and a ∧ b = min{a, b}.
The two terms in this operator have the same scaling, thus powers Ls/2

a are a natural can-
didate to generate homogeneous Sobolev type norms. The case α = 2 is well studied, and in
recent years the fractional case α ∈ (0, 2 ∧ d) has attracted extensive attention.

The operator La admits a non negative Friedrichs selfadjoint extension provided

a � a∗ = −2αΓ((d + α)/4)2

Γ((d − α)/4)2
.

This follows from Herbst’ estimate [16]: for 0 < α < 1 and p ∈ (1, n/α), we have∥∥∥(−Δ)α/2u
∥∥∥

Lp
+Ψα,d(n/p′)

∥∥|x|−αu
∥∥

Lp � 0.

Here the constantΨα,d(n/p′) is sharp, and is expressed in terms of the functionΨα,d(δ), defined
as follows: Ψα,d(0) = 0, Ψα,d(d − α) = 0, and for other values of δ ∈ (−α, d − α)

Ψα,d(δ) = −2αΓ
(
δ+α

2

)
Γ
(

d−δ
2

)
Γ( d−δ−α

2 )Γ
(
δ
2

) .
We have Ψα,d(δ) = Ψα,d(d − δ), Ψα,d(δ) →+∞ as δ →−α or δ → d − α, and Ψα,d(δ) is
strictly decreasing for δ < d−α

2 and strictly increasing for δ > d−α
2 with a minimum at δ = d−α

2
where it takes the value a∗ (see [5, 23] with a slightly different notation; see also [4, 6, 7] for
additional information).

Since Ψα,d(δ) : (−α, d−α
2 ] → (a∗,+∞] is strictly decreasing it is invertible. In the following

theorem, which is our main result, we shall denote its inverse by

σ :=Ψ−1
α,d(a), σ : (a∗,+∞] → (−α,

d − α

2
]. (2)

Theorem 1.1. Let d ∈ N, α ∈ (0, 2 ∧ d) and s ∈ (0, 2]. Let a � a∗ and σ = σ(a) be defined
by (2).

(a) If d
d−σ∨0 < p < d

(σ+αs/2)∨0 with convention d
0 = ∞, then we have∥∥∥(−Δ)αs/2 f

∥∥∥
p
�
∥∥∥Lαs/4

a f
∥∥∥

p
. (3)

(b) If 1 < p < ∞ with d
d−σ∨0 < p < d

(αs/2)∨σ , then we have∥∥∥Ls/2
a f

∥∥∥
p
�
∥∥∥(−Δ)αs/4 f

∥∥∥
p
. (4)

We recall that estimates (3) and (4) for the case α = 2 were proved in [18]. The range
α ∈ (0, d ∧ 2) has been investigated recently in [22], limited to the case p = 2, and in [21] for
general p but with a � 0. Therefore, theorem 1.1 fills the remaining gap a ∈ [a∗, 0) and general
p. The main reason for the restriction a � 0 in [21] is the essential use of the spectral multiplier
theorem from [15], which requires the Poisson upper bound on the heat kernel. We note indeed
that when a < 0, the heat kernel fails to enjoy the Poisson upper bound.

In order to overcome the weak decay of the kernel, we employ a new approach, based on
square function estimates (see section 3). Although our approach is quite similar to that in
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[8], here we encounter several additional obstructions. The method in [8] was built upon the
following heat kernel estimate, valid for La in the Hardy case α = 2:

∥∥e−tLa f
∥∥

Lq(F)
� Ct−

d
2 ( 1

p−
1
q )e−

d(E,F)2
ct ‖ f ‖Lp(E)

for all measurable subsets E, F ⊂ Rd, all f ∈ Lp(E), and suitable 1 � p � q � ∞. For the
approach in [8] (see also [18]), the exponential term in the above estimate plays an essen-
tial role. Unfortunately, this type of estimate fails to be true in our setting with α < 2 (see
section 3). To deal with this difficulty, we consider the Lp − Lq off-diagonal estimates on
balls and their corresponding annuli. This difference requires dedicated heat kernel and square
functions estimates, which form the main bulk of the paper.

The paper is organized as follows. Section 2 is devoted to auxiliary lemmas and estimates.
The heat kernel is analysed in detail in section 3, where sharp estimates of the kernel and its
derivatives are proved. Finally, section 4 is dedicated to square function estimates and to the
proof of the main result.

2. Preliminaries

We start with some notations which will be used frequently. We always write C and c to denote
positive constants that are independent of the main parameters involved but whose values may
differ from line to line. We write A � B if there is a universal constant C so that A � CB
and A � B if A � B and B � A. For a, b ∈ R, we use the notations a ∨ b = max{a, b} and
a ∧ b = min{a, b}. For p ∈ [1,∞], we denote by p′ = p

p−1 the conjugate exponent of p. The
average of a measurable function f over a measurable set E with 0 < |E| < ∞ will be denoted
by

−
∫

E
f (x)dx =

1
|E|

∫
E

f (x)dx.

Given a ball B, the associated annuli are the sets Sj(B) = 2 jB\2 j−1B for j = 1, 2, 3, . . . , while
we write S0(B) = B.

For r > 0, the Hardy–Littlewood maximal function Mr is defined as

Mr f (x) = sup
B�x

(
1
|B|

∫
B
| f (y)|r dy

)1/r

, x ∈ R
d,

where the supremum is taken over all balls B containing x. When r = 1, we write simply M
instead of M1. The following estimate is well known:

Lemma 2.1 ([25]). Let 0 < r < ∞. Then for p > r, we have

‖Mr f ‖p � ‖ f ‖p.

The following estimates are elementary and we omit their proof.

Lemma 2.2.

(a) Let κ ∈ (−∞, d). Then there exists C > 0 so that for all r > 0∫
B(0,t)

(
t
|x|

)κ

dx � Ctd .
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(b) For ε > 0, there exists C > 0 such that

∫
Rd

1
td/α

(
t1/α + |x − y|

t1/α

)−d−ε

dy � C

uniformly in x ∈ R
d.

(c) For ε > 0, there exists C > 0 such that

∫
Rd

1
td/α

(
t1/α + |x − y|

t1/α

)−d−ε

| f (y)|dy � CM f (x)

uniformly in x ∈ Rd.

We next recall two criteria for singular integrals to be bounded on Lebesgue spaces, which
will play an important role in the proof of the boundedness of the square functions. The first
theorem gives a criterion on the boundedness on Lp(Rd) spaces with p ∈ (1, 2), while the
second one covers the range p > 2.

Theorem 2.3. Let 1 � p0 < 2 and let T be a sublinear operator which is bounded on
L2(Rd). Assume that there exists a family of operators {At}t>0 satisfying that for j � 2 and
every ball B

(
−
∫

Sj(B)
|T(I −ArB ) f |2

)1/2

� α( j)

(
−
∫

B
| f |p0

)1/p0

, (5)

and

(
−
∫

Sj(B)
|ArB f |2

)1/2

� α( j)

(
−
∫

B
| f |p0

)1/p0

, (6)

for all f supported in B. If
∑

j α( j)2 jd < ∞, then T is bounded on Lp(Rd) for all p ∈ (p0, 2).

