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ABSTRACT The low probability of single event upsets (SEU) within particular satellite orbits,
makes Commercial-off-the-shelf (COTS) electronic components a viable solution for space system
implementation, thanks to the introduction of design-level fault tolerance techniques at the expense of some
performance/energy/area penalty. This paper illustrates the design and validation of a novel RISC-V dual-
core architecture, based on a computing paradigm that we refer to as full/partial heterogeneous multi-core
protection. The approach relies on a small, low-performance, fully fault-tolerant core (LP core) coupled
with a high-performance partially fault-tolerant core (HP core). The computing paradigm assumes the
failure-exposed HP core executes computation intensive routines for relatively short periods of time, making
the occurrence of failures a statistically unlikely situation, while the fully fault-tolerant LP core operates in
critical control tasks and manages the failure recovery of the high-performance core. The execution time
percentage in the LP core varies from a minimum of 11.4% up to a maximum of 91.3% while in the HP core
it is between 8.7% and 88.6%, depending on the application. In the proposed study, both the cores belong
to the RISC-V compliant Klessydra core family. The dual-core architecture also includes a watchdog timer
controlled by the LP core and monitoring the non-protected HP core, and a context switch FIFO that speeds
up the code and data switch between the two cores during failure recovery. A dedicated run-time software
environment coordinates the execution of tasks on the high-performance core in a resilient fashion. The
dual-core processor has been validated through extensive RTL simulations running in an UVM-based fault-
injection environment, which emulates SEUs at various rates. Experimental results illustrate the benefits and
limits obtained by using a heterogeneous architecture with different levels of protection and performance.
The failure probability assuming a SEU fault occurrence can be reduced by a factor between 10X and 30X
with respect to the non-protected architecture, leading to an average failure rate of up to 4.00E-06 per second
with respect to 1.80E-05 per second in the non-protected architecture.

INDEX TERMS Processor architecture, fault-tolerance, multi-core, RISC-V, interleaved multi-threading,
heterogeneous computing, single event effects.

I. INTRODUCTION
In some specific operating environments, such as space
and aerospace applications, electronic devices have to
be specifically designed and/or fabricated to manage the
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occurrence of hardware faults and possibly temporary
operation errors and maintain a high grade of reliability [1].
Yet, the demand for on-board computing power in satellites
has increased over the years, requiring the operation of
complex processors in the space environment and better
battery lifetime [2], [3]. While components fabricated with
radiation-hard technologies are available, they are affordable
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only to high-cost space satellites [4]. Commercial Off-The-
Shelf (COTS) components can achieve a sufficient degree of
resilience when coupled with ad-hoc design techniques [5].
Redundancy, at the logic and microarchitecture level or at the
system level, represents the conceptual basis for obtaining
computation resilience in a harsh environment by design.
Triple-Modular-Redundancy (TMR) at the logic andmicroar-
chitecture level has been demonstrated as a primary technique
to defeat faults, yet with expensive hardware resource
usage [6]. Redundancy obtained at the microarchitecture
level leveraging simultaneous Multi-Threading (SMT) and
Multi-Core architectures have become the basis for many
fault tolerant processors, not only for space applications [7],
[8], [9], [10].

Our work addresses the possibility of exploiting microar-
chitecture heterogeneity in the context of fault tolerance (FT).
The concept of heterogeneous dual cores has been success-
fully proven in embedded systems for power efficiency, with
the big.LITTLE architecture being the most representative
industrial example [11] and [12]. The basic idea of our work
is to explore the use of a heterogeneous architecture based
on a fully fault-tolerant, low-performance core coupled with
a unprotected high-performance core. The rational behind
the study is that using a high performance core can reduce
the time window in which the core is susceptible to faults,
while using a low-performance, yet fully protected core can
guarantee a way for recovering from failures. Our goal is
to analyze the FT performance obtained by partitioning the
program code between the two computing resources, under
the assumption of a supposed Single Event Upset (SEU) rate
per bit.

