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ract

el macromechanical model with damage for the analysis of masonry structures in-plane loaded is

d. The model accounts for the directional mechanical properties typically characterizing respon

nry with regular texture. Indeed, the real heterogeneous material is modeled as a fictitious hom

medium with orthotropic elastic constitutive behavior along the masonry natural axes, identifie

arallel and normal directions to bed joints orientation. The different strength characteristics a

material axis are taken into account by properly defining a damage matrix, which accounts for fa

anisms due to axial tensile and compressive states, as well as shear. A suitable criterion is introdu

ing in a damage limit surface geometrically defined in the space of the damage associated variable

tersection of two ellipsoids and an elliptic hyperboloid. The model is implemented into a finite elem

dure where the mesh-dependency numerical issue is avoided by adopting a nonlocal integral form

Validation examples, involving simple uni-axial and bi-axial tests, as well as more complex loa

tions, are provided to prove the model performances at both material and structural scale.

ords: masonry, damage, orthotropic response, macromechanical approach, finite element, nonloca

al regularization

troduction

the last decades many experimental and numerical studies were devoted to understanding and

g the response of masonry structures, in view of their seismic assessment. In fact, masonry is the

nt, but still widely used, construction building material. At the conventional microscopic scale, it

osite material obtained by assembling blocks, with various nature and shape, by means of mortar la

joints. Geometry, sizes, mechanical properties and arrangement of the constituent materials stro
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the global structural response. Hence, the most natural and accurate modeling approach appears t

called micromechanical strategy, which separately describes each masonry component and, poss

interaction behavior [1, 2, 3, 4, 5, 6]. Accurate geometric and constitutive descriptions are obtaine

st of computationally expensive numerical analyses, thus restricting the applicability of such appr

study of small elements or structural details.

lternately, the scientific community proposed a large variety of continuum models which consider

as a homogenized medium where the constituents are no longer distinguishable. The homogen

ial is usually modeled by resorting to the classical Cauchy continuum [7, 8, 9, 10, 11, 12, 13], but

icropolar Cosserat was successfully applied, especially to account for the effect of the characte

structure length on the masonry macroscopic response [14, 15]. Anyway, the correct identificatio

onstitutive behavior of the homogenized material remains an open issue due to the uncertainty in

ation of the evolutive laws of the inner variables governing the nonlinear mechanisms. To this end

pproaches and homogenization and multiscale procedures were applied [16, 17]. The latters deduc

ial constitutive response of the homogeneous model adopted at the structural scale from the accu

sis of a properly selected masonry representative volume element (RVE), accounting for the det

iption of components, geometry and arrangement. Weak coupling between the material and struc

is established if a priori homogenization is performed [18, 19], whereas a stronger connection is obta

-by-step [20, 21, 22, 23] or adaptive [24] multiscale procedures are adopted. Instead, the direct mo

ate the material properties and evolution laws of the inelastic variables through experimental dat

nry assemblages.

ontinuum approaches based on phenomenological constitutive laws capable of describing the main

of the mechanical response without resorting to the nested step-by-step RVE-based homogeniza

dures are also referred to as macromechanical models. In such context, several formulations were

, including damage models, plasticity models, coupled damage-plasticity models and smeared-c

ls [25]. Despite most of these approximate the real masonry anisotropic response with the simp

hesis of isotropic behavior, these models give a fair compromise between accuracy and computat

and were successfully applied to analyze large scale structures [26, 12]. However, when dealing

dic well-organized masonry, the assumption of isotropic response might to be too simplistic, as reg

nry exhibits substantial discrepancy between properties observed in different material directions.

er experimental campaign conducted by Page et al. on running bond panels [27, 28, 29] clearly sh

mortar joints act as plane of weakness and their orientation with respect to the applied loads stro

s the material strength. Moreover, the anisotropic response emerges already in the elastic range

ly, reduces to an orthotropic-type. This was proved by the correlation determined experimentall

2
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eri et al. [30] between the ratios Young’s modulus-to-Poisson’s coefficient defined along head and

directions, considered as masonry natural axes.

me attempts were made to include the effect of anisotropy in macro-models. For instance, Lour

[7] proposed an orthotropic constitutive law fully based on the plasticity theory, which emplo

ine-type and a Hill-type criterion to simulate tensile and compressive behavior, respectively. B

[8] presented an orthotropic damage model for the analysis of brittle masonry subjected to in-p

g, assuming the masonry natural axes as damage principal axes. They considered the equiv

ive stress measures as damage associated variables, by distinguishing the positive and negative v

the directions parallel and normal to the bed joints. Moreover, for tensile states, they introduced

dence of the damage evolution parameters on the tensile specific fracture energy.Karapitta et al

ed a smeared-crack constitutive model capable of discerning failure modes of unreinforced masonry

sion normal and parallel to the bed joints, masonry crushing normal and parallel to the bed joints,

nry shear under compressive vertical stress. Pelà et al. [10] developed a damage model exploiting

pt of mapped tensors from the anisotropic field to an auxiliary isotropic workspace and, then, comb

odel with the crack-tracking technique to reproduce the propagation of localized cracks [31]. Simi

and Leszek [32] established masonry constitutive response in the framework of the elasto-plast

y by including a generalization of the Hoffman failure criterion in plane stress state. More rece

rand et al. [33] formulated an orthotropic thermodynamics-based model including damage, unila

and internal sliding and friction.