Theorem 2.4. Let 2 < q0 � ∞. Let T be a bounded sublinear operator on L2(Rd). Assume
that there exists a family of operators {At}t>0 satisfying that

(
−
∫

B
|T(I −ArB ) f |2dx

)1/2

� CM2( f )(x), (7)

and

(
−
∫

B
|TArB f |q0dx

)1/q0

� CM2(|T f |)(x), (8)

for all balls B with radius rB, all f ∈ C∞
c (Rd) and all x ∈ B. Then T is bounded on Lp(Rd) for

all 2 < p < q0.

For the proof of theorems 2.3 and 2.4, see [1].
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3. Some kernel estimates

Given θ ∈ (−∞, d], we write

dθ =

⎧⎨
⎩

d
θ

, θ > 0

∞, θ � 0,

and d′
θ is the conjugate exponent of dθ. It is easy to see that d′

θ = dd−θ∨0 for θ ∈ (−∞, d].
For θ ∈ R, we also denote

Dθ(x, t) =

(
1 +

t1/α

|x|

)θ

for t > 0 and x ∈ R
d.

Theorem 3.1. Let {Tt}t>0 be a family of linear operators on L2(Rd) with their associated
kernels Tt(x, y). Assume that there exist C, c > 0 and θ ∈ (−∞, d] such that for all t > 0 and
x, y ∈ R

d\{0},

|Tt(x, y)| � Ct−d/α

(
t1/α + |x − y|

t1/α

)−d−α

Dθ(x, t)Dθ(y, t). (9)

Assume that d′
θ < p � q < dθ. Then for any ball B, for every t > 0 and j ∈ N, we have:

(
−

∫
Sj(B)

|Tt f |q
)1/q

� C max

{( rB

t1/α

)d/p
,
( rB

t1/α

)d
}(

1 +
t1/α

2 jrB

)d/q (
1 +

2 jrB

t1/α

)−d−α(
−

∫
B
| f |p

)1/p

(10)

for all f ∈ Lp(Rd) supported in B, and

(
−

∫
B
|Tt f |q

)1/q

� C max

{(
2 jrB

t1/α

)d

,

(
2 jrB

t1/α

)d/p
}(

1 +
t1/α

rB

)d/q(
1 +

2 jrB

t1/α

)−d−α
(

−
∫

Sj(B)
| f |p

)1/p

(11)

for all f ∈ Lp(Sj(B)).

Proof. We will prove only (10) since the proof of (11) is completely analogous. For conve-
nience, we set F = S j(B) and E = B. We have obviously

‖Tt f ‖Lq(F) �
{∫

F

[∫
E
t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

Dθ(x, t)Dθ(y, t)| f (y)|dy

]q

dx

}1/q

� I1 + I2 + I3 + I4,
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where

I1 =

{∫
F∩B(0,t1/α)

[∫
E∩B(0,t1/α)

t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

Dθ(x, t)Dθ(y, t)| f (y)|dy

]q

dx

}1/q

,

I2 =

{∫
F∩B(0,t1/α)

[∫
E\B(0,t1/α)

t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

Dθ(x, t)Dθ(y, t)| f (y)|dy

]q

dx

}1/q

,

I3 =

{∫
F\B(0,t1/α)

[∫
E∩B(0,t1/α)

t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

Dθ(x, t)Dθ(y, t)| f (y)|dy

]q

dx

}1/q

,

and

I4 =

{∫
F\B(0,t1/α)

[∫
E\B(0,t1/α)

t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

Dθ(x, t)Dθ(y, t)| f (y)|dy

]q

dx

}1/q

.

We now consider the first term I1. By Hölder’s inequality,

I1 � Ct−d/α

(
1 +

d(E, F)
t1/α

)−d−α[∫
F∩B(0,t1/α)

Dqθ(x, t)dx

]1/q(∫
E
| f |p

)1/p[∫
B(0,t1/α)

Dp′θ(y, t)dy

]1/p′

.

Note that ∫
F∩B(0,t1/α)

Dqθ(x, t)dx �
∫

F∩B(0,t1/α)

tqθ/α

|x|qθ dx

�
∫

B(0,t1/α)

tqθ/α

|x|qθ dx � tqθ/αt(d−qθ)/α = td/α,

where in the last inequality we used lemma 2.2 since qθ < d. For the same reason,∫
B(0,t1/α)

Dp′θ(y, t)dy � td/α.

Substituting the two estimates into the bound for I1 we get

I1 � Ct
− d

α (1− 1
q−

1
p′ )
(

1 +
d(E, F)

t1/α

)−d−α

‖ f ‖Lp(E)

� Ct−
d
α ( 1

p−
1
q )
(

1 +
d(E, F)

t1/α

)−d−α

‖ f ‖Lp(E),

which implies

|S j(B)|−1/q × I1 � 2− jd/q
( rB

t1/α

)d( 1
p−

1
q )
(

1 +
2 jrB

t1/α

)−d−α(
−
∫

B
| f |p

)1/p

�
( rB

t1/α

) d
p
(

1 +
t1/α

2 jrB

)d/q(
1 +

2 jrB

t1/α

)−d−α(
−
∫

B
| f |p

)1/p

. (12)
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For the second term I2, in this situation we have Dθ(y, t) � 1. Hence,

I2 �
{∫

F∩B(0,t1/α)

[∫
E\B(0,t1/α)

Dθ(x, t)t−d/α

×
(

t1/α + |x − y|
t1/α

)−d−α

| f (y)|dy

]q

dx

}1/q

� t−
d
α

(
1 +

d(E, F)
t1/α

)−d−α

‖ f ‖L1(E)

(∫
B(0,t1/α)

Dθq(x, t)dx

)1/q

� t−
d
α (1− 1

q )
(

1 +
d(E, F)

t1/α

)−d−α

|E|1/p′‖ f ‖Lp(E),

where in the last inequality we used lemma 2.2 and Hölder’s inequality. It follows that

|S j(B)|−1/q × I2 � t−
d
α (1− 1

q )|B‖2 jB|−1/q

(
1 +

2 jrB

t1/α

)−d−α(
−
∫

B
| f |p

)1/p

� 2− jd/q
( rB

t1/α

)d(1− 1
q )
(

1 +
2 jrB

t1/α

)−d−α(
−
∫

B
| f |p

)1/p

�
( rB

t1/α

)d
(

1 +
t1/α

2 jrB

)d/q(
1 +

2 jrB

t1/α

)−d−α(
−
∫

B
| f |p

)1/p

. (13)

For the third term I3, using the fact that Dθ(x, t) � 1 we have

I3 �
{∫

F\B(0,t1/α)

[∫
E∩B(0,t1/α)

t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

Dθ(y, t)| f (y)|dy

]q

dx

}1/q

� t−
d
α

(
1 +

d(E, F)
t1/α

)−d−α

|F|1/q

∫
E∩B(0,t1/α)

Dθ(y, t)| f (y)|dy.

By lemma 2.2 and Hölder’s inequality,

∫
E∩B(0,t1/α)

Dθ(y, t)| f (y)|dy �
(∫

B(0,t1/α)
Dp′θ(y, t)dy

)1/p′

‖ f ‖Lp(E)

� t
d

p′α ‖ f ‖Lp(E).

