
Vol.:(0123456789)

The Journal of the Astronautical Sciences (2022) 69:1691–1725
https://doi.org/10.1007/s40295-022-00352-w

1 3

ORIGINAL ARTICLE

Mars Constellation Design and Low‑Thrust Deployment 
Using Nonlinear Orbit Control

Mauro Pontani1   · Marco Pustorino2 · Paolo Teofilatto3 

Accepted: 25 October 2022 / Published online: 28 November 2022 
© The Author(s) 2022

Abstract
This research addresses the design of a Mars constellation composed of 12 satellites 
and devoted to telecommunications. While 3 satellites travel areostationary orbits, 
the remaining 9 satellites are placed in three distinct quasi-synchronous, inclined, 
circular orbits. The constellation at hand provides continuous global coverage, over 
the entire Martian surface. The use of 4 carrier vehicles, departing from a 4-sol 
orbit, is proposed as an affordable option for the purpose of deploying the entire 
constellation, even starting from dispersed initial conditions. Each carrier is driven 
toward the respective operational orbit using steerable and throttleable low-thrust 
propulsion, in conjunction with nonlinear orbit control. Lyapunov stability analysis 
leads to defining a feedback law that enjoys quasi-global stability properties. Orbit 
phasing concludes the constellation deployment, and is carried out by each satellite. 
The tradeoff between phasing time and propellant expenditure is characterized.

Keywords  Mars constellation design · Quasi-synchronous orbits · Nonlinear orbit 
control · Low-thrust propulsion

1  Introduction

Mars represents a major target for planetary exploration in the decades to come. 
Several scientific missions are already planned, and the prospect of carrying 
out the first human mission is becoming more and more concrete. A variety of 
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objects, ranging from rovers to scientific instrumentation for environmental anal-
yses, were (and are being) released in different locations on the Martian surface. 
A satellite constellation aimed at providing continuous, global coverage over the 
great majority of the red planet could serve as a communications relay system 
and would certainly represent a valuable asset for future missions. In fact, such 
a constellation would significantly facilitate the communications among orbiters, 
probes and instruments located on the surface, and Earth ground stations. This 
would also lead to extending the existing capabilities of NASA’s Deep Space Net-
work, as remarked in Ref. [1]. Several goals were defined [1] for a satellite con-
stellation about Mars:

(a)	 global coverage over a prescribed time span,
(b)	 communication support of the equatorial region, also as a support to human 

missions,
(c)	 maximization of the communication and navigation performance across all lati-

tudes and longitudes,
(d)	 minimization of the variations of the navigation and communication perfor-

mance,
(e)	 redundant coverage in case of loss of any single satellite, and
(f)	 minimization of the coverage variability due to long-term orbit perturbations, 

with special reference to the orbit plane precession.

Depending on the specific tasks, several types of orbits may be suitable for the 
purpose of designing and deploying a constellation around Mars [2, 3]. Bell et al. 
[2] proposed 4 distinct constellation configurations of microsatellites that travel 
low-altitude, inclined orbits and ensure satisfactory global communication and 
navigation performance, with special regard to the equatorial region. Each config-
uration includes 6 satellites with different inclinations. Yet, for all configurations 
the maximum revisit time ranges from 1 to 8 h, and exceeds 2 h over the great 
majority of the Martian surface. Nann et al. [4] focused on precise characteriza-
tion of the Martian atmosphere for future missions, and designed a constellation 
of 8 satellites suitable for the purpose of performing radio occultation measure-
ments. The same constellation can be reconfigured, to provide (discontinuous) 
navigation services. Most recently, Kelly and Bevilacqua [5] proposed a constel-
lation of 15 satellites that ensures global and continuous coverage of the entire 
Martian surface, using 5 equally spaced, inclined orbit planes.

Release of multiple satellites from a single carrier spacecraft would be an 
attractive and affordable option for constellation deployment. However, this 
objective is rather challenging, especially if the constellation configuration is 
designed to include different orbit planes with large angular displacements. For-
mer contributions in the scientific literature were mainly focused on deployment 
strategies for Earth constellations [6–9]. In 2006, the FORMOSAT-3/COSMIC 
constellation [7] was released from a single launch vehicle. Each of the 6 sat-
ellites raised its orbit, and leveraged the differential precessional motion due 
to the Earth oblateness, with the final aim of achieving the desired orbit plane. 
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This well-known effect was also investigated by Crisp et al. [8] In addition, they 
designed a second strategy, based on the temporary release of the spacecraft in 
the proximity of the interior libration point of the Earth-Moon system. Most 
recently, Lee et al. [9] focused on a flexible deployment strategy in response to 
the possible evolution of the Earth regions of interest, whereas Pontani and Teo-
filatto [10] focused on low-thrust deployment of a low-Earth-orbit constellation 
tailored to polar ice monitoring.

This research considers a constellation composed of 12 satellites released in 4 
distinct orbit planes about Mars. While 3 satellites travel an areostationary orbit, the 
remaining 9 satellites are released in three repeating, circular, quasi-synchronous, 
inclined orbits. This configuration is aimed at guaranteeing global and continuous 
coverage, while ensuring repetition and predictability of the visible passes as well 
as visibility of multiple satellites. This work also addresses the problem of deploy-
ing all the satellites using 4 carrier vehicles, released by the mother spacecraft. The 
latter orbits a highly elliptical path, i.e. the ESA 4-sol orbit [11], which is entered 
after planetary capture. Orbit dynamics about Mars is modeled with the inclusion of 
the most relevant perturbations, i.e. several harmonics of the areopotential, together 
with the gravitational pull due to the Sun as a third body. Each carrier embarks 3 
satellites and employs steerable and throttleable low-thrust propulsion for the pur-
pose of driving them toward the respective operational orbit. Nonlinear orbit control 
is proposed as a suitable strategy for autonomous real-time guidance, even in the 
presence of nonnominal flight conditions, e.g. if the initial highly elliptical orbit is 
significantly different from the expected one, due to injection errors at the planetary 
capture. Numerical simulations are intended to prove that the approach at hand is 
effective and accurate for releasing 4 carrier vehicles in the respective operational 
orbits. Phasing represents the last phase of deployment, and is performed by each 
satellite. The final goal is in gaining the correct angular position, without leaving the 
desired orbit plane. To this end, both internal phasing (using an intermediate orbit 
with shorter period) and external phasing (using an intermediate orbit with longer 
period) are being considered.

In short, the present research has the following objectives: (i) design a constel-
lation of 12 satellites, capable of guaranteeing continuous global coverage of the 
entire Martian surface, with simultaneous visibility of multiple satellites, (ii) pro-
pose the use of 4 carrier vehicles for the release of the 12 satellites in 4 distinct 
orbit planes, (iii) use an effective low-thrust deployment strategy based on nonlin-
ear orbit control, in the presence of nominal and nonnominal initial conditions, and 
(iv) describe the phasing maneuver, performed by each satellite, while providing a 
comprehensive analysis of the tradeoff between overall velocity change and phasing 
time.

2 � Constellation Configuration

This research proposes a satellite constellation about Mars tailored to telecom-
munications. Global coverage of the Martian surface is sought, using 12 satel-
lites placed in 4 distinct orbit planes, i.e. 3 satellites in areostationary orbit, and 
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9 satellites in 3 quasi-synchronous, circular, repeating-ground-track, inclined 
orbits. High-altitude orbits are considered, and no atmospheric drag is encoun-
tered. For the purpose of constellation design, the solar radiation pressure and the 
third body gravitational pull due to the Sun are negligible as well. In contrast, the 
Mars oblateness ( J2 zonal harmonic) produces significant effects on the orbit ele-
ments and is considered in the model.

Desirable features of a satellite constellation are (a) repetitiveness, which 
implies predictability of the performance, and (b) invariance with respect to the 
J2 perturbation. The use of circular orbits is a common and convenient require-
ment, specifically related to onboard sensors. In fact, if the altitude is constant, 
the sensor performance and operational modality does not change.