he reliability of the models described above strongly depends on the adopted failure criteria, w

tion is a hard task, given the complexity of masonry mechanical response. One of the first attem

ify a proper failure surface for brick masonry under bi-axial stresses dates back to Dhanasekar e

which defined the surface as the intersection of three elliptic cones in the space of stresses expre

e natural axes. Stemming from this proposal, many other formulations were suggested. Bert

] modeled the material damage space as a double pyramid with rectangular base in the equiv

ive stress space. Lourenço et al. [7] composed the limiting surface by intersecting the Rankin’s

yield surfaces. Syrmakezis and Asteris [34] described mathematically the surface by means of a

polynomial, which provided satisfactory results in case of both compressive principal stresses. Fu

opments conducted to more complex failure criteria in order to overcome some limitations of the prev

lations. For instance, Lishak et al. [35] proposed a very intricate surface shape composed of five p

corresponding to different masonry failure mode. Asteris and Plevris [36] used the neural networ

ximate the limit surface in dimensionless form by obtaining an ‘onion’ shape. Bilko and Leszek

ded the approach presented in [7] considering two orthotropic Hoffman-type failure criteria. Rece

3
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a et al. [13] modified the isotropic yield function proposed by Bigoni and Piccolroaz [37] to take

nt the masonry anisotropy.

elying on the above considerations, this work presents a novel macromechanical model with damag

nalysis of masonry structures in-plane loaded. The proposed constitutive law introduces an orthot

iption of the material elastic behavior. Then, the stiffness degradation due to cracking, crushing

is captured by properly defining a damage matrix, written in terms of independent scalar dam

les, whose evolution is ruled by equivalent strain measures. Moreover, a suitable damage crit

roduced to account for the variation of the mechanical properties in the different material direct

ailure criterion results into a limit surface geometrically defined by the intersect of two ellipsoids

lliptic hyperboloid in the space of the damage associated variables. The model is implemented

element (FE) code, where the typical mesh-dependency issue of the numerical solution is overcom

ing a nonlocal integral formulation. As observed by Bazant and Jirásek [38], who presented a com

ve survey of the nonlocal integral procedures applied in the field of plasticity and damage constit

lations, nonlocal models were mainly developed to: describe the nonlocal effects in presence of mat

ogeneity; regularize the boundary value problem preventing ill posedness in presence of strain-softe

then, obtain objective numerical solutions; capture size effects observed in experiments and in dis

ations. Also, according to Bacigalupo and Gambarotta [39], nonlocal constitutive models perm

e geometric and material length scales to account for the influence of block size and prevent pa

l localizations related to the strain-softening nature of the constitutive equations adopted for b

nry. They analyzed running bond and English bond masonry by varying the stiffness ratio bet

and mortar and evaluated the characteristic lengths associated to the shear and extensional str

resulted as a fraction of the periodic cell size and characterized by different values along the dire

lel and normal to the bed mortar joints.

is work, the integral definition of the strain measures driving the damage variables evolution i

ced to regularize the problem in presence of strain-softening constitutive behavior and guarantee

-independency of the FE results. The size of the region involved in the nonlocal procedure is determ

e nonlocal radius governing the influence of the Gaussian weighting function.

he paper is organized as follows. Section 2 describes the adopted constitutive relationship, focu

e proposed damage criterion and evolution laws of the damage variables. Section 3 provides

utational aspects related to the finite element formulation and regularization technique adopted. Se

ents the numerical applications. First, the model capability of capturing masonry nonlinear respon

ated at material level by performing simple uni-axial monotonic and cyclic tests. Then, explorati

d towards more complex bi-axial loading conditions. Finally, the structural response of masonry

4
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estigated comparing the obtained results, in terms of failure mechanisms and global load-displacem

nse curves, with those recovered from experimental investigations. Section 5 concludes with

ks.

the following the Voigt notation is adopted in the bi-dimensional (2D) framework, representing

d order tensors as 3-component vectors and the fourth order tensors as matrices.

amage model

amage-based constitutive law

account for masonry anisotropic macroscopic response, the real heterogeneous material is modele

tious 2D orthotropic medium under plane stress assumptions and the hypothesis of small displacem

trains. The material/intrinsic axes (T ,N), parallel and normal to the direction of bed joints

ered as axes of orthotropy. First, the constitutive law is defined in the reference system T -N , the

ressed in the global coordinate system X-Y , by applying standard transformation rules (see Figur

elation between stresses, ΣTN , and strains, ETN , referred to the material system, and the correspon

l quantities, ΣXY and EXY , classically results as:

ΣXY = ΦΣTN , EXY = ΨETN ,

Φ and Ψ are the rotation matrices expressed as:

Φ =




m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2


 , Ψ =




m2 n2 −mn
n2 m2 mn

2mn −2mn m2 − n2


 ,

m = cosϑ and n = sinϑ, with the angle ϑ measured counter clockwise from X- to T -axis.

