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Orthotropic multisurface model with damage for macromechanical analysis
of masonry structures
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Department of Structural and Geotechnical Engineering,
Sapienza University of Rome
Via Fudossiana 18, 00184, Rome, Italy

Abstract

A novel macromechanical model with damage for the analysis of masonry structures in-plane loaded is pre-
sented. The model accounts for the directional mechanical properties typically characterizing response of
masonry with regular texture. Indeed, the real heterogeneous material is modeled as a fictitious homoge-
nized medium with orthotropic elastic constitutive behavior along the masonry natural axes, identified as
the parallel and normal directions to bed joints orientation. The different strength characteristics along
each material axis are taken into account by properly defining a damage matrix, which accounts for failure
mechanisms due to axial tensile and compressive states, as well as shear. A suitable criterion is introduced,
resulting in a damage limit surface geometrically defined in the space of the damage associated variables by
the intersection of two ellipsoids and an elliptic hyperboloid. The model is implemented into a finite element
procedure where the mesh-dependency numerical issue is avoided by adopting a nonlocal integral formula-
tion. Validation examples, involving simple uni-axial and bi-axial tests, as well as more complex loading
conditions, are provided to prove the model performances at both material and structural scale.

Keywords: masonry, damage, orthotropic response, macromechanical approach, finite element, nonlocal

integral regularization

1. Introduction

In the last decades many experimental and numerical studies were devoted to understanding and pre-
dicting the response of masonry structures, in view of their seismic assessment. In fact, masonry is the most
ancient, but still widely used, construction building material. At the conventional microscopic scale, it is a
composite material obtained by assembling blocks, with various nature and shape, by means of mortar layers

or dry joints. Geometry, sizes, mechanical properties and arrangement of the constituent materials strongly

*Corresponding author
Email address: cristina.gattaQuniromal.it (C. Gatta)

Preprint submitted to European Journal of Mechanics - A/Solids June 27, 2023



10

15

20

25

30

35

affect the global structural response. Hence, the most natural and accurate modeling approach appears to be
the so called micromechanical strategy, which separately describes each masonry component and, possibly,
their interaction behavior [1, 2, 3, 4, 5, 6]. Accurate geometric and constitutive descriptions are obtained at
the cost of computationally expensive numerical analyses, thus restricting the applicability of such approach
to the study of small elements or structural details.

Alternately, the scientific community proposed a large variety of continuum models which consider ma-
sonry as a homogenized medium where the constituents are no longer distinguishable. The homogenized
material is usually modeled by resorting to the classical Cauchy continuum [7, 8, 9, 10, 11, 12, 13], but also
the micropolar Cosserat was successfully applied, especially to account for the effect of the characteristic
microstructure length on the masonry macroscopic response [14, 15]. Anyway, the correct identification of
the constitutive behavior of the homogenized material remains an open issue due to the uncertainty in the
calibration of the evolutive laws of the inner variables governing the nonlinear mechanisms. To this end, di-
rect approaches and homogenization and multiscale procedures were applied [16, 17]. The latters deduce the
material constitutive response of the homogeneous model adopted at the structural scale from the accurate
analysis of a properly selected masonry representative volume element (RVE), accounting for the detailed
description of components, geometry and arrangement. Weak coupling between the material and structural
scale is established if a priori homogenization is performed [18, 19], whereas a stronger connection is obtained
if step-by-step [20, 21, 22, 23] or adaptive [24] multiscale procedures are adopted. Instead, the direct models
calibrate the material properties and evolution laws of the inelastic variables through experimental data on
masonry assemblages.

Continuum approaches based on phenomenological constitutive laws capable of describing the main fea-
tures of the mechanical response without resorting to the nested step-by-step RVE-based homogenization
procedures are also referred to as macromechanical models. In such context, several formulations were pro-
posed, including damage models, plasticity models, coupled damage-plasticity models and smeared-crack
models [25]. Despite most of these approximate the real masonry anisotropic response with the simplified
hypothesis of isotropic behavior, these models give a fair compromise between accuracy and computational
effort and were successfully applied to analyze large scale structures [26, 12]. However, when dealing with
periodic well-organized masonry, the assumption of isotropic response might to be too simplistic, as regular
masonry exhibits substantial discrepancy between properties observed in different material directions. The
pioneer experimental campaign conducted by Page et al. on running bond panels [27, 28, 29] clearly showed
that mortar joints act as plane of weakness and their orientation with respect to the applied loads strongly
affects the material strength. Moreover, the anisotropic response emerges already in the elastic range and,

usually, reduces to an orthotropic-type. This was proved by the correlation determined experimentally by
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Cavaleri et al. [30] between the ratios Young’s modulus-to-Poisson’s coefficient defined along head and bed
joints directions, considered as masonry natural axes.

Some attempts were made to include the effect of anisotropy in macro-models. For instance, Lourengo
et al. [7] proposed an orthotropic constitutive law fully based on the plasticity theory, which employs a
Rankine-type and a Hill-type criterion to simulate tensile and compressive behavior, respectively. Berto
et al. [8] presented an orthotropic damage model for the analysis of brittle masonry subjected to in-plane
loading, assuming the masonry natural axes as damage principal axes. They considered the equivalent
effective stress measures as damage associated variables, by distinguishing the positive and negative values
along the directions parallel and normal to the bed joints. Moreover, for tensile states, they introduced the
dependence of the damage evolution parameters on the tensile specific fracture energy.Karapitta et al. [9]
adopted a smeared-crack constitutive model capable of discerning failure modes of unreinforced masonry due
to tension normal and parallel to the bed joints, masonry crushing normal and parallel to the bed joints, and
masonry shear under compressive vertical stress. Pela et al. [10] developed a damage model exploiting the
concept of mapped tensors from the anisotropic field to an auxiliary isotropic workspace and, then, combined
the model with the crack-tracking technique to reproduce the propagation of localized cracks [31]. Similarly,
Bilko and Leszek [32] established masonry constitutive response in the framework of the elasto-plasticity
theory by including a generalization of the Hoffman failure criterion in plane stress state. More recently,
Tisserand et al. [33] formulated an orthotropic thermodynamics-based model including damage, unilateral
effect and internal sliding and friction.