Generally speaking, integrated circuit faults may result
from fabrication defects, physical wear-out, and particle
radiation. Normally, they can be divided into two main
classes [13]:permanent faults, such as stuck-at-zero or stuck-
at-one with a fixed logic value, and Transient faults, such as
bit-flip, pulse, and delay. In this work, we analyze the fault
effects originating from particle radiation, targeting Transient
faults with Single Event Upsets. Permanent faults in our
architecture would produce different impacts depending on
the affected unit. In case of permanent faults in the sequential
logic of the protected LP core, a failure would be exposed
only if two redundant register bits are affected in the same
TMR FF unit. In contrast, a permanent fault in the pipeline of
the non-protected HP core would make the HP core unusable,
forcing the software to operate only in LP mode. Detailed
impact about permanent faults will be explored in future
developements.

The target implementation technology underlying the
proposed study is represented by low-cost FPGA devices.
In the FPGA scenario, established commercial solutions are
available for protecting the device from SEU-induced bit flips
in the configuration RAM (via dedicated IPs [14]), and in
the data contained in BRAMs (via automatically synthesized
error correction codes [15]). Thus, architectural flip-flops
in the synthesized design represent the open critical issue

for FT. From this point of view, the focus of our work
is the definition of an alternative solution to a resource-
consuming full-TMR protection of all the flip-flop cells in
the synthesized processor.

The contributions of our work can be summarized as
follows:

• Defining and illustrating the structure and the mech-
anisms of the full/partial heterogeneous dual core
architecture in detail;

• Quantitatively evaluating the achievable FT perfor-
mance in terms of failure probability in case of a SEU,
and average failure rate per program run assuming a
given SEU rate per bit.

The proposed work primarily accounts for the resilience
analysis of a practical design case, rather than a general
theoretical model. The theoretical contribution of the work
mainly resides in the mathematical analysis for the extraction
of the failure probability from an ad-hoc fault injection
simulation.

The rest of the article is organized as follows: in
Sections II we discuss the related works and the foundation
of the proposed approach; section III and IV describe the
processor microarchitecture and related run-time software
environment; section V describes the testing methodology;
Section VI discusses the results, and Section VII reports our
conclusions.

II. RELATED WORKS
Many fault-tolerant techniques were developed over the years
based on multi-thread and multi-core architectures [16].
In Multi-Core (MC) architectures, some approaches were
adapted from the Simultaneous Multi-Threading (SMT)
field [1]. For example, the chip-level redundant threading
(CRT) approach [17] implements the Simultaneous Redun-
dant Thread (SRT) technique using two cores, having a
shared branch prediction queue and a store/load value queue.
The authors of [18] also implement a ‘‘fingerprint’’ to
compress the architecture status reducing the comparison
overhead. The most common idea in MC architectures [8],
[9] is represented by lockstep cores, in which synchronized
processor replicas execute the same instruction in the same
clock cycle or with a timing offset of a few cycles. Authors
in [19] introduced a configurable computing cluster for
dual-core and triple-core lockstep execution, with Error-
Correcting-Code (ECC) protected registers to restore the
state of the computing cores, along with features to define
explicit portions of code as safety-critical sections. The
work in [20] describes the NMR-MPar method used to
improve the reliability of applications running in multi-
/many-core processors as a generic software approach using
partitioning, spatial redundancy and redundancy in data.
Authors in [7] propose an FPGA methodology combining
two different cores with different performance, creating
a heterogeneous Dual-Core Lockstep (DCLS) processor,
featuring a 666 MHz ARM A9 hard-core and a 25 MHz
LowRISC soft-core on Zynq-7000. Each core receives the
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same input, and additional hardware compares the output.
The system can stop, restart, restore from a checkpoint,
or continue execution. The overall perforamnce is dictated by
the slow core. Authors in [8] designed an offline scheduler
synthesis framework for MC processors running real-time
applications, which can drive the system to a safe execution
state, even in the case of transient faults. In [21], the
authors present CEVERO, a RISC-V System-on-Chip that
implements FT on a PULP platform [22], incorporating two
Ibex cores running in a lockstep mode and compared to
each other via an FT hardware module. The work reported
in [10] explores how a reliability-aware dynamic scheduler
can improve soft error resilience in a non-fault-tolerant
heterogeneous MC processor. The approach aims at showing
the FT improvement with respect to a generic scheduling
mechanism, evidencing an average 26% reduction in the
failure probability.