As a consequence,

I3 � t−
d
αp

(
1 +

d(E, F)
t1/α

)−d−α

|F|1/q‖ f ‖Lp(E),
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which implies

|S j(B)|−1/q × I3 � t−
d
αp |B|1/p

(
1 +

2 jrB

t1/α

)−d−α(
−
∫

B
| f |p

)1/p

�
( rB

t1/α

) d
p
(

1 +
2 jrB

t1/α

)−d−α(
−
∫

B
| f |p

)1/p

. (14)

It remains to estimate the term I4. Note that in this case Dθ(x, t) � Dθ(y, t) � 1. Hence,

I4 �
{∫

F

[∫
E
t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

| f (y)|dy

]q

dx

}1/q

� t−d/α

(
1 +

d(E, F)
t1/α

)−d−α

|F|1/q‖ f ‖L1(E)

� t−d/α

(
1 +

d(E, F)
t1/α

)−d−α

|F|1/q|E|1/p′‖ f ‖Lp(E),

where in the last inequality we used Hölder’s inequality. Thus we obtain

|S j(B)|−1/q × I4 � t−
d
α |B|

(
1 +

2 jrB

t1/α

)−d−α(
−
∫

B
| f |p

)1/p

�
( rB

t1/α

)d
(

1 +
2 jrB

t1/α

)−d−α(
−
∫

B
| f |p

)1/p

, (15)

and this completes the proof of (10). �

Theorem 3.2. Let {Tt}t>0 be a family of linear operators on L2(Rd) with their associated
kernels Tt(x, y) satisfying the estimate (9). Then for every d′

θ < q < dθ, there exists C such that

‖Tt‖q→q � C

uniformly in t > 0.

Proof. Using the same notations as in the proof of theorem 3.1, we have

‖Tt f ‖q � I1 + I2 + I3 + I4,

where I1, I2, I3 and I4 are terms defined similarly to those in the proof of theorem 3.1 with
respect to E = F = Rd.

Similarly to the proof of theorem 3.1, we have

I1 � C‖ f ‖q.

Similarly to the estimate of the term I2 in the proof of theorem 3.1, we also have

I2 �
{∫

B(0,t1/α)
Dqθ(x, t)

[∫
Rd\B(0,t1/α)

t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

| f (y)|dy

]q

dx

}1/q

.

178



Nonlinearity 36 (2023) 171 T A Bui and P D’ancona

Using Hölder’s inequality and lemma 2.2 (b),

∫
Rd\B(0,t1/α)

t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

| f (y)|dy

� t−
d
αq ‖ f ‖q

[∫
Rd

t−d/α

(
t1/α + |x − y|

t1/α

)−(d+α)q′

dy

]1/q′

� t−
d
αq ‖ f ‖q.

This gives

I2 � t−
d
αq ‖ f ‖q

[∫
B(0,t1/α)

Dqθ(x, t)dx

]1/q

� ‖ f ‖q,

where in the last inequality we used lemma 2.2 (a).
In a similar way, we have

I3 � ‖ f ‖q,

and using the same argument as in the proof of theorem 3.1,

I4 �
{∫

Rd

[∫
Rd

t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

| f (y)|dy

]q

dx

}1/q

�
{∫

Rd
M f (x)qdx

}1/q

� ‖ f ‖q,

where we used lemma 2.2 (c) in the second inequality and the Lq-boundedness of the maximal
operator M in the last inequality. �

The following heat kernel estimates are taken from [3, 5, 11, 17, 26].

Theorem 3.3. Let d ∈ N, 0 < α < 2 ∧ d, a � a∗, and let σ be defined by (2). Let pt(x, y)
be the kernel associated to the semigroups e−tLa . Then for all t > 0 and x, y ∈ Rd\{0},

pt(x, y) � Dσ(x, t)Dσ(y, t)t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

.

The following result show that the upper bound for the kernel pt(x, y) can be extended to
the complex heat kernel pz(x, y) for z ∈ Cπ/4 := {z ∈ C : | arg z| < π/4}.

Proposition 3.4. Let d ∈ N, 0 < α < 2 ∧ d, a � a∗, and let σ be defined by (2). Let pz(x, y)
be the kernels associated to the semigroups e−zLa with z ∈ Cπ/4 := {z ∈ C : | arg z| < π/4}.
Then there exists a constant C such that
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|pz(x, y)| � CDσ(x, |z|)Dσ(y, |z|)|z|−d/α

(
|z|1/α + |x − y|

|z|1/α

)−d−α

(16)

Proof. We adapt the standard argument in [12, lemma 3.4.6] to our present situation. Thus
it is sufficient to prove that

|w(x)pz(x, y)w(y)| � C
|z|d/α , (17)

where w(x) = D−σ(x, |z|).
Now for f : Rd → R, we define the norm

| f |wL∞ = sup
x

| f (x)w(x)|

so that (17) is equivalent to

∥∥e−zLa
∥∥

L1
w−1→wL∞ � C

|z|d/α .

Write z = 2t + is for some t � 0 and s ∈ R. Since |arg z| < π/4, we have t � |z| and hence∥∥e−zLa
∥∥

L1
w−1→wL∞ �

∥∥e−tLa
∥∥

L2→wL∞
∥∥e−isLa

∥∥
L2→L2

∥∥e−tLa
∥∥

L1
w−1→L2 .

Since La is nonnegative and self-adjoint, we have
∥∥e−isLa

∥∥
L2→L2 � 1, and the claim will

follow as soon as we prove that∥∥e−tLa
∥∥

L1
w−1→L2 � t−

d
2α and

∥∥e−tLa
∥∥

L2→wL∞ � t−
d

2α .

We shall prove that
∥∥e−tLa

∥∥
L1
w−1→L2 � t−

d
2α ; the second inequality

∥∥e−tLa
∥∥

L2→wL∞ � t−
d

2α can

be proved in the same manner. Indeed, for f ∈ L1
w−1 we have, by theorem 3.3,

∥∥e−tLa f
∥∥

L2 �

⎡
⎣∫

Rd

∣∣∣∣∣
∫
Rd

t−d/αDσ(x, t)Dσ(y, t)

(
t1/α + |x − y|

t1/α

)−d−α

| f (y)|dy

∣∣∣∣∣
2

dx

⎤
⎦

1/2

�
∫
Rd

⎡
⎣∫

R

∣∣∣∣∣t−d/αDσ(x, t)

(
t1/α + |x − y|

t1/α

)−d−α
∣∣∣∣∣
2

dx

⎤
⎦

1/2

Dσ(y, t)| f (y)|dy

� sup
y∈Rd

⎡
⎣∫

Rd

∣∣∣∣∣t−d/αDσ(x, t)

(
t1/α + |x − y|

t1/α

)−d−α
∣∣∣∣∣
2

dx

⎤
⎦

1/2

‖ f ‖L1
w−1

.

Hence, it suffices to prove that

sup
y∈Rd

⎡
⎣∫

Rd

∣∣∣∣∣t−d/αDσ(x, t)

(
t1/α + |x − y|

t1/α

)−d−α
∣∣∣∣∣
2

dx

⎤
⎦

1/2

� t−
d

2α . (18)

Indeed, we break the integral into two parts: the first part corresponding to the integral over
B(0, t1/α) and the second corresponding to the integral over B(0, t1/α)c, and denote them by I1
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and I2, respectively. For the first integral, we use the fact that 2σ � d − α < d and lemma 2.2
(a) to bound it by

[∫
B(0,t1/α)

∣∣∣t−d/αDσ(x, t)
∣∣∣2dx

]1/2

= t−d/α

[∫
B(0,t1/α)

D2σ(x, t)dx

]1/2

� t−
d

2α .

