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Abstract—The knowledge of the environmental depth is essen-
tial in multiple robotics and computer vision tasks for both ter-
restrial and underwater scenarios. Recent works aim at enabling
depth perception using single RGB images on deep architectures,
such as convolutional neural networks and vision transformers,
which are generally unsuitable for real-time inference on low-
power embedded hardwares. Moreover, such architectures are
trained to estimate depth maps mainly on terrestrial scenarios,
due to the scarcity of underwater depth data. Purposely, we
present two lightweight architectures based on optimized Mo-
bileNetV3 encoders an a specifically designed decoder to achieve
fast inferences and accurate estimations over embedded devices,
and a feasibility study to predict depth maps over underwater
scenarios. Precisely, we propose the MobileNetV3S75 configura-
tion to infer on the 32-bit ARM CPU and the MobileNetV3LMin

for the 8-bit Edge TPU hardwares. In underwater settings,
the proposed design achieves comparable estimations with fast
inference performances compared to state of the art methods.
The proposed architectures would be considered a promising
approach for real-time monocular depth estimation with the aim
of improving the environment perception for underwater drones,
lightweight robots and internet-of-things.

Index Terms—depth estimation, embedded devices, real-time,
underwater

I. INTRODUCTION

In recent computer vision and deep learning (DL) trends,
researchers focus their attention on achieving the highest esti-
mation accuracy without taking into account the computational
effort required to run developed models in real-world vision
applications as small robots, aerial and underwater drones. In
the monocular depth estimation (MDE) task, where the scene
depth is estimated through a single RGB image, this tendency
can be noticed in recent proposed works such as [1]–[4].
Those algorithms typically infer in the cloud or on dedicated
servers without considering possible low-resource hardware
constraints.

On the other side, some recent DL studies as [5], [6] are
going against this paradigm, analyzing the Edge TPUs capa-
bilities in deep learning tasks. Those embedded hardwares are
characterized by low power consumption and limited memory
capacity, which act as a performance bottleneck for the DL-
based techniques. Regarding monocular depth estimation, only
few works propose a solution for porting such complex task on
low-resource platforms. There are two main approaches: [7]–
[9] that focus on MDE on microcontroller and ARM-powered

devices without taking into account the inference frequency,
and [10]–[12] which analyse the inference performances of
MDE on low-power GPUs.

Moreover, previously reported MDE methods are trained on
terrestrial datasets such as [13], [14] using supervised learning
strategies; due to the lack of data, some works as [15]–[18]
propose a qualitative underwater depth estimations by relying
on colour restoration and the correspondence between depth
and visual style levels.

This work investigate the previously mentioned issues,
proposing two lightweight MDE deep models that are able
to achieve accurate estimations and fast inference frequencies
on the benchmark embedded devices. Secondly, it conducts a
feasibility study of such architectures in underwater scenes.

The chosen hardware components i.e. the ARM CPU and
Edge TPU are widely employed in lightweight robots, such
as aerial and underwater drones, and AI-accelerator platforms
(e.g. Coral Dev Board). Due to the constraints introduced by
the selected embedded hardwares, we propose two models for
different precision data types, i.e. 32-bit floating points to infer
on the ARM CPU and 8-bit integers for the Edge TPU.

The rest of the paper is organized as follows: in Section II
we describe in details our proposed architectures, while in
Section IV we show the obtained results both on terrestrial
and underwater scenarios. In the last Section V we conclude
our study with some considerations on the underwater setting
and on possible future works.

II. PROPOSED METHOD

This section describes the proposed MDE architectures for
achieving the best trade-off between real-time frequency per-
formance and estimation accuracy across multiple scenarios.
We design those models in compliance with two essential
concepts: the speed to maximize the inference frequency on
embedded devices, and the robustness to maximize the estima-
tion accuracy across two datasets [13], [19]. Our solution ex-
ploits an encoder-decoder model, similarly to previous related
works as [10], [11]. More in detail, we perform an in-depth
study on lightweight encoders pre-trained on ImageNet [20] to
improve their generalization capabilities. A graphical overview
of the proposed architectures is reported in Figure 1. We
choose MobileNetV3 [21] as the baseline encoder for further
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Fig. 1: Graphical overview with respective input shapes of the proposed encoder-decoder structure. The number of channels
(c) are respectively [16, 16, 72, 96] for the MobileNetV3S75 and [16, 64, 72, 240] for the MobileNetV3LMin.