Homogenization

X

Y
T

N

#

T
N

Figure 1: Material (T, N) and global (X, Y ) axes of the orthotropic masonry material.
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he stress-strain relationship is defined as:

ΣTN = (I−D)CTN (I−D)TETN = C̃TNETN ,

he 2D strain vector ETN = {ET EN ΓTN}T collecting the axial elongations along T andN directions

N , and the shear strain ΓTN . The stress vector ΣTN = {ΣT ΣN ΣTN}T contains the work-conju

ities. C̃TN is the effective material stiffness matrix deduced by the energy equivalence princip

ge mechanics [40], which, unlike the strain equivalence concept, leads to symmetric stiffness matri

amage operator [41, 42]. According to formulas in (1), the constitutive effective matrix in the g

, C̃XY , is computed as:

C̃XY = ΦC̃TNΨ−1 .

. (3) CTN is the orthotropic elastic constitutive matrix of the undamaged material, depending on

g’s and shear moduli, ET , EN and GTN , and Poisson’s ratios, νTN , νNT , I is the 3× 3 identity m

is the 3× 3 damage operator which is defined as follows:

D =




DT 0 0

0 DN 0

0 0 DTN


 ,

DT , DN and DTN three scalar damage variables. It is worth mentioning that principal values of dam

efined in most of anisotropic damage models and, consequently, damage affecting shear compon

s a proper combination of these quantities [41, 43, 8, 44]. Here, following the approach prese

, 46] for fiber-reinforced and layered composites, an independent damage variable in shear, DT

uced. This assumption can be justified by the different damaged areas for normal and shear str

llows for higher model versatility.

ncerns the damage variablesDT andDN , these are defined on the basis of damage parameters accoun

nsile, Dit, and compressive, Dic, (i = T, N) strain states, as follows:

DT = αTDTt + (1− αT )DTc ,

DN = αNDNt + (1− αN )DNc .

eighting coefficients αT and αN , defined later on, are introduced to describe the unilateral stiff

ery due to the re-closure of the tensile cracks under compressive states during cyclic loading histo

her words, the material degradation is irreversible but its effect on the mechanical response ca

ted or inactivated depending on the applied load [10, 14, 11].

6
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ccording to their physical meaning, all damage parameters, Dit, Dic (i = T,N) and DTN , can r

en 0 and 1, representing the undamaged and completely degraded state, respectively. Moreover

rsible thermodynamic condition is enforced, such that Ḋit ≥ 0, Ḋic ≥ 0 and ḊTN ≥ 0, together

hysical constraint Dit ≥ Dic (i = T, N). Each damage variable is associated to a distinct failure m

arly shown in Figure 2 by the typical cracking patterns due to tensile and compressive states along

al axis, and shear state. Accordingly, associated variables Yi (i = T, N, TN) are introduced. Thes

alent strain measures ruling onset and evolution of the damage parameters, as clarified later in Se

he following expressions are assumed:

YT = ET + ν̃NTEN ,

YN = EN + ν̃TNET ,

YTN = |ΓTN | ,

ν̃NT = [(1−DN )/(1−DT )]νNT and ν̃TN = [(1−DT )/(1−DN )]νTN are the degraded Poisson ra

uced to independently describe the axial damaging processes under uni-axial stress states along

ial axes. From Eq. (7) it is clear that cracking and crushing failure modes, associated to YT and

d on normal strains, whereas shear failure is solely controlled by shear deformation.

(a) (b) (c) (d) (e)

gure 2: Schematic representation of failure modes associated to (a) DTt, (b) DNt, (c) DTc, (d) DNc and (e) DTN

e basis of quantities in Eq. (7), the weighting coefficients αT and αN in Eq. (6) are expressed as:

αi = H(Yi) with i = (T,N) ,

H(•) denoting the Heaviside function (i.e. H(•) = 1 if • ≥ 0, otherwise H(•) = 0). It emerges tha

l assumes no crack re-closure effect associated to DTN , as shear damage is caused mainly by trans

s which do not close under reversal shear loads.

7
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amage onset and evolution

he definition of a proper failure criterion and evolution laws for the inelastic variables is a fundam

o predict load bearing capacity of regular masonry. Inspired by the pioneer work of Dhanasekar e

he adopted damage criterion accounts for the material state referring to the natural axes. Indeed

sed limit surface is geometrically defined by the intersect of two ellipsoids, FD1 and FD3 , and one ell

boloid, FD2 , in the space of the damage associated variables. Few material parameters are neede

ruct the surface, that is the initial uni-axial damage thresholds in the directions tangential, YTt0

and normal, YNt0 and YNc0, to the bed joints, by distinguishing them to account for the non-symm

ior in tension and compression (as the subscripts ‘t’ and ‘c’ indicate), and the pure shear thres

igure 3 shows the 3D representation of the damage limit surface in the positive YTN -semi space

and two sections corresponding to YTN = 0 and YT = YN where the mentioned thresholds are indic

3(b,c)). Dashed black lines in Figures 3(b,c) identify the three regions of the space in which

e FDi (i = 1, 2, 3) defines the limit function. The resulting domain represents the damage limit sur

points correspond to material elastic states, points lying on the boundary indicate the onset of pos

ging mechanisms and require evolution of the surface so that the updated material states belong to

urface boundary.

he ellipsoids FD1 and FD3 , ruling states of bi-axial tension and compression coupled to shear, are expre

FD1 =

(
YT
A1

)2

+

(
YN
B1

)2

+

(
YTN
C1

)2

− 1 ,

FD3 =

(
YαA
A3

)2

+

(
YαB
B3

)2

+

(
YTN
C3

)2

− 1 ,

YαA = cosα (YT −OT ) + sinα (YN −ON ) ,

YαB = − sinα (YT −OT ) + cosα (YN −ON ) .

