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AN INTRODUCTION TO THOMPSON KNOT THEORY AND

TO JONES SUBGROUPS

VALERIANO AIELLO

Abstract. We review a constructions of knots from elements of the Thomp-
son groups due to Vaughan Jones, which comes in two flavours: oriented
and unoriented.

Dedicated to the memory of Vaughan F. R. Jones
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Introduction

On the Christmas Eve of 2014, the first article [Jon17] of Vaughan Jones on
a project centred on the Thompson groups appeared on arXiv and since then
it has been followed by several articles. The centre of this project was a new
powerful machinery that allows one to construct actions of Thompson groups
(and more generally of groups of fractions of certain categories) starting from
suitable categories. There have been developments in several directions. A lot
of efforts have been devoted to producing unitary representations of Thomp-
son groups, mainly by means of planar algebras [Jon21] and Pythagorean C∗-
algebras [BJ19a], see e.g. [Jon17, Jon18, Jon21, ACJ18, ABC21, AJ21, BJ19a,
BJ19b, AC19a, AC19b, BP19, AP22]. Often these representations are related
to notable graph or knot invariants, such as the chromatic polynomial, the
Tutte polynomial, the Jones polynomial, the Kauffman bracket, the Homflypt
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2 VALERIANO AIELLO

polynomial, to name but a few. In another direction, groups can be produced
by means of this machinery, see [Bro20a,Bro20b]. In this article, we would like
to review the developments in two other directions. In particular we would
like to talk about the Thompson groups as knot constructors and about Jones
subgroups. Our investigations in the latter are mainly motivated by the in-
terest in infinite index maximal subgroups of Thompson groups and in the
classification of the unitary representations introduced by Jones.
In [Jon17] Jones defined a method to produce unoriented knots and links

from elements of the Thompson group F , which was later extended to the
Brown-Thompson group F3. Since these links do not possess a natural ori-
entation, Jones introduced the oriented subgroups ~F ≤ F and ~F3 ≤ F3,
[Jon17, Jon19]. For unoriented links Jones also proved a result analogous to
Alexander theorems for braids, that is for every link L there is an element g
of the Thompson group whose closure L(g) is equal to L. In the oriented case
a slightly weaker result was proved, namely that the oriented link could be
reproduced up to disjoint union with unknots. This result was later strength-
ened by the author in [Aie20], where it was shown that every link ~L can be
exactly reproduced by choosing a suitable element of the oriented subgroup
~F . With the Thompson group and its oriented subgroup being as good as the
braid groups at producing links, it is possible to start a reboot of the theory
of braids and links, but with the Thompson group replacing the braid groups.
Like braids, both F and ~F contain interesting positive monoids: the monoid
of positive words F+ and the monoid of positive oriented words ~F+. The links
produced by these monoids were studied by Sebastian Baader and the author
in a couple of papers [AB21, AB22], where it was shown that the links pro-

duced by ~F+ are positive (in the sense that all these oriented links admit link
diagram where all the crossings are positive) and those of F+ arborescent in
the sense of Conway (these knots are also known as algebraic).

Despite being introduced with knot theoretical motivations, ~F and ~F3 turned
out to be interesting also from the point of view of group theory. In fact, they
gave rise to new examples [GS17b, AN22] of maximal subgroups of infinite
index of F and F3, respectively.
We end this introduction with a few words on the structure of the arti-

cle. Section 1 is devoted to introducing the Thompson group and the Brown-
Thompson groups. Section 2 presents two equivalent methods for producing
unoriented links starting from elements of F and F3. Section 3 focuses on
positive Thompson links, which are the links produced with elements of F+.

In Section 4 the binary and ternary oriented subgroups ~F and ~F3 are intro-
duced and later in Section 5 they are used to produce oriented links. Section
6 focuses on another Jones’s subgroup: the 3-colorable subgroup F .
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1. Preliminaries and notation

In this section we recall the definitions of the Thompson group F and of the
Brown-Thompson groups Fk. The interested reader is referred to [CFP96] and
[Bel07] for more information on F , to [Bro87] for Fk.
There are several equivalent definitions of F . One of them is the following:

F is the group of all piecewise linear homeomorphisms of the unit interval
[0, 1] that are differentiable everywhere except at finitely many dyadic rationals
numbers and such that on the intervals of differentiability the derivatives are
powers of 2. We adopt the standard notation: (f · g)(t) = g(f(t)).
The Thompson group F has the following infinite presentation

F = 〈x0, x1, x2, . . . | xnxk = xkxn+1 ∀ k < n〉 .

