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Abstract: Land Surface Temperature (LST) is an important climate factor for understanding the
relationship between the land surface and atmosphere. Furthermore, LST is linked to soil moisture
and evapotranspiration, which can potentially alter the severity and regime of wildfires, landslide-
triggering precipitation thresholds, and others. In this paper, the monthly daytime and nighttime
LST products of Moderate Resolution Imaging Spectroradiometer (MODIS) are employed for the
period 2000–2023 in order to find areas that have been cooling or warming in a region of great
interest in Central Italy, due to its complex geological and geomorphological settings and its recent
seismic sequences and landslide events. The annual MODIS land cover images for 2001–2022 are also
utilized to investigate the interconnection between LST and land cover change. The results of the
non-parametric Mann–Kendall trend test and its associated Sen’s slope reveal a significant nighttime
warming trend in the region, particularly in July, linked to forest and woodland expansion. Grasslands
toward the coastline with low elevation (less than 500 m a.s.l.) have experienced significant heat
waves during the summer, with an LST of more than 35 ◦C. A significant negative correlation between
the elevation and LST is observed for each calendar month. In particular, the daytime and nighttime
LST have more than 80% correlation with elevation during winter and summer, respectively. In
addition, nighttime warming and gradual drainage are noticed in Lake Campotosto. The results of
this study could be useful for wildfire and landslide susceptibility analyses and hazard management.

Keywords: Central Italy; land cover; Land Surface Temperature; MODIS; trend analysis

1. Introduction

Land Surface Temperature (LST), the radiative skin temperature of the land, is a very
important climate variable that shows how hot or cold the Earth’s surface is [1]. LST is
highly sensitive to vegetation density, and can vary significantly from day to night, and
vice versa, based on land cover and altitude [2,3]. LST is significantly correlated with soil
moisture over large areas, and is used for many purposes, such as monitoring of droughts,
surface water and groundwater, and studies concerning slope stability and landslides [4–6].

In situ LST measurements can be obtained accurately and continuously over time;
however, such measurements are not acquired for the entire landscape, and are limited
to station locations [7,8]. Satellite-based LST products have become a reliable source for
monitoring the LST at local, regional, and global scales [8]. Currently, there are many
satellite sensors that acquire LST; however, cloud cover can result in a significant missing
LST data [7–9]. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument,
operating on both Terra and Aqua satellites, acquires day and night LST with an accuracy
of 1 K under clear-sky conditions [7,10]. Terra, launched in December 1999, passes though
the Equator at 10:30 and 22:30, and Aqua, launched in May 2002, passes through Equator
at 1:30 and 13:30 (times are approximate and in local solar time)—both satellites are sun-
synchronous, polar-orbiting, and are flying at altitude of about 705 km [11].
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Daytime and nighttime MODIS–LST products have been utilized in many studies.
Eleftheriou et al. [12] utilized these products for 2000–2017, and estimated the annual and
seasonal trends across Greece using the Ordinary Least-Squares (OLS) fitting. They ob-
served a warming annual trend in the nighttime LST more significantly in the southeastern
parts of Greece. Waring et al. [13] estimated linear trends of the Aqua MODIS–LST time
series by OLS fitting for nine regions, including the Amazon, Australia, China, Green-
land, India, the Sahel, Siberia, Western Europe, and the USA during 2002–2021. They
showed that the Amazon and Western USA have significant warming daytime LST trends,
and Western Europe and USA show the largest nighttime change. Siddiqui et al. [14]
employed MODIS-LST images from 2001 to 2018, and showed that nighttime LST is a
better indicator for studying urban heating effects for Indian cities. They applied the non-
parametric Mann–Kendall trend test, and its associated Sen’s slope estimator (MK–Sen),
to estimate the daytime and nighttime LST trends. They observed an annual warming
trend for day and night in all Indian cities except Pune. In another study, Shawky et al. [15]
analyzed the MODIS daytime and nighttime LST from 2000 to 2021 for the ecoregions
of South Asia using MK–Sen, and discussed the interconnection between land cover and
cooling/warming trends.

The OLS and MK–Sen are popular methods of trend analysis for hydrometeorological
time series; however, caution should be exercised when applying either of these methods [8].
Sen’s slope is based on a median approach, which is less sensitive to outliers, while OLS
is based on an average approach, where extreme values may affect the trend estimation.
Under the assumption of normally distributed least-squares residuals, OLS usually has a
smaller standard error. On the other hand, MK–Sen is non-parametric (distribution-free)
and less sensitive to outliers [16]. However, the MK test is sensitive to serial correla-
tion/seasonality that usually exists in hydrological and climate time series, where positive
serial correlation can cause over-rejection of the null hypothesis of no trend [17]. Trend
analysis of irregularly sampled time series is also a big challenge when applying OLS
or MK–Sen [8].