The reliability of the models described above strongly depends on the adopted failure criteria, whose
definition is a hard task, given the complexity of masonry mechanical response. One of the first attempt to
identify a proper failure surface for brick masonry under bi-axial stresses dates back to Dhanasekar et al.
[29], which defined the surface as the intersection of three elliptic cones in the space of stresses expressed
in the natural axes. Stemming from this proposal, many other formulations were suggested. Berto et
al. [8] modeled the material damage space as a double pyramid with rectangular base in the equivalent
effective stress space. Lourenco et al. [7] composed the limiting surface by intersecting the Rankin’s and
Hill’s yield surfaces. Syrmakezis and Asteris [34] described mathematically the surface by means of a third
order polynomial, which provided satisfactory results in case of both compressive principal stresses. Further
developments conducted to more complex failure criteria in order to overcome some limitations of the previous
formulations. For instance, Lishak et al. [35] proposed a very intricate surface shape composed of five parts,
each corresponding to different masonry failure mode. Asteris and Plevris [36] used the neural networks to
approximate the limit surface in dimensionless form by obtaining an ‘onion’ shape. Bilko and Leszek [32]

extended the approach presented in [7] considering two orthotropic Hoffman-type failure criteria. Recently,
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Malena et al. [13] modified the isotropic yield function proposed by Bigoni and Piccolroaz [37] to take into
account the masonry anisotropy.

Relying on the above considerations, this work presents a novel macromechanical model with damage for

the analysis of masonry structures in-plane loaded. The proposed constitutive law introduces an orthotropic
description of the material elastic behavior. Then, the stiffness degradation due to cracking, crushing and
shear is captured by properly defining a damage matrix, written in terms of independent scalar damage
variables, whose evolution is ruled by equivalent strain measures. Moreover, a suitable damage criterion
is introduced to account for the variation of the mechanical properties in the different material directions.
The failure criterion results into a limit surface geometrically defined by the intersect of two ellipsoids and
one elliptic hyperboloid in the space of the damage associated variables. The model is implemented in a
finite element (FE) code, where the typical mesh-dependency issue of the numerical solution is overcome by
adopting a nonlocal integral formulation. As observed by Bazant and Jirdsek [38], who presented a compre-
hensive survey of the nonlocal integral procedures applied in the field of plasticity and damage constitutive
formulations, nonlocal models were mainly developed to: describe the nonlocal effects in presence of material
heterogeneity; regularize the boundary value problem preventing ill posedness in presence of strain-softening
and, then, obtain objective numerical solutions; capture size effects observed in experiments and in discrete
simulations. Also, according to Bacigalupo and Gambarotta [39], nonlocal constitutive models permit to
include geometric and material length scales to account for the influence of block size and prevent patho-
logical localizations related to the strain-softening nature of the constitutive equations adopted for brittle
masonry. They analyzed running bond and English bond masonry by varying the stiffness ratio between
brick and mortar and evaluated the characteristic lengths associated to the shear and extensional strains.
These resulted as a fraction of the periodic cell size and characterized by different values along the direction
parallel and normal to the bed mortar joints.
In this work, the integral definition of the strain measures driving the damage variables evolution is in-
troduced to regularize the problem in presence of strain-softening constitutive behavior and guarantee the
mesh-independency of the FE results. The size of the region involved in the nonlocal procedure is determined
by the nonlocal radius governing the influence of the Gaussian weighting function.

The paper is organized as follows. Section 2 describes the adopted constitutive relationship, focusing
on the proposed damage criterion and evolution laws of the damage variables. Section 3 provides some
computational aspects related to the finite element formulation and regularization technique adopted. Section
4 presents the numerical applications. First, the model capability of capturing masonry nonlinear response is
evaluated at material level by performing simple uni-axial monotonic and cyclic tests. Then, exploration is

moved towards more complex bi-axial loading conditions. Finally, the structural response of masonry walls
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is investigated comparing the obtained results, in terms of failure mechanisms and global load-displacement
response curves, with those recovered from experimental investigations. Section 5 concludes with some
remarks.

In the following the Voigt notation is adopted in the bi-dimensional (2D) framework, representing the

second order tensors as 3-component vectors and the fourth order tensors as matrices.

2. Damage model

2.1. Damage-based constitutive law

To account for masonry anisotropic macroscopic response, the real heterogeneous material is modeled as
a fictitious 2D orthotropic medium under plane stress assumptions and the hypothesis of small displacements
and strains. The material/intrinsic axes (7', N), parallel and normal to the direction of bed joints, are
considered as axes of orthotropy. First, the constitutive law is defined in the reference system T-N, then, it
is expressed in the global coordinate system X-Y, by applying standard transformation rules (see Figure 1).
The relation between stresses, X1y, and strains, E7y, referred to the material system, and the corresponding

global quantities, ¥ xy and Exy, classically results as:
Yxy = ®X7rN, Exy = YEry , (1)

where ® and ¥ are the rotation matrices expressed as:

m? n? —2mn m n —mn
®=|n2 m? 2mn , U= n? m? mn , (2)
mn —mn m?—n? 2mn  —2mn  m? —n?

being m = cos®¥ and n = sin), with the angle ¥ measured counter clockwise from X- to T-axis.