Note that x0 and x1 are enough to generate F . The monoid generated by
x0, x1, x2, . . . is denoted by F+ and its elements are said to be positive.
Every element g of F can be written in a unique way as

xa0
0 · · ·xan

n x−bn
n · · ·x−b0

0

where a0, . . . , an, b0, . . . , bn ∈ N0, exactly one between an and bn is non-zero,
and if ai 6= 0 and bi 6= 0, then ai+1 6= 0 or bi+1 6= 0 for all i. This is the normal
form of g.
The projection of F onto its abelianisation is denoted by π : F → F/[F, F ] =

Z⊕ Z and it admits a nice interpretation when F is seen as a group of home-
omorphisms: π(f) = (log2 f

′(0), log2 f
′(1)).

A family of groups generalising the Thompson group F are the so-called
Brown-Thompson groups. For any integer k ≥ 2, the Brown-Thompson group
Fk may be defined by the following presentation

〈y0, y1, . . . | ynyl = ylyn+k−1 ∀ l < n〉 .

The elements y0, y1, . . . , yk−1 are enough to generate Fk. Note that for k = 2
we have F2 = F . The monoid generated by y0, y1, y2, . . . is denoted by Fk,+

and it elements are said to be positive. In the present article only the monoids
F+ and F3,+ will play a role.
Going back to F , there is still another description which is relevant to this

paper: the elements of F can be seen as pairs (T+, T−) of planar binary rooted
trees (with the same number of leaves). We draw one tree upside down on
top of the other; T+ is the top tree, while T− is the bottom tree. Any pair of
binary trees (T+, T−) represented in this way is called a binary tree diagram.
Two pairs of binary trees are said to be equivalent if they differ by pairs of



4 VALERIANO AIELLO

x0 = x1 =

Figure 1. The generators of F = F2.

y0 = y1 = y2 =

Figure 2. The generators of F3.

y0 = y1 =

y2 = y3 =

Figure 3. The generators of F4.
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opposing carets, namely

↔

Every equivalence class of pair of binary trees (i.e. an element of F ) gives rise
to exactly one tree diagram which is reduced, in the sense that the number
of its vertices is minimal, [Bel07]. See Figure 1 for the description of x0 and
x1 in terms of binary trees. Thanks to this equivalence relation, the following
rule defines the multiplication in F : (T+, T ) · (T, T−) := (T+, T−). The trivial
element is represented by any pair (T, T ) and the inverse of (T+, T−) is (T−, T+).
We illustrate how multiplication is performed with x0x1

x0x1 = =

The positive elements of F may always be represented by a pair of binary
trees with bottom tree having the following shape

. . .

Similarly, the elements of Fk are described by pairs k-ary trees (i.e. the trees
whose vertices have degree k + 1, except the leaves having degree 1). In this
article we will be mainly interested in the Brown-Thompson F3 and F4. The
generators of these groups are displayed in Figures 2 and 3. For F3 and F4

pairs of trees are equivalent if they differ by cancellations/additions of pairs of
opposing carets

↔ ↔
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The bottom ternary tree of a positive element of F3 can be chosen with the
following form

. . .

Convention 1.1. We draw k-ary trees on the plane with the roots of our planar
k-ary trees being drawn as vertices of degree k + 1. Each k-ary tree diagram
has the uppermost and lowermost vertices of degree 1, which lie respectively on
the lines y = 1 and y = −1. The leaves of the trees sit on the x-axis, precisely
on the non-negative integers.

There are an automorphism and two endomorphisms of F that will come in
handy later on: the flip automorphism and the left/right shift homomorphisms
σ, ϕL, ϕR, : F → F . The flip automorphism σ is the order 2 automorphism
obtained by reflecting tree diagrams about a vertical line, while the left/right
shift homomorphisms ϕL, ϕR are defined graphically as

ϕL: 7→g g ϕR: 7→g g

The ranges of ϕL and ϕR are those elements of F that act trivially on [1/2, 1]
and [0, 1/2], respectively. Note that ϕR(xi) = xi+1 for every i ∈ N0. Here is
σ(x1).

