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Abstract
Classical power analysis for sample size determination is typically performed in
clinical trials. A “hybrid” classical Bayesian or a “fully Bayesian” approach can be
alternatively used in order to add flexibility to the design assumptions needed at
the planning stage of the study and to explicitly incorporate prior information in
the procedure. In this paper, we exploit and compare these approaches to obtain
the optimal sample size of a single-arm trial based on Poisson data. We adopt
exact methods to establish the rejection of the null hypothesis within a frequen-
tist or a Bayesian perspective and suggest the use of a conservative criterion for
sample size determination that accounts for the not strictly monotonic behavior
of the power function in the presence of discrete data. A Shiny web app in R has
been developed to provide a user-friendly interface to easily compute the optimal
sample size according to the proposed criteria and to assure the reproducibility
of the results.
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1 INTRODUCTION

The sample size determination (SSD) is a crucial element of the planning phase of any clinical trial, and it is usually
conducted through a pre-experimental power analysis. In general terms, the purpose is to select the smallest sample size
that allows to achieve a desired level for the probability of correctly rejecting the null hypothesis, 𝐻0.
The traditional procedure consists in selecting a fixed design value for the parameter of interest under the alternative

hypothesis and in using it to evaluate the conditional probability of rejecting𝐻0 computed under a frequentist framework.
The prespecified design value plays a key role and should be carefully selected as a clinically relevant effect size that
we wish to detect with high probability. An obvious drawback of the method is that the determination of the sample
size may be strongly affected by the choice of this point alternative. To account for the uncertainty about the design
effect size, a so-called “hybrid” classical Bayesian approach can be adopted (see Spiegelhalter et al., 2004) by averaging
the traditional power function using a prior distribution for the unknown parameter. In the literature, this approach
has been implemented to obtain an unconditional probability of the success of the trial (see, for instance, Carroll, 2013;
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Chuang-Stein, 2006; O’Hagan et al., 2005; D. G. Chen &Ho, 2017). In line with other works (see Ciarleglio & Arendt, 2019;
Lan & Wittes, 2012; Sambucini, 2017), we suggest to use a prior distribution for 𝜃, named the design prior distribution,
that formally introduces uncertainty of the guessed design value under the condition that it belongs to the alternative
hypothesis. In this way, the average of the classical powermore closely resembles the concept of frequentist power, since it
is computed under the assumption that the alternative hypothesis is true and, therefore, can be interpreted as a probability
of making the correct decision.
Alternatively, it is possible to adopt a “fully Bayesian” approach that exploits only Bayesian concepts both at the anal-

ysis and at the design stage of the trial. Since the early 2000s, there has been growing interest within the pharmaceutical
industry in the use of Bayesian procedures at various stages of the research. TheU.S. Food andDrugAdministration (FDA)
Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials (2010) recognizes the merits of Bayesian meth-
ods and provides detailed recommendations for their use in FDA-regulated clinical trials. The recent status of Bayesian
statistics in terms of regulatory acceptance by the FDA is addressed in Campbell (2020). A prior distribution, called the
analysis prior distribution, is introduced to formalize pre-experimental information available on the unknown parameter
and is used to compute the posterior distribution. The null hypothesis is rejected if the posterior probability assigned to the
alternative hypothesis is sufficiently high. Then, the sample size is determined by ensuring a large level for the probability
of rejecting 𝐻0, under the assumption that the alternative is true. Analogously to the procedures based on a frequentist
final analysis, this optimistic assumption can be realized either by setting a fixed design value suitably selected under the
alternative hypothesis or by eliciting a design prior distribution to account for uncertainty in the guessed parameter value.
Wang andGelfand (2002) provided an exhaustive formulation of this approach for SSD, known as the two-priors approach,
that was subsequently adopted by several authors (see, among others, De Santis, 2006; Matano & Sambucini, 2016; Psioda
& Ibrahim, 2019; Sahu&Smith, 2006). Applications of both the hybrid classical Bayesian and the fully Bayesian approaches
when the focus is on the mean of a normal distribution or a single binomial proportion are provided by Gubbiotti and De
Santis (2008) and Sambucini (2017), respectively.
In this paper, we address the problem of SSD based on power analysis when the focus is on a single Poisson rate. In

clinical trials, for instance, in certain chronic diseases, such as angina pectoris and epilepsy, symptoms manifest acutely
in an episodic nature and it is assumed that the number of attacks for a given patient within a specified time interval fol-
lows a Poisson distribution (Layard & Arvesen, 1978). Examples of single-arm noncontrolled studies based on count data
are provided by Stein et al. (2009) and Wasserman et al. (2011), where the number of acute serious bacterial infections
is used as primary endpoint to test the effectiveness of immunoglobulin replacement therapies in patients with primary
immunodeficiency disease. In this context, the commonly used SSD procedures are based on the application of classical
power calculations with normal approximations. An exact approach to determine the minimum sample size for estimat-
ing a Poisson parameter, such that the prespecified levels of relative precision and confidence are guaranteed, has been
provided in Z. Chen and Chen (2016). Bayesian approaches have been also used. For instance, Stamey et al. (2004) used
the average coverage criterion for a single Poisson rate with underreported data. These authors exploited simulation-based
methods based on a Bayesian symmetric interval estimator. Their approach has been extended by Stamey et al. (2006),
who exploited the highest posterior density interval for the single Poisson rate and also implemented the average length
criterion and a posterior variance criterion. Interval-based Bayesian criteria have been also proposed in Zaslavsky (2010),
where prior data are used to express uncertainty about the Poisson event rate through an empirical procedure. More-
over, Zaslavsky (2012) determined the sample size for the estimation of a Poisson rate using the concept of conditional
power and reformulating the Type I and II error probabilities in terms of confidence and credible limits. Furthermore, for
phase II single-arm trials, Hand et al. (2016) extended the standard scheme to conduct a two-stage design to the case of a
Poisson-distributed response variable and constructed a Bayesian predictive two-stage design.
We consider a single-arm trial where the primary endpoint is the number of events occurring in a given time period and