Y
N N T
® T A

Homogenization 9

» X

Figure 1: Material (7', N) and global (X, Y) axes of the orthotropic masonry material.
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The stress-strain relationship is defined as:
Sry = (I-D)Cry(I-D) Ery = CryEry , (3)

with the 2D strain vector Ery = {Er Ey I'p N}T collecting the axial elongations along T and IV directions, Er
and Epn, and the shear strain I'r. The stress vector Xry = {X7 Xn Xp N}T contains the work-conjugate
quantities. Cry is the effective material stiffness matrix deduced by the energy equivalence principle of
damage mechanics [40], which, unlike the strain equivalence concept, leads to symmetric stiffness matrix for
any damage operator [41, 42]. According to formulas in (1), the constitutive effective matrix in the global

system, éxy, is computed as:
Cxy = ®Cry¥'. (4)

In Eq. (3) Cry is the orthotropic elastic constitutive matrix of the undamaged material, depending on the
Young’s and shear moduli, Er, Exy and Gy, and Poisson’s ratios, vpry, vy, I is the 3 x 3 identity matrix

and D is the 3 x 3 damage operator which is defined as follows:

Dr 0 0
D=|0 Dy 0 |, ()
0 0 Dpy

being D7, Dy and Dry three scalar damage variables. It is worth mentioning that principal values of damage
are defined in most of anisotropic damage models and, consequently, damage affecting shear components
results a proper combination of these quantities [41, 43, 8, 44]. Here, following the approach presented
in [45, 46] for fiber-reinforced and layered composites, an independent damage variable in shear, Dry, is
introduced. This assumption can be justified by the different damaged areas for normal and shear stresses
and allows for higher model versatility.
As concerns the damage variables Dt and Dy, these are defined on the basis of damage parameters accounting
for tensile, D;;, and compressive, Dj., (i = T, N) strain states, as follows:

Dr = arDri + (1 —ar)Dr., (©)

Dy =anDye + (1 — OéN)l)NC .

The weighting coefficients ar and aj, defined later on, are introduced to describe the unilateral stiffness
recovery due to the re-closure of the tensile cracks under compressive states during cyclic loading histories.
In other words, the material degradation is irreversible but its effect on the mechanical response can be

activated or inactivated depending on the applied load [10, 14, 11].
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According to their physical meaning, all damage parameters, D;, D;. (i = T, N) and Dry, can range
between 0 and 1, representing the undamaged and completely degraded state, respectively. Moreover, the
irreversible thermodynamic condition is enforced, such that D,-t >0, Dic > 0 and DT ~ > 0, together with
the physical constraint D;; > D;. (i = T, N). Each damage variable is associated to a distinct failure mode,
as clearly shown in Figure 2 by the typical cracking patterns due to tensile and compressive states along each
natural axis, and shear state. Accordingly, associated variables Y; (i = T, N, TN) are introduced. These are
equivalent strain measures ruling onset and evolution of the damage parameters, as clarified later in Section

2.2. The following expressions are assumed:
Yr =Er + on7EN
Ynv =Eny +0rNEr (7)
Yry = [Trn|,
where Uy = [(1 = Dn)/(1 — Dp)ynr and opy = [(1 — Dr)/(1 — Dy )]vrn are the degraded Poisson ratios,
introduced to independently describe the axial damaging processes under uni-axial stress states along the

material axes. From Eq. (7) it is clear that cracking and crushing failure modes, associated to Yr and Yy,

depend on normal strains, whereas shear failure is solely controlled by shear deformation.

| . ITI [ 1 ¢ |<_|
el e e T e
1 I¢I | T I_»I

(a) (b) (c) (d) (e)
Figure 2: Schematic representation of failure modes associated to (a) Dr¢, (b) D¢, (¢) Dre, (d) Dne and (e) Dry -
On the basis of quantities in Eq. (7), the weighting coefficients ar and ay in Eq. (6) are expressed as:
a; = H(Y;) with i=(T,N), (8)

with H(e) denoting the Heaviside function (i.e. H(e) =1 if @ > 0, otherwise H(e) = 0). It emerges that the
model assumes no crack re-closure effect associated to D7y, as shear damage is caused mainly by transverse

cracks which do not close under reversal shear loads.
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2.2. Damage onset and evolution

The definition of a proper failure criterion and evolution laws for the inelastic variables is a fundamental
step to predict load bearing capacity of regular masonry. Inspired by the pioneer work of Dhanasekar et al.
[29], the adopted damage criterion accounts for the material state referring to the natural axes. Indeed, the
proposed limit surface is geometrically defined by the intersect of two ellipsoids, F{® and F{, and one elliptic
hyperboloid, FP, in the space of the damage associated variables. Few material parameters are needed to
construct the surface, that is the initial uni-axial damage thresholds in the directions tangential, Y7o and
Y70, and normal, Y40 and Yo, to the bed joints, by distinguishing them to account for the non-symmetric
behavior in tension and compression (as the subscripts ‘¢’ and ‘¢’ indicate), and the pure shear threshold
Ys0. Figure 3 shows the 3D representation of the damage limit surface in the positive Yry-semi space (Fig.
3(a)) and two sections corresponding to Yry = 0 and Y7 = Yy where the mentioned thresholds are indicated
(Fig. 3(b,c)). Dashed black lines in Figures 3(b,c) identify the three regions of the space in which each
surface FP (i = 1,2, 3) defines the limit function. The resulting domain represents the damage limit surface:
inner points correspond to material elastic states, points lying on the boundary indicate the onset of possible
damaging mechanisms and require evolution of the surface so that the updated material states belong to the
new surface boundary.