σ(x1) =

Some interesting subgroups of F are the so-called rectangular subgroups of
F . They were introduced in [BW07] as

K(a,b) := {f ∈ F | log2 f
′(0) ∈ aZ, log2 f

′(1) ∈ bZ} a, b ∈ N

These subgroups can be characterised as the only finite index subgroups iso-
morphic with F [BW07, Theorem 1.1].
Denote by W2 the set of finite binary words, i.e. finite sequences of 0 and 1.

Let Z[1/2] be {a/2k | ; a, k ∈ Z}. There exists a map ρ between finite binary
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.0α

.α

.1α

.α .0α

.α

.1α

.α

Figure 4. The local rules for computing the action of F on
numbers expressed in binary expansion.

words and the dyadic rationals in the open unit interval D := Z[1/2] ∩ (0, 1),
namely the map ρ(a1 . . . an) :=

∑n

i=1 ai2
−i which is bijective when restricted

to finite words ending with 1 (i.e. an = 1).
The Thompson group F acts by definition on [0, 1]. Now we review this

action on the numbers in [0, 1] expressed in binary expansion. Given a number
t, it enters into the top of the top tree in the binary tree diagram, follows a path
towards the root of the bottom tree according to the rules portrayed in Figure
4. What emerges at the bottom is the image of t under the homeomorphism
represented by the tree diagram, [BM14]. Note that there is a change of
direction only when the number comes across a vertex of degree 3 (i.e., the
number is unchanged when it comes across a leaf).
The action of F3 on [0, 1] can be describe in a similar way. First we express

the numbers in ternary expansion (i.e. the digits are only 0, 1, 2). Then the
number t enters into the top of the top tree in the ternary tree diagram, follows
a path towards the root of the bottom tree according to the rules portrayed in
Figure 5.

2. The construction of knots: the unoriented case

Jones introduced two equivalent methods to produce unoriented knots and
links from the Thompson groups. Originally these constructions were defined
for F , [Jon17], but later they were extended to F3 in [Jon19].

We present this method by taking x0x1 as an example. We will construct a
Tait diagram Γ(T+, T−) from a binary tree diagram (T+, T−) in F . Recall that
the leaves of T+ and T− sit on the non-negative integers N0 = {0, 1, 2, 3, . . .}
on the x-axis. We place the vertices of Γ(T+, T−) on the half integers, so for
x0x1 these points are (1/2, 0), (3/2, 0), (5/2, 0), (7/2, 0). We draw an edge
between two of these vertices whenever there is an edge of the top tree sloping
up from left to right (we call them West-North edges, or simply WN=

—
) and

whenever there is an edge of the bottom tree sloping down from left to right
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.0α

.α

.1α

.α

.2α

.α

.0α

.α

.1α

.α

.2α

.α

Figure 5. The local rules for computing the action of F3 on
numbers expressed in ternary expansion.

(we refer to them by West-South edges, or just WS=
—

). This is the graph for
x0x1

x0x1 = Γ(x0x1) =

There is actually a bijection between the graphs of the form Γ(T+, T−) and
the pairs of trees (T+, T−) of F , [Jon17, Lemma 4.1.4] . We denote by Γ+(T+)
and Γ−(T−) the subgraphs of Γ(T+, T−) contained in the upper and lower-half
plane, respectively. Since a Tait diagram is a signed graph, we decree that the
edges of Γ+(T+) and Γ−(T−) are positive and negative, respectively.

Remark 2.1. The graphs of the type Γ±(T±) may always be assumed to satisfy
the following properties

(1) the vertices are (0, 0), . . . , (N, 0);
(2) each vertex other than (0, 0) is connected to exactly one vertex to its

left;
(3) each edge e can be parametrized by a function (xe(t), ye(t)) with x′

e(t) >
0, for all t ∈ [0, 1], and either ye(t) > 0, for all t ∈]0, 1[ or ye(t) < 0,
for all t ∈]0, 1[;
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+ = − =

Figure 6. A positive and a negative crossing.

see [Jon17, Proposition 4.1.3.]. In particular, every vertex (except the leftmost)
is the target of exactly two edges, one in the lower half-plane and one in the
upper-half plane.