e onset of the damaging process, A1 = YTt0, B1 = YNt0, B3 =
√
Y 2
Tc0 + Y 2

Nc0/2 and A3 = β B3, w

aterial parameter affecting the shape of the limit surface in compression (Fig. 3(b,c)). In Eq. (11)

N are the coordinates of the central point O = (OT , ON , 0) of FD3 and α is the angle defined on

of the uni-axial compressive thresholds, as illustrated in Figure 3(b). Finally, quantities C1 and C

(9) and (10) are determined so as to properly connect the two ellipsoids to FD2 . This latter is de

FD2 = A2 Y
2
T +B2 Y

2
N + C2 Y

2
TN −D2 YT YN + E2 YT + F2 YN − 1 ,

8
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A2 =
1

YTt0 YTc0
, B2 =

1

YNt0 YNc0
, C2 =

1

Y 2
s0

,

D2 =

(
1

YTt0 YTc0
+

1

YNt0 YNc0

)
, E2 =

YTc0 − YTt0
YTc0 YTt0

, F2 =
YNc0 − YNt0
YNc0 YNt0

.

Y
TN

Y
T

Y
N

0

0

0
F
1

D

F
3

D
F
2

D

(a)

Y
T

Y
N

Y
Nt0

Y
Tc0

Y
Nc0

Y
Tt0

O

β =1

 =1.5

1.25

α

(b)

Y
NT

Y
T 
=Y

Y
s0

β =1

β =1.5

β =1.25

(c)

igure 3: Damage limit surface at the onset of the damaging mechanism: (a) 3D representation, (b) and (c) sections

egion outside the damage domain represents no admissible material states. The limit surface evolu

ying admissibility conditions of the material states, follows a not homothetic transformation, as

9
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for some examples in Figure 4. Here, for the sake of simplicity, null shear strains are considered

rface evolution is plotted only in the YT -YN plane. Extension to the 3D case is straightforward.

ure 4(a) the black square point denotes a case for which evolution of damage surface occurs. The p

racterized by YT > 0, YN < 0 and YTN = 0 and, consequently, only the tangential tensile, YTt0,

al compressive, YNc0, thresholds evolve through the parameter A (with A ≥ 1) properly determ

ng constant YTc0, YNt0 and Ys0. The corresponding limit surface after evolution is shown in Figure

dashed lines. Obviously, various combination of strain states can occur, leading to different typ

in evolution. For instance, in Figures 4(c) and (d) the cases of bi-axial tension and uni-axial compre

T -axis are illustrated.

he solution of the nonlinear evolution problem of damage variables requires to distinguish bet

ge in tension and compression along each material axis on the basis of the sign of Yi (i = T, N),

ate the current damage thresholds, YT0, YN0 and YTN0, following the procedure illustrated in F

The threshold quantities coincide with the coordinates of the point given by the intersection bet

amage surface and the line connecting the axes origin and the material point exceeding the surface

quently, these can vary during the loading history due to the evolution of the damage limit dom

evaluated the thresholds, the following evolutive rules are adopted:

it =
Yi − Yi0
Yi + bit Yi0

(Yi ≥ 0), Ḋic =
|Yi| − |Yi0|
|Yi|+ bic |Yi0|

(Yi < 0), ḊTN =
YTN − YTN0

YTN + bTN YTN0
,

i = T,N and bTt, bNt, bTc, bNc, bTN material parameters governing the growth rate of the dama

sses: the higher the parameters, the slower the damage progression and greater the resistance

re energy density of the material. As an example, Figure 5 shows the effect of the parameter bT

the evolution of the corresponding damage parameter with respect to the associated variable (F

and the uni-axial tensile stress-strain relationship (Figure 5(b)). Detailed description of the

tization algorithm developed for the damage evolution problem is provided in Section 3.2.

summarize, the proposed model requires to define, in addition to the elastic parameters, six param

d to the damage criterion (YTt0, YTc0, YNt0, YNc0, Ys0, β) and five parameters associated to the evol

of the damage variables (bTt, bTc, bNt, bNc, bTN ). The resulting number of nonlinear parameters t

ify is comparable, and generally lower, to that required by other macromodels which take into acc

nisotropic nonlinear response of masonry [7, 8, 9, 10].

flexibility of the model in reproducing various shapes of the constitutive stress-strain relation

be further improved. In fact, although the peak strengths are strongly affected by the defined dam

olds, a limit of the current formulation is that both the peak strengths and the fracture energy den

d on the bi (i = Tt, T c, Nt, Nc, TN) parameters. Hence, the evolutive laws of the damage vari

10



Journal Pre-proof

could this

would

T

T

Figure s and

compr l and

expan
Jo
ur

na
l P

re
-p

ro
of

be modified to make the definition of strengths and fracture energies properties independent, but

increase the number of parameters to be defined and the model complexity.
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4: Evolution of the damage surface considering different material states: (a,b) combined tension along T -axi

ession along N -axis, (c) bi-axial tension and (d) uni-axial compression. Solid and dashed lines refer to the initia

ded damage surface, respectively.
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omputational aspects

onlocal FE formulation

he model presented in the previous section was introduced in a 4-node isoparametric quadrilatera

s, and implemented in a finite element procedure based on the classical displacement-based formula

node is provided with two displacement degrees of freedom, and bi-linear interpolation function

for the two translation fields, UX and UY .