Central Italy has experienced a devastating seismic sequence during 2016–2017, known
as Amatrice–Norcia–Campotosto, whose aftershock patterns were investigated in many
studies [18,19]. The mainshocks in 2016 triggered many landslides and caused significant
socioeconomic damage [20,21]. Following the seismic events, the District Basin Authority of
the Central Apennines (ABDAC) has intensified its collaboration with the affected regions
and parts of the Italian administrative regions (Abruzzo, Lazio, Marche, and Umbria).
Ground deformations in these regions have been studied through field surveys and Syn-
thetic Aperture Radar (SAR) techniques by many researchers [22–24]. Active landslides
can significantly change landscapes, including land cover, topography, and above-ground
biomass [25]. On the other hand, land cover change is an important factor in landslide sus-
ceptibility mapping [26,27]. Loche et al. [5] showed that LST can explain post-earthquake
landslide activity. Furthermore, LST is one of the main parameters affecting soil moisture, a
proxy for landslide occurrences, landslide hazard assessment, and wildfire severity [28,29].

The current research is motivated by the discussion above, a great interest in land cover
change detection in Central Italy [30], and earlier work by the authors [3]. In particular,
herein, it is aimed to fill the research gap on trend analysis of LST daytime and nighttime
at monthly scale for Central Italy, and its relationship with land cover change since the
beginning of the 21st century. Therefore, the main contributions of this work are:

• Producing median and slope spatial maps for the daytime and nighttime LST in
Central Italy for each calendar month through temporal median and MK–Sen analyses
of MODIS–LST monthly images (2000–2023).

• Detecting land cover changes by MK–Sen applied to MODIS land cover annual images
(MCD12Q1) from 2001 to 2023.

• Estimating the correlations between the elevation and the daytime and nighttime LST.
• Discussing the relationship between LST, elevation, and land cover and their potential

implications on geohazard assessment.
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The rest of this work is organized as follows. Section 2 describes the study region,
the MODIS products employed herein, and the MK–Sen and Pearson analyses. Section 3
demonstrates the results, including the daytime and nighttime LST monthly maps and
their trend maps, and land cover maps and their trend analyses. This section also presents
the correlation results between the elevation and the LST. The relationships between the
elevation, LST, and land cover are discussed in light of other similar studies in Section 4.
Section 5 concludes this article.

2. Materials and Methods
2.1. Study Region

The study region is in Central Italy, which includes parts of Apennines and four Italian
administrative regions (Abruzzo, Lazio, Marche, and Umbria) affected by the Amatrice–
Norcia–Campotosto seismic sequence (Figure 1). The elevation in Central Italy ranges from
zero to a maximum of about 3000 m a.s.l., with the lowest toward the Adriatic Sea and the
highest toward its center, i.e., Apennines (Gran Sasso and Monte Vettore). The temperature
of this region can be classified as cool (Apennines), sub-continental, and sub-coastal (toward
the Adriatic Sea) [31]. The minimum and maximum amounts of monthly accumulated
precipitation are roughly in July and November for all four regions, respectively [32].
The median values of the monthly accumulated precipitation in July and November are
estimated as 40 mm and 110 mm for Abruzzo, 30 mm and 130 mm for Lazio, 40 mm and 90
mm for Marche, and 30 mm and 110 mm for Umbria, respectively [32] Grasslands, grassy
woodlands, and deciduous broadleaf forests are the main land covers of this region [30].

Figure 1. The study region in Central Italy, including parts of Central Apennines and four adminis-
trative regions (Abruzzo, Lazio, Marche, Umbria) with a background DEM–SRTM at 30 m resolution.