Using the fact that Dσ(x, t) � 1 as x ∈ B(0, t1/α)c and lemma 2.2 we can dominate the second
integral by

[∫
B(0,t1/α)c

∣∣∣∣t−2d/α

(
t1/α + |x − y|

t1/α

)−2(d+α)

dx

]1/2

� t−
d

2α .

These two estimates ensure (18). Hence,∥∥e−tLa f
∥∥

L2 � t−
d

2α ‖ f ‖L1
w−1

which implies ∥∥e−tLa
∥∥

L1
w−1→L2 � t−

d
2α .

This completes our proof. �
As a direct consequence of proposition 3.4 and Cauchy formula, we obtain the following

result.

Proposition 3.5. Let d ∈ N, 0 < α < 2 ∧ d, a � a∗ and let σ be defined by (2). For any
k ∈ N, there exists Ck > 0 such that for all t > 0 and x, y ∈ Rd\{0},

|pt,k(x, y)| � Ckt−(k+d/α)Dσ(x, t)Dσ(y, t)

(
t1/α + |x − y|

t1/α

)−d−α

,

where pt,k(x, y) is an associated kernel to Lk
ae−tLa .

Proof. Applying Cauchy formula, for every t > 0 and k ∈ N,

Lk
ae−tLa =

(−1)kk!
2πi

∫
|ξ−t|=ηt

e−ξLa
dξ

(ξ − t)k
,

where η > 0 is small enough so that {ξ : |ξ − t| = ηt} ⊂ Cπ/2, and the integral does not depend
on the choice of η.

We now apply proposition 3.4 and the fact that |ξ| � |ξ − t| � t to deduce that

|pt,k(x, y)| � Ckt−(k+d/α)Dσ(x, t)Dσ(y, t)

(
t1/α + |x − y|

t1/α

)−d−α

for all x, y ∈ R
d and t > 0.

This completes our proof. �
In the previous estimates k is an integer. By a suitable interpolation argument, we now

proceed to extend the estimates to the fractional case:
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Proposition 3.6. Let d ∈ N, 0 < α < 2 ∧ d, a � a∗ and let σ be defined by (2).

(a) For any s ∈ R, s > 0 and d′
σ < p < dσ , there exists C such that∥∥(tLa)se−tLa
∥∥

p→p
� C

for all t > 0.
(b) For any s ∈ R, s > 1 + max{0, σ/α}, there exists Cs > 0 such that for all t > 0 and x, y ∈

Rd\{0},

|pt,s(x, y)| � Ckt−(s+d/α)Dσ(x, t)Dσ(y, t)

(
t1/α + |x − y|

t1/α

)−d−α

,

where pt,s(x, y) is an associated kernel to Ls
ae−tLa .

Proof.

(a) Due to proposition 3.5 and theorem 3.2, we need only to verify (a) for s /∈ N. To do this, we
write s = k − γ, where k ∈ N and γ ∈ (0, 1). Using the following subordination formula

L−γ
a =

1
Γ(γ)

∫ ∞

0
uγe−uLa

du
u

,

we have

(tLa)se−tLa =
1

Γ(γ)

∫ ∞

0
tsuγLk

ae−(u+t)La
du
u

,

which implies that

(tLa)se−tLa =
1

Γ(γ)

∫ ∞

0

tsuγ

(u + t)k
(u + t)kLk

ae−(u+t)La
du
u
.

This, along with proposition 3.5 and theorem 3.2, yields

∥∥(tLa)se−tLa
∥∥

p
=

1
Γ(γ)

∫ ∞

0

tsuγ

(u + t)k

∥∥(u + t)kLk
ae−(u+t)La

∥∥
p

du
u

�
∫ ∞

0

tsuγ

(u + t)k

du
u

=

∫ ∞

0

tsuγ

(u + t)s+γ

du
u

� 1.

This completes our proof.
(b) Due to proposition 3.5, it suffices to prove proposition 3.6 for s /∈ N. In this situation, we

can find k ∈ N and γ ∈ (0, 1) such that s = k − γ. Using the above subordination formula,
we can write

Ls
ae−tLa =

1
Γ(γ)

∫ ∞

0
uγLk

ae−(u+t)La
du
u
.
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It follows, by proposition 3.5, that

|pt,s(x, y)| �
∫ ∞

0

uγ

(t + u)k+d/α
Dσ(x, t + u)Dσ(y, t + u)

(
(t + u)1/α + |x − y|

(t + u)1/α

)−d−α
du
u

=

∫ t

0
. . .+

∫ ∞

t
. . .

=: I1 + I2.

For the term I1, using the fact that t + u � t as u � t,

I1 �
∫ t

0

uγ

tk+d/α
Dσ(x, t)Dσ(y, t)

(
t1/α + |x − y|

t1/α

)−d−α
du
u

� tγ

tk+d/α
Dσ(x, t)Dσ(y, t)

(
t1/α + |x − y|

t1/α

)−d−α

� 1
ts+d/α

Dσ(x, t)Dσ(y, t)

(
t1/α + |x − y|

t1/α

)−d−α

.

Likewise, for the term I2, since t + u � u as u � t, we have

I2 �
∫ ∞

t

uγ

uk+d/α
Dσ(x, u)Dσ(y, u)

(
u1/α + |x − y|

u1/α

)−d−α
du
u

�
∫ ∞

t

1
us+d/α

Dσ(x, u)Dσ(y, u)

(
u1/α + |x − y|

u1/α

)−d−α
du
u
.

This, in combination with the following inequalities

Dσ(x, u)Dσ(y, u) � Dσ(x, t)Dσ(y, t)
(u

t

)max{0,σ/α}

and (
u1/α + |x − y|

u1/α

)−d−α

�
(

t1/α + |x − y|
t1/α

)−d−α(u
t

)1+d/α
,

implies that

I2 � Dσ(x, t)Dσ(y, t)

(
t1/α + |x − y|

t1/α

)−d−α∫ ∞

t

1
us+d/α

(u
t

)1+d/α+max{0,σ/α} du
u

� 1
ts+d/α

Dσ(x, t)Dσ(y, t)

(
t1/α + |x − y|

t1/α

)−d−α

,

as long as s > 1 + max{0, σ/α}.
This completes our proof. �

4. Equivalence of Sobolev norms involving La

This section is devoted to prove theorem 1.1. Before coming to the proof of the main result,
we need some estimates for square functions which play a key role in the argument.
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Given γ > 0, we consider the following square function

SLa,γ f (x) =

(∫ ∞

0
|(tLa)γe−tLa f |2 dt

t

)1/2

.

Note that by the functional calculus in [20], the square function SLa,γ is bounded on L2. In the
following theorem, we prove the Lp estimates for SLa,γ .

Theorem 4.1. Let d ∈ N, 0 < α < 2 ∧ d, a � a∗ and let σ be defined by (2). Let γ ∈ (0, 1].
Then for all d′

σ < p < dσ,

‖SLa,γ f ‖p ∼ ‖ f ‖p.

As a consequence, for s ∈ (0, 2] and d′
σ < p < dσ,∥∥∥∥∥

(∫ ∞

0
t−s|tLae−tLa f |2 dt

t

)1/2
∥∥∥∥∥

p

�
∥∥∥Ls/2

a f
∥∥∥

p
.

Proof. We divide the proof into two steps.

Step 1 Proof of the boundedness of SLa,γ on Lp for d′
σ < p � 2.

Fix r ∈ (d′
σ, 2] and m > 1 + d

αr′ . For every ball B we define

ArB = I − (I − e−rαBLa)m.

