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ABSTRACT
Dense associative memories (DAMs) are widely used models in artificial intelligence for pattern recognition tasks; computationally, they have
been proven to be robust against adversarial inputs and, theoretically, leveraging their analogy with spin-glass systems, they are usually treated
by means of statistical-mechanics tools. Here, we develop analytical methods, based on nonlinear partial differential equations, to investigate
their functioning. In particular, we prove differential identities involving DAM’s partition function and macroscopic observables useful for a
qualitative and quantitative analysis of the system. These results allow for a deeper comprehension of the mechanisms underlying DAMs and
provide interdisciplinary tools for their study.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0095411

I. INTRODUCTION
Artificial intelligence (AI) is rapidly changing the face of our society thanks to its impressive abilities in accomplishing complex tasks

and extracting information from nontrivially structured, high-dimensional datasets. The successful applications of modern AI range from
hard sciences and technology to more practical scenarios (e.g., medical sciences, economics and finance, and many daily tasks). Its success
is primarily due to the ascent of deep learning,1,2 a set of semi-heuristic techniques consisting of several minimal building blocks stacked
together in complex architectures with extremely high learning performances. Despite its success, a rigorous theoretical framework guiding
the development of such machine-learning architectures is still lacking. In this context, statistical mechanics of complex systems offers ideal
tools to study neural-network models from a more theoretical (and rigorous) point of view, thus drawing a feasible path that makes AI less
empirical and more explainable.

In statistical mechanics, a primary classification of physical systems is the following. On the one hand, we have simple systems, which
are essentially characterized by the fact that the number of equilibrium configurations does not depend on the system size N. A paradigmatic
(mean-field) realization of this situation is the Curie–Weiss (CW) model in which all the spins σi, i = 1, . . . , N, making up the system interact
pairwise by a constant, positive (i.e., ferromagnetic) coupling J. Below the critical temperature, in fact, the system exhibits ordered collec-
tive behaviors, and the equilibrium configurations of the system are characterized by only two possible values of the global magnetization
m(σ) ∶= 1

N∑
N
i=1 σi (which are further related by a spin-flip symmetry σi → −σi for each i = 1, . . . , N). On the other hand, we have complex

systems in which the number of equilibrium configurations increases according to an appropriate function of the system size N due to the
presence of frustrated interactions.3 The prototypical example of mean-field spin-glass is the Sherrington–Kirkpatrick (SK) model4 in which
the interaction strengths between the spin pairs are i.i.d. Gaussian variables. With respect to simple systems, spin-glass models exhibit a richer
physical and mathematical structure, as shown by the presence of the spontaneous replica-symmetry breaking and an infinite number of phase
transitions (e.g., see Refs. 5–12) as well as the ultrametric organization of pure states (e.g., see Refs. 13–15). Statistical mechanics of spin-glasses
has acquired a prominent role during the last decades due to its ability to describe the equilibrium dynamics of several paradigmatic models
for AI, in particular thanks to the work of Amit, Gutfreund, and Sompolinsky16 on associative neural networks. For our concerns, the relevant
ones are the Hopfield model17,18 and its p-spin extensions, the Dense Associative Memories (DAMs),19–21 exhibiting features that are peculiar
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to both ferromagnetic (simple) and spin-glass (complex) systems. In these models, the interactions between the spins are designed in order
to store K “information patterns” denoted by {ξμ

}μ=1,...,K , where ξμ
= (ξμ

1 , ξμ
2 , . . . , ξμ

N) ∈ {−1,+1}N and ξμ
i is a Rademacher random variable

for any i = 1, . . . , N and μ = 1, . . . , K; the μ-th pattern is said to be stored if the configuration σ = ξμ is an equilibrium state and the relaxation
to this configuration, starting from a relatively close one (i.e., a corrupted version of ξμ), is interpreted as the retrieval of that pattern. The
Hamilton function (or the energy in physics jargon) of these systems can be expressed as

HN,p(σ)∝ −
K

∑
μ=1
(mμ(σ))p,

where p is the interaction order (for the Hopfield model p = 2, while p > 2 for the DAMs) and mμ(σ) ∶= 1
N∑

N
i=1ξμ

i σi is the so-called Mattis
magnetization measuring the retrieval of the μ-th pattern. It has been shown that the number of storable patterns scales, at most as a function
of the system size, more precisely K < αc(p)Np−1, where αc(p) ∈ R, depends on the interaction order p and is referred to as critical storage
capacity.22,23 By a statistical-mechanics investigation of these models, one can highlight the macroscopic observables (order parameters) useful
to describe the overall behavior of the system, i.e., to assess whether it exhibits retrieval capabilities, and the natural control parameters whose
tuning can qualitatively change the system behavior; such knowledge can then be summarized in phase diagrams.