2.1 � Coverage Analysis for 3 Satellites in Areostationary Orbit

The first three satellites that form the constellation travel areostationary orbits, 
at equally-spaced geographical longitudes. However, similarly to what occurs 
for geostationary satellites, areostationary spacecraft are subject to the pertur-
bation related to harmonic J2,2 of the areopotential. This term is responsible for 
the existence of two stable and two unstable geographical longitudes for an aero-
stationary satellite. The two unstable Martian longitudes equal − 105° and 75° 
[12]. Therefore, the following equally-spaced geographical longitudes are cho-
sen for the three satellites placed in areostationary orbit: − 135°, − 15°, 105°. 
These values correspond to maximizing the angular separation of the subsatel-
lite points from the unstable longitudes. The visible regions from each satellite 
are portrayed in Fig.  1, with different colors associated with distinct elevation 
angles. The black curves represent the bound of the visible regions with eleva-
tion � ≥ �min = 0◦ , whereas the blue and red curves correspond to �min = 20◦ and 
40°, respectively. Inspection of Fig.  1 points out that only a limited latitudinal 
range (i.e. [− 14.6, 14.6]°) is continuously covered with an elevation � ≥ 20◦ . 
Not surprisingly, polar coverage is poor. In fact, no location with latitude � such 
that |𝜙| > 61.1◦ is visible with elevation � ≥ 20◦ . A greater number of satellites in 

Fig. 1   Regions covered by 
three areostationary satel-
lites (black: � ≥ �min = 0

◦ ; 
blue: � ≥ �min = 20

◦ ; red: 
� ≥ �min = 40

◦)
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areostationary orbits would certainly widen the latitudinal range associated with 
coverage with � ≥ �min = 20◦ , but would not alter the latitudinal intervals (in the 
two hemispheres) where no satellite is visible with � ≥ �min = 20◦.

In conclusion, 3 satellites placed in areostationary orbits, at equally-spaced longi-
tudes, represent a viable option to continuously cover the equatorial region. Never-
theless, the use of inclined orbits for global continuous coverage is ineludible.

2.2 � Quasi‑synchronous, Circular, Repeating‑Ground‑Track, Inclined Orbits

While 3 satellites are placed in an equatorial areostationary orbit, the remaining 9 
satellites travel equally-inclined circular orbits with an identical altitude. On aver-
age, oblateness effects ( J2 zonal harmonic perturbation) yield the following time 
derivatives [13] of the right ascension of the ascending node (RAAN) Ω , argument 
of periapse � , and mean anomaly M:

In Eqs. (1)–(3) RM , �M , and J2 are the mean equatorial radius, gravitational param-
eter, and oblateness coefficient, whereas a, e, and i are the orbit semimajor axis 
(SMA), eccentricity, and inclination, respectively. Due to Eqs. (1)–(3), the time his-
tories of Ω , � , and M are linear with time.

For circular orbits only the argument of latitude � = � +M is meaningful, 
because the periapse is not defined. Therefore, if Ωref  , �ref  , and �ref  are the values of 
the respective variables at the reference time tref  , the time-varying (average) orbital 
elements Ω(t) and �(t) are given by

where 𝜃̇(a, i) = 𝜔̇(a, i) + Ṁ(a, i) and 𝜃ref = 𝜔ref +Mref  . All the satellites are assumed 
to have identical inclination and SMA (or altitude H for circular orbits) in order to 
avoid differential actions due to the J2 perturbation. This circumstance would cause 
a substantial alteration of the performance attainable by the constellation.

An orbit is termed repeating when phased with the planet rotation, i.e. when the 
ground track is periodically repeated. This occurs if the satellite completes Nt orbits 
in m nodal days,

(1)Ω̇(a, e, i) = −
3

2
J2

R2
M

√
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(
t − tref

)
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In Eq. (5) Tn = 2𝜋
/
𝜃̇ is the nodal orbital period (i.e., the time interval between 

two consecutive ascending node crossings) and Dn = 2𝜋
/(

𝜔M − Ω̇
)
 is the nodal 

day (i.e. the time required for Mars to make a complete rotation with respect to the 
orbital plane; �M denotes the Mars rotation rate). Both Tn and Dn  depend on a and 
i (whereas e = 0 ). This fact implies that the ratio rt = Nt

/
m , which represents the 

number of orbits per nodal day, depends on a and i.
Quasi-synchronous satellites are stationary with respect to a specific location on 

the Martian surface. This location is selected as the one corresponding to the maxi-
mum latitude flown by the satellite, denoted with �M . For direct orbits, the eastward 
component of the velocity at the maximum (and minimum) latitude coincides with 
the orbital velocity, i.e. 

√
�M∕R . Quasi-synchronism holds if the angular rate of an 

observer at latitude �M equals the eastward angular velocity of the satellite, i.e.

In the last step, �M ≡ i was used. Figure  2 portrays the radius of quasi-synchro-
nous circular orbits as a function of inclination (in blue), together with the related 
number of orbits per nodal days q ∶= Nt

/
m (orange curve). Each point along the 

blue curve corresponds to a circular orbit whose motion is synchronous with the 
planet rotation rate, when the satellite is located at the maximum or minimum lati-
tude. It is apparent that all these orbits have periods greater than one nodal day. The 
quasi-synchronous orbit associated with Nt = 1 and m = 2 ( q = 0.5 ) is selected, and 
corresponds to R = 32427 km and i = 60.0◦ . This choice corresponds to a super-
synchronous orbit, and is motivated by the reasonable values of its inclination and 

(5)mDn(a, i) = NtTn(a, i)

(6)

√
�M

R3
= �M cos�M ⇒ R =

�
1∕3

M(
�M cos i

)2∕3

Fig. 2   Quasi-synchronous circular orbits: radius as a function of inclination and related number of orbits 
per nodal day
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radius, together with the short repetition period, i.e. 2 nodal days. Figure 3 depicts 
the ground tracks of three satellites placed along 3 distinct orbits, with the preced-
ing values of R and i and right ascension separation of 120°. It is worth noticing that 
each ground track has cusps at the extremal latitudes. This is a typical feature of 
orbits that are synchronous with the planet rotation at specific points, corresponding 
to the cusps of the ground track.

2.3 � Coverage Analysis for 9 Satellites in Quasi‑synchronous Orbits

Overall, 9 satellites are placed in the inclined quasi-synchronous circular orbits 
described in the preceding subsection. Each orbit is traveled by 3 satellites, with 
angular separation of 120°. As a result, any point along the ground track is flown 
over by satellite 2 and 3, with delays equal to Tn

/
3 and 2Tn

/
3 with respect to satel-

lite 1.
While coverage of the 3 areostationary satellites is identified by the regions por-

trayed in Fig. 1, the analysis for the remaining 9 satellites is more complicated. In a 
repetition period, for a given location on the Martian surface, the minimum eleva-
tion of visibility is to be determined. To do this, the scheduling of the visible passes 
of all the 9 satellites must be obtained and inspected. However, due to the symmetry 
properties of the ground track, identifying the minimum elevation angle of a limited 
number of locations suffices to supply precise information on the global coverage 
properties. These sample locations are portrayed in Fig. 3, and lie along the symme-
try meridians of the ground track. In fact, let �min

(
�g,�

)
 denote the minimum eleva-

tion angle over a repetition period, as a function of latitude, � , and geographical 
longitude, �g . If � is set to a specific value � , �min

(
�g,�

)
 becomes a function of a 

single variable, which is continuous and locally even with respect to six values of �g , 

Fig. 3   Ground tracks associated with 3 quasi-synchronous circular orbits; “o” and “x” denote symmetry 
points with respect to the ground track
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i.e. �g = −180◦,−120◦,−60◦, 0◦, 60◦, 120◦ . These values correspond to the sym-
metry meridians of the ground track. This implies that the function �min

(
�g,�

)
 must 

have extremal values, i.e. maxima and minima, at these values of �g . As a result, for 

a given latitude � , the minimum and maximum values of �min
(
�g,�

)
 can be identi-

fied by considering only a pair of locations, e.g. those marked with “o” and “x” in 
Fig. 3. The coverage properties of the south hemisphere are identical to those of the 
northern hemisphere, due to nodal symmetry of the ground tracks.