refinement. This fully convolutional network is built on a
sequence of downsampling inverted residuals blocks, each one
characterized by a Squeeze-and-Excite [22] block followed
by a pointwise and a depthwise convolution. This procedure
keeps a limited number of multiply-accumulate (MAC) opera-
tions, thus leading to significant speed improvements without
introducing any substantial estimation error compared to other
lightweight networks [23]–[26].

To tackle the MDE task under low resource constraints, we
propose two configurations of the chosen baseline encoder,
respectively named MobileNetV3S75 and MobileNetV3LMin.

The MobileNetV3S75 model is the Small (S) configuration
of the MobileNetV3 [21] with a reduction of 25% of the
original convolutional filters while the MobileNetV3LMin is
based on the deeper Large (L) but Minimalistic (Min) con-
figuration of the MobileNetV3. It is a variant of the original
Large architecture where the Squeeze-and-Excite blocks are
removed, Hard-Swish activations are replaced with ReLUs,
and 5 × 5 convolutions are replaced with 3 × 3 ones. The
MobileNetV3S75 model with its shallower design is de-
signed to run on the 32-bit ARM CPU, while the deeper
MobileNetV3LMin architecture can be exploited on 8-bit Edge
TPU device. As will be shown in Section IV the two encoders,
based on different configurations of the same baseline archi-
tecture, are both able to achieve almost real-time performances
and a notable estimation accuracy in their respective embedded
hardware when compared with other lightweight backbones
[21], [23], [25], [26].

Furthermore, to maximise the estimation accuracy and the
reconstruction capabilities of the network, we design from
scratch a fully convolutional decoder that generalises over the
developed encoders. It is composed of a sequence of four
cascaded upsampling blocks (UpS) that increase the spatial
resolution while merging the encoded features through a skip-
connection to reconstruct the output depth map (see Figure 1).
Each of those UpS, named TDSConv2D, is composed of two
3× 3 convolutional operations, a transposed and a depthwise
separable one interleaved by the skip-connection used to
retrieve the image details from the encoder feature maps. This
design allows us to limit the number of computed operations,
restricting the computational complexity while improving the
overall inference frequency, as will be shown in Section IV-B.

III. IMPLEMENTATION DETAILS

We train the reported architectures with the same input-
output resolution (respectively 96× 128 and 48× 64) on the
NYU Depth V2 [13] dataset with the official train-test split.
We evaluate the generalization performances in underwater
scenarios w.r.t. comparable state of the art related models over
the 57 stereo samples of the underwater SQUID [19] dataset.
This study has been performed using TensorFlow 21 deep
learning high level API. Each compared model is initialized
on ImageNet [20] pretrained weights. ADAM [27] optimizer
has been used in all the experiments with the following setup:
learning rate 0.0001, β1 = 0.9, and β2 = 0.999. We have set a
batch size of 32 and trained the models for a total of 30 epochs
on the chosen dataset. Once the training phase is completed,
each model is converted and evaluated in TensorFlow Lite2,
an open-source framework specifically designed to infer on
embedded devices. Finally, to evaluate and compare the perfor-
mance of proposed models, we considered the most commonly
used metrics in MDE: the root-mean-square error (RMSE), the
relative error (REL), and the accuracy value δ1. Their formal
definition are reported in Equations 1, 2 and 3, where pi and gi
are respectively the predicted depth map and its ground truth
while P denotes the total number of the evaluated pixels.

RMSE =

√
1

|P |
∑
i∈P

||pi − gi||2 (1)
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1

|P |
∑
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|pi − gi|
gi

(2)

δ1 =
1

|P |
∑
i∈P

max

(
pi
gi
,
gi
pi

)
< thr (3)

In the last equation thr is a threshold commonly set to 1.25.
Moreover, we compare the inference performances mea-

sured in frame-per-second (fps) using as edge processing unit
the 4GB Google Coral Dev Board3, a cheap and low-power
embedded device equipped with a 32-bit ARM Cortex CPU
and an 8-bit Edge TPU.