Regarding the methods, we can rely on a wide set of techniques for analyzing the equilibrium dynamics of complex systems and, in
particular, to solve for their free energy. Historically, the first method (which was applied to the SK model and the Hopfield model16,24)
is the replica trick, which—despite being straightforward and effective—is semi-heuristic and suffers from delicate points, see for example
Ref. 25. Alternatively, rigorous approaches have also been developed and, among these, the relevant one for our concerns is Guerra’s interpo-
lating framework. In this case, we can take advantage of rigorous mathematical methods by applying sum rules26 or by mapping the relevant
quantities (the free energy or the model order parameters) of the statistical setting to the solutions of PDE systems. Indeed, differential equa-
tions involving the partition functions (or related quantities) of thermodynamic models have been extensively investigated in the literature,
see for example Refs. 27–37. In particular, they allow us to express the equation of state governing the equilibrium dynamics of the system
in terms of solutions of nonlinear differential equations and to describe phase transition phenomena as a development of shock waves, thus
linking critical behaviors to gradient catastrophe theory.38–41 In a recent study,36 a direct connection between the thermodynamics of ferro-
magnetic models with interactions of order p and the equations of the Burgers hierarchy was established by linking the solution of the latter to
the equilibrium solution of the order parameter of the former (i.e., the global magnetization m). In the present paper, we extend these results
to complex models, in particular, to the Hopfield model and the DAMs.

The paper is organized as follows: In Sec. II, we introduce the relevant tools for our investigations, in particular Guerra’s interpolating
scheme for the PDE duality. In Sec. III, as a warm up, we review some basic results about the p-spin ferromagnetic models. In Sec. IV, we
extend our results to the Derrida model (constituting the p-spin extension of the SK spin glass).42 In Sec. V, we merge our results in a unified
methodology for dealing with the DAMs, especially in the so-called high-storage limit, and re-derive the self-consistency equations for the
order parameters by means of PDE technology.

II. GENERALITIES AND NOTATION
In this section, we present the thermodynamic objects we aim to study. We start with a system made up of N spins whose configurations

σ ∈ ΣN ≡ {−1,+1}N are the nodes of a hypercube and that interact via a suitable tensor J of order p. The Hamilton functions of the system we
will consider in this paper are of the form

HN,p,J(σ) = −
1

Dp,N,J

N

∑
i1 ,...,ip=1

Ji1 ,i2 ,...,ip σi1 σi2 . . . σip , (2.1)

where Dp,N,J is a normalization factor ensuring the linear extensivity of the energy with the system size. Once the Hamiltonian is fixed, we
introduce the partition function in the usual Boltzmann–Gibbs form. Thus, given β ∈ R+ the level of thermal noise of the system, the partition
function is defined as

ZN,p,J(β) ∶= ∑
σ∈ΣN

exp[−βHN,p,J(σ)]. (2.2)

As is standard in statistical mechanics, it is convenient to compute intensive quantities that are well-defined in the thermodynamic limit
N →∞. Since the partition function is a sum of 2N contribution, it is sufficient to take the intensive logarithm of the partition function, i.e.,

AN,p,J(β) ∶=
1
N

log ZN,p,J(β),

which is the intensive statistical pressure (which, apart from a factor −β, is the usual free energy) of the system. When dealing with spin-
glass systems, the coupling tensor J is a multidimensional random variable, thus the partition function defines a random measure on the
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configuration space. For good enough probability distributions of the coupling matrix, the intensive logarithm of the partition function is
expected to converge to its expectation value in the thermodynamic limit N →∞ by virtue of self-averaging theorems,43,44 so it is natural to
consider the quenched intensive pressure associated with the partition function (2.2), which is defined as

AN,p(β) ∶=
1
N
EJ log ZN,p,J(β), (2.3)

where EJ denotes the average over the quenched disorder J (we stress that, in this case, the free energy does not depend any longer on the
coupling matrix because of the average operation).

Rather than working with the quantity (2.2), we will use as a fundamental object Guerra’s interpolating partition function and its
associated interpolating intensive pressure. For instance, for spin-glass systems, we would have

ZN,p,J(t, x) ∶= ∑
σ∈ΣN

exp[−HN,p,J(t, x)],

AN,p(t, x) ∶=
1
N
EJ log ZN,p,J(t, x),

(2.4)

where HN,p,J(t, x) denotes the interpolating Hamiltonian satisfying the properties such that (1) at x = 0 and t ≠ 0, it recovers the Hamiltonian
(2.1) times β, and (2) at t = 0 and x ≠ 0, it corresponds to an exactly-solvable one-body system—a system where spins interact only with
an external field that has to be set a posteriori. The interpolating parameters t and x are interpreted, in a mechanical analogy, as spacetime
coordinates with suitable dimensionality.