Using the previously mentioned symmetry properties, the extremal values of 
�min

(
�g,�

)
 were identified, for different latitudes. They are collected in Table 1. It is 

apparent that the 9 satellites placed in inclined orbits can guarantee global and con-
tinuous coverage of the Martian surface with an elevation angle never lower than 
20.1°. Figures 4 and 5 depict the elevation and azimuth time histories of all the sat-
ellites over two distinct sites on the planet surface. Inspection of these figures reveals 
that multiple satellites are visible during the entire repetition period.

Table 1   Extremals of the minimum elevation, depending on the latitude on the Martian surface

Latitude (°) 0 10 20 30 40 50 60 70 80 90

min{�min}(
◦) 33.2 27.2 26.7 35.6 44.1 42.7 39.1 33.5 27.1 20.1

max{�min}(
◦) 33.9 39.1 42.8 45.0 45.1 51.8 50.7 40.4 30.2 20.1

Fig. 4   Elevation and azimuth angles over a specific location ( �g = 0
◦ and � = 80

◦)
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3 � Low‑Thrust Orbit Dynamics

In recent years, low thrust propulsion has attracted a strong interest in the scientific 
community, and has already been used in several space missions, e.g. the NASA Deep 
Space 1 and the ESA Smart-1 missions [14, 15], to name a few. Low-thrust propulsion 
leads to substantial propellant savings, at the price of increasing (even considerably) 
the time of flight. Recently, nonlinear control was proven to be an effective option for 
real-time feedback guidance in Earth orbit transfers, as well as for orbit maintenance 
[10, 16–18]

This section is focused on low-thrust orbit dynamics, using the modified equinoc-
tial elements to describe the dynamics of 4 carrier vehicles, modeled as point masses. 
Orbital motion of each carrier is mainly affected by the Martian gravitational field. 
Therefore, the spacecraft dynamics can be investigated appropriately by employing a 
perturbed two-body-problem model. The most relevant orbit perturbations are included 
in this dynamical framework, i.e. (i) some harmonics of the areopotential (i.e., J2 , J3 , 
and J4 ) and (ii) third body gravitational pull due to the Sun. These 4 spacecraft depart 
from a specified parking orbit, and drive the 12 satellites that form the constellation 
toward their orbits. More specifically, each carrier vehicle contains 3 satellites, and 
delivers all of them in the respective orbit, either the aerostationary orbit or one of the 
3 quasi-synchronous, inclined, circular orbits. Steerable, throttleable low-thrust propul-
sion actuates the orbit injection maneuvers of the 4 carriers. After delivery from the 
carrier vehicle, each satellite performs phasing maneuvers, using its own chemical pro-
pulsion system, with the final aim of reaching the correct argument of latitude along the 
operational orbit.

The spacecraft dynamics can be described using the osculating orbit elements, i.e. 
semimajor axis a, eccentricity e, inclination i, right ascension of the ascending node 
(RAAN) Ω , argument of periapse � , and true anomaly f. However, the Gauss equa-
tions [19], which govern the time evolution of the orbit elements, become singular 

Fig. 5   Elevation and azimuth angles over a specific location ( �g = 60
◦ and � = 80

◦)
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while approaching a circular or equatorial orbit and when the eccentricity tends to 1. 
For these reasons, the modified equinoctial elements (MEE) [19] l, m, n, s, and q are 
employed, together with the semilatus rectum (parameter) p, used in place of a. The 
five    elements l, m, n, s, and q are defined as [19]

 These elements are nonsingular for all trajectories, with the only exception of equa-
torial retrograde orbits ( i = � ). If � ∶= 1 + l cos q + m sin q , the orbit (instantane-
ous) radius equals r = p∕� . The governing equations for the modified equinoctial 
elements are [17, 19, 20]

where x6 ≡ q and z ∶=
[
x1 x2 x3 x4 x5

]T
≡
[
p l m n s

]T , whereas �M represents 
the Mars gravitational parameter and

Vector a is a (3 × 1)-vector that collects the components of the non-Keplerian accel-
eration that affects the spacecraft motion. These are denoted with 

(
ar, a� , ah

)
 and 

refer to the local vertical local horizontal (LVLH) rotating frame aligned with (
r̂, 𝜃̂, ĥ

)
 , where unit vector r̂ is directed toward the instantaneous position vector r 

(taken from the Mars center), whereas ĥ is aligned with the spacecraft angular 
momentum. Vector a includes both the thrust acceleration aT and the perturbing 
acceleration aP inherent to the space environment. Thus a = aT + aP . The perturb-
ing acceleration (due to harmonics of the areopotential and third body gravitational 
attraction) are then projected in the LVLH-frame. It is worth remarking that the pre-
ceding equations of motion reduce to ẋ1 = … = ẋ5 = 0 and 
ẋ6 = ḟ = (1 + l cos q + m sin q)2

√
𝜇M

/
x3
1
 if a = aT + aP = 0 (Keplerian motion). 

This means that 5 out of 6 MEE remain constant along Keplerian paths, similarly to 
what occurs if classical orbit elements are used.

Let Tmax and m0 denote the maximum available thrust magnitude and the initial 
mass. If x7 represents the mass ratio and T the thrust magnitude, the following equa-
tion holds for x7:

(7)
l = e cos (Ω + �) m = e sin (Ω + �) n = tan

i

2
cosΩ s = tan

i

2
sinΩ q = Ω + � + f

(8)ż = �
(
z, x6

)
a

(9)ẋ6 =

√
𝜇M

x3
1

𝜂2 +

√
x1

𝜇M

x4 sin x6 − x5 cos x6

𝜂
ah

(10)�
�
z, x6

�
=

�
x1

�M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
2x1

�
0

sin x6
(�+1)cos x6+x2

�
−

x4sin x6−x5cos x6

�
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−cos x6
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�

x4sin x6−x5cos x6

�
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4
+x2

5

2�
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where c represents the effective exhaust velocity of the propulsion system. The mag-
nitude of the instantaneous thrust acceleration is aT = uTm0

/
m = uT∕x7 and is con-

strained to 0 ≤ aT ≤ a
(max)

T
 , where a(max)

T
= u

(max)

T

/
x7 . Moreover, the thrust accelera-

tion is aT = uT∕x7 , where uT has magnitude constrained to the interval 
[
0, u

(max)

T

]
.

In conclusion, the spacecraft dynamics is described in terms of the state vector 
x ∶=

[
zT x6 x7

]T
=
[
x1 x2 x3 x4 x5 x6 x7

]T , whereas the control vector is uT , 
directly related to the thrust acceleration. Equations (8)–(11) represent the governing 
equations.

4 � Nonlinear Orbit Control for Low‑Thrust Deployment

In this section, a nonlinear technique is described, aimed at identifying the thrust direc-
tion and magnitude for a carrier spacecraft tailored to constellation deployment and 
equipped with a low-thrust propulsion system. The initial parking orbit is a typical ESA 
4-sol orbit [11], associated with the following orbit elements:

At the initial epoch t0 , set to 19 April 2023 at 0:00 UTC, the true anomaly is 
assumed to equal 180°.