own, when modeling response of quasi-brittle materials characterized by strain-softening constit

ior, like masonry, the pathological mesh-dependence problem arises. Indeed, the strain may loc

arrow bands, whose width depends on the finite element size. To overcome this numerical issue se

gies were proposed based on the fracture energy concept [47, 21, 48], higher-order formulations

rat continuum [50, 14] and nonlocal integral approach [51, 20, 11]. Among these, the last menti

ique is adopted in this study, as it allows to obtain objective numerical results and relies on mecha

nces.

g up the principle of local action, it is assumed that the degrading process at each material poi

nced by the mechanical state of the points lying in a properly defined neighborhood. Hence, the int

tion of the damage associated variables in Eqs. (7) is introduced as:

Ȳi (X) =
1∫

Ω
ψ (X,S) dΩ (S)

∫

Ω

Yi (S)ψ (X,S) dΩ (S) i = T,N, TN ,

Ȳi the nonlocal quantities at point X, evaluated on the basis of the corresponding local variables

s placed in its neighborhood on the surface Ω. The influence on X of the point S is weighted by m

classical Gaussian function ψ, which, in turn, depends on the nonlocal radius Lc, as follows:

ψ (X,S) = e
−


‖X− S‖

Lc




2

.

12
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computating the integral quantities in Eq. (15), these are introduced in the limit functions in

2) and, in case, are used to solve the evolution problem of the damage variables at each integra

of the FE discretized problem, according to Eqs. (14).

olution algorithm

ble 1 summarizes the main steps involved in the solution of the damage evolution problem at the ty

s point of each FE, making explicit the passage from the global to the material coordinate system

ersa. Reference is made to the generic Newton-Raphson iteration ‘k’ of the current time step ‘t

n the global solving algorithm. In short words, the FE program provides the global nodal displacem

r Uk
XY , from which the element displacements Uek

XY are extracted. Then, the strains Ek
XY are comp

gh the compatibility matrix Le = BNe, obtained by applying the standard compatibility operat

e shape function matrix Ne. Afterwards, the strain vector Ek
TN and the nonlocal damage assoc

les Ȳ ki (i = T,N, TN) are evaluated. On the basis of these, the damage evolution problem is solve

uting the damage limit functions and each damage parameter according to the following general f

Dk
i = Dn

i + ∆Dk
i i = (Tt, T c, Nt, Nc, TN) ,

Dn
i denoting the damage value at the previous time step tn and ∆Dk

i the damage increment evalu

e current time tn+1 and iteration k as reported in Table 2, where apex ‘n+1’ is omitted for simpl

Table 2, it emerges that each damage increment is computed using the current damage thresholds,

nd Y kTN0, and the material parameters bi (i = Tt,Nt, T c,Nc, TN).

nally, the solving algorithm ends with the computation of the stress vector and the effective stiff

x referred to the material system and, after, to the global reference system, as detailed in Table 1

ted is that the secant stiffness matrix is adopted in the Newton-Raphson procedure, as the mat

nt stiffness is cumbersome to obtain within nonlocal integral formulations [52].

odel validation

this section, the presented model is employed to analyze masonry response both at material

ural level. First, simple uni-axial stress tests are performed, then, the exploration is moved tow

complex bi-axial loading conditions and, finally, structural applications on shear walls are presen

umerical results are validated by comparison with experimental outcomes.

ni-axial monotonic and cyclic behavior

ni-axial tests are performed to show the reliability of the proposed model in describing masonr

opic response under monotonic and cyclic loads. Numerical simulations are performed by adop

13
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Compute strains Ek
XY starting from displacements Uek

XY :

Ek
XY = LeUek

XY

Project strains Ek
XY to the material coordinate system:

Ek
TN = Ψ−1Ek

XY

Calculate the local and nonlocal damage associated variables by using Eqs. (7) and (15)

Evaluate the damage limit functions according to Eqs. (9)-(12)

Determine the damage thresholds following the example procedure illustrated in Figure 4(a)

Solve damage evolution problem according to Table 2 and define damage matrix Dk as in Eq. (5

Update the limit surface after damage following the example procedure illustrated in Figure 4

Compute damaged stiffness matrix C̃k
TN and stresses Σk

TN :

C̃k
TN = (I−Dk)CTN (I−Dk)T

Σk
TN = C̃k

TNEk
TN

Evaluate C̃k
XY and stresses Σk

XY :

C̃k
XY = ΦC̃k

TNΨ−1

Σk
XY = ΦΣk

TN

ble 1: Main steps of the solution of the damage evolution problem and constitutive law at the Gauss point of the F

ial parameters contained in Table 3 and setting β = 1.5 and bi = 1.5 (i = Tt,Nt, T c,Nc, TN).