2.2. Datasets and Preprocessing

The descriptions of the datasets utilized in this research are listed in Table 1. The Digital
Elevation Model (DEM) is from the Shuttle Radar Topography Mission (SRTM Plus) at 30 m
resolution, provided by the Jet Propulsion Laboratory (NASA JPL) [33]. The MODIS–LST
product is based on the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Temperature/Emissivity Separation model, which uses a physics-based algorithm
to retrieve both the LST and spectral emissivity simultaneously from the MODIS thermal
infrared bands 29, 31, and 32. In this product, an improved water vapor scaling atmospheric
correction scheme is utilized to stabilize the retrieval during hot and humid conditions.
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Daytime and nighttime monthly MODIS–LST images at 1 km resolution from January
2000 to December 2023 can be accessed from the Google Earth Engine (GEE) through
the code: ee.ImageCollection(‘MODIS/061/MOD21C3’). The annual MODIS land cover
images (MCD12Q1) for the period of 2001–2022 at 500 m are also employed in this research,
derived from supervised classifications of MODIS Terra and Aqua reflectance data, and are
available from GEE through the code: ee.ImageCollection(‘MODIS/061/MCD12Q1’).

Table 1. Description of datasets employed in this study.

Product Period # of Images Temporal Resolution Spatial Resolution

STRM Plus 2000 1 1 30 m
https://doi.org/10.1029/2005RG000183
(accessed on 12 May 2024)
MODIS LST_Day 2000–2023 288 Monthly 0.05◦ × 0.05◦

https://doi.org/10.5067/MODIS/MOD21C3.061
(accessed on 12 May 2024)
MODIS LST_Night 2000–2023 288 Monthly 0.05◦ × 0.05◦

https://doi.org/10.5067/MODIS/MOD21C3.061
(accessed on 12 May 2024)
MCD12Q1 2001–2022 22 Annually 500 m
https://doi.org/10.5067/MODIS/MCD12Q1.061
(accessed on 12 May 2024)

2.3. Mann–Kendall Trend Test and Sen’s Slope Estimator

The MK is a non-parametric method, named after Mann [34] and Kendall [35], which
has been widely used in climate and environmental studies [8]. Let yi be time series values
(1 ≤ i ≤ n). The MK statistic S is defined as

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(yj − yi), (1)

where

sgn(θ) =


+1, if θ > 0,
0, if θ = 0,
−1, if θ < 0.

(2)

When n ≥ 8, S is approximately normally distributed with zero mean and standard
deviation σ = n(n − 1)(2n + 5)/18. The standardized MK statistic Z is given by

Z =


(S − 1)/σ, if S > 0,
0, if S = 0,
(S + 1)/σ, if S < 0.

(3)

When Z > 0, there is an increasing trend, and vice versa. The estimated trend
is statistically significant if |Z| > Z1−α/2, where Z1−α/2 is the theoretical value for the
two-tailed test and α is the critical value. Herein, α = 0.05 and α = 0.01 are selected,
corresponding to 95% and 99% confidence intervals, respectively. The MK associated Sen’s
slope estimator is a non-parametric estimator defined by [36]:

β = Median
{yj − yi

j − i
, 1 ≤ i < j ≤ n

}
. (4)

https://doi.org/10.1029/2005RG000183
https://doi.org/10.5067/MODIS/MOD21C3.061
https://doi.org/10.5067/MODIS/MOD21C3.061
https://doi.org/10.5067/MODIS/MCD12Q1.061
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If β > 0, there is an upward trend with a magnitude of β; otherwise, there is a down-
ward trend with magnitude of |β| in the time series. The python package “pyMannKendall”,
developed by Hussain and Mahmud [37], is implemented in the present study.

Note that each per-pixel LST time series corresponding to a calendar month has
24 observations, e.g., January 2000, January 2001, ..., January 2023. The LST time series
utilized in this research have no missing values. Also, each time series derived for each land
cover type has 22 observations. For example, a time series value is obtained by counting
the number of pixels classified as grasslands for Abruzzo for a calendar year, so a time
series of size 22 is derived for the period of 2001–2022 after obtaining such values for each
year. The land cover time series utilized in this research are also complete, with no missing
values. Note that there is no seasonality from the way the LST time series are constructed,
making MK–Sen a reliable approach for testing the trends and estimating the slopes.

2.4. Pearson Correlation Method

The Pearson correlation method is frequently applied to environmental and geoscience
applications, among others, for investigating the strength and direction of the relationship
between two variables [38,39]. The Pearson r is a normalized value in interval [−1, 1],
which shows how far away the data points are from the best fitting line. Pearson r is
defined by

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
, (5)

where x and y are the means of variables x and y, respectively. Pearson r values between
−0.3 and 0.3 indicate a weak correlation. The values between −0.7 and −0.3 or 0.3 and
0.7 indicate a moderately fuzzy linear dependency, while the values between −1.0 and
−0.7 or 0.7 and 1.0 indicate a strong linear dependency between the variables [3,40]. In
this research, the elevation image is downsampled by a median approach and spatially
aligned to match with the LST images by the python command: “gdal.ReprojectImage()”.
The spatial downsampling of the elevation data using the median approach reduces the
effect of potential outliers. For each calendar month and each day or night, the values of the
elevation and LST pixels that are spatially aligned are entered into Equation (5) to calculate
the r values, i.e., xi are the LSTs and yi are their corresponding elevations. Note that no
data normalization is required at this stage when applying Equation (5). The flowchart of
this work is illustrated in Figure 2.