follows a Poisson distribution. To the best of our knowledge, for this experimental situation, implementations of exact SSD
methods based on power analysis exploiting the classical Bayesian hybrid and the fully Bayesian approaches has not been
presented in the literature. We illustrate how to derive these criteria that allow to add flexibility to the classical procedure.
Furthermore, to take into account the discrete nature of the data and the consequent sawtooth behavior of the power
functions as the sample size varies, we suggest adopting a conservative criterion to have the conditions of interest satisfied
for all sample sizes greater than the one selected (see Chernick & Liu, 2002; Sambucini, 2017). Finally, let us notice that
we exploit exact distributions, instead of relying on asymptotic normality, and we perform the required computations by
enumerating the probabilities of all the possible results. Thus, no simulation tools are involved to obtain numerical results.
The rest of the paper is organized as follows. In Section 2, we formalize the problem setting and describe the exact

SSD criteria for single-arm trials based on Poisson data, when both “not desired” and “positive” events are considered. In
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Section 3, we provide suggestions on the choice of the prior distributions involved either to formalize prior information or
to represent design expectations. Numerical results are presented and discussed in Section 4, where a case study example is
also presented. An interactive Shiny web application has been developed to facilitate the implementation of the proposed
criteria, and in Section 5 we provide the link to access. Finally, a brief discussion is provided in Section 6.

2 SSDMETHODS FOR POISSON DATA

Let us consider a clinical trial aimed at evaluating the efficacy of a new experimental treatment through a single-arm
study. The primary endpoint 𝑋 is the number of occurrences of an event of interest over a prefixed interval of time. Thus,
for each of the 𝑛 patients enrolled in the study, we observe the random variable 𝑋𝑖 that follows a Poisson distribution of
rate 𝜃 > 0. Moreover, without loss in generality, we assume that the event of interest has a negative connotation so that the
focus is on testing 𝐻0 ∶ 𝜃 ≥ 𝜃0 versus 𝐻1 ∶ 𝜃 < 𝜃0. The target event rate 𝜃0 is a fixed value that should ideally represent
the true rate for the standard of care therapy and is typically selected by exploiting historical data.
The aim of this section is to derive exact criteria to determine the optimal value of 𝑛 based on prestudy power analyses.

The first approach considered is the classical one, which requires an initial guess about the true value of the unknown
parameter. Then, in order to add flexibility to the procedure, we describe how to implement criteria based on a hybrid
classical Bayesian approach and a fully Bayesian approach.

2.1 Classical approach

We aim at using exact sample size procedures, and, therefore, we focus on the frequentist rejection region of𝐻0 based on
the sufficient statistic 𝑆𝑛 =

∑𝑛

𝑖=1
𝑋𝑖 , whose sampling distribution is

𝑓(𝑠𝑛|𝜃) = pois(𝑠𝑛; 𝑛𝜃), for 𝑠𝑛 ∈ 0, 1, 2, … ,

where pois(⋅; 𝜆) denotes the probability mass function of a Poisson variable of parameter 𝜆.
The null hypothesis is rejected at the fixed significance level 𝛼, if 𝑆𝑛 ≤ 𝑘𝐹 , where the critical value 𝑘𝐹 is such that

𝑘𝐹 = max

{
𝑢 ∈ {0, 1, 2, …} ∶

𝑢∑
𝑖=0

pois(𝑖; 𝑛𝜃0) ≤ 𝛼

}
.

In fact, due to the discreteness of the test statistic, it is not possible to hit the nominal level 𝛼 exactly and the standard
exact procedure ensures that the actual Type I error rate is smaller than or equal to the fixed 𝛼 (see Ryan, 2013).
The traditional frequentist SSD criterion is based on the conditional probability of being able to make a correct decision

in favor of the alternative hypothesis. A suitable design value of 𝜃, 𝜃𝐷 , which represents a clinically relevant value impor-
tant to detect, is suitably fixed under the alternative hypothesis. Then, the focus is on the so-called conditional frequentist
power, defined as the probability of correctly rejecting𝐻0 when the actual 𝜃 is equal to 𝜃𝐷 ,

𝜂𝐶
𝐹
(𝑛) = ℙ𝑓(⋅|𝜃𝐷)(𝑆𝑛 ≤ 𝑘𝐹) =

𝑘𝐹∑
𝑖=0

pois(𝑖; 𝑛𝜃𝐷). (1)

The typical criterion selects the optimal sample size as the smallest 𝑛 such that 𝜂𝐶
𝐹
(𝑛) > 𝛾, where 𝛾 is a desired prefixed

threshold. Since it is not possible to obtain a closed-form formula for the sample size, we need to use a numerical procedure
that searches upwards from a minimum value of 𝑛 until the condition is satisfied.
However, this way of proceeding does not take into account the not-monotonically increasing behavior of 𝜂𝐶

𝐹
(𝑛) as a

function of 𝑛. The conditional frequentist power in (1), in fact, tends to increase showing a sawtooth behavior that typically
occurs when dealing with discrete data. A discussion about this behavior in the presence of a binary endpoint is provided
in Chernick and Liu (2002) and Sambucini (2017). To provide an example, in Figure 1, we plot 𝜂𝐶

𝐹
(𝑛)with respect to 𝑛when

𝜃0 = 2, 𝜃𝐷 = 1.6, and 𝛼 = 0.05. To analyze in detail the reasons for this sawtooth shape for count data, for each possible
value of 𝑛 between 5 and 85, in Table 1 we report the corresponding critical value 𝑘𝐹 and the value of the conditional
frequentist power. We can note that the oscillations depend on how 𝑘𝐹 increases with the sample size. The critical value,
in fact, depends on the distribution of 𝑆𝑛 when the null hypothesis is true. Thus, when we increase the sample size by
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4 of 13 S. GENTILE and V. SAMBUCINI

F IGURE 1 Behavior of 𝜂𝐶𝐹 (𝑛) as a function of 𝑛, when 𝜃0 = 2, 𝜃𝐷 = 1.6, and 𝛼 = 0.05.