The classic concept of time or space redundancy behind
fault-tolerant architecture implies a compromise in terms of
resources, which could be about performance or area [1].
For this reason, recent research has started looking at partial
FT support, which generally provides less reliability but
is susceptible to optimization by an offline analysis of the
program code. In many applications, the workload of an
embedded processor can be divided into heavy-load tasks
and light-load tasks, from a computational point of view.
In harsh environment applications, where fault resilience
plays a crucial role, we can define an additional subdivision
between critical tasks and non-critical ones. As a critical
task, we consider every portion of code where an error
could generate dramatic side effects for the entire system.
As non-critical tasks, we consider all the parts that may be
re-executed again in case of errors, with performance side
effects only. Fig. 1 illustrates a graphical representation of
this scheme.

FIGURE 1. Software application partitioning principle scheme.

A previous work resembling this idea proposed a
multi-threaded single core, in which the processor threads
intrinsically have different fault tolerant capabilities [23].
Critical tasks are executed in the thread with full FT support
while non-critical ones are executed on other threads.

III. HETEROGENEOUS DUAL-CORE SOFT PROCESSOR
ARCHITECTURE
A. CONCEPTUAL BASIS
Our work aims at studying the behaviour of a non-uniformly
protected dual-core in a harsh environment characterized by
a given SEU rate. Assuming the software task partitioning
defined in the previous section, we focused on executing
critical code on a protected core, and reducing the execution
time of the non-critical code (both light and heavy loads)
on a fast but unprotected core, to reduce the overall system
failure probability without compromising performance. The
underlying conjectures are the following:

• The fault distribution is uniform in time - with respect
to the execution duration of an application program on
the processing cores - and in space - with respect to the
physical area of the computing device;

• The probability of a fault occurrence in a processing
core is proportional to its hardware resource occupation
(area), yet the failure probability does not increase
proportionally, since the physical site and time instant
of a fault affects its actual impact on the application
behavior;

• The probability of a fault occurrence in a processing core
decreases by reducing the working time of the core, and
so does the failure probability.

B. TOP LEVEL MICROARCHITECTURE VIEW
The Hydra Heterogeneous Computing Architecture
(Hydra-HCA) is a dual-core soft-processor, in which the two
cores differ in performance, hardware resource occupation,
and computing features. Both the cores belong to the
Klessydra family, which is fully compatible with the
PULPino platform, an open-source embedded platform
supporting 32-bit RISC-V cores [24]. The Hydra-HCA
processor platform extends the PULPino architecture by
featuring a small, low performance single-thread core
(LP-Core), along with a second relatively high-performance
and multi-threading core (HP-Core) (Fig.2). The LP-core is
a Klessydra FT core, fully protected from SEUs via TMR
at flip-flop level. The HP-Core is a Klessydra T03 core,
which supports a wider RISC-V instruction set extension and
provides higher performance, but has no hardware protection
from SEUs at all. In applications that use a common set
of instructions, the instruction per cycle (IPC) rate in the
HP-core is at least 3 times higher than in the LP-core.

The memory sub-system of the Hydra-HCA platform
(Fig. 2 - arrows indicate address paths, for both instructions
and data) is composed of a shared program RAM and a
shared data RAM. Each memory is a dual-port RAM in
which port B has lower priority access than port A. Port B
in each memory is directly accessed by the HP core. Port A is
accessed through a multiplexer having one input connected
to the LP-core and the other to an AXI4 interconnect,
via a bridge, for programming/boot-loading purposes. The
HP-core, connected using port B, always has lower priority
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FIGURE 2. Hydra-HCA top level architecture view.

FIGURE 3. Detailed microarchitecture of the dual core section of Hydra-HCA.

access to the memories with respect to the fault-tolerant
LP-core. Moreover, to increase the reliability of the archi-
tecture, the HP-core has no write permission to the program
RAM.

The data ports of the two cores can access the AXI bus
via a dual-port multiplexing AXI bridge (Fig. 2 - right), with
the LP-core having higher priority access. This multiplexing

bridge can also be configured by the LP-core to selectively
disable the access of the unprotected HP-core to external
peripherals.