The interpolating structure (2.4) implies a generalized measure, whose related Boltzmann factor is

BN,p,J(t, x) ∶= exp[−HN,p,J(t, x)]. (2.5)

Thus, for an arbitrary observable O(σ) in the configuration space ΣN , we can introduce the Boltzmann average induced by the partition
function (2.4) as

ωt,x(O) ∶=
1

ZN,p,J(t, x) ∑σ∈ΣN

O(σ)BN,p,J(t, x). (2.6)

Usually, in spin-glass systems, the quenched average is performed after taking the Boltzmann expectation values on the s-replicated space
Σ(s)N = (ΣN)

⊗s
≡ {−1,+1}sN , which is naturally endowed with a random Gibbs measure corresponding to the partition function Z(s)N,p,J(t, x)

= ZN,p,J(t, x)s. Given a function O : Σ(s)N → R, the Boltzmann average in the s-replicated space is straightforwardly defined as

Ω(s)t,x (O) ∶=
1

Z(s)N,p,J(t, x)
∑

σ∈Σ(s)
N

O(σ)B(s)N,p,J(t, x),

where σ ∈ Σ(s)N is the global configuration of the replicated system and B(s)N,p,J(t, x) is the Boltzmann factor associated with the s-replicated
partition function. Of course, in spin-glass theory, the relevant quantities are the quenched expectation values, which are defined as

⟨O⟩t,x ∶= EJ Ω(s)t,x (O). (2.7)

For the sake of simplicity, we drop the index s from the quenched averages, as it would be clear from the context.
With all these definitions in mind, we are then able to find the link between the resolution of the statistical mechanics of a given spin-

like model and a specific PDE problem in the fictitious space (t, x). Before concluding this section, it is worth recalling that here we will
work under the replica-symmetry (RS) assumption, meaning that we assume the self-averaging property for any order parameter X, i.e., the
fluctuations around their expectation values vanish in the thermodynamic limit. In distributional sense, this corresponds to

lim
N→∞

Pt,x(X) = δ(X − X̄), (2.8)

where X̄ = ⟨X⟩t,x is the expectation value with respect to the interpolating measure Pt,x(X). Typically, for simple systems, this assumption is
correct. However, for complex systems, this is not always the case; for instance, in spin-glasses, the RS is broken at low temperature.3 When
dealing with neural-network models, RS constitutes a standard working assumption as it usually applies (at least) in a limited region of the
parameter space, while elsewhere it yields only small quantitative discrepancies with respect to the exact solution.45,46 The latter, accounting
for RSB phenomena, can be obtained by iteratively perturbing the RS interpolation scheme (e.g., see Refs. 37, 47, and 48); thus, our results
find direct application on the practical side and provide the starting point for further refinements on the theoretical side.
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The models that shall be addressed in the next sections display Hamiltonian functions (2.1) that only differ in the choice of the tensor
J: We will start with the simplest case in which the interaction strength between the spins is homogeneous (i.e., Ji1 ,i2 ,...,ip = J ∈ R+); then, we
will move to a more complex system, the Derrida model, where the interaction strength is randomly drawn (i.e., Ji1 ,i2 ,...,ip ∼ N (0, 1)), finally
ending with DAMs in which J is a tensorial generalization of the standard Hebbian storing rule, where the K patterns {ξμ

}μ=1,..,K are allocated
(i.e., Ji1 ,i2 ,...,ip = N1−p

∑
K
μ=1ξμ

i1
. . . ξμ

ip
).

Our main results consist in proving that, i, the expectation value of the order parameter of the Derrida model is nothing but the solution
of the p-th Burgers hierarchy, in the inviscid limit and under appropriate initial conditions, ii. for DAMs networks, the expectation values of
the order parameters satisfy a system of PDEs with Burgers-hierarchy-like structure.

III. p -SPIN FERROMAGNETIC MODELS: HOW TO DEAL WITH SIMPLE SYSTEMS
The present section is a compendium of the results reported in Ref. 36, so we refer to that work for a detailed derivation. In p-spin

ferromagnets, the interaction between spins is fixed by the requirement Ji1 ,i2 ,...,ip = J for each i1, . . . , ip = 1, . . . , N and J > 0; without loss of
generality, one can set J = 1, since it corresponds to a rescaling of the thermal noise. Thus, the Hamilton function of the model simply
reads as

HN,p(σ) ∶= −
1

Np−1

N

∑
i1 ,...,ip=1

σi1 . . . σip = −N(m(σ))p, (3.1)

with

m(σ) ∶=
1
N∑i

σi

being the global magnetization of the system. By following the same lines of Ref. 36, Guerra’s interpolating partition function reads

ZN,p(t, x) = ∑
σ∈ΣN

exp(−HN,p(t, x)), (3.2)