TABLE 1 Critical value and conditional frequentist power as 𝑛 varies, when 𝜃0 = 2, 𝜃𝐷 = 1.6, and 𝛼 = 0.05.

𝒏 𝒌𝑭 𝜼𝑪
𝑭
(𝒏) 𝒏 𝒌𝑭 𝜼𝑪

𝑭
(𝒏) 𝒏 𝒌𝑭 𝜼𝑪

𝑭
(𝒏) 𝒏 𝒌𝑭 𝜼𝑪

𝑭
(𝒏)

5 4 0.0996 24 36 0.3890 43 70 0.5887 62 105 0.7398
6 6 0.1574 25 38 0.4160 44 72 0.6060 63 107 0.7507
7 7 0.1307 26 39 0.3812 45 74 0.6227 64 109 0.7612
8 9 0.1794 27 41 0.4072 46 76 0.6388 65 111 0.7713
9 10 0.1507 28 43 0.4325 47 77 0.6114 66 112 0.7519
10 12 0.1931 29 45 0.4570 48 79 0.6275 67 114 0.7621
11 14 0.2354 30 47 0.4808 49 81 0.6430 68 116 0.7720
12 15 0.2021 31 48 0.4471 50 83 0.6580 69 118 0.7816
13 17 0.2400 32 50 0.4702 51 85 0.6725 70 120 0.7907
14 19 0.2774 33 52 0.4927 52 87 0.6864 71 122 0.7995
15 20 0.2426 34 54 0.5144 53 88 0.6616 72 124 0.808
16 22 0.2770 35 56 0.5355 54 90 0.6756 73 125 0.7912
17 24 0.3107 36 57 0.5035 55 92 0.6891 74 127 0.7998
18 25 0.2758 37 59 0.5242 56 94 0.7021 75 129 0.8082
19 27 0.3072 38 61 0.5442 57 96 0.7147 76 131 0.8162
20 29 0.3380 39 63 0.5635 58 98 0.7267 77 133 0.8239
21 31 0.3681 40 65 0.5822 59 99 0.7045 78 135 0.8313
22 32 0.3327 41 66 0.5523 60 101 0.7167 79 137 0.8384
23 34 0.3612 42 68 0.5708 61 103 0.7284 80 138 0.8239

one, if 𝑘𝐹 increases by 2 units, that is the expected number of events under𝐻0, then the power gets larger. Otherwise, the
power decreases. We use alternate blocks of colors to underline when these fluctuations happen, and we can note that
they are more frequent for smaller sample sizes.
In line with other works, in order to account for this fluctuating trend, we suggest to adopt a more conservative SSD

criterion by selecting the smallest sample size for which 𝜂𝐶
𝐹
(𝑛) exceeds the desired level 𝛾 at all larger sample sizes, that is

𝑛𝐶
𝐹
= min

{
𝑛∗ ∈ ℕ ∶ 𝜂𝐶

𝐹
(𝑛) ≥ 𝛾, ∀𝑛 ≥ 𝑛∗

}
.

Also in this case, it is necessary to proceed numerically by evaluating the condition of interest for decreasing values of the
sample size, starting from a very high value, until reaching the optimal one. According to this conservative criterion, the
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S. GENTILE and V. SAMBUCINI 5 of 13

optimal sample size of the illustrative example is 𝑛𝐶
𝐹
= 75, while the lower value 72 allows to achieve the desired level of

power without accounting for the fluctuating behavior.

2.2 Hybrid classical Bayesian approach

The SSD criteria based on the classical approach suffer from local optimality because the selected sample size is strongly
affected by the choice of the design value 𝜃𝐷 , whose uncertainty is not addressed. To overcome this limit, we suggest to use
a hybrid classical and Bayesian procedure that allows to model uncertainty on the design value using a prior distribution
according to the Bayesian approach, while still analyzing the data in a frequentist framework. Specifically, we elicit the
so-called design prior distribution, 𝜋𝐷(𝜃), and then we obtain the predictive frequentist power by averaging the traditional
frequentist power with respect to this prior. It can be proved that this is equivalent to compute the probability of rejecting
𝐻0 with respect to the prior predictive distribution of the data (see, for instance, Spiegelhalter et al., 2004; Gubbiotti and
De Santis, 2008; Sambucini, 2017).
In the case of Poisson data, it is useful to introduce a gamma design prior distribution,

𝜋𝐷(𝜃) = gamma
(
𝜃; 𝛼𝐷, 𝛽𝐷

)
=

(
𝛽𝐷

)𝛼𝐷
Γ(𝛼𝐷)

𝜃𝛼
𝐷−1 e−𝛽𝐷𝜃,

where gamma(⋅|𝑎, 𝑏) denotes the probability density function of a Gamma distribution with shape parameter 𝑎 > 0 and
rate parameter 𝑏 > 0. Then, the corresponding prior predictive distribution of 𝑆𝑛 is

𝑚𝐷(𝑠𝑛) = ∫
∞

0

𝑓(𝑠𝑛|𝜃)𝜋𝐷(𝜃)𝑑𝜃

= bin-neg
(
𝑠𝑛; 𝛼

𝐷,
𝛽𝐷

𝛽𝐷 + 𝑛

)
for 𝑠𝑛 ∈ 0, 1, 2, … , (2)

where bin-neg(⋅;𝑚, 𝑝) is the probability mass function of a Negative Binomial distribution with parameters 𝑚 and 𝑝.
Therefore, the predictive frequentist power is given by