The ellipsoids F? and FiP, ruling states of bi-axial tension and compression coupled to shear, are expressed

as:
Y\’ Y\ Yrn '\~
FP=(-—= e IV g
' <A1> +<Bl> o ’ ©)
Yoa )’ Yop\’ Yrn\?
P-4 =) -1 10
’ ( Az ) 9 ( Bs > - Cs ’ (10)
with:
Youa = COSO((YT—OT)-FSiIlCK(YN—ON) s ( )
11
Yop= —sina(Yr—0O7)+cosa(Yy —Op) .

At the onset of the damaging process, A1 = Yo, B1 = Ynto, Bs = \/mm and A3z = 8 Bz, with 3
the material parameter affecting the shape of the limit surface in compression (Fig. 3(b,c)). In Eq. (11), Or
and Oy are the coordinates of the central point O = (Or, Oy, 0) of Ff and « is the angle defined on the
basis of the uni-axial compressive thresholds, as illustrated in Figure 3(b). Finally, quantities C; and Cj in
Egs. (9) and (10) are determined so as to properly connect the two ellipsoids to F. This latter is defined

as:

FP = Ay Y2+ By Yi4+CoYiy —DoYr YN+ B Yr + Fa Yy — 1, (12)
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1

- b
Yrio Yreo

1
Dy = +
: <YTtO Yreo

1
Ynio YNcO) ’

(b)

Y,

NcO

\
\
=\
a

1 1
Bo= o\  Cp= o,
2 YNtO YNcO : }1320 (13)
By = Yreo — Y10 Fy = Yneo — Yvio
Yreo Yro Yneo Yo

(©)

Figure 3: Damage limit surface at the onset of the damaging mechanism: (a) 3D representation, (b) and (c) sections.

Region outside the damage domain represents no admissible material states. The limit surface evolution,

100 satisfying admissibility conditions of the material states, follows a not homothetic transformation, as illus-
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trated for some examples in Figure 4. Here, for the sake of simplicity, null shear strains are considered and
the surface evolution is plotted only in the Y7-Yy plane. Extension to the 3D case is straightforward.

In Figure 4(a) the black square point denotes a case for which evolution of damage surface occurs. The point
is characterized by Y7 > 0, Yy < 0 and Yprny = 0 and, consequently, only the tangential tensile, Y79, and
normal compressive, Yo, thresholds evolve through the parameter A (with A > 1) properly determined,
keeping constant Y70, Yyt and Yyo. The corresponding limit surface after evolution is shown in Figure 4(b)
with dashed lines. Obviously, various combination of strain states can occur, leading to different types of
domain evolution. For instance, in Figures 4(c) and (d) the cases of bi-axial tension and uni-axial compression
along T-axis are illustrated.

The solution of the nonlinear evolution problem of damage variables requires to distinguish between
damage in tension and compression along each material axis on the basis of the sign of ¥; (i = T, N), and
evaluate the current damage thresholds, Yrq, Yno and Y7o, following the procedure illustrated in Figure
4(a). The threshold quantities coincide with the coordinates of the point given by the intersection between
the damage surface and the line connecting the axes origin and the material point exceeding the surface and,
consequently, these can vary during the loading history due to the evolution of the damage limit domain.
Once evaluated the thresholds, the following evolutive rules are adopted:

1¥i] = [¥il
[Yi| + bic [Yiol

Yrn — Yrno

Y; - Y; .
0 (Y;20), Dy =

Dy = ———-9
Y 4 bit Yo -

(Y <0),  Drx (14)

" Yrn + by Yrno
with ¢ = T, N and bry, by, bre, bye, bry material parameters governing the growth rate of the damaging
processes: the higher the parameters, the slower the damage progression and greater the resistance and
fracture energy density of the material. As an example, Figure 5 shows the effect of the parameter by, on
both the evolution of the corresponding damage parameter with respect to the associated variable (Figure
5(a)) and the uni-axial tensile stress-strain relationship (Figure 5(b)). Detailed description of the time
discretization algorithm developed for the damage evolution problem is provided in Section 3.2.

To summarize, the proposed model requires to define, in addition to the elastic parameters, six parameters
related to the damage criterion (Yr+0, Yrc0, YNt0, YNcos Ys0, 8) and five parameters associated to the evolutive
laws of the damage variables (br¢, bre, by, bne, brn). The resulting number of nonlinear parameters to be
identify is comparable, and generally lower, to that required by other macromodels which take into account
the anisotropic nonlinear response of masonry [7, 8, 9, 10].

The flexibility of the model in reproducing various shapes of the constitutive stress-strain relationships
could be further improved. In fact, although the peak strengths are strongly affected by the defined damage
thresholds, a limit of the current formulation is that both the peak strengths and the fracture energy densities

depend on the b; (i = Tt, Te, Nt, Ne, TN) parameters. Hence, the evolutive laws of the damage variables

10



could be modified to make the definition of strengths and fracture energies properties independent, but this

would increase the number of parameters to be defined and the model complexity.