There are two last steps to be done in order to obtain a link. First we draw
the medial graph M(Γ(T+, T−)) of Γ(T+, T−). In general, given a connected
plane graph G, the vertices of its medial graph M(G) sit on every edge of G
and an edge of M(G) connects two vertices if they are on adjacent edges of
the same face. Below we will provide an example in our context. Now all the
vertices of M(Γ(T+, T−)) have degree 4 and we may make the final step: turn
the vertices into crossings and obtain a link diagram. For the vertices in the
upper-half plane we use the crossing /, while for those in the lower-half plane
we use 0. We point out that in the checkerboard shading of the link diagram
obtained with this procedure, the crossings corresponding to vertices on edges
of Γ+(T+) are positive and the crossings corresponding to vertices on edges
of Γ−(T−) are negative (in the sense of Figure 6). Here are M(Γ(x0x1)) and
L(x0x1).

M(Γ(T+, T−)) = =

L(T+, T−) =

In this section we describe an equivalent procedure to obtain links from
elements of F , [Jon17,Jon19]. The advantage of this description is that it can
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7→ 7→ 7→

Figure 7. The rules needed for obtaining L(g).

7→

7→

Figure 8. The map ι : F → F3.

be readily extended to F3. We start with a binary tree diagram in F . The first
operation is to turn all the 3-valent vertices into 4-valent by adding additional
edges below each vertex of degree 3 in the top tree and above each vertex of
degree 3 of the bottom tree, which we join in the only planar possible way.
The second operation is to draw an edge between the two roots of the trees.
The third and last operation is to turn all the 4-valent vertices into crossings
as shown in Figure 7: the vertices and the four incident edges are replaced by
”forks”, see leftmost illustration of Fig. 7. We exemplify this procedure with
x0x1.

7→ 7→ 7→

Remark 2.2. In the first step we are actually using an injective group homo-
morphism ι : F → F3, see Figure 8. This map takes a binary tree diagram,
and returns 4-valent tree diagrams. This map was originally defined by Jones
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in [Jon19, Section 4]. Therefore, the construction of knots can be extended to
F3 just by skipping the first step.

We draw the Tait graph for the links corresponding to F3 in the plane, the
vertices sitting on the x-axis, half of the edges in the upper-half-plane, the
other half in the lower-half-plane. When restricted to F , the Tait diagram of
the link diagram obtained in this way is exactly the graph Γ(T+, T−) described
in the previous section. One of the differences between the Tait graphs of the
elements F and those of F3 is that for the elements ofF3 is that the edges in the
lower-half-plane (upper-half-plane, respectively) are not necessarily negative
(positive, respectively).

Example 2.3 (The 41 knot). Consider the element g = x0x
2
2x5x6(x4x6x7)

−1 ∈
F whose image ι(g) = (T+, T−) = y0y

2
4y10y12(y8y12y14)

−1 ∈ F3 is described by
the following pair of ternary trees

T+ = T− =

After applying some Reidemeister moves (to be precise a sequence consisting of
five Reidemeister moves of type II and four of type I), one sees that L(T+, T−)
is the 41 knot.

L(T+, T−) =
=
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The Thompson group is just as good as the braid groups at producing links.
More precisely, Jones proved a result analogous to that of the Alexander the-
orem.

Theorem 2.4. [Jon17] Given an unoriented link L, there exists an element g
in F such that L(g) is L.

In analogy to the braid index, it is possible to define a Thompson index.
The F -index of a link L is the smallest number of leaves required by each
binary tree in a binary tree diagram such that L is realised as L(T+, T−).
The F3-index is defined as the smallest number of trivalent vertices plus one
required by each ternary tree in a binary tree diagram such that L is realised
as L(T+, T−). Note that the F3-index is defined in terms of trivalent instead of
leaves to make it compatible with the F -index. In fact, for every binary tree
diagram (T+, T−) the number of trivalent vertices plus 1 in each ternary tree
of ι(T+, T−) is equal to the number of leaves of T+. The following interesting
result was discovered by Golan and Sapir.

Theorem 2.5. [GS17a] The F -index of a link containing u unlinked unknots
and represented by a link diagram with n crossings does not exceed 12n+u+3.

3. Positive Thompson knots

The positive Thompson knots are those produced by the elements of the
monoid of positive words F+. As explained in Section 1, each of these ele-
ments admits a representative whose bottom tree and the corresponding graph
Γ−(T−) have the following form

T− =

. . .