𝜂𝑃
𝐹
(𝑛) = ℙ𝑚𝐷(⋅)(𝑆𝑛 ≤ 𝑘𝐹) =

𝑟∑
𝑖=0

bin-neg
(
𝑖; 𝛼𝐷,

𝛽𝐷

𝛽𝐷 + 𝑛

)
, (3)

where ℙ𝑚𝐷(⋅) denotes the probability measure associated with prior predictive distribution of 𝑆𝑛. Since the marginal dis-
tribution𝑚𝐷(𝑠𝑛) is discrete, also 𝜂𝑃𝐹(𝑛) presents a sawtooth behavior as a function of 𝑛. Therefore, we recommend to select
the optimal 𝑛 according to the conservative criterion described above, that is

𝑛𝑃
𝐹
= min

{
𝑛∗ ∈ ℕ ∶ 𝜂𝑃

𝐹
(𝑛) ≥ 𝛾, ∀𝑛 ≥ 𝑛∗

}
,

for a fixed threshold 𝛾. Note that, when using this approach, it is essential to restrict the design prior distribution, which
plays the key role of weight function, to assume that the alternative hypothesis is true. This ensures that the predictive
frequentist power is conceptually analogous to the conditional one in that it provides a measure of the probability of
correctly rejecting𝐻0.

2.3 Bayesian approach

When planning a clinical trial, we may wish to take into account prior knowledge available and derived from various
sources, such as historical data, pilot studies, expert opinions, etc. In this case, it is necessary to assume that a Bayesian
analysis will be performed at the end of the trial. The prior information can be represented through a prior distribution,
𝜋𝐴(𝜃), that in this context is typically called analysis prior distribution. Differently from the design prior, it plays the role
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6 of 13 S. GENTILE and V. SAMBUCINI

of the usual prior distribution introduced to formalize pre-experimental knowledge in a Bayesian analysis and used to
compute the posterior distribution.
In our specific case, we rely on conjugate analysis and assume that 𝜃 follows a Gamma prior distribution, 𝜋𝐴(𝜃) =

gamma(𝛼𝐴, 𝛽𝐴). Given the observed result 𝑠𝑛, the posterior distribution is still a Gamma density with updated parameters,
𝜋𝐴(𝜃|𝑠𝑛) = gamma(𝛼𝐴 + 𝑠𝑛, 𝛽

𝐴 + 𝑛). In a pre-experimental setting and under a Bayesian framework, we need to establish
a condition to reject the null hypothesis on the basis of the random result 𝑆𝑛. Typically, the null hypothesis is rejected if
its posterior probability is less than or equal to a threshold 𝜀, chosen as a small value. Equivalently, we can claim that we
reject the null hypothesis if the posterior probability that 𝜃 belongs to the alternative one is sufficiently high, that is if

ℙ𝜋𝐴(⋅|𝑆𝑛)(𝜃 < 𝜃0) = ∫
𝜃0

0

gamma(𝜃; 𝛼𝐴 + 𝑆𝑛, 𝛽
𝐴 + 𝑛)𝑑𝜃

= 𝐹Gamma(𝜃0; 𝛼
𝐴 + 𝑆𝑛, 𝛽

𝐴 + 𝑛) > 1 − 𝜀, (4)

where ℙ𝜋𝐴(⋅|𝑆𝑛) is the probability measure associated with the posterior distribution of 𝜃 and 𝐹Gamma(⋅; 𝑎, 𝑏) is the cumu-
lative distribution function of a Gamma variable of parameters 𝑎 and 𝑏. For a fixed value of 𝑛, the posterior probability in
(4) increases as 𝑆𝑛 decreases and we can find an integer 𝑘𝐵 such that

𝐹Gamma(𝜃0; 𝛼
𝐴 + 𝑘𝐵, 𝛽

𝐴 + 𝑛) > 1 − 𝜀 and 𝐹Gamma(𝜃0; 𝛼
𝐴 + 𝑘𝐵 + 1, 𝛽𝐴 + 𝑛) ≤ 1 − 𝜀.

Therefore, the Bayesian rule consists in rejecting𝐻0 if the experimental result is such that 𝑆𝑛 ≤ 𝑘𝐵, where

𝑘𝐵 = max
{
𝑢 ∈ {0, 1, 2, …} ∶ 𝐹Gamma(𝜃0; 𝛼

𝐴 + 𝑢, 𝛽𝐴 + 𝑛) > 1 − 𝜀
}
.

In other words, 𝑘𝐵 is the largest total number of events out of 𝑛 patients that leads to reject 𝐻0. Hence, when a Bayesian
final analysis is planned, the power of the study can be obtained by computing the probability that 𝑆𝑛 ≤ 𝑘𝐵, under the
assumption that the alternative hypothesis is true. It is possible to exploit a conditional approach by specifying a suitable
design value 𝜃𝐷 for the parameter of interest under𝐻1. Then, we obtain the conditional Bayesian power as the probability
of rejecting𝐻0 computed with respect to the sampling distribution of 𝑆𝑛 conditional on 𝜃𝐷 ,

𝜂𝐶
𝐵
(𝑛) = ℙ𝑓(⋅|𝜃𝐷)(𝑆𝑛 ≤ 𝑘𝐵) =

𝑘𝐵∑
𝑖=0

pois
(
𝑖; 𝑛𝜃𝐷

)
. (5)

Alternatively, to avoid local optimality, we introduce a design prior distribution that models uncertainty on the guessed
value 𝜃𝐷 . In this latter case, the prior predictive distribution of 𝑆𝑛 provided in (2) is used to obtain the predictive Bayesian
power