4.1 � Deployment Conditions

Each carrier must deploy 3 satellites in the respective desired orbit, identified by semi-
major axis, eccentricity, inclination, and RAAN. On average, only the latter element 
changes in time due to J2 (cf. Eq. (1)). This means that for satellite k the desired RAAN 
Ω

(k)

d
 is time-varying, i.e. Ω(k)

d
= Ωk

(
t0
)
+ Ω̇

(
ad, ed, id

)(
t − t0

)
 (k = 1,… , 12) , where 

Ω̇
(
ad, ed, id

)
 is given by Eq. (1) and subscript d refers to the specified (nominal) value 

of the respective variable. Letting pd ∶= ad
(
1 − e2

d

)
 , the desired deployment condi-

tions for a and e, in terms of equinoctial elements, are

The remaining conditions regard the (time-varying) orbit plane orientation, defined 
by id and Ω(k)

d
 . Omitting the superscript (k) hence forward, these conditions are enforced 

by requiring that the instantaneous angular momentum, with direction aligned with ĥ , 
point toward the desired direction, denoted with ĥd . Unit vector ĥ can be written in 
terms of Ω and i, i.e. ĥ = ĉ1 sinΩ sin i + ĉ2 cosΩ sin i + ĉ3 cos i . [13] The alignment 
condition is

(11)

ẋ7 ∶=
ṁ

m0

= −
uT

c
where 0 ≤ uT ≤ u

(max)

T

(
uT ∶=

T

m0

and u
(max)

T
∶=

Tmax

m0

)

(12)
a = 51545 km e = 0.928 i = 92.3 deg Ω = 64.7 deg � = 342.4 deg

(13)x1 − pd = 0 and x2
2
+ x2

3
− e2

d
= 0
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After some steps, omitted for the sake of brevity, the preceding relation leads to the 
following equality:

The final conditions for deployment (13) and (15) can be incorporated as the three 
components 

{
�1,�2,�3

}
 of vector � and finally expressed in compact form as

It is worth remarking that � is time-varying due to Ω(k)

d
 . For the 3 inclined orbits, the 

initial values of Ωk

(
t0
)
 are

4.2 � Feedback Law and Stability Analysis

In a preceding section, the spacecraft motion was shown to be governed by Eqs. 
(8)–(10). In particular, Eq. (8) can be rewritten as

where the perturbing acceleration aP includes several contributions, related to the 
space environment, i.e. harmonics of the areopotential and third body gravitational 
attraction due to the Sun. In this research, orbit perturbations are assumed to be per-
fectly known, for the purpose of applying the feedback laws described in this sec-
tion. For systems governed by Eq. (18) with aP = 0 , the Jurdjevic–Quinn theorem 
[21] provides a feedback control law that drives the dynamical system to an arbitrary 
target state, making the controlled system Lyapunov-stable. This subsection outlines 
the fundamental steps needed to identify a saturated feedback control law for low-
thrust orbit injection of the four carrier vehicles. Further details and proofs are con-
tained in a recent publication [10], which adopts a similar approach for a completely 
different constellation about Earth.

The three (scalar) deployment conditions are written in the compact form (16), 
which defines the target set. Due to Eqs. (13) and (15), this is a connected and differ-
entiable manifold. Nonlinear orbit control is aimed at defining a feedback control law 
capable of driving the dynamical system at hand (associated with Eqs. (9), (11), and 
(18)) toward the target conditions identified by Eq. (16). To do this, the following can-
didate Lyapunov function is introduced:

(14)
ĥ ⋅ ĥd = 1 ⇒ sinΩ sin i sinΩd sin id + cosΩ sin i cosΩd sin id + cos i cos id = 1

(15)
2x5 sinΩd sin id + 2x4 cosΩd sin id +

(
1 − x2

4
− x2

5

)
cos id −

(
1 + x2

4
+ x2

5

)
= 0

(16)�(z, t) = 0

(17)Ω1

(
t0
)
= −120◦ Ω2

(
t0
)
= 0◦ Ω3

(
t0
)
= 120◦

(18)ż = �
(
z, x6

)(uT

x7
+ aP

)

(19)V =
1

2
�T��
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where K denotes a diagonal matrix with constant, positive elements, which play the 
role of arbitrary weights. These are selected a priori. It is obvious that V > 0 unless 
� = 0 . Yet, further conditions are required in order that V be an actual Lyapunov 
function [22]. As a preliminary steps, the following auxiliary vectors are introduced:

Two propositions establish the conditions for V to be a Lyapunov function, and 
lead to identifying a saturated feedback law.

Proposition 1  If � and (��∕�z) are continuous, 
[
(��∕�z)�

]−1
(��∕�t) is finite, 

|b| > 0 unless � = 0 , and u(max)
T

≥ x7|b + d| , then the feedback control law

leads a dynamical system governed by Eqs. (9), (11), and (18) to converge asymp-
totically to the target set associated with Eq. (16).

Proof of Proposition 1 is reported in Ref. [10]. This proposition includes the 
assumption u(max)

T
≥ x7|b + d| . If this inequality is violated, the feedback control law 

(21) is infeasible, because ||uT || = x7|b + d| would exceed the maximal value u(max)
T

 . 
In this case, in place of (21), an alternative feedback law can be used.

Proposition 2  If and � and (��∕�z) are continuous, 
[
(��∕�z)�

]−1
(��∕�t) is finite, 

|b| > 0 unless � = 0 , and x7|d| < u
(max)

T
< x7|b + d| , then the feedback control law

leads a dynamical system governed by Eqs. (9), (11), and (18) to converge asymp-
totically to the target set associated with Eq. (16).

Proof of Proposition 2 is reported in Ref. [10]. Actually, Eqs. (21) and (22) pro-
vide a straightforward indication on the value of uT that minimizes V̇  . In fact, selec-
tion of uT = u

(max)

T
 corresponds to the least value of V̇  . In short, due to the last con-

sideration, the two feedback laws (21) and (22) can be written in compact form as

Equation (23) incorporates the saturation condition on uT , i.e. ||uT || ≤ u
(max)

T
 , and pro-

vides a control law that can be actuated using steerable and throttleable propulsive 
thrust (with time-varying magnitude and direction).

(20)b ∶= �T

(
��

�z

)T

�� and d ∶= aP +

[
��

�z
�

]−1
��

�t

(21)uT = −x7(b + d)

(22)

uT = −uT
b + d

|b + d| , with
{

(a) uT = 0, if bTb + b
T
d < 0

(b) x7|d| < uT ≤ u
(max)

T
, if bTb + b

T
d ≥ 0

(23)

uT = −uT
b + d

�b + d� , with uT =

⎧
⎪⎨⎪⎩

x7�b + d�, if x7�b + d� ≤ u
(max)

T

0, if x7�b + d� > u
(max)

T
and bTb + b

T
d < 0

u
(max)

T
, if x7�b + d� > u

(max)

T
and bTb + b

T
d ≥ 0
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It is worth remarking that Propositions 1 and 2 provide some sufficient conditions 
for stabilizing the dynamical system of interest. This circumstance implies that the 
assumptions of Propositions 1 and 2 can be violated (in some time intervals), with-
out necessarily compromising asymptotic convergence to the desired final condition 
identified by Eq. (16).

Moreover, some assumptions regard vectors 
[
(��∕�z)�

]−1
(��∕�t) and b. Vec-

tor b has components, denoted with 
{
b1, b2, b3

}
 , whose expressions are reported in 

Ref. [10]. The attracting set collects all the dynamical states that fulfill V̇ = 0 . The 
latter condition is met if b = 0 , i.e. if the three components 

{
b1, b2, b3

}
 equal 0, for 

any choice of the positive coefficients 
{
k1, k2, k3

}
 . The analysis reported in Ref. [10] 

leads to identifying the following three subsets, which form the attracting set:

1.	 x1 = 0 (rectilinear trajectories);
2.	 �1 = �3 = 0 , x2 = x3 = 0 (circular orbit with radius pd and desired i and Ω);
3.	 �1 = �2 = �3 = 0 (target set).

Because the attracting set contains other subsets other than the target set, 
the asymptotic convergence toward the desired conditions is only local, based 
on Lyapunov’s stability theorem. However, the equality b = 0 can be consid-
ered again, to rule out, if possible, subsets 1 and 2. The condition b = 0 implies 
ḃ = 0 , i.e. ḃ1 = ḃ2 = ḃ3 = 0 , where

Equation (24) yields three relations. Inspection of their closed-form expressions [10] 
leads to ruling out subset 1. Therefore, only subsets 2 and 3 correspond to equilibria.