rst example explores the response of a masonry element subjected to uni-axial horizontal tension

e load acting along the global X-axis applied by a displacement controlled procedure), considering t

s of the orthotropy angle ϑ, that is ϑ = 0◦, ϑ = 45◦ and ϑ = 90◦. Numerical results, in terms of st

relationship, are shown in Figure 6(a) and prove the model capability of accounting for orientatio

plied load with respect to bed joints direction. Indeed, different initial elastic stiffnesses and maxim

ths are obtained for the three values of the ϑ angle adopted. This is a consequence of the stress

fields acting in the material axis system, which cause activation of different damaging mechan

reference to Figure 6(b), it appears that the damage parameter DTN is activated only in case of ϑ =

s is related to the shear strain ΓTN . Conversely, when ϑ = 0◦ or ϑ = 90◦, damage DTN disappears

damage variables DT and DN arise. In particular, DT starts and evolves when ϑ = 0◦ since the T

ides with the X-axis, whereas DN appears in case of ϑ = 90◦ as a consequence of the X- and N

p.

s evident from Figure 6(b), the three damage variables, DT , DN and DTN , evolve in the same wa

14
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IF FD
k

h < 0 (h = 1, 2, 3)

∆Dk
Tt = ∆Dk

Tc = ∆Dk
Nt = ∆Dk

Nc = ∆Dk
TN = 0

ELSE

∆Dk
TN =

Ȳ kTN − Y kTN0

Ȳ kTN + bTN Y kTN0

→ Dk
TN = min

(
Dn
TN + ∆Dk

TN , 1
)

IF Y kT > 0 THEN

Dk
Tc = Dn

Tc

∆Dk
Tt =

Ȳ kT − Y kT0

Ȳ kT + bTt Y kT0

→ Dk
Tt = max

(
Dk
Tc,min

(
Dn
Tt + ∆Dk

Tt, 1
))

ELSE

∆Dk
Tc =

|Ȳ kT | − |Y kT0|
|Ȳ kT |+ bTc |Y kT0|

→ Dk
Tc = min

(
Dn
Tc + ∆Dk

Tc, 1
)

Dk
Tt = max

(
Dk
Tc, D

n
Tt

)

END

IF Y kN > 0 THEN

Dk
Nc = Dn

Nc

∆Dk
Nt =

Ȳ kN − Y kN0

Ȳ kN + bNt Y kN0

→ Dk
Nt = max

(
Dk
Nc,min

(
Dn
Nt + ∆Dk

Nt, 1
))

ELSE

∆Dk
Nc =

|Ȳ kN | − |Y kN0|
|Ȳ kN |+ bNc |Y kN0|

→ Dk
Nc = min

(
Dn
Nc + ∆Dk

Nc, 1
)

Dk
Nt = max

(
Dk
Nc, D

n
Nt

)

END

END

Table 2: Solution algorithm for the evolution laws of the damage variables.

f ϑ = 45◦. This is a special condition due to the parameters chosen to rule the damage evolution, th

bNt = bTN . Indeed, different evolutive laws and constitutive responses could be obtained by remo

assumptions. To clarify, Figure 7(a) shows the stress-strain relationship and the damage varia

ponding to bTt = bNt = 1.5 and bTN = 2.5. It emerges that the evolution of DTN differs from th

nd DN . Finally, completely different damage increments appear in the most general case, as test

ure 7(b), where results obtained assuming bTt = 2.5, bNt = 1.5, bTN = 3 are reported.

these monotonic tests damages DT and DN represent the material degradation caused by tensile

15



Journal Pre-proof

ET [M

400 -04

Figure tions

of the

and, yclic295

respo ially

if the train

relati imen

with the

stiffn the300

re-clo ds to

point DTc.

The p age

variab shed

black hen305

a rev age
Jo
ur

na
l P

re
-p

ro
of

Table 3: Material parameters for uni-axial tests in Figures 6, 7 and 8.

Elastic parameters Damage parameters

Pa] EN [MPa] νTN GTN [MPa] YTt0 YNt0 YTc0 YNc0 Ys0

0 2000 0.1 1500 9.95E-05 9.95E-05 7.46E-04 1.99E-03 3.33E
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6: Uni-axial tensile response for different values of the orthotropy angle ϑ: (a) stress-strain relationships, (b) varia

damage variables DT , DN and DTN with respect to the strain EX .

accordingly, always correspond to DTt and DNt, respectively. Instead, when dealing with the c

nse, it is useful decompose the damage parameters in their tensile and compressive part, espec

re-closure crack phenomenon is to be analyzed. As an example, Figure 8(a) shows the stress-s

onship obtained by applying the deformation history at the top of Figure 8(b) to the masonry spec

horizontal bed joints, i.e. ϑ = 0◦ (it is assumed bTt = bTc = 1.5). It can be noticed that

ess recovery occurs when passing from tension to compression (A-B phase), as this is related to

sure of the tensile cracks under compressive states. The subsequent reloading in tension, which lea

C, is slightly affected by the accumulated compressive damage, because of the constraint DTt ≥
henomenon is clearly illustrated in the lower part of Figure 8(b), where the variations of the dam

les DTt, DTc and DT are plotted with respect to the fictitious time variable with red, green and da

curve, respectively. Apparently, DT assumes the same value of DTt for tensile states and, then, w

ersal strain occurs, returns equal to DTc, allowing a proper representation of the unilateral dam

16
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7: Uni-axial tensile stress-strain relationships and variations of the damage variables for ϑ = 45◦: (a) bTt = bNt

N = 2.5, (b) bTt = 2.5, bNt = 1.5, bTN = 3.