= initial limit surface Y, = initial limit surface Y,
: = = expanded limit surface
passing through m
y Yo Y, 4 YT’O
Y, Y,
(YTO,YNO,YTNO) ’
(a) (b)
— initial limit surface Y v —— initial limit surface YN
= expa.nded limit surface ' 2 = expanded limit surface
passing through m passing through m
— 0 -
Y - Y,
Tc0 ’

-—————

(©) (d)

Figure 4: Evolution of the damage surface considering different material states: (a,b) combined tension along T-axis and

compression along N-axis, (c¢) bi-axial tension and (d) uni-axial compression. Solid and dashed lines refer to the initial and

expanded damage surface, respectively.
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Figure 5: Effect of the material parameter by on: (a) evolution of the damage parameter with respect to the corresponding

associated variable and (b) stress-strain relationship.

3. Computational aspects

3.1. Nonlocal FE formulation

The model presented in the previous section was introduced in a 4-node isoparametric quadrilateral ele-
ments, and implemented in a finite element procedure based on the classical displacement-based formulation.
Each node is provided with two displacement degrees of freedom, and bi-linear interpolation functions are
used for the two translation fields, Uy and Uy .
As known, when modeling response of quasi-brittle materials characterized by strain-softening constitutive
behavior, like masonry, the pathological mesh-dependence problem arises. Indeed, the strain may localize
into narrow bands, whose width depends on the finite element size. To overcome this numerical issue several
strategies were proposed based on the fracture energy concept [47, 21, 48], higher-order formulations [49],
Cosserat continuum [50, 14] and nonlocal integral approach [51, 20, 11]. Among these, the last mentioned
technique is adopted in this study, as it allows to obtain objective numerical results and relies on mechanical
evidences.
Giving up the principle of local action, it is assumed that the degrading process at each material point is
influenced by the mechanical state of the points lying in a properly defined neighborhood. Hence, the integral

definition of the damage associated variables in Egs. (7) is introduced as:

Y; (X) X,S) dQ(S) i=T,N, TN , (15)

5791 ),
- Yi(S)u(
being Y; the nonlocal quantities at point X, evaluated on the basis of the corresponding local variables Y; at
points placed in its neighborhood on the surface 2. The influence on X of the point S is weighted by means

of the classical Gaussian function v, which, in turn, depends on the nonlocal radius L., as follows:

IIX—SII>2

L

¥ (X,8) = e_< (16)

12
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After computating the integral quantities in Eq. (15), these are introduced in the limit functions in Egs.
(8)-(12) and, in case, are used to solve the evolution problem of the damage variables at each integration

point of the FE discretized problem, according to Egs. (14).

3.2. Solution algorithm

Table 1 summarizes the main steps involved in the solution of the damage evolution problem at the typical
Gauss point of each FE, making explicit the passage from the global to the material coordinate system and
vice versa. Reference is made to the generic Newton-Raphson iteration ‘&’ of the current time step ‘t,41’
within the global solving algorithm. In short words, the FE program provides the global nodal displacement
vector Ulj(y, from which the element displacements U§?Y are extracted. Then, the strains E];(Y are computed
through the compatibility matrix L® = BN®, obtained by applying the standard compatibility operator B
to the shape function matrix N¢. Afterwards, the strain vector E and the nonlocal damage associated
variables Y}¥ (i = T, N,TN) are evaluated. On the basis of these, the damage evolution problem is solved by

computing the damage limit functions and each damage parameter according to the following general form:
DF =D + AD¥ i = (Tt, Te, Nt, N¢, TN) , (17)

with D} denoting the damage value at the previous time step ¢, and AD;C the damage increment evaluated

at the current time ¢,,1 and iteration k as reported in Table 2, where apex ‘**1’

is omitted for simplicity.
From Table 2, it emerges that each damage increment is computed using the current damage thresholds, Y%,
Y%, and YFy,, and the material parameters b; (i = T't, Nt,Tc, Ne,TN).

Finally, the solving algorithm ends with the computation of the stress vector and the effective stiffness
matrix referred to the material system and, after, to the global reference system, as detailed in Table 1. To

be noted is that the secant stiffness matrix is adopted in the Newton-Raphson procedure, as the material

tangent stiffness is cumbersome to obtain within nonlocal integral formulations [52].

4. Model validation

In this section, the presented model is employed to analyze masonry response both at material and
structural level. First, simple uni-axial stress tests are performed, then, the exploration is moved towards
more complex bi-axial loading conditions and, finally, structural applications on shear walls are presented.

The numerical results are validated by comparison with experimental outcomes.

4.1. Uni-axial monotonic and cyclic behavior

Uni-axial tests are performed to show the reliability of the proposed model in describing masonry or-

thotropic response under monotonic and cyclic loads. Numerical simulations are performed by adopting

13
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1. Compute strains E% starting from displacements U§?Y:
Efy = LeU??Y
2. Project strains E% to the material coordinate system:
Efy = ‘P71E§(Y
Calculate the local and nonlocal damage associated variables by using Eqgs. (7) and (15)
Evaluate the damage limit functions according to Egs. (9)-(12)
Determine the damage thresholds following the example procedure illustrated in Figure 4(a)
Solve damage evolution problem according to Table 2 and define damage matrix D* as in Eq. (5)

Update the limit surface after damage following the example procedure illustrated in Figure 4

® N o W

Compute damaged stiffness matrix (Nﬂ} N and stresses DN
Chy = (I-D")Cry(I- DM

EI%N = C]%NEI%N

9. Evaluate (MJ’)C(Y and stresses 35y :

CI)C(Y = @C[}qul

El;(Y = @2?1\,

Table 1: Main steps of the solution of the damage evolution problem and constitutive law at the Gauss point of the FE.

material parameters contained in Table 3 and setting 8 = 1.5 and b; = 1.5 (i = T't, Nt,T¢, N¢,TN).