𝜂𝑃
𝐵
(𝑛) = ℙ𝑚𝐷(⋅)(𝑆𝑛 ≤ 𝑘𝐵) =

𝑘𝐵∑
𝑖=0

bin-neg
(
𝑖; 𝛼𝐷,

𝛽𝐷

𝛽𝐷 + 𝑛

)
. (6)

Since both the sampling and the marginal distributions of 𝑆𝑛 are discrete, we suggest to select the optimal sample size
according to the conservative criterion described above to account for the sawtooth behavior of the Bayesian power
functions. Given the threshold of interest 𝛾, the criteria are

𝑛𝐶
𝐵
= min

{
𝑛∗ ∈ ℕ ∶ 𝜂𝐶

𝐵
(𝑛) ≥ 𝛾, ∀𝑛 ≥ 𝑛∗

}
and 𝑛𝑃

𝐵
= min

{
𝑛∗ ∈ ℕ ∶ 𝜂𝑃

𝐵
(𝑛) ≥ 𝛾, ∀𝑛 ≥ 𝑛∗

}
.

2.4 Reversal of hypotheses

The majority of the clinical studies based on Poisson outcomes refer to the count of “negative” events, and examples
include the number of falls for patients with Parkinson’s disease, of asthma attacks in children, of relapses, of scan lesions
in multiple sclerosis, or of seizures in epilepsy. Thus, without loss in generality, we have considered the count of an
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S. GENTILE and V. SAMBUCINI 7 of 13

event that represents a not-desired outcome for patients, focusing on the null hypothesis𝐻0 ∶ 𝜃 ≥ 𝜃0 to select the optimal
sample size.
The proposed SSD criteria can be similarly derived when the hypotheses are reversed because a “positive” event is

considered. In this case, the interest is on testing𝐻0 ∶ 𝜃 ≤ 𝜃0 versus𝐻1 ∶ 𝜃 > 𝜃0 and, when the final analysis is conducted
under a frequentist framework,𝐻0 is rejected at level 𝛼 if 𝑆𝑛 ≥ 𝑘𝐹 , where

𝑘𝐹 = min

{
𝑢 ∈ {0, 1, 2, …} ∶

∞∑
𝑖=𝑢

pois(𝑖, 𝑛𝜃0) ≤ 𝛼

}
.

Instead, if we plan to conduct a Bayesian final analysis, we introduce a Gamma analysis prior distribution for 𝜃, 𝜋𝐴(𝜃) =

gamma(𝛼𝐴, 𝛽𝐴), to represent prior knowledge, as previously described, and use it to obtain the posterior distribution of
the parameter of interest. Then,𝐻0 is rejected if 𝑆𝑛 ≥ 𝑘𝐵, where

𝑘𝐵 = min
{
𝑢 ∈ {0, 1, 2, …} ∶ 1 − 𝐹Gamma(𝜃0; 𝛼

𝐴 + 𝑢, 𝛽𝐴 + 𝑛) > 1 − 𝜀
}
,

where 𝜀 is a prespecified small threshold.
Hence, the conditional and predictive powers under the two inferential approaches are provided by

𝜂𝐶
𝐽
(𝑛) = ℙ𝑓(⋅|𝜃𝐷)(𝑆𝑛 ≥ 𝑘𝐽|𝑛𝜃𝐷) = 1 −

𝑘𝐽−1∑
𝑖=0

pois(𝑖; 𝑛𝜃𝐷)

and

𝜂𝑃
𝐽
(𝑛) = ℙ𝑚𝐷(⋅)(𝑆𝑛 ≥ 𝑘𝐽) = 1 −

𝑘𝐽−1∑
𝑖=0

bin-neg
(
𝑖; 𝛼𝐷,

𝛽𝐷

𝛽𝐷 + 𝑛

)
,

for 𝐽 = 𝐹, 𝐵, where 𝜃𝐷 is the fixed design value larger than 𝜃0. Here, the design prior distribution, 𝜋𝐷(𝜃) =

gamma(𝜃; 𝛼𝐷, 𝛽𝐷), addresses uncertainty on 𝜃𝐷 by assigning a negligible prior probability to values of 𝜃 smaller than
𝜃0. Given the power functions, by using the conservative criterion which accounts for their sawtooth behavior as 𝑛 varies,
the optimal sample sizes are selected as the ones ensuring that the power will not drop below the desired threshold for
any larger sample.

3 CHOICE OF THE PRIOR DISTRIBUTIONS

A fundamental element that characterizes and distinguishes the different approaches is the possible use of two different
Gamma prior distributions, the analysis and the design priors, respectively, introduced to formalize prior information and
to represent design expectations. To elicit these prior distributions, we resort to a way of proceeding often used to elicit
beta prior densities when testing binary data. The idea is to express the hyperparameters of the priors in terms of (𝑖) a
measure of central location and (𝑖𝑖) a parameter that can be interpreted as the prior sample size.
With the purpose of illustrating the procedure, we focus on 𝜋𝐷(𝜃) whose hyperparameters can be fixed as

𝛼𝐷 = 𝑛𝐷𝜃𝐷 + 1 and 𝛽𝐷 = 𝑛𝐷,

in order to obtain a Gamma prior distribution with prior mode at 𝜃𝐷 and prior sample size 𝑛𝐷 . This latter parameter
reflects the dispersion of the distribution around its mode: the larger it is, the more concentrated the Gamma prior is.
Hence, we can set the prior mode equal to the clinically relevant design value that we would select under the conditional
approach and use 𝑛𝐷 to express the desired degree of uncertainty around it. It is worth noting that, if 𝑛𝐷 → ∞, the prior
variance (𝑛𝐷𝜃𝐷 + 1)∕(𝑛𝐷)

2
goes to 0 so that the prior density corresponds to the degenerate distribution at 𝜃𝐷 . In this case,

no uncertainty is introduced on the design value and, as a consequence, the conditional and predictive approaches lead
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8 of 13 S. GENTILE and V. SAMBUCINI