Figure 2. The flowchart of this work. Each parallelogram represents an image.
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3. Results
3.1. Daytime and Nighttime LST Maps for Each Calendar Month

For each calendar month, the median of each per-pixel LST time series is calculated,
and the results are illustrated in Figures 3 and 4 for day and night, respectively. The value
of each pixel in each map is the median of an LST time series of size 24 for the period of
2000–2023. Note that the spatial resolution of each pixel is 1 km, as directly provided by
GEE using ee.ImageCollection(‘MODIS/061/MOD21C3’)—the original spatial resolution
of the product is 0.05◦ × 0.05◦.

From the figures, a negative daytime and nighttime LST during the winter (December,
January and February) can be observed in the high altitude areas of the Apennines. The
median nighttime LST does not exceed 25 ◦C in all twelve months (see Figure 4). On the
other hand, the median daytime LST reaches 40 ◦C during the summer, mainly in Marche
near the coast with low altitudes (see Figure 3).

Figure 3. LST median daytime spatial maps for the calendar months.
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Figure 4. LST median nighttime spatial maps for the calendar months.

3.2. Daytime and Nighttime LST Sen’s Slope Maps for Each Calendar Month

For each calendar month, MK–Sen is applied to each per-pixel time series of size 24.
For the daytime imagery, it is found that only May, September, November, and December
have statistically significant cooling/warming trends. Figure 5 shows that, since 2000,
May has been cooling, while September, November, and December have been warming.
For a better understanding and visualization of the estimated MK–Sen linear trends, two
per-pixel time series were selected in May and December (labeled as A and B, respectively),
and their linear trend results are displayed in the bottom right of Figure 5. For the nighttime
images, only six months (February, July, August, September, November, and December)
show statistically significant slopes at a 95% confidence level, where the regions have just
been warming during these six months, i.e., all calendar months show no nighttime cooling
trend (see Figure 6). Interestingly, the whole study region in July has been significantly
warming during the night.
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Figure 5. LST daytime spatial maps of Sen’s slopes for the calendar months at a 95% confidence level.

Figure 6. LST nighttime spatial maps of Sen’s slopes for the calendar months at a 95% confidence level.

3.3. Land Cover Change Results

To visualize how the land cover types have been changing in the study region, the
MODIS annual land cover images for the years 2001, 2004, 2007, 2010, 2013, 2016, 2019, and
2022 are first illustrated in Figure 7.

More than 90% of the subregions are covered by only three land cover types, namely
grasslands, grassy woodlands, and deciduous broadleaf forests. According to the MODIS
collection 6.1 (C61) land cover type product user guide, grasslands are areas covered by
herbaceous annuals (<2 m height), including cereal croplands, while grassy woodlands are
areas (pixels of 500 m resolution) with a tree coverage (>2 m height) of between 10% and
60%. Deciduous broadleaf forests are areas dominated by deciduous broadleaf trees (>2 m
height) with more than 60% tree coverage. The urban and built-up lands within the study
region remain unchanged, except for an expansion of 1 km2 (four pixels only) in Marche
from 2005 to 2008.
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Figure 7. The MODIS land cover maps with 11 classes at 500 m spatial resolution for the study region.

The land cover change is estimated by MK–Sen for the three main land cover types,
and the results are illustrated in Figure 8. Each annual time series, shown in Figure 8, is
obtained by counting the number of pixels classified as a particular land cover type within
each subregion for each calendar year, multiplied by 0.25 km2 (the approximate area of
each pixel). The size of each time series is 22, i.e., one observation for each year from 2001 to
2023. It is clear from Figure 8 that grasslands have been decreasing, while woodlands and
forests have been significantly expanding within each subregion. In fact, the grasslands
have been replaced mainly by woodlands and forests. Afforestation or forest expansion
in the Central Apennines, partially due to anthropogenic activities, has been occurring in
recent decades, and has been studied in the literature [41,42].