The first example explores the response of a masonry element subjected to uni-axial horizontal tension (i.e.
tensile load acting along the global X-axis applied by a displacement controlled procedure), considering three
values of the orthotropy angle 9, that is ¥ = 0°, ¥ = 45° and ¥ = 90°. Numerical results, in terms of stress-
strain relationship, are shown in Figure 6(a) and prove the model capability of accounting for orientation of
the applied load with respect to bed joints direction. Indeed, different initial elastic stiffnesses and maximum
strengths are obtained for the three values of the 9 angle adopted. This is a consequence of the stress and
strain fields acting in the material axis system, which cause activation of different damaging mechanisms.
With reference to Figure 6(b), it appears that the damage parameter Dy is activated only in case of ¢ = 45°,
as this is related to the shear strain I'yy. Conversely, when ¢ = 0° or ¢ = 90°, damage Dpy disappears and
only damage variables D and Dy arise. In particular, D starts and evolves when ¢ = 0° since the T-axis
coincides with the X-axis, whereas Dy appears in case of ¥ = 90° as a consequence of the X- and N-axis

overlap.

As evident from Figure 6(b), the three damage variables, D, Dy and Drpy, evolve in the same way in
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IF FP" <0 (h=1,2,3)

ADE, = ADE, = ADk, = ADk,_ = ADE, =0

ELSE

Yy — Y
YTkN +bry YTkNo

ADk =

IF YF >0 THEN

D?"c = D%c
Yk _ vk
AD?«t _ *kT TOk
Y5 +br Y5,
ELSE
apt =¥

Dk, = maz (D%, D7)

END

IF Y% >0 THEN

Dﬁc\[c = DK]C
ADFE — 7YZ<CT_YJ]\CIO
Nt k k
YN+bNtYN0
ELSE
Ak, — TAI= 1K

Dy, = max (Di., Di)

END

END

Y|+ bre [V

VX[ + be [Vl

— Dk =min (D}y + ADEy, 1)

— D?t = max (D%C, min (D%t + AD%, 1))

— Dk, =min (D}, + ADY,, 1)

— Df\,t = max (Df\,c, min (DT]{,t + ADf\,t, 1))

— D%, =min (DY, + AD% 1)

Table 2: Solution algorithm for the evolution laws of the damage variables.

case of ¥ = 45°. This is a special condition due to the parameters chosen to rule the damage evolution, that is
brs = byt = bry. Indeed, different evolutive laws and constitutive responses could be obtained by removing
20 these assumptions. To clarify, Figure 7(a) shows the stress-strain relationship and the damage variations
corresponding to by = by = 1.5 and bpy = 2.5. It emerges that the evolution of Dry differs from that of

Dr and Dy. Finally, completely different damage increments appear in the most general case, as testified

in Figure 7(b), where results obtained assuming br; = 2.5, by, = 1.5, byy = 3 are reported.

In these monotonic tests damages Dr and Dy represent the material degradation caused by tensile load
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Table 3: Material parameters for uni-axial tests in Figures 6, 7 and 8.

Elastic parameters Damage parameters
Er [MPa] Ey [MPa] vry Gy [MPa) Y10 Ynto Yreo Yneo Yo
4000 2000 0.1 1500 9.95E-05 9.95E-05 T7.46E-04 1.99E-03 3.33E-04
0-5 T T T T T 1 T T T I
D, ¥ =0°
- D
Q0.5 DN J
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0 — . — -
< 1 T T e
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— Q057 7N — ]
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QOs|~ N " 1
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7
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Ey %1073

(a) (b)

Figure 6: Uni-axial tensile response for different values of the orthotropy angle 9: (a) stress-strain relationships, (b) variations

of the damage variables D, Dy and Dppy with respect to the strain Ex.

and, accordingly, always correspond to Dp; and Dy, respectively. Instead, when dealing with the cyclic
response, it is useful decompose the damage parameters in their tensile and compressive part, especially
if the re-closure crack phenomenon is to be analyzed. As an example, Figure 8(a) shows the stress-strain
relationship obtained by applying the deformation history at the top of Figure 8(b) to the masonry specimen
with horizontal bed joints, i.e. ¢ = 0° (it is assumed by = by, = 1.5). It can be noticed that the
stiffness recovery occurs when passing from tension to compression (A-B phase), as this is related to the
re-closure of the tensile cracks under compressive states. The subsequent reloading in tension, which leads to
point C, is slightly affected by the accumulated compressive damage, because of the constraint Dp; > Drp..
The phenomenon is clearly illustrated in the lower part of Figure 8(b), where the variations of the damage
variables Dr;, Dr. and D are plotted with respect to the fictitious time variable with red, green and dashed
black curve, respectively. Apparently, D7 assumes the same value of Dy, for tensile states and, then, when

a reversal strain occurs, returns equal to Dr., allowing a proper representation of the unilateral damage
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Figure 7: Uni-axial tensile stress-strain relationships and variations of the damage variables for ¢ = 45°: (a) by = byt = 1.5

and bry = 2.5, (b) bry = 2.5, by = 1.5, by = 3.

recovering upon load reversal.
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Figure 8: Uni-axial cyclic response for ¥ = 0°: (a) stress-strain law, (b) evolution of the strain Ex and damage variables Dr,