F IGURE 2 Design prior distributions that assign different probabilities to the alternative hypothesis (graphs (a1), (a2), and (a3)).
Corresponding behavior of the predictive frequentist powers as a function of 𝑛, when 𝛼 = 0.05 (graphs (b1), (b2), and (b3)).

to the same optimal sample size, being 𝜂𝑃
𝐹
(𝑛) = 𝜂𝐶

𝐹
(𝑛) and 𝜂𝑃

𝐵
(𝑛) = 𝜂𝐶

𝐵
(𝑛). Of course, it is also possible to choose the prior

mean as the measure of centrality of interest: in this case, the hyperparameters are fixed as 𝛼𝐷 = 𝑛𝐷𝜃𝐷 and 𝛽𝐷 = 𝑛𝐷 .
We have already stressed that the design prior distribution should describe a design scenario that supports values of

𝜃 under 𝐻1. In addition to the need to deal with a probability of making a correct decision, there is a further reason for
this, related to computational aspects due to the limiting behavior of the predictive power functions. In fact, it is possible
to prove that the limit of both 𝜂𝑃

𝐹
(𝑛) and 𝜂𝑃

𝐵
(𝑛) as 𝑛 → ∞ is given by ℙ𝜋𝐷(⋅)(𝜃 < 𝜃0), which is the probability that the

design prior assigns to the alternative hypothesis (see Eaton et al., 2013). To show this result empirically, we set 𝜃0 = 2

and consider three different design prior distributions for 𝜃 with the same mode 𝜃𝐷 = 1.6, but different dispersion. More
specifically, the probability assigned to the alternative hypothesis by these prior densities is about equal to 1, 0.9, and 0.8,
respectively, as it is possible to appreciate in Figure 2 (graphs (a1), (a2), and (a3)). In the same figure (graphs (b1), (b2), and
(b3)), we show the corresponding behavior of predictive frequentist powers as a function of 𝑛when 𝛼 = 0.05. As expected,
in all the cases considered, the limit that 𝜂𝑃

𝐹
(𝑛) approaches as 𝑛 increases is equal toℙ𝜋𝐷(⋅)(𝜃 < 𝜃0). An analogous behavior

can be shown for the Bayesian predictive power. Therefore, if the design prior does not assign a negligible probability to
values of 𝜃 under𝐻0, the frequentist and Bayesian predictive powers do not approach 1 as the sample size goes to infinity,
and we need to bound the threshold 𝛾 below the limiting value to obtain a finite sample size that satisfies the criterion.
The usefulness of avoiding these situations has also been stressed by Lan and Wittes (2012) and Ciarleglio and Arendt
(2019).
As regard the choice of the analysis prior distribution, its support and shape depend on the pretrial knowledge we want

to incorporate in the final statistical analysis. Differently from the design prior, that must always be a proper distribution
in order to have a proper predictive distribution of the data,𝜋𝐴(𝜃) can be chosen as an improper noninformative prior. For
instance, the choice 𝛼𝐴 = 1 and 𝛽𝐴 = 0 leads to an improper uniform distribution or we can set 𝛼𝐴 = 1∕2 and 𝛽𝐴 = 0 to
obtain the Jeffreys prior. Alternatively, we can employ standard procedures to formalize information from historical data
to elicit expert knowledge or to construct archetypal prior distributions to express prior skepticism or enthusiasm about
the new treatment efficacy. In these latter cases, it can be useful to express 𝛼𝐴 and 𝛽𝐴 in terms of prior mode and prior
sample size as described for the design prior density.
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S. GENTILE and V. SAMBUCINI 9 of 13

F IGURE 3 Left panel: Possible choices of the design prior distribution using method (i) for different values of 𝛿, when 𝜃0 = 2 and
𝜃𝐷 = 1.6. Right panel: Behaviors of the corresponding 𝜂𝑃𝐹(𝑛) and of 𝜂

𝐶
𝐹 (𝑛) (case 𝛿 = 0) as a function of 𝑛, when 𝛼 = 0.05.

4 NUMERICAL RESULTS

In this section, we illustrate themain features of the different SSD criteria based on the conservative selectionmethod that
takes into account the sawtooth behavior of the power functions. A case study example is also provided. All computations
are performed using the R programming language.

4.1 Behavior of the power functions and optimal sample sizes

First, we focus on the hybrid classical Bayesian approach and, therefore, on the power function in (3). As previously
stressed, selecting a proper design prior is critical in determining the predictive frequentist power. We consider two possi-
ble strategies to ensure that𝜋𝐷(𝜃) assigns a negligible probability to the null hypothesis by exploiting the hyperparameters
selection procedure described in Section 3. Specifically, given the prior mode 𝜃𝐷 , we set 𝑛𝐷 so that

(i) 𝜋𝐷(𝜃) assigns a 0.999 probability to a symmetric interval (𝜃𝐷 − 𝛿, 𝜃𝐷 + 𝛿), where 𝛿 is a nonnegative real number such
that 𝜃𝐷 + 𝛿 ≤ 𝜃0;

(ii) 𝜋𝐷(𝜃) assigns a 0.999 probability to the alternative hypothesis.