1https://www.tensorflow.org/
2https://www.tensorflow.org/lite
3https://coral.ai/products/dev-board/
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IV. RESULTS

This section compares the proposed architectures and the
assessed encoders and decoders over different precision data
types. The main results are obtained on the terrestrial dataset,
while in the feasibility study we analyze the models’ perfor-
mances in underwater settings.

We report in Section IV-A and IV-B the individual contri-
butions of the proposed encoders and the decoder, described
in Section II, while in Section IV-C we analyse the accuracy
and inference performances changing the input-output image
resolution, and in Section IV-D we conduct the feasibility
study to estimate depth maps over the underwater scenario.

A. Encoders

The first performed analysis is focused on a comparison of
various lightweight pretrained architectures such as [21], [23]–
[26] in order to choose the best encoder for our task. The
performances of those encoders with the proposed decoder
structure are reported in Table I; as can be noticed, the Small
variant of the MobileNetV3 (Mob.NetV3S) obtains the highest
frequency performance (close to 30fps) on the CPU.

TABLE I: Performances comparison of lightweight pretrained
encoders (32-bit float) with the TDSConv2D as upsampling
block. The best results are in bold and the second best are
underlined.

Method RMSE↓ REL↓ δ1 ↑ CPU↑
[dm] [fps]

Eff.NetB0 [25] 6.01 0.179 0.728 4.4
NasNetMob. [26] 8.70 0.276 0.539 6.5
Mob.NetV1 [23] 5.70 0.165 0.760 8.8
Mob.NetV2 [24] 5.72 0.169 0.759 11.3
Mob.NetV3S [21] 6.77 0.207 0.682 26.2
Mob.NetV3L [21] 6.39 0.195 0.698 13.4

Based on the reported results, with the goal of achiev-
ing real-time inference performances, we choose as baseline
encoders the Small (S) and Large (L) configurations of the
MobileNetV3 (the last two rows of Table I). Compared with
the more accurate MobileNetV1, those models show a boost
of 153% and 300% on the inference frequency at the expense
of a slight increase of the RMSE equal to 12% and 17%
respectively.

As a second step, we focus on the optimization of the
two baseline encoders adopting different configurations. A
graphical comparison between the frame rates (fps) and the
estimation error (RMSE) of the different configurations is
reported in Figure 2; we use 30 fps as reference value
to identify the target (real-time) inference frequency as in
previous works [11], [12].

Precisely, we compare multiple setups of the shallower
MobileNetV3S and deeper MobileNetV3L configurations with
the following modifications: reducing the number of con-
volutional filters by a specific percentage value, i.e. 50%,
75%, 200% on the encoder and 50% on the decoder, while
fixing their size to 3 × 3 in the Min variant, instead of

5 × 5 used in the original model. We compare all the con-
sidered architectures in Figure 2. The names used for the
different models are composed as follows: the name of the
baseline backbone (Mob.NetV3) followed by the subscript S
or L and the type of optimization applied. For example, the
MobileNetV3SHD is the MobileNetV3 in the S configuration
with a reduction of 50% of the original convolution filters,
whereas the MobileNetV3LMin75 is the L and minimalistic
(Min) MobileNetV3 configuration with a reduction of 75%
of the convolution filters. From this analysis, we identify two
best models named Mob.NetV3S75 (orange-dot in Figure 2a)
and Mob.NetV3LMin (light blue-dot in Figure 2b) respectively
for the ARM CPU and the Edge TPU.

The selected networks are able to achieve near real-time
performances on both hardwares, i.e. 29.6 fps on the CPU and
26.8 fps on the TPU, and an RMSE of 6.86 and 11.54 decime-
ters, respectively. Moreover, the increased depth estimation
error obtained for the MobileNetV3LMin on the Edge TPU is
justified by the quantization operation, which compresses the
model from 32-bit floating points to 8-bit integers. Finally, a
complete overview of the results achieved by the two proposed
models is reported in Table II while using the TDSConv2D
decoder.