Dry and Dp. during the loading history.
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4.2. Bi-azial response: comparison with experimental data

The experimental data provided by Page [27, 28] are used as reference solutions to study the in-plane
anisotropic response of masonry. Masonry panels, made of half-scale solid clay units arranged in running
bond, were tested under bi-axial loading conditions by using a proper device to impose uniform stress states.
The applied loads were oriented at various angle 9 with respect to bed joints and the resulting failure surfaces
were obtained in terms of principal stresses and their orientation to the bed joints. Test results proved that
mortar joints act as planes of weakness, causing distinct directional properties. This clearly emerges from
Figures 9(a-c), where the experimental failure domains are depicted with dots for cases of ¥ = 0°, 22.5° and
45°. Results referred to ¥ = 67.5° and ¥ = 90° are implicitly contained in those of ¥ = 22.5° and ¥ = 0°,
respectively. Figures 9(a-c) also show the numerical failure surfaces (solid lines) derived with the proposed
model adopting the material parameters contained in Table 4, set according to [27, 28, 53]. For the analyses

is assumed = 1.5 and b; =2 (i =Tt,Nt,Tc, Ne,TN).

Table 4: Material parameters for bi-axial tests in Figure 9.

Elastic parameters Damage parameters
Er [MPa]  Ey [MPa] vry  Gry [MPa] Y70 Yo Yreo Yneo Yo
5700 5600 0.19 2350 6.8E-05 4.1E-05 6.8E-04 1.2E-03 1.9E-04

On the overall, a pretty good agreement emerges between experimental and numerical outcomes. In fact,
according to the experimental data, the numerical surface exhibits a non-symmetric shape in case of ¢ = 0°,
being the compressive strengths normal and parallel to bed joints significantly different. Then, by increasing
9, the shape of the failure domain varies. Despite some slight discrepancies between experimental and
numerical data, the proposed model well describes the symmetric shape characterizing the case of ¥ = 45°.
These results clearly testify the model capability of accounting for the bed joints orientation relative to
the principal stresses, thus describing in a phenomenological way the preferential direction of microcracks

evolution due to the spatial arrangement of mortar and bricks.

4.83. Numerical and experimental response of shearing walls

To explore the capability of the model of reproducing response of masonry structural elements, the panels
experimentally tested by Raijmakers and Vermeltfoort [54] are numerically studied. The walls were built by
assembling 18 courses of solid bricks with dimensions 210 x 52 x 100 mm?® and 10 mm thick mortar. Only
16 courses were activated, thus resulting in overall width W = 990 mm and height H = 1000 mm (Figure
10). The experiments involved two phases: first, a vertical pressure p was applied on the top side, then,

a monotonically increasing horizontal displacement s was imposed through a steel beam, preventing any
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Figure 9: Comparison between numerical (solid lines) and experimental (dots) [27, 28] bi-axial failure domains for different

values of ¥.

vertical movement of the upper boundary (Figure 10). Four specimens, labeled as JD walls, were tested
assuming different levels of the compression load, i.e. p = 0.3 MPa for J4D and J5D, p = 1.21 MPa for J6D
and p = 2.12 MPa for J7D.

To perform the numerical simulations, the effective elastic properties of the material were derived via a homog-
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Figure 10: Test phases for Raijmakers-Vermeltfoort panels and selected masonry UC.

enization procedure. This is based on the selection of a masonry unit cell (UC) representative of the regular
arrangement (UC in Figure 10), both in terms of geometric characteristics and constitutive properties of the
components. The cell is modeled with 4-node quadrilateral FEs explicitly distinguishing between bricks, 'b’,
and mortar, ‘m/, for which the linear elastic isotropic behavior is assumed (Young’s moduli E}, = 16700 MPa
and FE,,, = 800 MPa, Poisson ratios v, = 0.15 and v,,, = 0.11 [55, 56]). Enforcing proper periodicity conditions
on the UC boundaries, the unit macroscopic strains Ery = {100}", Ery = {010} and Ery = {001}"
are sequentially imposed as input kinematic actions and, then, the stress field in the UC is evaluated. On the
basis of this, the macroscopic stresses, X1y, associated to the imposed macroscopic strains, and representing
the columns of the homogenized elastic stiffness matrix Crpy, are computed by applying the Hill-Mandel
principle [57]. Table 5 shows the evaluated elastic moduli and Poisson ratio of the homogenized orthotropic

medium.

The nonlinear mechanical properties are identified on the basis of the experimental data and values
reported in [19, 10, 13]. The corresponding model parameters, contained in Table 5, lead to the following
homogenized strength properties: tensile and compressive strengths parallel to bed joints equal to 0.37 MPa
and 12.7 MPa, tensile and compressive strengths normal to bed joints equal to 0.28 MPa and 10.0 MPa, and
shear strength equal to 0.45MPa (having set 8 = 1.5, byt = by = 2.2, byt = bye = 2.5 and bry = 2.3). A
mesh made of 10x10 4-node quadrilateral FEs is used to perform the numerical simulations, assuming the
nonlocal radius L. = 220 mm in accordance to brick and mesh sizes. The values of b; (i = Tt,Tc, Nt, N¢, TN)
and L. are set so as to obtain the required strengths properties along the different material directions and
represent the characteristic length of the microstructure, respectively.