The LP-core can control at hardware level the HP-core.
In fact, while the LP-core is directly connected to the system
reset logic, the HP-core hardware reset line is controlled
by the LP-core through a memory-mapped register. During
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power-on and after the system reset the HP-core is in reset
state by default, so that the LP-core can wake up the
HP-core only after the system configuration is complete.
Furthermore, through another memory mapped register, the
LP-core controls the fetch-enable line of the HP-core, which
can put HP-core in sleep-state. Finally, the LP-core has the
ability to send a hardware interrupt to the HP-core.

While in a DCLS microarchitecture both cores run
the same program thread to spot an error by analysing
the corresponding outputs, in Hydra-HCA the two cores
run different parts of the software workload, balancing
performance and reliability. In DCLS, every fault resulting
in an output mismatch must be managed by reloading a safe
execution checkpoint, with a computational overhead due to
both the restoring operation and especially the checkpoint
state periodic saving. In Hydra-HCA, the software execution
is preemptively partitioned between the cores to exploit their
different features and achieve the best compromise between
performance and reliability, at the expense of a larger effort
in the software design.

C. HP-CORE
Fig. 3 provides a detailed illustration of the dual core
microarchitecture section. The HP-core implemented in
Hydra-HCA is Klessydra T03 [24], [25]. Klessydra-T03 is a
four-stage pipeline in-order processor that interleaves three
or more hardware threads (Harts), with a shared memory
scheme. Thread interleaving allows avoiding pipeline stalls
thanks to the intrinsic absence of data or branch hazards [26].
It supports the RV32IMA instruction set [24], thus including
the ‘‘M’’ (integer multiply/divide) and ‘‘A’’ (Atomic) exten-
sions, the latter being used in thread synchronization [27].

D. LP-CORE
The LP-core in Hydra-HCA is the Klessydra F01, a single-
thread fault-tolerant processor [23], [28] based on a four
stages pipeline that supports the RV32I instruction set,
designed to maximally privilege simplicity and resilience
over performance. The pipeline implements stalls to avoid
register access hazards as well as branch hazards. All the
registers in the core are implemented as TMR components,
to guarantee full protection from SEUs.

E. CONTEXT SWITCH TMR FIFO
The Context Switch TMR FIFO (CS-FIFO Fig. 4) is a fast
bridge memory that allows fast data transfer from LP-core
to HP-core. The purpose of the CS-FIFO is to send state
information produced by a safe processing environment,
composed of the register file and the Control&Status
Registers (CSR) of the protected core, to the unprotected
core in order to create a safe starting point for execution
resume. The CS-FIFO is based on a full-TMR First-In-First-
Out (FIFO) buffer and is directly connected to the data
memory of each core through two dedicated ports. It works
with three different addresses:

• Configuration address: writable only from LP-core and
readable by both;

• Data in/out address: enabling the FIFO data input and
data output port respectively for the LP and HP core;

• Command address: writable only from the LP-core and
used to send the transfer-abort command.

The FIFO is managed by a controller unit that contains
the configuration register and executes the write requests
depending on the availability of empty elements in the
FIFO. A second unit manages the read requests and it
can be configured to provide the same element from the
FIFO to multiple sequential requests, which is used when
sending the same context to all threads in the HP-core. The
last component is the interrupt controller that manages the
interrupt requests to the HP-core through dedicated lines.
It can be configured to send multiple interrupts, one for each
Hart in the HP-core. The FIFO operates on the basis of a
configuration word that sets up and enables the component
for the data transfer. The configuration word contains the
Hart destination ID, that enables the corresponding interrupt
line, the amount of data to be transferred and the transmission
modes. The component can work in two different modes:

• Single Hart: the configuration word contains the
destination Hart number;

• Multi-Hart: the configuration word contains a bit that,
when set, will cause the first valid data to trigger an
interrupt to all the Harts.

In other words, the component can be used to send different
states to the Harts in the HP core (single Hart mode), or can be
used to initialize all the Harts in the HP coren with the state.
The latter mode may be exploited for comparing the results
produced by the same code executed in the three harts, so to
implement a software TMR in the HP core, if needed.