Actually, the possible convergence toward subset 2 is only theoretical. In fact, 
using x2

2
+ x2

3
= e2 in the expression of �2 , the Lyapunov function can be rewrit-

ten as

where e is the instantaneous eccentricity. Because �1 and �3 are independent of x2 
and x3 , the partial derivative of V with respect to e is �V∕�e = 2k2e

(
e2 − e2

d

)
 . It is 

apparent that �V∕�e = 0 (i.e. V is stationary) at e = 0 , which is consistent with the 
fact that subset 2 corresponds to an equilibrium condition. However, if e = e𝜀 > 0 
(with e� arbitrarily small), then 𝜕V∕𝜕e < 0 , and the reduction of V leads e to increas-
ing up to the desired value ed , which is associated with subset 3, i.e. the target set. 
This means that the latter corresponds to a stable equilibrium, unlike subset 2. This 
circumstance has the very interesting practical consequence that—from the numeri-
cal point of view—the dynamical system of interest enjoys global convergence 

(24)ḃj =
𝜕bj

𝜕x6

√
𝜇M

x3
1

𝜂2 +
𝜕bj

𝜕Ωd

Ω̇
(
ad, ed, id

)
(j = 1, 2, 3)

(25)V =
1

2

[
k1�

2
1
+ k2

(
e2 − e2

d

)2
+ k3�

2
3

]
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toward the desired operational conditions, provided that the control law (23) is 
adopted, while holding the assumptions of Propositions 1 or 2.

As a final step, vector 
[
(��∕�z)�

]−1
(��∕�t) , which appears in the definition 

of d, can be obtained for the deployment problem at hand. Its first two compo-
nents are identically 0, whereas the third component is proven to be finite almost 
everywhere [10]. This circumstance, in conjunction with Eq. (23) (that includes 
the case |b + d| > u

(max)

T
 ), ensures that the feedback law (23) is feasible.

5 � Low‑Thrust Constellation Deployment

Electric propulsion requires onboard electrical power in order to operate. In some 
cases, this can be provided only when the space vehicle is illuminated. However, 
in this subsection, electric propulsion is assumed to be able to operate regardless 
of the spacecraft lighting conditions. On the other hand, it is worth remarking the 
carrier vehicles encounter eclipse conditions only in the last portion of the trans-
fer path, therefore the preceding assumption is reasonable. The overall propulsive 
performance is identified by the following parameters:

The numerical simulations are performed using canonical units. The distance 
unit (DU) equals the Martian radius, whereas the time unit (TU) is such that 
�M = 1DU3

/
TU2 . The reference epoch is set to April 19, 2023. Specific toler-

ances are allowed on the desired final conditions, associated with Eqs. (13) and 
(15), and this allows avoiding an excessive propellant expenditure. In particu-
lar, if the three constraints are met to a prescribed accuracy, then the respective 
weight is set to zero, i.e.

For each satellite, orbit injection is achieved when the three conditions of Eq. (26) 
are met. Four distinct final orbits are considered. For each of them, numerical search 
on the weighting coefficients leads to identifying the respective values that minimize 
the time of flight (cf. Appendix).

In the numerical simulations, the following perturbations are modeled: (i) 
some harmonics of the areopotential (i.e., J2 , J3 , and J4 ) and (ii) third body gravi-
tational pull due to the Sun. As a preliminary step, the inequality u(max)

T
> |d| is 

checked. Using the spacecraft data (i.e. propulsion and mass), the minimum avail-
able thrust acceleration u(max)

T
 turns out to exceed the maximal magnitude of the 

perturbing acceleration. As a result, the feedback law guarantees the convergence 
toward the desired operational conditions, associated with the four final orbits. 
The numerical propagations are run up to reaching the desired tolerances (27).

(26)c = 30 km∕s and n
(max)

T
= 5 ⋅ 10−5 g0

(
g0 = 9.8m

/
s2
)

(27)||𝜓1
|| < 30 km ⇒ k1 = 0, ||𝜓2

|| < 10−5 ⇒ k2 = 0, ||𝜓3
|| < 10−6 ⇒ k3 = 0
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5.1 � Nominal Initial Conditions

This subsection considers the low-thrust orbit transfers using nonlinear orbit con-
trol, leading the carrier spacecraft to inject into the four operational orbits, i.e. the 
areostationary orbit and the 3 distinct quasi-synchronous, inclined orbits. Sub-
sequent phasing is performed by each satellite that forms the constellation (cf. 
Section 6). The initial (nominal) orbit is a typical ESA 4-sol orbit [11], associated 

Fig. 6   Deployment into quasi-synchronous inclined orbit orbit 1: orbit elements and low-thrust transfer 
trajectory
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with the orbit elements reported in Eq. (12). The numerical results point out that 
orbit insertion occurs after 

•	 36.2 days (quasi-synchronous orbit 1), with final mass ratio equal to 0.949
•	 47.8 days (quasi-synchronous orbit 2), with final mass ratio equal to 0.933
•	 34.5 days (quasi-synchronous orbit 3), with final mass ratio equal to 0.951

Fig. 7   Deployment into quasi-synchronous inclined orbit orbit 2: orbit elements and low-thrust transfer 
trajectory
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•	 39.1 days (areostationary orbit), with final mass ratio equal to 0.946

Figures  6, 7, and 8 portray the transfer paths leading to delivering the car-
rier vehicles in quasi-synchronous, inclined orbits 1, 2, and 3, together with the 
corresponding time histories of SMA, inclination, eccentricity, and RAAN. It is 
worth remarking that the latter has a desired value that is time-varying. Figure 9 
depicts the transfer trajectory toward the areostationary orbit, accompanied by 

Fig. 8   Deployment into quasi-synchronous inclined orbit orbit 3: orbit elements and low-thrust transfer 
trajectory
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the time histories of semimajor axis, eccentricity, and inclination. In all cases, 
low-thrust propulsion is turned off when the tolerances (27) are met.

5.2 � Nonnominal Initial Conditions

Nonlinear orbit control appears as particularly appropriate as a feedback strategy for 
autonomous guidance when nonnominal flight conditions occur. This section con-
siders the problem of driving the carrier spacecraft toward the respective operational 
orbits in the presence of large dispersions on the initial orbit elements. These dis-
placements are simulated stochastically in a Monte Carlo campaign composed of 
100 simulations, by assuming Gaussian distribution for all the orbit elements, with 
mean value equal to the nominal value of the 4-sol orbit (cf. Eq. (12)) and stand-
ard deviations reported in Table 2. However, to avoid unrealistic values and hyper-
bolic trajectories, the limiting bounds reported in Table 2 are assumed for each orbit 
element.

Fig. 9   Deployment into areostationary orbit: orbit elements and low-thrust transfer trajectory
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Each simulation ends when the required tolerances (27) are met. Table  3 
reports the average values (denoted with the upper bar) and the standard devia-
tion (superscript (�) ) for the time of flight and the final mass ratio, as well as the 
correlation coefficients between either the time of flight and the initial inclina-
tion ( �i ) or the time of flight and the initial RAAN ( �Ω ). Figures 10, 11, 12, 13, 
15, 16, 17, 18, 20, 21, 22, and 23 portray the time histories of the semimajor 
axis, eccentricity, inclination, and RAAN for the 3 quasi-synchronous inclined 
orbits. Figures  14, 19, and 24 illustrate the time of flight as a function of the 
initial inclination and RAAN, for the 3 orbits of interest. It is apparent that a 
correlation �Ω exists for deployment into 2 quasi-synchronous orbits out of 3. 
Instead, the transfer paths leading to quasi-synchronous orbit 1 exhibit weak cor-
relation �Ω . This is due to the time evolution of the RAAN, shown in Fig. 13. In 
fact, in this case two subsets of transfer trajectories exist: in subset 1, the RAAN 
increases, whereas in subset 2 the RAAN reduces, with convergence toward the 
final desired value in both cases. For this orbit, correlation �i is greater than for 
the remaining 2 quasi-synchronous orbits. Figures 25, 26, 27, and 28 depict the 
time histories of the semimajor axis, eccentricity, and inclination referred to the 
final areostationary orbit, as well as the time of flight as a function of the initial 
inclination and RAAN. In this case, a correlation emerges between the time of 
flight and the initial inclination, testified by the value of �i . This means that the 
transfer time needed to converge to the final areostationary (equatorial) orbit is 
substantially affected by the initial inclination. In all cases, in spite of largely 
dispersed initial conditions, the time of flight has an average value close to the 
nominal one and standard deviations between 5.5 and 13.5 days. The final mass 
ratio has average values ranging from 0.931 (quasi-synchronous orbit 2) to 0.950 