Γ−(T−) = . . .

(3.1)

As the form of the bottom tree is essentially always of the same form (it de-
pends only on the number of leaves in the upper tree), sometimes we will use
the notation L(T+), instead of L(T+, T−). Positive Thompson links were the
object of study of [AB22], but before stating the main result of this investiga-
tion we recall some preliminary definitions.
Arborescent tangles are the minimal class of tangles closed under tangle

composition, and containing all rational tangles, [Con70]. The closure of an
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⋆2
⋆
1 −2

Figure 9. Two arborescent links: one associated with a tree
consisting just of the root, another associated with a tree with
a root and one leaf.

arborescent tangle is described by a finite rooted plane tree with integer vertex
weights. Each weight w gives rise to a twist region with |w| crossings. The
orientation of these crossings, as well as the interconnections between these
twist regions, are determined by the plane tree in the following way. The
root vertex corresponds to a horizontal twist region, in which crossings are
called positive if their strand going from the bottom left to the top right is
above the other strand. If the weight is zero, then we have just two horizontal
lines. The vertices adjacent to the root vertex correspond to vertical twist
regions attached to this horizontal twist region. The order in which they
are attached is determined by the plane cyclic arrangement of the branches
around the root vertex. We keep the convention that the overcrossing strand
of a positive crossing is going from the bottom left to the top right. In the
end, this means that arborescent tangles whose weights carry the same sign
give rise to alternating links. The vertices at distance two from the root give
again rise to horizontal twist regions, and so on. Two examples are provided
in Figure 9. For more details and resultst we refer to [BS,Gab86]. Finally we
call a finite rooted plane tree bipartite if its vertices have weights ±1, with the
root and all the leaves carrying weight −1; all the vertices of weight 1 have
degree 2; there are no edges between vertices with the same weight.
We are now in a position to state the main result of [AB22], which is kind

of an Alexander theorem for F+.

Theorem 3.1. [AB22] The set of positive Thompson links coincides with the
set of closures of bipartite arborescent tangles.

In general links produced from F and F3 do not posses a natural orientation,
for this reason Jones introduced the so-called oriented subgroups. We will
define them in the next section.
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4. The oriented subgroups ~F and ~F3

In this section we introduce two new subgroups, one of F and one of F3.
They are interesting on their own, but we will need them to produce oriented
links. The (binary) oriented subgroup ~F = ~F2 is a subgroup of F , while ~F3 is
a subgroup of F3.
First we describe an alternative method to obtain the Tait graph associated

with each ternary tree diagram. We will ignore the sign of the edges as it is
not relevant for defining the oriented subgroups. Given a ternary tree diagram
(T+, T−), we call this graph Γ(T+, T−) the planar graph of (T+, T−). We imagine
(T+, T−) sitting in the strip bounded by the lines y = 1 and y = −1. This strip
is 2-colourable. We use two colors: black and white, the left-most region is
black. The vertices of Γ(T+, T−) sit on the x-axis, precisely on −1/2 + 2N0 :=
{−1/2, 1 + 1/2, 3 + 1/2, . . .} and there is precisely one vertex for every black
region. We draw an edge between two black regions whenever they meet at a
4-valent vertex.

y1 = Γ(y1) =

The binary and the ternary oriented subgroup ~F3 can be defined as

~F = ~F2 := {(T+, T−) ∈ F | Γ(ι(T+, T−)) is 2-colorable}(4.1)

~F3 := {(T+, T−) ∈ F3 | Γ(T+, T−) is 2-colorable}(4.2)

Convention 4.1. We denote the colors used for the vertices of Γ(T+, T−) by
+ and −. The graph Γ(T+, T−) is always connected and, therefore, if it is 2-
colorable there are only 2 possible colorings: one where the leftmost vertex has
color +, one with color −. By convention we choose always choose the first of
these colorings.

These groups were introduced by Jones in 2014 [Jon17] and 2018 [Jon19],
respectively. The (binary) oriented subgroup was first studied by Golan and
Sapir in [GS17a, GS17b], who determined its generators x0x1, x1x2, x2x3.



AN INTRODUCTION TO THOMPSON KNOT THEORY 15

7→

Figure 10. Ren’s map for ~F .