F. CORE-CONTROLLED WATCHDOG TIMER
The Core-Controlled Watchdog Timer (CC-WDT Fig. 5)
is a Hydra-HCA dedicated peripheral derived from the
Thread-Controlled WDT (TC-WDT) first described in [23].
The component is connected to a classic AMBA APB
interconnect, accessible to both cores, and to a dedicated
port accessed the LP-core only, to avoid that failures in the
HP core prevent the protected LP-core from controlling the
CC-WDT. The CC-WDT can only be reset by the LP-Core,
while the HP-core can set dedicated HP-flags inside the
CC-WDT status register. The LP-core periodically checks
the CC-WDT flags and it resets the CC-WDT count only
if the flags are correctly set. If the Harts in the HP-core
delay or omit the flag setting request, the LP-core may send a
hardware reset to theHP-core and restart the specificHart that
omitted setting the flags, and then reset the CC-WDT count.
In extreme cases, the CC-WDTwill time out, which will reset
the entire system.

IV. CORE CONTROL RUN-TIME SOFTWARE LIBRARY
The resilience of the proposed architecture is enhanced by
the availability of a run-time software library, specifically
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FIGURE 4. Details of the context Switch TMR FIFO.

FIGURE 5. Details of the Core-Controlled Watchdog Timer connections.

designed to control the dedicated Hydra-HCA hardware that
manages failure recovery and inter-core context switch. The
run-time library includes a set of routines that are exposed as
C functions to the programmer:

• hp_core_starting(): this function controls the reset input
pin of the HP-core, in order to wake-up the HP-core
from the reset state or to send it into the reset state.
The wake-up time depends on the environment boot
code. When in reset state, the HP-core is intrinsically
insensitive to SEU and SET events;

• hp_core_fetch_toggle(): this function controls the fetch
input pin of the HP-core. It is used to wake-up the
HP-core from sleep-state. The wake-up time from sleep-
state is 1 clock cycle. When in sleep state, the HP-core
is not affected by SEU and SET events;

• hp_core_sleep_mode(): this function is the companion
routine of the hp_core_fetch_toggle() and is used to send
the HP-core in sleep-state.

• fifo_send_task(): this function sends the LP-core context
to the CS-FIFO. After the data transfer, the CS-FIFO
sends an interrupt to one or more Harts of the HP-core to

transfer the context to them, depending on the CS-FIFO
configuration.

The above functions are essential to implement the pro-
gram partitioning between the LP-core and the HP-core.
By means of inter-Hart interrupts, shared data memory,
atomic semaphore operations and the CS-FIFO, the LP-core
can set up and launch the execution of a safe task on the
HP core. This implies transferring the LP-core context (data
registers and CSRs) into the context of a Hart in the HP-core.
In this way, it is possible to create a safe-start environment
from which the HP-core can run the computational intensive
code portion. As previously mentioned, the HP-core should
execute tasks that are not critical for the system.

The run-time library functions can also implement several
FT mechanisms. The choice of the most appropriate one
depends on the way the software has to be partitioned in the
architecture, based on the knowledge of which part of the
application is considered critical for the system. Examples of
methods to use the runtime library functions for FT are:

• HP-core reset-and-run: The HP-core reset signal is
controlled by the LP-Core using the hp_core_starting()
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function. If, for any reason, it is not possible to pass
the context from the LP-core to the HP-core, the former
can reset the second after writing the HP-core program
routine in the instruction RAM immediately following
the HP-core boot routine. After rebooting, the HP-core
will run the required routine.

• HP-core fault-tolerant processing: It is possible to take
advantage of the interleaved multi-threading architec-
ture of T03x by using the three threads to implement
a temporal triple redundancy, similar to [5]. In this
processing flow, the LP-core loses the role of main
and shall only send the context and PC, without the
necessity of a complex preparation phase. The HP-core
executes the same code portion in all its Harts, at the
end the three intermediate results are stored in different
Hart-dedicated memory regions and the LP-core takes
the role of result voter.

• HP-core fault-detecting processing: Similarly to the
previous case, the LP-core may launch two identical
threads on the HP core to implement a temporal double
redundancy. At the end of the execution the two interme-
diate results are stored in two different Hart-dedicated
memory locations, the LP-core compares the results in
order to reset/restart the HP-core in case of mismatch.