TABLE II: Quantitative evaluation of the proposed models, the
32-bit floating point and the 8-bit integer precision, inferring
on the ARM CPU and the Edge TPU.

Method Type RMSE↓ REL↓ δ1 ↑[dm]

Mob.NetV3S75 32-bit 6.86 0.209 0.666
Mob.NetV3LMin 8-bit 11.54 0.429 0.412

B. Decoder

Once the encoder configuration has been determined, we
compare five different UpS blocks. The upsampling operation
has the fundamental role of progressively increasing the fea-
tures resolution learned by the encoder while reconstructing
the image details to obtain the final output depth map.
The detailed characteristics of each UpS are below reported:

• UpConv2D: a 2×2 upsampling layer followed by a 3×3
convolution.

• UpDSConv2D: a 2 × 2 upsampling layer followed by a
3× 3 depthwise separable convolution.

• NNConv5 [11]: a 5× 5 convolution followed by a 2× 2
upsampling with nearest-neighbor interpolation.

• TConv2D: a 3× 3 transposed convolution followed by a
3× 3 convolution.

• TDSConv2D: a 3×3 transposed convolution followed by
a 3× 3 depthwise separable convolution.

The quantitative comparison of the evaluated UpS over
the respective encoder architecture and precision data type is
reported in Table III. From the obtained results, we determine
the TDSConv2D as the best upsampling block since it is able
to guarantee almost real-time frequency performances over
both 32-bit floating point and 8-bit integer architectures while



(a) The evaluated models for ARM CPU, 32-bit floating
point precision. In orange the best configuration, named
MobileNetV3S75 (orange-dot).

(b) The evaluated models for Edge TPU, 8-bit integer
precision. In light blue the best configuration, named
MobileNetV3LMin (light blue-dot).

Fig. 2: Graphical comparison between different MobileNetV3 configurations. In each graph the RMSE, in different ranges due
to the respective error distribution, and the frame-per-seconds (fps) are reported. The red dotted line is used to represent the
real-time frame rate i.e. 30 fps, while the colored dotted segments, respectively in orange and light blue, are used to identify
the best models.

TABLE III: Comparison of different decoders with the proposed encoders.

MobileNetV3S75 (32-bit float) MobileNetV3LMin (8-bit int)

Upsampling block RMSE↓ REL↓ δ1 ↑ CPU↑ RMSE↓ REL↓ δ1 ↑ TPU↑
[dm] [fps] [dm] [fps]

UpConv2D 6.95 0.211 0.664 15.2 12.27 0.360 0.376 16.9
UpDSConv2D 7.02 0.212 0.660 31.1 13.55 0.399 0.283 28.3
NNConv5 [11] 7.69 0.236 0.608 6.8 21.86 0.654 0.030 9.5
TConv2D 6.88 0.204 0.669 18.1 17.63 0.836 0.218 17.5
TDSConv2D 6.86 0.209 0.666 29.6 11.54 0.429 0.412 26.8

TABLE IV: Comparison of the proposed encoder-decoder models with different input-output resolutions.

Resolutions MobileNetV3S75 (32-bit float) MobileNetV3LMin (8-bit int)

Input Output RMSE↓ REL↓ δ1 ↑ CPU↑ RMSE↓ REL↓ δ1 ↑ TPU↑
[dm] [fps] [dm] [fps]

192× 256 192× 256 6.38 0.194 0.687 5.8 20.19 0.961 0.051 4.5
192× 256 96× 128 7.09 0.215 0.652 9.6 12.85 0.363 0.342 6.6
192× 256 48× 64 7.01 0.211 0.654 13.9 12.32 0.314 0.349 7.9
96× 128 96× 128 8.07 0.244 0.571 20.3 11.56 0.413 0.407 17.3
96× 128 48× 64 6.86 0.209 0.666 29.6 11.54 0.429 0.412 26.8

showing the lowest RMSE. Moreover, two important aspects
can be inferred from Table III:

• The use of depthwise separable convolutions guarantees
a boost of the frame rate in a range of 150% up to 200%
w.r.t. classical convolutions.