7→

Figure 11. The map for F .

Moreover, they also discovered that the map induced by

α : ~F → F3

x0x1 7→ y0

x1x2 7→ y1

x2x3 7→ y2

is an isomorphism. A pictorial interpretation of this isomorphism was later
found by Ren in [Ren18], where he realised that this map can be obtained
by taking a ternary tree diagram and replacing each trivalent vertex with a
suitable tree with 3 leaves, see Figure 10.
One may define a weight ω set of finite binary words W2 with values in Z2

by the formula ω(a1 . . . an) :=
∑n

i=0 ai and a subset of dyadic rationals

S := {t ∈ W2 | ω(t) = 0}.

Theorem 4.1. [GS17a] The oriented subgroup ~F is the stabiliser subgroup
Stab(S).

Thanks to this characterisation Golan and Sapir were able to prove that ~F
coincided with its commensurator and thus the corresponding quasi-regular
representation is irreducible.
The oriented subgroup F is also interesting because it gave rise to a novel

example of maximal subgroup of infinite index in F . Before this group was
defined, the only known subgroups of this type were the so-called parabolic
subgroups, that is the stabilisers of points Stab(t), t ∈ (0, 1), under the natural
action of F on (0, 1) that were studied in [Sav15, Sav10]. Golan and Sapir in

[GS17b] proved that ~F sits inside the rectangular subgroup K(1,2) and it is
maximal and of infinite index in it. By exhibiting the explicit isomorphism
β : K(1,2) → F induced by β(x0x2) = x0, β(x1x2) = x1, they were able to show
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that β(~F ) was a maximal subgroup of infinite index in F distinct from the
parabolic subgroups.
Once the ternary oriented subgroup was introduced, we extended some of

these results to it. More precisely, we found a set of generators for ~F3.

Theorem 4.2. [AN22] The ternary oriented Thompson group ~F3 is generated
by the following elements

y22i+1, y2iy2i+2, y2iy2i+3 i = 0, 1, 2.

Question 1. Is ~F3 isomorphic to a Brown-Thompson group or other known
groups?

One might also ask the following question (which was originally asked in
[AN22, Problem 1]).

Question 2. Is ~F3 finitely presented?

Then we also realised that ~F3 is the stabiliser of a suitable subset. For this
we needed a new weight on the set of ternary words.
Consider a tree in the upper half-plane and its leaves on the x-axis as usual.

To each vertex v of a tree we associate a natural number c(v) which we call
its weight, as follows. Given a vertex, there exists a unique minimal path
from the root of the tree to the vertex. This path is made by a collection of
left, middle, right edges, and may be represented by a word w11w21 · · ·1wn in
the letters {0, 1, 2} (0 stands for a left edge, 1 for a middle edge, 2 for a right
edge), where w1, . . . , wn−1 are words that do not contain the letter 1, wn can
have 1 only as its last letter. We call {w2k+1}k≥0 the odd words and {w2k}k≥0

the even words. The weight of v is the sum of the number of digits equal to
1, plus the number of digits equal to 2 in the odd words, plus the number of
digits equal to 0 in the even words. When we compute the weight of a leaf in
a tree diagram, sometimes we use the symbol c+ or c− to distinguish which
tree we are considering (c+ for the top tree, c− for the reflected bottom tree).

Theorem 4.3. [AN22] The ternary oriented Thompson group ~F3 is the stabi-
lizer of the following subset of the triadic fractions

Z := {.a1a2 · · · an | # of 1’s is even, c(.a1a2 · · · an) is even} .
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+ = − =

Figure 12. A positive and a negative crossing in an oriented link.

5. The construction of knots: the oriented case

Links produced from the oriented subgroups admit a natural orientation.
Recall that the Tait diagrams Γ(T+, T−) of elements in ~F are 2-colorable (the
colors being {+,−} and the left-most vertex having colour +).
Given (T+, T−), if we shade the link diagram L(T+, T−) in black and white

(we adopt the convention that the colour of the unbounded region is white),
by construction the vertices of the graph Γ(T+, T−) sit in the black regions and
each one has been assigned with a colour + or −. These colours determine
an orientation of the surface and of the boundary (+ means that the region
is positively oriented). It can be easily seen that the graph Γ(ι(x0x1)) is 2-

colorable and thus x0x1 is in ~F . Here is the oriented link associated with
x0x1.