• CC-WDT fault-detection: the LP-core runs a routine on
a Hart of the HP-core and in case the CC-WDT detects
an anomalous behaviour, the LP-core resets the HP-core,
or even the entire system.

V. TEST AND VALIDATION
We analyzed the proposed heterogeneous dual-core concept
through Register Transfer level (RTL) fault injection simula-
tions. The approach, together with gate-level fault injection
simulation, is the first-choice technique for fault-resilience
characterization, as it allows analyzing the behavior of the
system when subject to faults with clock-accurate signal-
accurate results [29], [30], [31]. The detection of failures is
consistent with the standard RTL simulation flow used for
digital design verification. An experimental analysis instead,
based on physical error injection (proton or neutron radia-
tions),is planned as a final activity complementary to fault
simulation, but it cannot produce the detailed information
needed for design characterization, as it only provides a
global view of the resilience of the countermeasured chip.

We evaluated the FT effectiveness of the proposed
approach by comparing the average failure rate (FR) of
a program run on the HCA platform and the FR of the
same program run on a platform equipped with the sole
HP-core (i.e. Klessydra T03 core). The aim of the analysis
is to evaluate the average failure rate reduction achieved
by the heterogeneous dual-core approach per se, thanks
to workload distribution between the cores, even when no
recovery mechanism is present. For this reason, the failure
recovery methods were not activated during the tests. The
assessment of the FR was obtained from a simulation-based
fault injection (FI) campaign implemented in a Universal

FIGURE 6. FPGA scaling Trends. Adapted from [33].

Verification Methodology (UVM) environment. For the
purpose of our analysis, we simulated the occurrence of SEUs
targeting any of the FF register cells of the cores, i.e. the
occurrence of a flip on a HDL bit signal that is going to be
synthesized as a flip-flop cell in the FPGA implementation
(the analysis of faults outside the cores, as memories and
peripherals, being out of the scope of this work). Specifically,
the UVM test environment reads a previously provided
list of the architecture signals, iteratively injecting bit-flip
faults on the signals using the uvm_hdl_deposit function.
In the described setup, the LP-core operation in the HCA
architecture is never affected by SEU-induced failures, thanks
to the full TMR protection. The FI simulation environment
allowed us to estimate the probability that a SEU occurring
on the cores causes a program failure, namely PFAIL =

Pr{failure | SEU on a FF of the processor}.
Assuming an average SEU rate per bit r due to the

operating environment, by multiplying this value by the total
flip-flop bit countNFF and by the failure probability obtained
from the UVM FI tests, we get an estimation of the FR as

FR = r · NFF · PFAIL (1)

By defining D as the program execution time, the average
event count per bit during the program run is r ·D. The average
number of failures per program run is expressed by

FPP = r · D · NFF · PFAIL = FR · D (2)

A. REFERENCE SEU RATE SCENARIO
The average SEU rate is a function of the average of the
linear energy transfer (LET) of heavy ions, measured in
MeV · cm2/mg, the flux of that particles per cm2 at the target
orbits, and the sensitivity of the device or cross section σ [32].

The value of σ for FPGAs is widely studied and can be
found directly on vendor websites [33], [34]. An example is
reported in Fig. 6. According to the data reported in [32],
the rate of 1 event per year per bit, which is equivalent to
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r = 3.2 · 10−8 events per second/bit, represents an upper
bound to the estimated SEU rate for Virtex II FPGA devices.
Without loss of generality we assumed such value as the
reference point for evaluating the FR and the FPP values of
the platforms under analysis.

B. TIME FRAME SPAN METHODOLOGY
The approach adopted to compute the failure probability
PFAIL was defined in [35]. The technique overrides the limits
of a generic statistical Monte-Carlo analysis based on random
fault distribution, by subdividing the total program execution
time in uniform time intervals (time frames), injecting a
large amount of deterministic faults on a target bit of the
micro-architecture during a specific time frame, and checking
the correctness of the program results. The procedure is
repeated for each target bit to be analysed in the processor
core. In the SEU analysis, the target bits are all the output
pins of flip-flop cells.