ering upon load reversal.
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8: Uni-axial cyclic response for ϑ = 0◦: (a) stress-strain law, (b) evolution of the strain EX and damage variable

nd DTc during the loading history.
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i-axial response: comparison with experimental data

he experimental data provided by Page [27, 28] are used as reference solutions to study the in-p

tropic response of masonry. Masonry panels, made of half-scale solid clay units arranged in run

, were tested under bi-axial loading conditions by using a proper device to impose uniform stress st

pplied loads were oriented at various angle ϑ with respect to bed joints and the resulting failure sur

obtained in terms of principal stresses and their orientation to the bed joints. Test results proved

r joints act as planes of weakness, causing distinct directional properties. This clearly emerges

es 9(a-c), where the experimental failure domains are depicted with dots for cases of ϑ = 0◦, 22.5◦

Results referred to ϑ = 67.5◦ and ϑ = 90◦ are implicitly contained in those of ϑ = 22.5◦ and ϑ =

ctively. Figures 9(a-c) also show the numerical failure surfaces (solid lines) derived with the prop

l adopting the material parameters contained in Table 4, set according to [27, 28, 53]. For the ana

umed β = 1.5 and bi = 2 (i = Tt,Nt, T c,Nc, TN).

Table 4: Material parameters for bi-axial tests in Figure 9.

Elastic parameters Damage parameters

Pa] EN [MPa] νTN GTN [MPa] YTt0 YNt0 YTc0 YNc0 Ys

0 5600 0.19 2350 6.8E-05 4.1E-05 6.8E-04 1.2E-03 1.9E

n the overall, a pretty good agreement emerges between experimental and numerical outcomes. In

ding to the experimental data, the numerical surface exhibits a non-symmetric shape in case of ϑ =

the compressive strengths normal and parallel to bed joints significantly different. Then, by increa

e shape of the failure domain varies. Despite some slight discrepancies between experimental

rical data, the proposed model well describes the symmetric shape characterizing the case of ϑ =

results clearly testify the model capability of accounting for the bed joints orientation relativ

rincipal stresses, thus describing in a phenomenological way the preferential direction of microcr

tion due to the spatial arrangement of mortar and bricks.

umerical and experimental response of shearing walls

explore the capability of the model of reproducing response of masonry structural elements, the p

imentally tested by Raijmakers and Vermeltfoort [54] are numerically studied. The walls were bui

bling 18 courses of solid bricks with dimensions 210 × 52 × 100 mm3 and 10 mm thick mortar.

urses were activated, thus resulting in overall width W = 990 mm and height H = 1000 mm (F

The experiments involved two phases: first, a vertical pressure p was applied on the top side, t

notonically increasing horizontal displacement s was imposed through a steel beam, preventing
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9: Comparison between numerical (solid lines) and experimental (dots) [27, 28] bi-axial failure domains for diff

of ϑ.

al movement of the upper boundary (Figure 10). Four specimens, labeled as JD walls, were te

ing different levels of the compression load, i.e. p = 0.3 MPa for J4D and J5D, p = 1.21 MPa for

= 2.12 MPa for J7D.

rform the numerical simulations, the effective elastic properties of the material were derived via a ho
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Figure 10: Test phases for Raijmakers-Vermeltfoort panels and selected masonry UC.

tion procedure. This is based on the selection of a masonry unit cell (UC) representative of the reg

gement (UC in Figure 10), both in terms of geometric characteristics and constitutive properties o

onents. The cell is modeled with 4-node quadrilateral FEs explicitly distinguishing between bricks

ortar, ′m′, for which the linear elastic isotropic behavior is assumed (Young’s moduli Eb = 16700

m = 800 MPa, Poisson ratios νb = 0.15 and νm = 0.11 [55, 56]). Enforcing proper periodicity condi

e UC boundaries, the unit macroscopic strains ETN = {1 0 0}T , ETN = {0 1 0}T and ETN = {0 0

quentially imposed as input kinematic actions and, then, the stress field in the UC is evaluated. On

of this, the macroscopic stresses, ΣTN , associated to the imposed macroscopic strains, and represen

olumns of the homogenized elastic stiffness matrix CTN , are computed by applying the Hill-Ma

iple [57]. Table 5 shows the evaluated elastic moduli and Poisson ratio of the homogenized orthot

m.

he nonlinear mechanical properties are identified on the basis of the experimental data and v

ted in [19, 10, 13]. The corresponding model parameters, contained in Table 5, lead to the follo

genized strength properties: tensile and compressive strengths parallel to bed joints equal to 0.37

2.7 MPa, tensile and compressive strengths normal to bed joints equal to 0.28 MPa and 10.0 MPa,

strength equal to 0.45 MPa (having set β = 1.5, bTt = bTc = 2.2, bNt = bNc = 2.5 and bTN = 2.3

made of 10×10 4-node quadrilateral FEs is used to perform the numerical simulations, assuming

cal radius Lc = 220 mm in accordance to brick and mesh sizes. The values of bi (i = Tt, T c,Nt,Nc,

c are set so as to obtain the required strengths properties along the different material directions

sent the characteristic length of the microstructure, respectively.

e 11 compares the global load-displacement curves evaluated numerically (red lines) and experimen

lines). It appears that the model well reproduces both the increase in peak load and brittle beha
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increasingly severe softening branches, as the vertical load increases. Some differences emerge bet

rical and experimental outcomes in the pre-peak responses, due to some nonlinear mechanisms tha

roperly reproduced by the model because they are possibly a consequence of pre-existing damag

ent initial conditions. In fact, the numerical-experimental discrepancies could be significantly red

erent mechanical parameters were assumed for the three specimens, as done in other works [19,

ver, the aim here is not to consider the possible variation of the macromechanical properties re

fects caused by the experimental construction process, but is to reproduce the overall behavior o

s initially made of the same masonry material using a single set of mechanical parameters.