Table 2   Nominal values, 
standard deviations, and limiting 
values of the initial orbit 
elements

Orbit element a (km) e i (°) Ω 
(°)

� (°) f (°)

Nominal value 51,545 0.928 92.3 64.7 342.4 180.0
Standard deviation 10,000 0.2 15 15 15 15
Minimum value 21,545 0.53 62.3 34.7 −  48.6 150.0
Maximum value 71,545 0.98 122.3 94.7 12.4 210.0

Table 3   Results of the Monte Carlo campaign

Orbit Quasi-synchron. 1 Quasi-synchron. 2 Quasi-synchron. 3 Areostationary

tf  (days) 46.3 52.8 35.5 43.3

t
(�)

f
 (days) 9.0 13.4 5.9 5.5

x7,f 0.935 0.931 0.950 0.941

x
(�)

7,f
1.2e−2 1.3e−2 8.3e−3 7.3e−3

�i 9.94e−2 0.452 2.73e−2 0.429
�Ω − 7.29e−2 0.581 − 0.701 8.14e−2
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Fig. 10   Quasi-synchronous orbit 1: time history of the semimajor axis (MC campaign)

Fig. 11   Quasi-synchronous orbit 1: time history of eccentricity (MC campaign)

Fig. 12   Quasi-synchronous orbit 1: time history of inclination (MC campaign)
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Fig. 13   Quasi-synchronous orbit 1: time history of RAAN (MC campaign)

Fig. 14   Quasi-synchronous orbit 1: time of flight vs. initial inclination (left) and RAAN (right)

Fig. 15   Quasi-synchronous orbit 2: time history of the semimajor axis (MC campaign)
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Fig. 16   Quasi-synchronous orbit 2: time history of eccentricity (MC campaign)

Fig. 17   Quasi-synchronous orbit 2: time history of inclination (MC campaign)

Fig. 18   Quasi-synchronous orbit 2: time history of RAAN (MC campaign)
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Fig. 19   Quasi-synchronous orbit 2: time of flight vs. initial inclination (left) and RAAN (right)

Fig. 20   Quasi-synchronous orbit 3: time history of the semimajor axis (MC campaign)

Fig. 21   Quasi-synchronous orbit 3: time history of eccentricity (MC campaign)
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Fig. 22   Quasi-synchronous orbit 3: time history of inclination (MC campaign)

Fig. 23   Quasi-synchronous orbit 3: time history of RAAN (MC campaign)

Fig. 24   Quasi-synchronous orbit 3: time of flight vs. initial inclination (left) and RAAN (right)
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Fig. 25   Areostationary orbit: time history of the semimajor axis (MC campaign)

Fig. 26   Areostationary orbit: time history of eccentricity (MC campaign)

Fig. 27   Areostationary orbit: time history of inclination (MC campaign)
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(quasi-synchronous orbit 3), with modest standard deviations, never exceeding 
1.3 e−2.

6 � Orbit Phasing

The first phase of constellation deployment ends with orbit injection of each car-
rier, which corresponds to achieving the desired orbit plane, with zero eccentricity 
and the prescribed orbit radius. Then, the satellites are released, and each of them 
performs corrective phasing maneuvers, with the use of chemical propulsion. Usu-
ally, this implies very short ignitions, and the impulsive thrust approximation can be 
adopted as a result [23, 24]. The methodology for phasing described in this section 
resembles the one described in Ref. [10] for Earth orbits.

Orbit phasing is performed by placing the space vehicle in a parking elliptic orbit. 
Two options are investigated:

(1)	 internal phasing: a braking horizontal velocity change injects the spacecraft into 
an inner elliptic orbit; after a certain phasing time, a second velocity variation 
(at apoapse) inserts the satellite into the final orbit;

(2)	 external phasing: an accelerating horizontal velocity change injects the space-
craft into an outer elliptic orbit; after a certain phasing time, a second velocity 
variation (at periapse) inserts the satellite into the final orbit.

In both cases the two velocity changes have the same magnitude. The initial and 
final orbit are identical, but the spacecraft is shifted along the orbit, to reach the 
desired position, as a result of the phasing maneuver. In the context of orbit phasing, 
harmonic J2 of the areopotential (related to the Martian oblateness) is the only per-
turbing action included in the model, because it is largely dominant if compared to 
the remaining orbit perturbations.

After the first velocity variation Δv𝜃𝜃̂ (either in case (a) or in case (b)), the 
parking elliptic orbit has semimajor axis aPH and eccentricity ePH . The satellite 

Fig. 28   Areostationary orbit: time of flight vs. initial inclination (left) and raan (right)
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completes nPH parking orbits (from either apoapse to apoapse, case (1), or periapse 
to periapse, case (2)) in a time interval

where ḟ  represents the average time derivative of the true anomaly [25]. Along the 
parking orbit, the RAAN is subject to natural drift due to Mars oblateness (harmonic 
J2 ) that differs from the desired one. The displacement ΔΩPH between the desired 
change of RAAN and the actual variation is

where ΔtPH is given by Eq. (29). To compensate this undesired drift, an out-of-plane 
velocity change Δvhĥ is applied when the argument of latitude equals 90°, to avoid 
any alteration of the orbit inclination i. [19] To do this, the out-of-plane velocity 
change has component

However, the out-of-plane velocity variation has the undesired effect of altering 
the argument of latitude along the circular orbit [19],

To address this issue, a virtual vehicle is introduced, with argument of latitude �d 
corresponding to the desired angular position; �d,0 denotes the value of �d when the 
phasing maneuver begins. Instead, the actual argument of latitude along the park-
ing orbit is � , with initial value �0 (when the first velocity change is applied). Let 
Δ� ∶= �d,0 − �0 denote the phasing angle, i.e. the difference between the desired 
and the actual argument of latitude when the phasing maneuver starts. After two in-
plane velocity changes and the final out-of-plane velocity variation (cf. Eq. (32)) the 
final argument of latitude equals

Equation (33) includes also the variation due to the out-of-plane velocity change Δ� 
(cf. Equation (32)). In the last relation the average time derivatives 𝜔̇ and ḟ  are given 
by Eqs. (2) and (29), respectively. The condition that ensures correct phasing is

(28)ΔtPH =
2𝜋nPH

ḟ
, with ḟ =

�
𝜇E

a3
+

3

2
J2

R2
E

√
𝜇E

a3.5
�
1 − e2

�2
�
3

2
sin2 i − 1

�

(29)ΔΩPH = −
3

2
R2
M
J2
√
�M cos i

�
1

R7∕2
−

1

a
7∕2

PH

�
1 − e2

PH

�
�
ΔtPH

(30)Δvh = ΔΩPH sin i

√
�M

R

(31)Δ� = −Δvh
cos i

sin i

√
R

�M

(32)𝜃f = 𝜃0 + 𝜃̇ΔtPH + Δ𝜃, with 𝜃̇ = 𝜔̇ + ḟ

(33)𝜃d,f − 𝜃f = 2k𝜋 ⇒

(
𝜃d,0 + 𝜃̇dΔtPH

)
−
(
𝜃
0
+ 𝜃̇ΔtPH + Δ𝜃

)
= 2k𝜋
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with either k = 0 (internal phasing) or k = 1 (external phasing). The symbol 𝜃̇d rep-
resents the average time derivative of the argument of latitude of the virtual vehicle. 
Using the definition of Δ�

(
∶= �d,0 − �0

)
 , the phasing Eq. (34) becomes

In short, three velocity changes (two in-plane changes and a single out-of-plane 
velocity variation) allow performing the phasing maneuver. For a specified nPH and 
a specified (desired) angular displacement Δ� , the following steps lead to identify-
ing Δv� and Δvh:

(a)	 the semimajor axis and eccentricity of the parking orbit are expressed as func-
tions of Δv� , using the specific angular momentum, in conjunction with the vis 
viva equation for the specific energy;

(b)	 the time spent in the parking orbit is found, using Eq. (29);
(c)	 the displacement ΔΩPH is found through Eq. (30);
(d)	 the out-of-plane velocity change, Δvhĥ , is evaluated by means of Eq. (31);
(e)	 the value of Δ� , related to the out-of-plane velocity change, is obtained through 

Eq. (32);
(f)	 phasing, i.e. Eq. (34), is enforced.