In the left panel of Figure 3, we show three possible design priors obtained by using method (i) for different values of
𝛿, when 𝜃0 = 2 and 𝜃𝐷 = 1.6. The behavior of the corresponding 𝜂𝑃

𝐹
(𝑛) as a function of 𝑛 is represented in the right panel

of the figure. The limiting case 𝛿 → 0, that is, 𝑛𝐷 → +∞, which corresponds to a degenerate design prior to 𝜃𝐷 , is also
considered. As previously remarked, in this case 𝜂𝑃

𝐹
(𝑛) is equivalent to the conditional frequentist power 𝜂𝐹

𝐶
(𝑛). Clearly, the

uncertainty around 𝜃𝐷 increases with 𝛿, resulting in a smaller 𝑛𝐷 and amore dispersed prior distribution. Accordingly, the
predictive frequentist power decreases, so that larger sample sizes are needed to achieve the desired level 𝛾. For instance,
when 𝛾 = 0.8, the resulting optimal sample sizes are 75, 77, 84, and 93, for 𝛿 equal to 0, 0.2, 0.3, and 0.4, respectively.
In Figure 4, we show three possible design prior distributions, and the corresponding behaviors of 𝜂𝑃

𝐹
(𝑛) as a function of

𝑛, obtained by selecting 𝑛𝐷 with method (ii) for different 𝜃𝐷 , when 𝜃0 = 2. In this case, for a fixed 𝜃𝐷 , 𝑛𝐷 is selected as the
smallest value such that ℙ𝜋𝐷(⋅)(𝜃 < 𝜃0) is higher than or equal to 0.999. As a result, the larger the difference between the
prior mode 𝜃𝐷 and 𝜃0, the lower both the 𝑛𝐷 and the degree of concentration of the design prior distribution required to
satisfy the condition regardingℙ𝜋𝐷(⋅)(𝜃 < 𝜃0). As 𝜃𝐷 approaches 𝜃0, the prior design scenario considered is less optimistic
and the predictive frequentist power decreases, yielding to larger optimal sample sizes. More specifically, when 𝛾 = 0.8,
the optimal values of 𝑛𝑃

𝐹
are 61, 93, and 168 for 𝜃𝐷 equal to 1.7, 1.6, and 1.5, respectively. Additional results about the optimal

sample sizes according to the predictive frequentist criterion are provided in the Supporting Information to this article.
We now focus on the exact calculations of the sample size based on the Bayesian power functions in (5) and (6). In

the right panel of Figure 5, we show the behavior of 𝜂𝐶
𝐵
(𝑛) as a function of 𝑛 for different choices of 𝜋𝐴(𝜃), when 𝜃0 = 2,

𝜃𝐷 = 1.6, and 𝜀 = 0.05. More specifically, we consider three weakly informative analysis prior distributions that express
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10 of 13 S. GENTILE and V. SAMBUCINI

F IGURE 4 Left panel: Possible choices of the design prior distribution using method (ii) for different values of 𝜃𝐷 when 𝜃0 = 2. Right
panel: Behavior of the corresponding 𝜂𝑃𝐹(𝑛) as a function of 𝑛, when 𝛼 = 0.05.

F IGURE 5 Left panel: Possible choices of the analysis prior distribution when 𝜃0 = 2. Right panel: Behaviors of the corresponding 𝜂𝐶𝐵 (𝑛)
as a function of 𝑛, when 𝜀 = 0.05.

different prior beliefs towards the treatment efficacy and are shown in the left panel of Figure 5. They are obtained by
fixing the prior mode 𝜃𝐴 and by determining the prior sample size 𝑛𝐴 to ensure that the prior probability assigned to the
alternative hypothesis, ℙ𝜋𝐴(⋅)(𝜃 < 𝜃0), is equal to a prespecified level. The levels considered are 07, 0.4, and 0.1, for prior
modes equal to 1, 2, and 3, respectively. Clearly, the greater 𝜃𝐴, the stronger the prior skepticism expressed. As expected,
𝜂𝐶
𝐵
(𝑛) rises more slowly as the skepticism increases and the gap is more evident for small sample sizes because as 𝑛

increases, the prior information becomes less influential. However, it still impacts the optimal sample sizes 𝑛𝐶
𝐵
at the level

𝛾 = 0.8, which are 69, 75, and 86, respectively.
To evaluate how the concentration of the analysis prior distribution around its prior mode affects the selection of the

sample size, in Figure 6 we plot the behavior of 𝑛𝐶
𝐵
as a function of 𝑛𝐴 for different values of 𝜃𝐴, when 𝜃0 = 2, 𝜃𝐷 = 1.6,

𝜀 = 0.05, and 𝛾 = 0.8. In the left panel of the figure, we consider values of 𝜃𝐴 larger than 𝜃0 and therefore 𝜋𝐴(𝜃) expresses
increasing skepticism about the treatment effect as 𝑛𝐴 increases, whereas in the right panel the analysis prior distributions
considered express more enthusiasm as 𝑛𝐴 increases since the specified prior modes are smaller than 𝜃0. In both the
panels, the dashed horizontal line corresponds to the optimal sample size obtained when 𝑛𝐴 → 0: whatever the value
of 𝜃𝐴 is, this value coincides with 𝑛𝐹

𝐶
, that is the sample size selected under the conditional frequentist approach since

the analysis prior introduces no information. As it is shown in the left panel of Figure 6, when 𝜃𝐴 > 𝜃0, 𝑛𝐶𝐵 assumes
values greater than 𝑛𝐹

𝐶
for 𝑛𝐴 > 0 and grows monotonically with 𝑛𝐴, as a consequence of the higher degree of skepticism

represented by 𝜋𝐴(𝜃). Moreover, as 𝜃𝐴 increases, 𝑛𝐶
𝐵
results to be uniformly larger for any value of 𝑛𝐴. The opposite

situation occurs when 𝜃𝐴 < 𝜃0 as we can see from the right panel of Figure 6: 𝑛𝐶
𝐵
is below 𝑛𝐹

𝐶
for 𝑛𝐴 > 0, decreases as

𝑛𝐴 moves away from 0 and assumes smaller values if the prior mode 𝜃𝐴 decreases. More specifically, we can note that,
when 𝜃𝐴 approaches 0, 𝑛𝐶

𝐵
drops rapidly and reaches 0. This happens when, given the high degree of optimism expressed

by the analysis prior distribution, the conditional Bayesian power is uniformly above the desired threshold 𝛾 = 0.8 for
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S. GENTILE and V. SAMBUCINI 11 of 13

F IGURE 6 Behavior of 𝑛𝐶𝐵 at level 𝛾 = 0.8 as a function of 𝑛𝐴 when 𝜋𝐴(𝜃) expresses skepticism (left panel) or enthusiasm (right panel)
towards the treatment efficacy.

any sample size. Additional computations about the predictive Bayesian approach are available in the online Supporting
Information. These results confirm the tendencies previously observed and show that the Bayesian predictive power can
be interpreted as a generalized power function which contains the other three as specific cases.