Table 5: Material parameters adopted for Raijmakers-Vermeltfoort panels.

Elastic parameters Damage parameters

Pa] EN [MPa] νTN GTN [MPa] YTt0 YNt0 YTc0 YNc0 Ys

8.5 3910.3 0.11 1607.0 3.5E-05 5.1E-05 1.2E-03 1.8E-03 2.1E

0 0.5 1 1.5 2 2.5 3 3.5
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p = 0.30 MPa

p = 1.21 MPa
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experimental
numerical mesh 10×10
numerical mesh 20×20

re 11: Comparison between experimental and numerical force-displacement curves for Raijmakers-Vermeltfoort pan

s concerns the activated failure modes, Figure 12 shows the experimental cracking paths for al

ered values of the compression load p. The distributions of the damage variables derived from

rical simulations are contained in Figures 13,14,15. Although in a smeared fashion, the model reprod

ge distributions in accordance with the experimental evidences. In fact, diagonal damaged bands in

le of the panels and damaged zones located at the bottom and top corners of the walls, where shear

e strains are concentrated, respectively, emerge. To be noted is that, due to the nature of the formu
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l based on continuum damage mechanics, as well as the adoption of the nonlocal integral proced

d damage mechanisms are reproduced. To describe concentrated and localized fracture modes, diffe

ling approaches should be resorted to. As concerns the effect of the compression state, it emerges

ear mechanism becomes more and more relevant as the value of the vertical load p increases.

p = 0.3 MPa p = 1.21 MPa p = 2.12 MPa

re 12: Raijmakers-Vermeltfoort panels: experimental cracking paths for different values of the vertical compression
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Figure 13: Raijmakers-Vermeltfoort panels: distributions of the damage variables for p = 0.3 MPa and s = 2.2 mm.
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igure 14: Raijmakers-Vermeltfoort panels: distributions of the damage variables for p = 1.21 MPa and s = 2.2 mm.

nally, the structural behavior of the panel characterized by the highest compression load, whose resp

exhibits the steepest softening branch, is also reproduced adopting a denser mesh made of 20×20

orresponding load-displacement curve, depicted with blue dashed line in Figure 11, is indistinguish

that evaluated with the coarser discretization consisting of 10×10 FEs, thus proving the efficien
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igure 15: Raijmakers-Vermeltfoort panels: distributions of the damage variables for p = 2.12 MPa and s = 2.2 mm.

gularization technique adopted.

onclusion

novel macromechanical model with damage for the analysis of in-plane loaded masonry struc

regular arrangement of bricks and mortar joints was proposed. The model introduces an orthot

iption of the elastic behavior of the homogenized masonry and is based on a matrix representatio

ge accounting for the variation of the strength properties observed for different material direct

d, distinct damage parameters are introduced to model and distinguish degrading mechanisms

th tensile and compressive states, as well as shear, referred to masonry natural axes (i.e. the

ead joints directions). A suitable failure criterion is formulated by defining a multisurface dam

in geometrically given by the intersection of two ellipsoids and one elliptic hyperboloid in the s

damage associated variables. The surface follows a not homothetic transformation during the ty

g history, thus limiting the interaction effect of the degradation of the mechanical properties in

asonry natural directions. Despite the model relies on the hypothesis of orthotropic local behavi

aterial, the overall anisotropic damaging response is, however, described by the onset and subseq

ge localization at the structural level.

he model was introduced in an isoparametric displacement-based quadrilateral element and impleme

finite element code FEAP. A nonlocal integral formulation was adopted to obtain mesh-indepen

rical solutions.

veral applications, at both material and structural scales, were performed to evaluate the perform

proposed model. The uni-axial tests proved the model capability of describing the different stre

tiffness characteristics along the material axes and the typical softening branches of the constit

nses. Moreover, the effectiveness of the introduced damage limit surface was showed by compa

merically and experimentally evaluated bi-axial failure domains. Finally, the experimental respon

ing masonry panels subjected to different level of pre-compression load was satisfactory reprodu
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in terms of global load-displacement curves and cracking paths. Numerical outcomes obtained

e and denser meshes confirmed the effectiveness of the adopted regularization technique. To be n

t the global load-displacement response curves have to be complemented with the observation o

distributions of strains and damage to get information on the length scale measurement.

t the present stage, the model is not able to completely reproduce the masonry cyclic response. Alth

rmulation considers the unilateral stiffness recovery due to the re-closure of the tensile cracks u

loads, the hysteretic dissipation caused by frictional mechanisms at the interface between mortar

is not taken into account. Hence, the presented modeling strategy is suitable for future developm

ing the coupling of the proposed damage model with a proper plasticity formulation.
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ultisurface damage limit function is proposed 

al integral formulation is adopted to avoid mesh-dependency of the FE procedure 
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