Table 2 shows another representation of MK–Sen analysis. The numbers in Table 2 are
the Sen’s slopes with the unit of percentage area coverage per year, where the percentage area
coverage of each land cover type within each subregion is obtained from dividing the number of
pixels for each land cover type by the total number of pixels in that subregion, multiplied by 100.
Note that the Sen’s slopes written on the graphs in Figure 8 are expressed in terms of km2/year.

Table 2. The MK–Sen trend results in (%)/year for the four subregions.

Land Cover Type Abruzzo Lazio Marche Umbria

Grasslands −1.06 ** −0.39 ** −0.52 ** −0.40 **
Grassy–Woodlands +0.70 ** +0.06 +0.43 ** +0.31 **
Deciduous Broadleaf Forests +0.33 ** +0.29 ** +0.12 ** +0.13 *

‘*’ and ‘**’ mean the slopes are statistically significant at 95% and 99% confidence level, respectively.
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Figure 8. The MK–Sen results of the annual land cover time series for each subregion at a 95%
confidence level.

3.4. Correlation between LST and Elevation

To investigate the potential factors influencing LST variations across the study region,
correlation analysis between LST and elevation is performed. Table 3 shows the Pearson r
values between the elevation and the daytime (nighttime) median LSTs during 2000–2023
for each calendar month. It can be seen that a strong negative correlation exists between
the LST and the elevation, more significantly during winter for daytime LST and during
summer for nighttime LST.

Table 3. Pearson r values between the elevation and LST for the study region.

LST January February March April May June

Daytime −0.87 −0.85 −0.79 −0.66 −0.71 −0.76
Nighttime −0.58 −0.64 −0.71 −0.78 −0.82 −0.80

LST July August September October November December

Daytime −0.74 −0.76 −0.79 −0.81 −0.87 −0.86
Nighttime −0.81 −0.82 −0.80 −0.78 −0.74 −0.62

4. Discussion
4.1. Relationships between LST and Land Cover

Cooling and warming trends in LST are mainly driven by evapotranspiration and
albedo, and heavily influenced by precipitation [15,43]. The nighttime warming trend in
the study region can be explained by the woodland and forest expansions. Since trees,
particularly deciduous broadleaf trees, can absorb heat during the day, they release it slowly
during the night, causing a warmer microclimate around them [43]. Furthermore, trees
can impede the wind from the ground to the treetops, reducing the cooling effect of wind
chill, which can potentially explain the nighttime warming effect, as observed in Figure 6.
During the winter, the trees can have a warming effect on surface, and they act as a warm
blanket, which can also explain the daytime warming trend in Marche and Abruzzo, which
have the highest rates of forest expansion (see Figures 5 and 8). As also pointed out by
Li et al. [43], during the growing seasons in early summer (e.g., May), daytime cooling
usually dominates forests and due to weaker nighttime warming, the net daily cooling
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effect is observed during May across the Apennines (see Figure 5, and Figure A.5 in [3]).
The overall LST trends for the study region since 2000 are estimated as approximately
0.01 ◦C/year for the daytime, 0.03 ◦C/year for the nighttime, and 0.02 ◦C/year daily (see
Table A.2 in [3]).

4.2. Relationships between LST and Elevation

The correlation between the LST and the elevation has been studied by many re-
searchers. For example, Elijah et al. [44] found that land cover explained the LST variations
across their study region in Nigeria, but they did not observe any significant correla-
tions between elevation and LST due to a relatively low elevation range in their region.
Peng et al. [45] observed a significant linear relationship between the LST and the elevation
in Hangzhou, China. They also showed that the LST decreases with an increasing elevation
in winter in their region. The results of the current study indicate that the elevation and the
land cover can explain the LST variations to a great extent in Central Italy. Table 3 shows
that November, December, January, and February have significant negative correlations
(r ≤ −0.85) between the daytime LST and the elevation, while May, June, July, August, and
September have significant negative correlations (r ≤ −0.80) between the nighttime LST
and the elevation. The negative correlation between the LST and the elevation agrees with
the fact that air molecules are more spread out at higher altitudes. In other words, the air
pressure decreases as the elevation increases, reducing the air temperature and LST, where
the reduction amount depends on the moisture condition [46].