We will claim that(
−
∫

Sj(B)
|SLa,γ (I −ArB ) f |2dx

)1/2

� 2− j(d+α)

(
−
∫

B
| f |rdx

)1/r

, j � 2, (19)

and (
−
∫

Sj(B)
|ArB f |2

)1/2

� 2− j(d+α)

(
−
∫

B
| f |rd

)1/r

(20)

for all balls B and all f ∈ C∞ supported in B. Once these two estimates have been proved,
the boundedness of SLa,γ on Lp for d′

σ < p � 2 will follow directly from theorem 2.3.
We rewrite(∫

S j(B)
|SLa,γ(I −ArB ) f |2dx

)1/2

=

(∫ ∞

0

∥∥(tLa)γe−tLa(I −ArB ) f
∥∥2

L2(S j(B))

dt
t

)1/2

.

Hence, we are reduced to prove the following inequality:

|S j(B)|−1/2

(∫ ∞

0

∥∥(tLa)γe−tLa(I −ArB ) f
∥∥2

L2(S j(B))

dt
t

)1/2

� 2− j(d+α)

(
−
∫

B
| f |rdx

)1/r

(21)

for j � 2, all balls B, and all f ∈ C∞ supported in B.
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We note that for every g ∈ L2 and s > 0,∫ u

t
Ls+1

a e−τLag dτ = Ls
ae−tLag − Ls

ae−uLag.

This, along with Minkowski’s inequality, implies

∥∥Ls
ae−tLag

∥∥
L2(S j(B))

�
∫ ∞

t

∥∥Ls+1
a e−τLag

∥∥
L2(S j(B))

dτ.

Thus we have

(∫ ∞

0

∥∥(tLa)γe−tLag
∥∥2

L2(S j(B))

dt
t

)1/2

�
[∫ ∞

0
t2γ

(∫ ∞

t

∥∥Lγ+1
a e−τLag

∥∥
L2(S j(B))

dτ

)2 dt
t

]1/2

�
[∫ ∞

0

∥∥(tLa)γ+1e−tLag
∥∥2

L2(S j(B))

dt
t

]1/2

,

where in the last inequality we used Hardy’s inequality.
By iteration we have, for every N ∈ N,

(∫ ∞

0

∥∥(tLa)γe−tLag
∥∥2

L2(S j(B))

dt
t

)1/2

� CN

[∫ ∞

0

∥∥(tLa)γ+Ne−tLag
∥∥2

L2(S j(B))

dt
t

]1/2

.

Taking g = (I −ArB ) f , we have, for every N ∈ N,

(∫ ∞

0

∥∥(tLa)γe−tLa(I −ArB ) f
∥∥2

L2(S j(B))

dt
t

)1/2

� CN

[∫ ∞

0

∥∥(tLa)γ+Ne−tLa(I −ArB ) f
∥∥2

L2(S j(B))

dt
t

]1/2

.

Due to this inequality it suffices to prove (21) assuming γ > 1 + max{0, σ/α}. To do
this, we write

(∫ ∞

0

∥∥(tLa)γe−tLa(I −ArB ) f
∥∥2

L2(S j(B))

dt
t

)1/2

�
(∫ rαB

0
. . .

)1/2

+

(∫ ∞

rαB

. . .

)1/2

=: E1 + E2.

We now estimate E1. Since

(tLa)γe−tLa(I −ArB ) = (tLa)γe−tLa(I − e−rαBLa)m =
m∑

k=0

Cm
k (tLa)γe−(t+krαB )La

= (tLa)γe−tLa +

m∑
k=1

Cm
k (tLa)γe−(t+krαB )La ,
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applying proposition 3.6 with γ > 1 + max{0, σ/α} and the fact that t + krαB � rαB
for t ∈ (0, rαB) and k � 1, we get the following upper bound for the kernel of
(tLa)γe−tLa(I − e−rαBLa)m:

t−d/αDσ(x, t)Dσ(y, t)

(
t1/α + |x − y|

t1/α

)−d−α

+

(
t

rαB

)γ

r−d
B Dσ(x, rαB)Dσ(y, rαB)

(
rB + |x − y|

rB

)−d−α

.

At this stage, using (10) from theorem 3.1 and the fact that t � rαB , we can write, for d′
σ <

r � 2,

|S j(B)|−1/2
∥∥(tLa)γe−tLa(I −ArB ) f

∥∥
L2(S j(B))

�
( rB

t1/α

)d
(

2 jrB

t1/α

)−d−α(
−
∫

B
| f |r

)1/r

+

(
t

rαB

)γ

2− j(d+α)

(
−
∫

B
| f |r

)1/r

.

Plugging this into the expression of E1 we obtain

|S j(B)|−1/2 × E1 � 2− j(d+α)

(
−
∫

B
| f |r

)1/r

.

For the second term E2, we note that

I −ArB = (I − e−rαBLa)m =

∫ rαB

0
. . .

∫ rαB

0
Lm

a e−(s1+···+sm)La d
s, (22)

where d
s = ds1 . . . dsm. Therefore,

∥∥(tLa)γe−tLa(I −ArB ) f
∥∥

L2(S j(B))
�
∫

[0,rαB ]m

∥∥tγLγ+m
a e−(t+s1+···+sm)La f

∥∥
L2(S j(B))

d
s

Hence, using proposition 3.5 and (10) in theorem 3.1 with the fact that t + s1 + · · ·+ sm �
t as
s ∈ [0, rαB]m and t � rαB , we have

|S j(B)|−1/2
∥∥(tLa)γe−tLa(I −ArB ) f

∥∥
L2(S j(B))

�
∫

[0,rαB ]m
t−m

( rB

t1/α

)d/r
(

1 +
t1/α

2 jrB

)d/2(
1 +

2 jrB

t1/α

)−d−α(
−
∫

B
| f |r

)1/r

d
s

�
(

rαB
t

)m( rB

t1/α

)d/r
(

1 +
t1/α

2 jrB

)d/2(
1 +

2 jrB

t1/α

)−d−α(
−
∫

B
| f |r

)1/r

.

Plugging this into the expression of E2,

|S j(B)|−1/2 × E2 �
∫ ∞

rαB

(
rαB
t

)m( rB

t1/α

)d/r
(

1 +
t1/α

2 jrB

)d/2

×
(

1 +
2 jrB

t1/α

)−d−α dt
t

(
−
∫

B
| f |r

)1/r

.
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We break the integral in dt into two pieces, i.e. the integral over the interval (rαB , 2 jαrαB) and
the integral over (2 jαrαB ,∞):

|S j(B)|−1/2 × E2 �
∫ 2 jαrαB

rαB

(
rαB
t

)m( rB

t1/α

)d/r
(

2 jrB

t1/α

)−d−α dt
t
×
(

−
∫

B
| f |r

)1/r

+

∫ ∞

2 jαrαB

(
rαB
t

)m( rB

t1/α

)d/r
(

t1/α

2 jrB

)d/2
dt
t
×
(

−
∫

B
| f |r

)1/r

.

Keeping in mind that m > 1 + d
αr′ and using a straightforward calculation, we obtain

|S j(B)|−1/2 × E2 �
[
2− j(d+α) + 2− j(m+d/2)

](
−
∫

B
| f |r

)1/r

� 2− j(d+α)

(
−
∫

B
| f |r

)1/r

.