4.2 A case study example

Primary immunodeficiency disorders are a group of heterogeneous conditions due to immune systemmalfunctions. As a
result, patients affected by them may suffer from recurrent bacterial infections. A well-established replacement therapy,
especially for primary humoral immunodeficiency, consists of regular administrations of polyclonal immune globulin
preparations of human origin, such as the IGIV (i.e., immune globulin intravenous). In a related Guidance for Indus-
try (2008), FDA recommends assessing the efficacy of investigational IGIV products in open-label, historically controlled
single-arm trials. More specifically, the trial should provide a statistical demonstration that the annual rate of severe bac-
terial infections per patient (to avoid seasonal bias) is less than 1. The sample size should ensure at least 80% power with
one-sided hypothesis testing based on a Type I error rate equal to 0.01. The FDA also underlines that the estimated rate
for patients receiving routine IGIV transfusions is less than 0.5 per year against a historical rate of 4 or more infections
per year before treatment. Examples of applications of this protocol may be found in Wasserman et al. (2011), Stein et al.
(2009), and Hand et al. (2016), who assume that the number of infections is a Poisson distributed variable.
Following these guidelines, we can size the single-arm trial according to 𝜂𝐶

𝐹
(𝑛) by setting 𝜃0 = 1, 𝜃𝐷 = 0.5, 𝛼 = 0.01,

and 𝛾 = 0.8. The corresponding optimal sample size is 𝑛𝐶
𝐹
= 34. Alternatively, since the design value is an estimate based

on historical data, we may consider the hybrid classic-Bayesian approach to account for uncertainty on it. By exploiting
method (ii), a proper design prior centered in 𝜃𝐷 = 0.5 is 𝜋𝐷(𝜃) = gamma(𝜃|17.99, 33.98) and the corresponding optimal
sample size is 𝑛𝑃

𝐹
= 46. Moreover, we may consider the fully Bayesian approaches. Let us suppose that there is some skep-

ticism towards the novel preparation efficacy. This attitude can be incorporated in the SSD procedure, for instance, by
considering the analysis prior 𝜋𝐴(𝜃) = gamma(𝜃|5, 1), which is weakly informative (𝑛𝐴 = 1) and centered on the his-
torical rate of the nontreated 𝜃𝐴 = 4. We set 𝜀 = 0.01 to ensure comparability with the frequentist results. Then, the
corresponding optimal sample sizes at level 𝛾 = 0.8 are 𝑛𝐶

𝐵
= 45 if we consider the conditional approach and 𝑛𝑃

𝐵
= 63

for the predictive one.

5 IMPLEMENTATION

To provide a user-friendly and interactive way to apply the methodologies described in the article, we have implemented
an R Shiny App that is available at the link https://susanna-gentile.shinyapps.io/Poisson_SSD/.
The app allows to compute the optimal sample sizes according to the four power functions, when the focus is on the

count of “negative” (𝐻0 ∶ 𝜃 ≥ 𝜃0) or “positive” (𝐻0 ∶ 𝜃 ≤ 𝜃0) events. Moreover, it is possible to use the conservative cri-
terion, which takes into account the saw-toothed behavior of the power functions or the standard one. Furthermore,
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12 of 13 S. GENTILE and V. SAMBUCINI

the app provides some tools to help selecting the analysis and the design prior distributions properly. In the Supporting
Information of the paper, the contents and the possible usages of the app are described in detail.

6 DISCUSSION

In this paper, we address the problem of exact SSD for single-arm trials based on Poisson data. To overcome the drawbacks
of procedures based on classical power analysis, we exploit analogous criteria based on “hybrid classical Bayesian” or “fully
Bayesian” approaches. The first approach allows to model uncertainty on the design value of the parameter of interest
through the introduction of a design prior distribution, which expresses the scenario under which the trial is planned. The
second approach, instead, also allows to take into account pre-experimental knowledge about the Poisson rate by suitably
specifying an analysis prior distribution. This conceptual distinction between the priors used to formalize uncertainty on
guessed values of the parameter and to represent extra-experimental opinions or information is now becoming more and
more popular in the statistical literature. It represents an essential element of the proposed criteria and some guidelines
for choosing the prior distributions involved are discussed.
The SSD criteria derived are based on exact tests, which are preferred because normal approximations do not work

well especially when the Poisson rate is small (see Ryan, 2013). As a consequence, dealing with discrete distributions
of the data, we obtain that the relationship between the frequentist and Bayesian power functions and the sample size
is not strictly monotonic. Thus, in line with other works (see, for instance, Chernick & Liu, 2002), we suggest to adopt
a conservative criterion that takes into account the sawtooth behavior of the power functions. The idea is to avoid the
paradox of selecting a sample size that meets the required criterion, but the same criterion is no longer fulfilled for a
larger sample size. However, it is fair to point out that there is not a unanimous agreement on the appropriateness of
such an approach (see, for instance, Ryan, 2013, p. 115). Therefore, to let researchers use the criterion they consider more
reasonable, the R Shiny App developed to implement the proposed SSD methods allows to select the optimal sample size
by using both the conservative and the standard approach.
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