Referring to the number of execution time frames as m,
for a given jth bit of the microarchitecture there will be mF (j)
time frames in which at least one fault on the jth bit causes
a system failure. The characterization of such critical time
frames for each jth bit, can be used to calculate the global
failure probability PFAIL . Since the spatial location of SEUs
and the time instant of SEUs are independent and uniformly
distributed random variables, we can elaborate as follows:

PFAIL = Pr{ failure | SEU on a FF of the processor }

=

NFF∑
j=1

PSEU (j) · Pe(j) (3)

where:
NFF = number of Flip-Flop cells in the architecture,
PSEU (j) = Pr{SEU occurring on jth FF |

SEU on a FF of the processor } = 1/NFF ,
and
Pe(j) = Pr

{
failure | SEU on jth FF

}
≤

Pr { SEU occurring in critical time frame for jth FF
}

=

mF (j)/m.
The value Pe(j) gives an upper bound rating of the

sensitivity of the system to a SEU occurring on bit j of
the microarchitecture [35], related to a specific application
program execution. In particular, only the bits for which
mF (j) ̸= 0 and therefore Pe(j) ̸= 0 are critical for the
program execution (Architecturally Correct Execution - ACE
- bits [36]) and are relevant for the fault resilience analysis.

C. BENCHMARK PROGRAM SETUP
In the HCA architecture, the software application program
must be designed ad-hoc or properly modified to assign parts
of the code to the LP-core and parts to the HP-core. This
is accomplished by using the run-time library functions that
control the context switch and the operating state of the
HP-core. At present, no automated procedures have been
implemented for this step.

FIGURE 7. CRC32 software section diagram.

The code partitioning criteria are based on the analysis of
the level of criticality under two points of view: the system
point of view and the core point of view. The first is based on
the severity level of the propagation of a failure to the system.
This part of the analysis is up to the software designer, who
knows which parts of the application program execution have
no margins for errors. The core point of view only depends
on the processor architecture and the software running on it,
and can leverage the a-priori characterization of the resilience
of each core through the FI UVM test environment [35]. The
results of the FI analysis give an assessment of the failure
probability of specific program portions and allow identifying
the parts that are more susceptible to a SEU-induced failure,
suggesting avoiding the execution of those parts in the
unprotected core.

As an example of the implemented approach, Fig. 7 reports
the code partitioning for a CRC32 test program. The software
structure has been divided in macro-sections that perform
different tasks. Fig. 8 reports the code partitioning and the
consequent execution handovers between the two cores. The
different parts are compiled toward the respective target, i.e
the supported ISA extension of each core. All the environ-
ment configuration, peripheral control, and communication
are managed by the LP-core. The CRC32 test environment
preparation and result check are also performed by the
LP-core. The HP-core, however, manages the majority of
the CRC32 computation, taking advantage from multi-thread
execution and the extended ISA.

VI. EXPERIMENTAL RESULTS
The benchmarks we used to perform FI tests are the following
computation kernels, representative of embedded application
workload:
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FIGURE 8. HCA partitioning of the CRC32 software sections.

• 2D convolution (Conv2D), 10 × 10 matrix size, 5 × 5
coefficient kernel size, 5 repetitions;

• CRC32 standard algorithm, 256 element table size,
3 repetitions;

• testALU, a standard test program for integer arithmetic
instructions from the RISC-V toolchain, which executes
30 iterations of addition, subtraction, logical bitwise
operations, shift operations.

The evaluation setup is summarized in Table 1. We com-
pared the 6 different architectures listed below:

• HCA1: a single-thread platform featuring a fault-
tolerant F01x core and a non-protected T01 core,
supporting the baseline RV32I instruction set;

• HCA2: a platform featuring an F01x core and a
T02 core, the latter supporting the execution of two
interleaved threads and the RV32IA instruction set
(atomic operation extension);

• HCA3: a platform featuring an F01x core and a
T03 core, the latter supporting the execution of three
interleaved threads and using the RV32IA instruction
set;

• HCA3+: a platform featuring the same architecture as
HCA3, yet supporting the RV32IMA instruction set
(multiplication and division extension, atomic operation
extension);

• T03x: a platform featuring a single non-protected
T03 core, supporting the execution of three interleaved
threads and using the RV32IMA instruction set;

• F01x: a single-thread platform featuring a single
fault-tolerant F01 core supporting the baseline RV32I
instruction set;

• F03x+: a platform featuring a single fault-tolerant
F03 core supporting the execution of three interleaved
threads and using the RV32IMA instruction set.