4.3. Insights into Natural and Geological Hazards

Gradual warming, woodland and forest expansions, and dry spells can potentially
increase the severity and occurrences of wildfires in the study region, and pose a significant
risk to the biodiversity, greenhouse gas emissions, and infrastructure, as well as increasing
the risk of post-fire shallow landslides and debris flows [47]. Thus, utilizing machine learn-
ing and statistical modeling to creating wildfire susceptibility maps and risk forecasting in
this region becomes crucial [48,49].

The significant nighttime warming trend observed in the study region may change
the soil and rockwall erosion rates. It can potentially alter the groundwater level, trigger
landslides, and amplify high-magnitude rockfalls through water advection associated with
snow cover and ice melting in rock discontinuities and joints [50–53]. Gradual declining of
the precipitation in Abruzzo, Lazio, Marche, and Umbria is observed since 2000, with extreme
precipitation events in recent years, particularly in Lazio (see Figure 3 in [32]). Extreme
precipitation events followed by dry spells trigger landslides and reactivates slow-moving
landslides—such extreme events are likely to continue in the upcoming years [54,55].

In the study region, there are not many large-sized water bodies to be studied. There
is only an artificial lake, called Lake Campotosto, which is a migratory site for many animal
species. Lake Campotosto is a protected area in the province of L’Aquila in Abruzzo, with
an area of ≈14 km2, a depth of 30–35 m, and an altitude of ≈1313 m a.s.l. [56], highlighted
in Figure 1. The MK–Sen analysis on the MODIS land cover product reveals that the water
surface extent may have decreased by a rate of 0.075 km2/year or 0.004 (%)/year at a
99% confidence level since 2001. Although the trend results on the limited water bodies
may provide an insight on the impact of climate change and human activity, the spatial
resolution of MODIS land cover (500 m) is too low to provide a concrete solution for the
water surface dynamics of the lake. A more in-depth analysis would be to utilize higher
resolution satellite imagery, such as Landsat (30 m), Sentinel (10 m), and PlanetScope (3 m),
which allows for more accurate water surface dynamic monitoring [57,58].

Santis et al. [59] investigated the impact of climate change on small-to-medium Italian
lakes in Central Italy through moderate resolution satellite data, including Landsat and
Sentinel. They showed that the surface temperature of the lakes increased by ≈0.11 ◦C/year
since 2000. Figure 6 also shows that the nighttime LST has risen in February, July, September
and December, particularly by more than 0.15 ◦C/year in February. Antonielli et al. [56]
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conducted a multi-hazard research on this lake, and pointed out that the region may be
impacted by a complex earthquake-induced chain of geologic hazards, such as the seismic
shaking, earthquake-triggered landslides, and surface faulting of the Gorzano Mt. Fault.
The observed nighttime warming trend and a gradual reduction in the water surface extent
of this lake may provide further insight on multi-risk and multi-hazard assessment, as
discussed in [60,61].

4.4. Limitations and Future Direction

The aim of this research is to provide a broad view of the climate and land cover
variations in Central Italy, focusing on the monthly daytime and nighttime surface temper-
ature trends. The MODIS spatial resolution is relatively lower than the resolution of other
thermal sensors on board satellites, such as Landsat and Sentinel. Combining the data
acquired from these sensors can provide a more detailed analysis. The methods applied
here are also simple and easy to understand. More sophisticated data analytics techniques,
such as wavelets, machine learning, and deep learning models, can be utilized to better aid
understanding of the interconnections between climate, elevation, and land cover.

5. Conclusions

In this study, the MODIS products are employed to estimate linear trends in the
daytime and nighttime LST (2000–2023) and land cover (2001–2022) time series in Central
Italy. The non-parametric Mann–Kendall trend model, and its associated Sen’s slope, are
applied to estimate the linear trends. Possible relationships between the LST and land cover
are discussed, and the Pearson correlation between the LST and elevation is also estimated.
The main results are summarized below:

• Statistically significant warming trends are observed during the night for February,
July, August, September, November, and December.

• Statistically significant warming trends are observed during the day for Septem-
ber, November, and December, mainly in Marche and Abruzzo, which are closer to
the coast.

• The elevation is found to be negatively correlated with the LST, more strongly for
daytime during winter and nighttime during summer.

• Woodlands and forest expansion explains the nighttime warming trends that are more
dominant than the daytime trends in the region.

• Potential geohazards due to recent LST and land cover changes are also discussed.

It is hoped that the presented results could be useful for various purposes, including
landslide and wildfire susceptibility analysis. Future work would focus on integrating
higher resolution satellite data, as well as more advanced data analytics models to provide
a more in-depth analysis for Central Italy.
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