In the end, the preceding steps allow placing the satellite at the correct angular 
position, while taking into account the coupled effects of in-plane and out-of-plane 
velocity changes.

Figure 29 portrays the overall velocity change needed for phasing as a function of 
Δ� , along the quasi-synchronous inclined orbit, whereas Fig. 30 depicts the corre-
sponding in-plane and out-of-plane velocity variations. Different numbers of orbits 
(i.e. 10, 20, 30, 40, and 50) along the parking path are considered, and correspond 
to the durations reported in the right inset. Only the most convenient option between 
internal and external phasing is depicted. It is apparent that for values of Δ� larger 
than 180°, external phasing is more convenient in terms of overall velocity change. 
Conversely, internal transfers are preferable if the satellite must be moved ahead of 
its initial position by an angle that does not exceed 180°. Not surprisingly, larger 
durations correspond to reduced propellant budgets. In particular, Fig. 29 points out 
that the overall velocity change reduces to modest values if the time spent in the 
parking orbit exceeds 80 days. As a further remark, the comparison of in-plane and 
out-of-plane velocity changes reveals that the latter have negligible values if com-
pared to in-plane velocity variations. Moreover, the out-of-plane velocity change 
turns out to be relatively independent of the phasing duration.

Figure 31 depicts the overall velocity change as a function of Δ� , along the are-
ostationary orbit. It is worth remarking that in this case no out-of-plane velocity 
change is required. Also in this case, longer durations correspond to reduced veloc-
ity variations needed to complete orbit phasing, with modest values if the time spent 
in the parking orbit exceeds 50 days.

(34)Δ𝛼 − Δ𝜃 +
(
𝜃̇d − 𝜃̇

)
ΔtPH − 2k𝜋 = 0
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7 � Concluding Remarks

In this research, a satellite constellation that guarantees global continuous cover-
age over Mars is designed. This could serve as a communications relay system and 
would certainly represent a valuable asset for future missions. While 3 satellites 
travel an areostationary orbit, the remaining 9 satellites are released in three repeat-
ing-ground-track, circular, quasi-synchronous, inclined orbits. This configuration 
guarantees global and continuous coverage, while ensuring repetition and predict-
ability of the visible passes and simultaneous visibility of multiple satellites. Moreo-
ver, this work addresses the problem of deploying the 12 satellites using 4 carrier 
vehicles, released by the mother spacecraft. The latter orbits a highly elliptical path, 
i.e. the ESA 4-sol orbit, which is entered after planetary capture. Orbit dynamics 
about Mars is modeled with the inclusion of the most relevant perturbations, i.e. 
several harmonics of the areopotential, together with the gravitational pull due to 

Fig. 29   Quasi-synchronous inclined orbit: overall velocity change for orbit phasing

Fig. 30   Quasi-synchronous orbit: in-plane (a) and out-of-plane (b) velocity change for orbit phasing
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the Sun as a third body. Each carrier embarks 3 satellites and employs steerable and 
throttleable low-thrust propulsion for the purpose of driving them toward the respec-
tive operational orbit. A saturated feedback law for the low-thrust magnitude and 
direction—with an upper bound on magnitude—is described and used, and enjoys 
global stability properties. In particular, some sufficient conditions for the asymp-
totic convergence toward the operational conditions are stated. These conditions 
include the perturbing acceleration term, and lead to identifying three types of trans-
fer arcs: (a) maximum-thrust arcs, (b) time-varying, intermediate-thrust arcs, and (c) 
coast arcs. The numerical simulations demonstrate that the low-thrust deployment 
strategy based on nonlinear orbit control is effective, and needs a limited amount of 
propellant. Moreover, the feedback control law at hand does not require any offline 
reference trajectory. Therefore, it is effective as an autonomous real-time guidance 
strategy, even in the presence of nonnominal flight conditions. With this regard, a 
Monte Carlo campaign proves that orbit injection is successfully completed even 
starting from dispersed initial conditions, which can be regarded as representative of 
initial elliptical orbits significantly different from the expected one, due to injection 
errors at the planetary capture. Orbit phasing represents the last phase of deploy-
ment, and is performed by each satellite. Both internal and external phasing are con-
sidered. A simple and effective strategy is described that includes out-of-plane and 
in-plane velocity changes and avoids leaving the operational orbit plane. The trade-
off between overall propellant expenditure and phasing time is identified.

Appendix

This appendix is concerned with the gain selection for the feedback law (23). 
For each final orbit, a systematic search was performed, by assuming k1 = 1 , 
k2 = 103, 104, 105, 106 k3 = 103, 104, 105, 106 . Because the weights k2 and k3 relative 
to k2 are meaningful, k1 was set to 1, and different values were assumed only for  k2 

Fig. 31   Areostationary orbit: overall velocity change for orbit phasing
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and k3 . Overall, 16 simulations were run for each final orbit, under the assumption 
of neglecting orbit perturbations, with the results collected in Tables 4, 5, 6, 7, 8, 9, 
10 and 11, in terms of time of flight and final mass ratio. Inspection of Tables 4, 5, 
6, 7, 8, 9, 10, and 11 leads to choosing the most appropriate gains for each case, i.e.,

•	 areostationary orbit: k1 = 1, k2 = 104, k3 = 106

•	 quasi-synchronous orbit 1: k1 = 1, k2 = 104, k3 = 106

•	 quasi-synchronous orbit 2: k1 = 1, k2 = 104, k3 = 105

•	 quasi-synchronous orbit 3: k1 = 1, k2 = 104, k3 = 106

For the case of final areostationary orbit, the result attained after gain tuning was 
compared to the minimum-time orbit transfer, detected with the use of the indirect 
heuristic method [26]. It is worth remarking that the latter approach is computation-
ally intensive and cannot be performed in real time. Moreover, optimal control does 
not provide a feedback law capable of compensating for nonnominal flight condi-
tions and orbit perturbations. Nevertheless, the minimum-time transfer is useful for 
the purpose of comparing the numerical results found with nonlinear orbit control 
and optimal control. For the case at hand (final areostationary orbit), the following 
results were obtained:

•	 optimal control: tf = 33.4 days, x7,f = 0.953

•	 nonlinear feedback control: tf = 39.1 days, x7,f = 0.946

These results provide a clear indication on the capability of approaching the perfor-
mance obtained with optimal control, through proper selection of k1 , k2 , and k3.