~L(T+, T−) =

+ − + −

Also in the setting of the oriented subgroups, Jones proved a result analogous
to Alexander’s theorem.

Theorem 5.1. [Jon17] Given an oriented link ~L, there exists an element g in
~F such that ~L(g) is ~L up to disjoint union with unknots.

In [Jon19] Jones asked whether the previous theorem could be improved and
each oriented link could be exactly reproduced. An answer was provided in
[Aie20].

Theorem 5.2. [Aie20] Given an oriented link ~L, there exists an element g in
~F such that ~L(g) is ~L.

There is an interesting monoid in ~F , namely the monoid ~F+ := ~F ∩ F+.
It is well known that every element of the braid group may be expressed as
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the product of a positive braid and the inverse of a positive braid. Similarly,
for the oriented Thompson group we have the following result which is due to
Ren, [Ren18].

Proposition 5.3. [Ren18] For every g ∈ ~F , there exist g+, g− ∈ ~F+ such that
g = g+(g−)

−1.

We call the links produced by the monoid ~F+ the positive oriented Thompson
links. Recall that an oriented link is called positive if it admits a link diagram
where all it crossings are positive in the sense of Figure 12.

Theorem 5.4. [AB21] The positive oriented Thompson links are positive.

As in for F and F3, it is possible to define the ~F and ~F3 indices.

Question 3. Does Theorem 2.5 extend to the ~F and ~F3 indices?

6. The 3-colorable subgroup F

Another subgroup introduced by Jones is the so-called 3-colorable subgroup
F . As before, any binary tree diagram partitions the strip bounded by the
lines y = 1 and y = −1 in regions. This strip may or may not be 3-colorable,
i.e., it may or may not be possible to assign the colors Z3 = {0, 1, 2} to the
regions of the strip in such a way that if two regions share an edge, they have
different colors.

Convention 6.1. If the strip is 3-colorable, we adopt this convention: we
assign the following colors to the regions near the roots

0 1
2

0 1
2

(6.1)

Once we make this convention, if the strip is 3-colourable, there exists a unique
colouring.

The 3-colorable subgroup F consists of the elements of F whose corre-
sponding strip is 3-colorable. For example, this is the strip corresponding to
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7→

Figure 13. Ren’s map Φ from the set of 4-ary trees to binary trees.

w0 := x2
0x1x

−1
2 (which is 3-colorable)

0 2 1

2 0 1

The 3-colorable subgroup actually provides a copy of a Borwn-Thompson group
inside F .

Theorem 6.1. [Ren18] The subgroup F is isomorphic to the Brown-Thompson
group F4 by means of the isomorphism (with domain F4 and range F) obtained
by replacing every 5-valent vertex of 4-ary trees by the complete binary tree
with 4 leaves (see Figure 13). The images of y0, y1, y2, y3 yield the following
elements w0 := x2

0x1x
−1
2 , w1 := x0x

2
1x

−1
0 , w2 := x2

1x3x
−1
2 , w3 := x2

2x3x
−1
4 (see

Figure 14).

As the oriented subgroup, F is also the stabiliser of subset of dyadic rationals
and the weight function is particularly simple.

Theorem 6.2. [AN21] For a binary word a1a2 . . . an set

ω(a1a2 . . . an) :=
n∑

i=1

(−1)iai ∈ Z3 .

Si := {t ∈ (0, 1) ∩ Z[1/2] | ω(t) = i} i ∈ Z3

where ≡3 is the equivalence modulo 3. Then it holds

F = Stab(Si) i ∈ Z3 .

Simple computations show that the 3-colorable subgroup F is contained in
the rectangular subgroup K(2,2)

∼= F , but unlike ~F it is not maximal in it.
However, there are still three maximal subgroups of K(2,2) of infinite index,
namely M0 := 〈x2

0,F〉, M1 := 〈x2
1,F〉, and M2 := 〈σ(x1)

2,F〉, [AN21].
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w0 = w1 =

w2 =
w3 =

Figure 14. The generators of F .

Connections between F and Jones’s construction of knots have not been
explored yet, nevertheless it is natural to ask the following question.

Question 4. Do the elements of F produce all unoriented knots and links?
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