• The transposed convolution layers achieve comparable
speed w.r.t. upsampling operations (with a difference less
than 2 fps) with an average RMSE improvement of almost
3%.

C. Input-Output resolution

In this subsection, we analyse the behaviour of the network
while providing different input-output resolution pairs. We
report in Table IV the quantitative results where is evidenced
that both input and output dimensions remarkably affect the
inference frequency on embedded devices. First of all, the
input resolution has a stronger effect w.r.t. the output. This
aspect can be recognized by observing, for example, the
inference frequency boost (212% on the CPU and 339% on
the TPU) while reducing the input resolution from 192× 256



pixels to 96×128 pixels keeping fixed the output resolution to
48× 64. Vice versa, the resolution reduction in relation to the
output depth map leads to a less noticeable inference frequency
boost, of 165% on average on the CPU and 146% on the TPU.
Moreover, the final RMSE is not remarkably affected by the
input-output image resolutions, with a maximum difference
equal to 1.7 decimeters on the CPU and 8.6 on the TPU.
Finally, from the reported analysis, we can conclude that the
96 × 128 input resolution and the 48 × 64 output resolution
are the best trade-off between speed and estimation error and
thus are chosen for the proposed architectures.

D. Feasibility study in underwater settings

In this section, we perform a feasibility study to understand
the behaviour of such models in the estimation of underwater
depth maps. Due to the lack of underwater labelled depth
data publicly available for research, we compare state of the
art MDE methods (working at 32-bit precision) pretrained
on the terrestrial NYU Depth V2 dataset while evaluating
their generalization performances by testing on the underwater
dataset [19]. Other depth estimation methods designed for un-
derwater environments as [15]–[18] are not taken into account
since their main task is the colour restoration process without
providing quantitative measurements of depth estimation error.
We apply [28] as a pre-processing operation to the SQUID
images in order to fix colour imbalance and recover their
contrasts. Moreover, due to the different input-output image
resolutions among the compared methods, we resize their
predicted depth maps at the same 48 × 64 output size. The
obtained results are reported in Table V. As can be seen,
despite the high estimation error achieved by all the methods
w.r.t. the terrestrial dataset, the proposed MobileNetV3S75

with only 1.1M of training parameters outperforms both [11]
and [4] while obtaining the same RMSE and an higher δ1
to [10]. In addition, the proposed model achieves a boost on
the inference frequency equal to ×4.7 w.r.t. [10] on the same
benchmark hardware.

We assume that the underwater performances are caused by
a sensible statistical gap between the terrestrial training set
and the underwater test set; we expect better results when a
dedicated underwater dataset equivalent to the terrestrial one
becomes available.

TABLE V: Generalization capability comparison over the
SQUID dataset [19].

Method RMSE↓ REL↓ δ1 ↑ CPU↑ Parameters
[m] [fps] [M]

DenseDetpth [4] 5.23 5.275 0.047 < 1 42.6
FastDepth [11] 5.17 5.493 0.055 2.0 3.9
SPEED [10] 4.49 4.732 0.088 6.2 2.6
Mob.NetV3S75 4.49 4.956 0.089 29.6 1.1

V. CONCLUSIONS

In this work, we propose two variants of the MobileNetV3
encoder and a specifically designed decoder to tackle the MDE

task in order to achieve real-time frequency performances
on the embedded ARM CPUs and Edge TPUs. The method
performances are tested on the terrestrial NYU Depth V2 and
underwater SQUID datasets. The obtained results demonstrate
that the MobileNetV3S75 and the MobileNetV3LMin models
can be effectively considered as a solid candidates for the
MDE task on the benchmark hardwares, guaranteeing real-
time frequency performances at the cost of a small increase
of the estimation error on the terrestrial dataset. On the other
side, the results in the underwater scenario show that in this
peculiar environment, further studies and data are required in
order to get reasonable monocular depth estimations. Despite
the high error, our models are still producing better or on-par
results w.r.t. the compared works with a sensible increase of
inference speed.

Those findings will be a valuable baseline for future studies
and advancements in the MDE field across embedded and
mobile hardwares. Further research will also be focused on
embedded GPUs, architectural and data changes required to
get a robust and reliable depth estimation in underwater
settings.
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