From the estimates of E1 and E2 we obtain (19).
It remains to prove (20). Since

ArB =

m∑
k=1

Cm
k e−krαBLa ,

by using theorem 3.3, we can dominate the kernel ArB (x, y) of ArB by

constant ×
(

1 +
rB

|x|

)σ(
1 +

rB

|y|

)σ

r−d
B

(
rB + |x − y|

rB

)−d−α

.

Therefore, applying (10) in theorem 3.1,

(
−
∫

Sj(B)
|ArB f (x)|2dx

)1/2

� 2− j(d+α)

(
−
∫

B
| f (x)|rdx

)1/r

,

which proves (20). This completes the proof of step 1.
Step 2 Proof of the boundedness of SLa,γ on Lp for 2 < p < dσ .

By theorem 2.4, for any q ∈ (2, dσ) it suffices to prove that

(
−
∫

B
|SLa,γ(I −ArB ) f |2dx

)1/2

� CM2( f )(x), (23)

and

(
−
∫

B
|SLa,γArB f |qdx

)1/q

� CM2(|SLa,γ f |)(x) (24)

for all balls B with radius rB, all f ∈ C∞
c (Rd) and all x ∈ B with ArB = I − (I − e−rαBLa)m,

m > 1 + d/2. The proof of these two inequalities is quite similar to that of step 1; however,
since the decay is different, we give full details of the argument.
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To prove (23), we write

(
−
∫

B
|SLa,γ(I −ArB ) f |2dx

)1/2

�
∞∑
j=0

(
−
∫

B
|SLa,γ(I −ArB ) f j|2dx

)1/2

:=
∞∑
j=0

I j,

where f j = fχS j(B).
For j = 0, 1, using the L2-boundedness of SLa,γ and ArB we have

I j � M2( f )(x).

Hence, it suffices to prove that

I j � 2− jα

(
−
∫

Sj(B)
| f |2dx

)1/2

for j � 2.
Arguing similarly to the proof of step 1, we are reduced to prove the following

inequality

|B|−1/2

(∫ ∞

0

∥∥(tLa)γe−tLa(I −ArB ) f j

∥∥2

L2(B)

dt
t

)1/2

� 2− jα

(
−
∫

Sj(B)
| f |2dx

)1/2

(25)

for γ > 1 + max{0, σ/α} and j � 2.
To do this, we write

(∫ ∞

0

∥∥(tLa)γe−tLa(I −ArB ) f j

∥∥2

L2(B)

dt
t

)1/2

�
(∫ rαB

0
. . .

)1/2

+

(∫ ∞

rαB

. . .

)1/2

=: F1 + F2.

Arguing similarly to the estimate of E1 in step 1, but using (11) instead of (10) for
t � rαB ,

|B|−1/2
∥∥(tLa)γe−tLa(I −ArB ) f j

∥∥
L2(B)

�
(

t
rαB

)γ

2− jα

(
−
∫

Sj(B)
| f |2

)1/2

+

(
2 jrB

t1/α

)d(
1 +

2 jrB

t1/α

)−d−α
(

−
∫

Sj(B)
| f |2

)1/2

.

Inserting this into the expression of F1, we obtain

|B|−1/2 × F1 � 2− jα

(
−
∫

Sj(B)
| f |2

)1/2

.
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For the second term F2, using an argument similar to that of the estimate for E2 in step 1,
but using (11) instead of (10) from theorem 3.1, we have

|B|−1/2
∥∥(tLa)γe−tLa(I −ArB ) f j

∥∥
L2(B)

�
∫

[0,rαB ]m
t−m max

{(
2 jrB

t1/α

)d

,

(
2 jrB

t1/α

)d/2
}

×
(

1 +
t1/α

rB

)d/2(
1 +

2 jrB

t1/α

)−d−α

d
s

(
−
∫

Sj(B)
| f |2

)1/2

�
(

rαB
t

)m

max

{(
2 jrB

t1/α

)d

,

(
2 jrB

t1/α

)d/2
}(

t1/α

rB

)d/2

×
(

1 +
2 jrB

t1/α

)−d−α
(

−
∫

Sj(B)
| f |2

)1/2

as long as t � rαB . Inserting this into the expression of F2 we obtain

|B|−1/2 × F2 �
∫ ∞

rαB

(
rαB
t

)m

max

{(
2 jrB

t1/α

)d

,

(
2 jrB

t1/α

)d/2
}(

t1/α

rB

)d/2

×
(

1 +
2 jrB

t1/α

)−d−α dt
t

(
−
∫

Sj(B)
| f |2

)1/2

.

Splitting the integral in dt into the integral over the interval (rαB , 2 jαrαB ) and the integral
over (2 jαrαB ,∞), we find that

|S j(B)|−1/2 × F2 �
∫ 2 jαrαB

rαB

(
rαB
t

)m(2 jrB

t1/α

)d( rB

t1/α

)d/2
(

2 jrB

t1/α

)−d−α dt
t

×
(

−
∫

Sj(B)
| f |2

)1/2

+

∫ ∞

2 jαrαB

(
rαB
t

)m(2 jrB

t1/α

)d/2

×
(

t1/α

rB

)d/2
dt
t
×
(

−
∫

Sj(B)
| f |2

)1/2

� 2− jα

(
−
∫

Sj(B)
| f |2

)1/2

,

as long as m > 1 + d
αr′ . Collecting the estimates of F1 and F2 we obtain (25).
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It remains to prove (24). We first write

(∫
B
|SLa,γArB f (x)|qdx

)1/q

=

⎡
⎢⎣∫

B

⎛
⎝∫ ∞

0

∣∣∣∣∣
m∑

k=1

Cm
k e−krαBLa(tLa)γe−tLa f (x)

∣∣∣∣∣
2

dt
t

⎞
⎠

q/2

dx

⎤
⎥⎦

1/q

�
∑
j�0

⎡
⎢⎣∫

B

⎛
⎝∫ ∞

0

∣∣∣∣∣
m∑

k=1

Cm
k e−krαBLa[(tLa)γe−tLa fχS j(B)](x)

∣∣∣∣∣
2

dt
t

⎞
⎠

q/2

dx

⎤
⎥⎦

1/q

which, along with Minkowski’s inequality, theorem 3.3, and (11) in theorem 3.1, gives

(
−
∫

B
|SLa,γArB f (x)|qdx

)1/q

�
∑
j�0

|B|−1/q

⎛
⎝∫ ∞

0

∥∥∥∥∥
m∑

k=1

e−krαBLa[(tLa)γe−tLa fχS j(B)]

∥∥∥∥∥
2

Lq(B)

dt
t

⎞
⎠

1/2

�
∑
j�0

2− jα|S j(B)|−1/2

(∫ ∞

0

∥∥(tLa)γe−tLa f
∥∥2

L2(S j(B))

dt
t

)1/2

�
∑
j�0

2− jα

(∫
−2 jB|SLa,γ f (x)|2dx

)1/2

.

This implies (24). Hence the proof of step 2 is completed.
Thus we have proved that the square function SLa,γ is bounded on Lp(Rd) for all d′

σ <
p < dσ , that is to say

‖SLa,γ f ‖p � ‖ f ‖p.