Table 4   Areostationary orbit: 
time of flight (days) as a 
function of gains k2 and k3

tf (days) k
3

103 104 105 106

k2 103 60.3 42.1 40.6 42.2
104 80.9 54.7 41.6 39.1
105 92.8 71.7 52.0 42.9
106 96.4 82.3 68.5 68.1

Table 5   Areostationary orbit: 
final mass ratio as a function of 
gains k2 and k3

x7,f k
3

103 104 105 106

k2 103 0.923 0.943 0.945 0.942
104 0.897 0.926 0.944 0.946
105 0.882 0.904 0.930 0.943
106 0.877 0.891 0.909 0.943
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Table 6   Quasi-synchronous 
orbit 1: time of flight (days) as a 
function of gains k2 and k3

tf (days) k
3

103 104 105 106

k2 103 50.4 42.6 38.6 39.3
104 77.8 56.3 43.8 36.2
105 100.5 47.4 52.0 46.5
106 110.7 95.0 73.7 48.0

Table 7   Quasi-synchronous 
orbit 1: final mass ratio as a 
function of gains k2 and k3

x7,f k
3

103 104 105 106

k2 103 0.930 0.946 0.946 0.945
104 0.892 0.930 0.943 0.949
105 0.860 0.895 0.934 0.939
106 0.846 0.866 0.896 0.932

Table 8   Quasi-synchronous 
orbit 2: time of flight (days) as a 
function of gains k2 and k3

tf (days) k
3

103 104 105 106

k2 103 52.8 49.7 53.3 57.4
104 58.1 55.3 47.9 51.5
105 60.4 71.9 51.2 48.1
106 66.1 71.6 51.7 52.1

Table 9   Quasi-synchronous 
orbit 2: final mass ratio as a 
function of gains k2 and k3

x7,f k
3

103 104 105 106

k2 103 0.927 0.930 0.925 0.919
104 0.921 0.929 0.933 0.927
105 0.916 0.916 0.928 0.932
106 0.910 0.913 0.927 0.927

Table 10   Quasi-synchronous 
orbit 3: time of flight (days) as a 
function of gains k2 and k3

tf (days) k
3

103 104 105 106

k2 103 40.5 36.2 36.6 39.9
104 48.2 44.1 36.2 34.5
105 55.5 46.1 116.7 41.0
106 59.8 52.4 44.3 39.6



1724	 The Journal of the Astronautical Sciences (2022) 69:1691–1725

1 3

Acknowledgements  The authors wish to express their gratitude to Francesco Corallo, who provided the 
numerical solution of the minimum-time orbit transfer mentioned in Appendix.

Funding  Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author states that there is no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Ely, T.A., Anderson, R., Bar-Sever, Y.E., Bell, D., Guinn, J., Jah, M., Kallemeyn, P., Levene, E., 
Romans, L., Wu, S.C.: Mars network constellation design drivers and strategies. In: AAS/AIAA 
Astrodynamics Specialist Conference, Girdwood, AK (1999); paper AAS 99-301

	 2.	 Bell, D.J., Cesarone, R., Ely, T., Edwards, C., Townes, S.: Mars network: a mars orbiting commu-
nications & navigation satellite constellation. In: Proceedings of the 2000 IEEE Aerospace Confer-
ence, Big Sky, MT (2000)

	 3.	 Liu, X., Baoyin, H., Ma, X.: Five special types of orbits around mars. J. Guid. Control. Dyn. 33(4), 
1294–1301 (2010)

	 4.	 Nann, I., Izzo, D., Walker, R.: A reconfigurable mars constellation for radio occultation measure-
ments and navigation. In: 4th International Workshop on Satellite Constellation and Formation Fly-
ing, Sao José dos Campos, Brazil (2005)

	 5.	 Kelly, P.W., Bevilacqua, R.: Constellation design for mars navigation using small satellites. In: 2018 
AIAA Aerospace Sciences Meeting, Kissimmee, FL (2018); paper AIAA 2018-1538

	 6.	 Puig-Suari, J., Zohar, G., Leveque, K.: Deployment of CubeSat constellations utilizing current 
launch opportunities. In: Proceedings of the 27th Annual AIAA/USU Conference on Small Satel-
lites, Logan, UT (2013)

	 7.	 Fong, C.-J., Shiau, W.-T., Lin, C.-T., Kuo, T.-C., Chu, N.-H., Yang, S.-K., Yen, N.L., Chen, S.-S., 
Kuo, Y.-H., Liou, Y.-A., Chi, S.: Constellation deployment for the FORMOSAT-3/COSMIC mis-
sion. IEEE Trans. Geosci. Remote Sens. 46(11), 3367–3379 (2008)

Table 11   Quasi-synchronous 
orbit 3: final mass ratio as a 
function of gains k2 and k3

x7,f k
3

103 104 105 106

k2 103 0.945 0.951 0.948 0.944
104 0.934 0.945 0.952 0.951
105 0.924 0.937 0.896 0.942
106 0.816 0.730 0.938 0.944

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1725

1 3

The Journal of the Astronautical Sciences (2022) 69:1691–1725	

	 8.	 Crisp, N.H., Smith, K., Hollingsworth, P.: Launch and deployment of distributed small satellite sys-
tem. Acta Astronaut. 114, 65–78 (2015)

	 9.	 Lee, H.W., Jacob, P.C., Ho, K., Shimizu, S., Yoshikawa, S.: Optimization of satellite constellation 
deployment strategy considering uncertain areas of interest. Acta Astronaut. 153, 213–228 (2018)

	10.	 Pontani, M., Teofilatto, P.: Deployment strategies of a satellite constellation for polar ice monitor-
ing. Acta Astronaut. 193, 346–356 (2022)

	11.	 Cano, J.L., Caramagno, A., Catullo, V., Cassi, C.: ExoMars mission analysis and design—launch, 
cruise and arrival phases. Adv. Astronaut. Sci. 127 (2007). Paper AAS 07–173

	12.	 Silva, J.J., Romero, P.: Optimal longitudes determination for the station keeping of areostationary 
satellites. Planet. Space Sci. 87, 14–18 (2013)

	13.	 Prussing, J.E., Conway, B.A.: Orbital Mechanics, pp. 46–54, 238–243. Oxford University Press, 
New York (2013)

	14.	 Rayman, M.D., Chadbourne, P.A., Culwell, J.S., Williams, S.N.: mission design for deep space 1: a 
low-thrust technology validation mission. Acta Astronaut. 45(4–9), 381–388 (1999)

	15.	 Rathsman, P., Kugelberg, J., Bodin, P., Racca, G.D., Foing, B., Stagnaro, L.: SMART-1: Develop-
ment and lessons learnt. Acta Astronaut. 57(2–8), 455–468 (2005)

	16.	 Gurfil, P.: Nonlinear feedback control of low-thrust orbital transfer in a central gravitational field. 
Acta Astronaut. 60, 631–648 (2007)

	17.	 Pontani, M., Pustorino, M.: Nonlinear Earth orbit control using low-thrust propulsion. Acta Astro-
naut. 179, 296–310 (2021)

	18.	 Pontani, M., Pustorino, M.: Nonlinear orbit control for Earth satellites using low-thrust propulsion. 
Adv. Astronaut. Sci. 173, 407–426 (2020)

	19.	 Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, pp. 484–503. 
AIAA Education Series, New York (1987)

	20.	 Broucke, R.A., Cefola, P.J.: On the equinoctial orbit elements. Celest. Mech. 5, 303–310 (1972)
	21.	 Jurdjevic, V., Quinn, J.P.: Controllability and stability. J. Differ. Equ. 28, 381–389 (1978)
	22.	 Sastry, S.: Nonlinear Systems. Analysis, Stability, and Control, pp. 182–234. Springer, New York 

(1999)
	23.	 Zee, C.: Effects of finite thrusting time in orbit maneuvers. AIAA J. 1(1), 60–64 (1963)
	24.	 Robbins, H.M.: Analytical study of the impulsive approximation. AIAA J. 4(8), 1417–1423 (1966)
	25.	 Curtis, H.D.: Orbital Mechanics for Engineering Students. Elsevier, Cambridge (2020)
	26.	 Pontani, M., Conway, B.A.: Minimum-fuel finite-thrust relative orbit maneuvers via indirect heuris-

tic method. J. Guid. Control. Dyn. 38(5), 913–924 (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Mars Constellation Design and Low-Thrust Deployment Using Nonlinear Orbit Control
	Abstract
	1 Introduction
	2 Constellation Configuration
	2.1 Coverage Analysis for 3 Satellites in Areostationary Orbit
	2.2 Quasi-synchronous, Circular, Repeating-Ground-Track, Inclined Orbits
	2.3 Coverage Analysis for 9 Satellites in Quasi-synchronous Orbits

	3 Low-Thrust Orbit Dynamics
	4 Nonlinear Orbit Control for Low-Thrust Deployment
	4.1 Deployment Conditions
	4.2 Feedback Law and Stability Analysis

	5 Low-Thrust Constellation Deployment
	5.1 Nominal Initial Conditions
	5.2 Nonnominal Initial Conditions

	6 Orbit Phasing
	7 Concluding Remarks
	Acknowledgements 
	References