The target clock frequency for the FPGA synthesis was
set to 100 MHz for all the architectures, even if the different

cores may be synthesized at higher frequencies. This choice
is dictated by the fact that the critical path of the platforms
is not inside the processing cores, and it is compatible with
a frequency slightly above 100 MHz for all the analyzed
platforms.Moreover, there is a consensus in limiting the clock
frequency of space-qualified processors in order to exclude
the possibility of Single Event Transient (SET) propagation
from combinational cells to sequential elements [37], [38].

All the fault simulation tests were carried out with
m = 10 frames according to the chosen methodology [35].
Table 2 reports the execution data along with the total
failure probability PFAIL assuming a fault hits one of the
computing cores, obtained for the different architectures on
each benchmark according to (3).

As the study assumes single fault events, the fully-protected
TMR architectures indicated as F01x and F03x obviously
result to have zero failure probability. Yet, F01x pays a
significant performance overhead and F03x pays a significant
hardware overhead.

For the dual-core HCA architectures, in general, a longer
execution on the unprotected HP-core is more likely to be
hit by a fault which may result in a program failure. Yet,
the higher speed of the HP-core balances this effect by
reducing the execution time of the HP-core program sections.
The total duration D as well as the percentage of execution
time spent on HP-core and LP-core are impacted by the
multi-thread support in the HP-core and the different ISA
hardware support.

Overall, the HCA approach reduces the failure probability
in case of SEU by a factor between 10X and 30X with
respect to the non-protected T03x architecture. In addition
to the reduced failure probability, one should also consider
that in the T03x core no failure detection and recovery is
available, while the HCA architectures provide features for
failure detection and recovering, which have not been used in
the experiments.

In comparison with the full-TMR-protected F03 archi-
tecture, the HCA architectures offer the advantage of less
hardware overhead. Looking at the comparison among the
different HCA versions, the results show that - although
scaling to higher performance implies a larger hardware area
exposed to faults - when the architecture grows in number of
supported threads in the HP core and in the instruction set, its
failure probability decreases. This behaviour depends on the
fact that an individual flip-flop cell is sensitive to a SEU for
the application program only for a limited time and operating
range, and having a faster HP-core decreases the time during
which the core is exposed to possible failures.

The resulting average failure rate per second FR for the
assumed SEU rate per bit is reported in Fig. 9a, while the
average failures per program run FPP - which is impacted
by the total program execution duration D - are shown in
Fig. 9b. On the one hand, the diagrams give evidence of
the fact that a relatively slow HP core compromises the
resiliency advantage of the HCA architecture; on the other
hand, a fast HP core without a companion LP core equipped
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TABLE 1. FPGA Synthesis Results. Hardware resource usage refers to the processing cores only.

TABLE 2. Execution performance results along with application failure probability assuming a SEU hits the cores.

FIGURE 9. a) Average failure rate for the assumed rate of 1 SEU per bit/year; b) Average failure per program run for the assumed rate of 1 SEU per
bit/year.

with full-TMR protection - which is the case of the pure T03x
architecture - results in worsening the FT performance. This
behavior suggests that an optimal balance between the LP and
HP core performance exists, tailored to a specific application
domain.

VII. CONCLUSION
Wedemonstrated the reduction in failure probability achieved
by a HCA processor, composed of a fully protected low
performance core and a non-protected high performance core,
with respect to the utilization of the sole high-performance
core. The approach allows exploring a balance among hard-
ware resource optimization, performance and resilience. The
method presently requires porting the software application to
the HCA computing platform, by partitioning the execution
between the two cores, leveraging a small and versatile
runtime library that was described in the article. The tests
show a significant decrease of the failure rate, without using

any of the possible failure recovery techniques available in
the architecture. The overhead in terms of hardware resources
is much less than the direct application of TMR techniques at
flip-flop level. A future development may be the investigation
of the resilience achievable through different computation
partitioning criteria, introducing also vector acceleration in
the HP core.
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