To prove the converse inequality we use duality. By functional calculus, for any g ∈
Lp′ (Rd) we have∫

Rd
f (x)g(x)dx = c(α)

∫
Rd

∫ ∞

0
(tLa)2(γ)e−2tLa f (x)g(x)

dt
t

dx,

where c(α) =
∫∞

0 t2(γ)e−2t dt
t . Using Hölder’s inequality we obtain∫

Rd
f (x)g(x)dx = c(α)

∫
Rd

∫ ∞

0
(tLa)γe−tLa f (x)(tLa)γe−tLag(x)

dt
t

dx

�
∫
Rd

SLa,γ f (x)SLa,γg(x)dx

� ‖SLa,γ f ‖p‖SLa,γg‖p′ .
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By using the direct inequality ‖SLa,γg‖p′ � ‖g‖p′ , we get

∫
Rd

f (x)g(x)dx � ‖SLa,γ f ‖p‖g‖p′ .

As a consequence,

‖ f ‖p � ‖SLa,γ f ‖p

which completes the proof. �

The following result on the boundedness of square functions involving the difference
tLae−tLa − t(−Δ)α/2e−t(−Δ)α/2

will play an essential role in the proofs of the main results.

Theorem 4.2. Let d ∈ N, 0 < α < 2 ∧ d, and s ∈ (0, 2]. Let a � a∗ and σ be defined by
(2). We have the following estimate∥∥∥∥∥

(∫ ∞

0
t−s
∣∣∣(tLae−tLa − t(−Δ)α/2e−t(−Δ)α/2

)
f
∣∣∣2 dt

t

)1/2
∥∥∥∥∥

Lp

�
∥∥∥∥ f
|x|sα/2

∥∥∥∥
Lp

provided that d′
σ < p < dσ.

We will provide the proof of theorem 4.2 later on. We now introduce the following two
functions for the bound of the kernel of t(−Δ)α/2e−t(−Δ)α/2 − tLae−tLa :

Lα
t (x, y) := 1{(|x|∨|y|)α�t}t

−d/α

(
t2/α

|x‖y|

)σ+

+ 1{(|x|∨|y|)α�t}
t

(|x| ∨ |y|)d+α

(
1 ∨ t1/α

|x| ∧ |y|

)σ+

,

and

Mα
t (x, y) := 1{(|x|∨|y|)α�t}1{ 1

2 |x|�|y|�2|x|}
t1−d/α

(|x| ∧ |y|)α

(
1 ∧ t1+d/α

|x − y|d+α

)
,

where σ+ = max{0, δ}, that is, σ+ = 0 if σ � 0 and σ+ = σ if σ < 0.
These two functions were used in [22] in the proof of the upper bound for the kernel of the

difference e−tLa − e−t(−Δ)α/2
.

We have the following lemma.

Lemma 4.3. Let σ ∈ (−α, (d − α)/2]. Suppose that Tt(x, y) and Ht(x, y) are two measur-
able functions defined by

Tt(x, y) = t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

Dσ(x, t)Dσ(y, t),

and

Ht(x, y) = t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

.

for all t > 0 and x, y ∈ R
d\{0}.
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Then there exists C > 0 such that

Ut(x, y) :=
∫
Rd

∫ t

0
Ht−s(x, z)|z|−αTs(z, y)ds dz � C[Lα

t (x, y) + Mα
t (x, y)],

whenever |y| � t1/α and 1
2 |y| � |x| � 2|y|.

Proof. The proof of this lemma has the same spirit as that of lemma 3.1 [22]. For the sake
of completeness, we sketch it here.

Since Dσ(y, s) � 1 as |y| � t1/α � s1/α, we have

Ut(x, y) �
∫
Rd

∫ t

0
s−d/α(t − s)−d/α|z|−α

(
(t − s)1/α + |x − z|

(t − s)1/α

)−d−α

(
s1/α + |z − y|

s1/α

)−d−α

Dσ(z, s)ds dz

=

∫
B(0,|x|/8)

∫ t

0
. . .+

∫
B(0,|x|/8)c

∫ t

0
. . .

= E1 + E2.

For the term E2, in this case s1/α � t1/α � |y| � |x| � |z|, and hence Dσ(z, s) � 1. This, along
with the fact that |z|−α � |x|−α, implies

E2 � |x|−α

∫
Rd

∫ t

0
s−d/α(t − s)−d/α

(
(t − s)1/α + |x − z|

(t − s)1/α

)−d−α

(
s1/α + |z − y|

s1/α

)−d−α

ds dz.

Denote by p̃t(x, y) the kernel of e−t(−Δ)α/2
. Then we have

∫
Rd

s−d/α(t − s)−d/α

(
(t − s)1/α + |x − z|

(t − s)1/α

)−d−α(
s1/α + |z − y|

s1/α

)−d−α

dz

�
∫
Rd

p̃t−s(x, z) p̃s(z, y)dz

= p̃t(x, y) � t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

,

where in the second line we use theorem 3.3 for a = 0 and in the last line we used the semigroup
property. Substituting this into the bound of E2 we get

E2 � |x|−αt−d/α

(
t1/α + |x − y|

t1/α

)−d−α∫ t

0
ds

� t
|x|α t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

� Mα
t (x, y).

192



Nonlinearity 36 (2023) 171 T A Bui and P D’ancona

Let us move on the term E1. In this situation, we have |x − z| � |x| and |y − z| � |y| as
|z| � |x|/8 and 1

2 |y| � |x| � |y|. Hence,

E1 �
∫

B(0,|x/8|)

∫ t

0
s−d/α(t − s)−d/α|z|−α

(
|x|

(t − s)1/α

)−d−α

(
|y|

s1/α

)−d−α

Dσ(z, s)ds dz

� 1
(|x‖y|)d+α

∫ t

0
s(t − s)

∫
B(0,|x/8|)

|z|−αDσ(z, s)dz ds.

By lemma 2.2, ∫
B(0,|x/8|)

|z|−αDσ(z, s)dz �
∫

B(0,|x/8|)

(
|z|−α + |s| σ

+
α |z|−α−σ+

)
dz

� |x|d−α + s
σ+
α |x|d−α−σ+ � |x|d−α.

Plugging this into the bound of E1,

E1 � |x|d−α

(|x‖y|)d+α

∫ t

0
s(t − s)ds

� t3|x|d−α

(|x‖y|)d+α
.

Since in this situation |x| � |y| and |x|, |y|� t1/α, we have

E1 � t3

|x|2α|y|d+α

� t
|y|d+α

� Lα
t (x, y).

This completes our proof. �

Let Qt(x, y) be the kernel of t(−Δ)α/2et(−Δ)α/2 − tLae−tLa . We have the following estimates:

Proposition 4.4. Let d ∈ N, 0 < α < 2 ∧ d, and s ∈ (0, 2]. Let a � a∗ and σ be defined
by (2). Then for all x, y ∈ R

d and t > 0,

|Qt(x, y)| � Lα
t (x, y) + Mα

t (x, y). (26)

Proof. Let Tt(x, y) and Ht(x, y) be two functions as in lemma 4.3. Denote p̃t(x, y) and p̃t,1(x, y)

by the kernels of e−t(−Δ)α/2
and (−Δ)α/2e−t(−Δ)α/2

, respectively. Then from theorem 3.3 and
proposition 3.5 for a = 0, we have

|p̃t(x, y)|+ t|p̃t,1(x, y)| � Ht(x, y)

for all t > 0 and x, y ∈ R
d.
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Moreover, from proposition 3.5,

|pt(x, y)|+ t|pt,1(x, y)| � Tt(x, y)

for all t > 0 and x, y ∈ R
d.

By symmetry we may assume that |x| � |y|. We now consider two cases.