Figure 11 compares the global load-displacement curves evaluated numerically (red lines) and experimentally

(black lines). It appears that the model well reproduces both the increase in peak load and brittle behavior,
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with increasingly severe softening branches, as the vertical load increases. Some differences emerge between
numerical and experimental outcomes in the pre-peak responses, due to some nonlinear mechanisms that are
not properly reproduced by the model because they are possibly a consequence of pre-existing damage or
different initial conditions. In fact, the numerical-experimental discrepancies could be significantly reduced
if different mechanical parameters were assumed for the three specimens, as done in other works [19, 58].
However, the aim here is not to consider the possible variation of the macromechanical properties related
to defects caused by the experimental construction process, but is to reproduce the overall behavior of the

panels initially made of the same masonry material using a single set of mechanical parameters.

Table 5: Material parameters adopted for Raijmakers-Vermeltfoort panels.

Elastic parameters Damage parameters
Er [MPa]  Eny [MPa] vry  Gry [MPa] Y710 Yo Yreo Yneo Yo
8638.5 3910.3 0.11 1607.0 3.5E-05 5.1E-05 1.2E-03 1.8E-03 2.1E-04
120
100 r
z
= 80f p=2.12MPa
[}
;fz 60 - p=121MPa
‘g p=0.30 MPa
é 40 F
S}
=
20k — experimental I
— numerical mesh 10x10
— - numerical mesh 20x20

0 0.5 1 1.5 2 2.5 3 3.5
horizontal displacement [mm]

Figure 11: Comparison between experimental and numerical force-displacement curves for Raijmakers-Vermeltfoort panels.

As concerns the activated failure modes, Figure 12 shows the experimental cracking paths for all the
considered values of the compression load p. The distributions of the damage variables derived from the
numerical simulations are contained in Figures 13,14,15. Although in a smeared fashion, the model reproduces
damage distributions in accordance with the experimental evidences. In fact, diagonal damaged bands in the
middle of the panels and damaged zones located at the bottom and top corners of the walls, where shear and

tensile strains are concentrated, respectively, emerge. To be noted is that, due to the nature of the formulated
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model based on continuum damage mechanics, as well as the adoption of the nonlocal integral procedure,
spread damage mechanisms are reproduced. To describe concentrated and localized fracture modes, different
modeling approaches should be resorted to. As concerns the effect of the compression state, it emerges that

the shear mechanism becomes more and more relevant as the value of the vertical load p increases.
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Figure 14: Raijmakers-Vermeltfoort panels: distributions of the damage variables for p = 1.21 MPa and s = 2.2mm.

380 Finally, the structural behavior of the panel characterized by the highest compression load, whose response
curve exhibits the steepest softening branch, is also reproduced adopting a denser mesh made of 20x20 FEs.
The corresponding load-displacement curve, depicted with blue dashed line in Figure 11, is indistinguishable

from that evaluated with the coarser discretization consisting of 10x10 FEs, thus proving the efficiency of
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Figure 15: Raijmakers-Vermeltfoort panels: distributions of the damage variables for p = 2.12 MPa and s = 2.2 mm.
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the regularization technique adopted.

5. Conclusion

A novel macromechanical model with damage for the analysis of in-plane loaded masonry structures
with regular arrangement of bricks and mortar joints was proposed. The model introduces an orthotropic
description of the elastic behavior of the homogenized masonry and is based on a matrix representation of
damage accounting for the variation of the strength properties observed for different material directions.
Indeed, distinct damage parameters are introduced to model and distinguish degrading mechanisms due
to both tensile and compressive states, as well as shear, referred to masonry natural axes (i.e. the bed
and head joints directions). A suitable failure criterion is formulated by defining a multisurface damage
domain geometrically given by the intersection of two ellipsoids and one elliptic hyperboloid in the space
of the damage associated variables. The surface follows a not homothetic transformation during the typical
loading history, thus limiting the interaction effect of the degradation of the mechanical properties in the
two masonry natural directions. Despite the model relies on the hypothesis of orthotropic local behavior of
the material, the overall anisotropic damaging response is, however, described by the onset and subsequent
damage localization at the structural level.

The model was introduced in an isoparametric displacement-based quadrilateral element and implemented
in the finite element code FEAP. A nonlocal integral formulation was adopted to obtain mesh-independent
numerical solutions.

Several applications, at both material and structural scales, were performed to evaluate the performaces
of the proposed model. The uni-axial tests proved the model capability of describing the different strength
and stiffness characteristics along the material axes and the typical softening branches of the constitutive
responses. Moreover, the effectiveness of the introduced damage limit surface was showed by comparison
of numerically and experimentally evaluated bi-axial failure domains. Finally, the experimental response of

shearing masonry panels subjected to different level of pre-compression load was satisfactory reproduced,
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both in terms of global load-displacement curves and cracking paths. Numerical outcomes obtained with
coarse and denser meshes confirmed the effectiveness of the adopted regularization technique. To be noted
is that the global load-displacement response curves have to be complemented with the observation of the
local distributions of strains and damage to get information on the length scale measurement.

At the present stage, the model is not able to completely reproduce the masonry cyclic response. Although
the formulation considers the unilateral stiffness recovery due to the re-closure of the tensile cracks under
cyclic loads, the hysteretic dissipation caused by frictional mechanisms at the interface between mortar and
bricks is not taken into account. Hence, the presented modeling strategy is suitable for future developments

involving the coupling of the proposed damage model with a proper plasticity formulation.
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HIGHLIGHTS

- Macromechanical model with damage for analysis of regular masonry is formulated

- Orthotropic behavior and directional strength properties are accounted for

- Novel multisurface damage limit function is proposed

- Nonlocal integral formulation is adopted to avoid mesh-dependency of the FE procedure

- Capability of the model is proved at both material and structural scales
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