Case 1: |y| � t1/α, or |y| � t1/α and |x| � |y|/2. Then, if σ � 0 we have

|Qt(x, y)| � Ht(x, y) = t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

� t−d/α

� Lα
t (x, y).

On the other hand, if σ > 0 we have

|Qt(x, y)| � Tt(x, y) = t−d/α

(
t1/α + |x − y|

t1/α

)−d−α

Dσ(x, t)Dσ(y, t)

� t−d/α

(
t

2
α

|x‖y|

)σ

� Lα
t (x, y).

Hence, in this case

|Qt(x, y)| � Lα
t (x, y).

Case 2: |y| � t1/α and |y|/2 � |x| � |y|. In this case by Duhamel’s formula,

p̃t(x, y) − pt(x, y)

= a
∫ t

0

∫
Rd

p̃t−s(x, z)|z|−αps(z, y)dz ds

= a
∫ t/2

0

∫
Rd

p̃t−s(x, z)|z|−αps(z, y)dz ds

+ a
∫ t/2

0

∫
Rd

p̃s(x, z)|z|−αpt−s(z, y)dz ds.

Differentiating both sides with respect to t and then multiplying by t, we come up with,
by simple manipulations,

Qt(x, y) = at
∫
Rd

p̃t/2(x, z)|z|−αpt/2(z, y)dz

+ at
∫ t/2

0

∫
Rd

p̃t−s,1(x, z)|z|−αps(z, y)dz ds

+ at
∫ t

t/2

∫
Rd

p̃t−s(x, z)|z|−αps,1(z, y)dz ds

= I1 + I2 + I3. (27)
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We can estimate the term I1 as follows:

t
∫
Rd

p̃t/2(x, z)|z|−αpt/2(z, y)dz = 6
∫ t/2

t/3

∫
Rd

p̃t/2(x, z)|z|−αpt/2(z, y)dz ds.

Note that for s ∈ [t/3, t/2], Ht−s(·, ·) � Ht/2(·, ·)�p̃t/2(·, ·) and Ts(·, ·) �
Tt/2(·, ·) � pt/2(·, ·). Consequently,

t
∫
Rd

p̃t/2(x, z)|z|−αpt/2(z, y)dz �
∫ t/2

t/3

∫
Rd

Ht−s(x, z)|z|−αTs(z, y)dz ds

�
∫ t

0

∫
Rd

Ht−s(x, z)|z|−αTs(z, y)dz ds.

Then applying lemma 4.3,

I1 � C[Lα
t (x, y) + Mα

t (x, y)].

For the second term, note that for s ∈ (0, t/2),

t|p̃t−s,1(x, z)| � (t − s)|p̃t−s,1(x, z)| � Ht−s(x, z),

which implies that

I2 �
∫ t/2

0

∫
Rd

Ht−s(x, z)|z|−αTs(z, y)dz ds

� C[Lα
t (x, y) + Mα

t (x, y)],

where in the second inequality we used lemma 4.3.
Likewise,

I3 �
∫ t

t/2

∫
Rd

Ht−s(x, z)|z|−2Ts(z, y)dz ds

� C[Lα
t (x, y) + Mα

t (x, y)].

This completes our proof. �

Remark 4.5. In [22], a similar upper bound was obtained for the kernel of the difference
et(−Δ)α/2 − e−tLa . However, this is not suitable for our purpose since the square functions used
here are different.
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We now turn to the proof theorem 4.2.

Proof of theorem 4.2. Using proposition 4.4

(∫ ∞

0
t−s
∣∣∣(tLae−tLa − t(−Δ)α/2e−t(−Δ)α/2

)
f (x)

∣∣∣2 dt
t

)1/2

�

⎡
⎣∑

j∈Z

∫ 22( j+1)

22 j
t−s
∣∣∣(tLae−tLa − t(−Δ)α/2e−t(−Δ)α/2

)
f (x)

∣∣∣2 dt
t

⎤
⎦

1/2

�

⎡
⎣∑

j∈Z

∫ 2α( j+1)

2α j
t−s

(∫
Rd

[Lα
t (x, y) + Mα

t (x, y)]| f (y)|dy

)2 dt
t

⎤
⎦

1/2

�
∑
j∈Z

2− jsα/2
∫
Rd

[
Lα

2α( j+1) (x, y) + Mα
2 jα (x, y)

]
| f (y)|dy

where in the last inequality we used the fact that �1 ↪→ �2. At this stage, arguing similarly to
the proof of proposition 3 in [21] we deduce the desired result.

This completes our proof. �

We now recall the Hardy’s inequality for the operator La in [21].

Theorem 4.6. Let d ∈ N, 0 < α < 2 ∧ d, a � a∗ and let σ be defined by (2). Suppose 0 <
sα/2 < d. Then for d′

σ < p < dsα/2+σ we have

∥∥∥|x|−αs/2 f
∥∥∥

p
�
∥∥∥Ls/2

a f
∥∥∥

p
.

Finally, we are ready to give the proof of theorem 1.1.

Proof of theorem 1.1. Fix 0 < s � 2, d′
σ < p < dsα/2+σ∨0. Then by theorems 4.1, 4.2 and

4.6 we have

∥∥∥(−Δ)sα/2 f
∥∥∥

p
�
∥∥∥∥∥
(∫ ∞

0
t−s|t(−Δ)α/2e−t(−Δ)α/2

f |2 dt
t

)1/2
∥∥∥∥∥

p

�
∥∥∥∥∥
(∫ ∞

0
t−s
∣∣∣(tLae−tLa − t(−Δ)α/2e−t(−Δ)α/2

) f
∣∣∣2 dt

t

)1/2
∥∥∥∥∥

p

+

∥∥∥∥∥
(∫ ∞

0
t−s|tLae−tLa f |2 dt

t

)1/2
∥∥∥∥∥

p

�
∥∥∥∥ f
|x|sα/2

∥∥∥∥
p

+
∥∥∥Ls/2

a f
∥∥∥

p

�
∥∥∥Ls/2

a f
∥∥∥

p
,

where in the first inequality we using theorem 4.1 for a = 0.

196



Nonlinearity 36 (2023) 171 T A Bui and P D’ancona

Conversely, for d′
σ < p < d

(sα/2)∨σ , we have

∥∥∥Ls/2
a f

∥∥∥
p

�
∥∥∥∥∥
(∫ ∞

0
t−s|tLae−tLa f |2 dt

t

)1/2
∥∥∥∥∥

p

�
∥∥∥∥∥
(∫ ∞

0
t−s
∣∣∣(tLae−tLa − t(−Δ)α/2e−t(−Δ)α/2

) f
∣∣∣2 dt

t

)1/2
∥∥∥∥∥

p

+

∥∥∥∥∥
(∫ ∞

0
t−s|t(−Δ)α/2e−t(−Δ)α/2

f |2 dt
t

)1/2
∥∥∥∥∥

p

�
∥∥∥∥ f
|x|sα/2

∥∥∥∥
p

+
∥∥∥(−Δ)sα/4 f

∥∥∥
p

�
∥∥∥(−Δ)sα/4 f

∥∥∥
p
,

where in the last inequality we used theorem 4.6 for a = 0.
This completes our proof. �

Remark 4.7. It is possible to extend the results in theorem 1.1 to the operator (−Δ)α/2 + V,
where V is a function satisfying

a
|x|α � V(x) � ã

|x|α

with a∗ � a � ã < ∞.
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