HN,p(t, x) = tNm(σ)p
−Nxm(σ), (3.3)

where (t, x) ∈ R2. The starting point is to notice that the interpolating statistical pressure associated with the partition function (3.2) has
spacetime derivatives given by

∂tAN,p(t, x) = −ωt,x(m(σ)p
), (3.4)

∂xAN,p(t, x) = ωt,x(m(σ)). (3.5)

The expectation value of monomials of the global magnetization satisfies the following relation:36

∂xωt,x(m(σ)s
) = N(ωt,x(m(σ)s+1

) − ωt,x(m(σ)s
)ωt,x(m(σ))). (3.6)

This means that we can act on the expectation value ωt,x(m(σ)) to generate higher momenta. In particular, calling u(t, x) = ωt,x(m(σ)) and
setting s = p − 1, we directly get the Burgers hierarchy,

∂tu(t, x) + ∂x(
1
N
∂x + u(t, x))

p−1
u(t, x) = 0. (3.7)

This duality also allows us to analyze the thermodynamic limit, corresponding to the inviscid scenario for the Burgers hierarchy. Indeed,
posing ū(t, x) = limN→∞ u(t, x) = limN→∞ ωt,x(m(σ)), we have the initial value problem

⎧⎪⎪
⎨
⎪⎪⎩

∂tū(t, x) + pū(t, x)p−1∂xū(t, x) = 0,

ū(0, x) = tanh(x),
(3.8)

where the initial profile is easily computed by straightforward calculations since it is a one-body problem. This system describes the propaga-
tion of nonlinear waves, and it can be solved by assuming a solution in implicit form ū(t, x) = tanh(x − v(t, x)t), where v(t, x) = pū(t, x)p−1 is
the effective velocity. Recalling that the thermodynamics of the original p-spin model associated with the Hamilton function (3.1) is recovered
by setting t = −β and x = 0, we directly obtain
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m̄ = tanh(βpm̄ p−1
), (3.9)

where m̄ = ū(−β, 0). This is precisely the self-consistency equation for the global magnetization for the p-spin ferromagnetic model.36 The
phase transition of the system is expected to take place where the gradient of the solution explodes, which, on the Burgers side, corresponds to
the development of a shock wave at x = 0. Since the temporal coordinate t is directly related to the thermal noise at which the phase transition
occurs, with standard PDE methods, we can analytically determine the critical temperature according to the simple system

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ξ̄ =
F(ξ̄)
F′(ξ̄)

,

Tc = F′(ξ̄),

where F(ξ) = p tanh(ξ)p−1. This prediction is in perfect agreement with the numerical solutions of the self-consistency Eq. (3.9).

IV. DERRIDA MODEL: HOW TO DEAL WITH COMPLEX SYSTEMS
In this section, we adapt the previous methodologies to treat complex systems with p-spin interactions. The paradigmatic case is given

by the p-spin SK model, also referred to as Derrida model, defined below.

Definition 1. Let σ be the generic point in the configuration space ΣN ≡ {−1,+1}N of the system. Let J be a p-rank random tensor with i.i.d.
entries Ji1...ip ∼ N (0, 1). The Hamilton function of the p-spin Derrida model is defined as

HN,p,J(σ) = −
√

p!
2Np−1

N

∑
1≤i1<⋅ ⋅ ⋅<ip≤N

Ji1...ip σi1 . . . σip. (4.1)

Remark 1. For p = 2, we recover the Sherrington–Kirkpatrick model.4

Remark 2. In the usual definition of the p-spin SK model, the sum is performed with the constraint 1 ≤ i1 < i2 < . . . ip ≤ N like in (4.1).
Beyond that formulation, it is possible to consider an alternative one, where summation is realized independently over all the indices, the
difference between the two expressions being vanishing in the thermodynamic limit, that is,

∑
1≤i1<⋅ ⋅ ⋅<ip≤N

(⋅) =
1
p!

N

∑
i1 ,...,ip=1

(⋅) + contributions vanishing as N →∞. (4.2)

Since we are interested in the thermodynamic limit, we will often use the equality

∑
1≤i1<⋅ ⋅ ⋅<ip≤N

(⋅) =
1
p!

N

∑
i1 ,...,ip=1

(⋅), (4.3)

holding in the N →∞ limit.

Definition 2. Given (t, x) ∈ R2 and given a family {Ji}
N
i=1 of i.i.d. N (0, 1)-distributed random variables, Guerra’s interpolating partition

function for the p-spin SK model is

ZN,p,J(t, x) = ∑
σ∈ΣN

exp(−HN,p,J(t, x)), (4.4)

HN,p,J(t, x) = −

√
tp!

2Np−1

N

∑
1≤i1<⋅ ⋅ ⋅<ip≤N

Ji1...ip σi1 . . . σip −
√

x
N

∑
i=1

Jiσi. (4.5)

The Boltzmann factor associated with this partition function is denoted with BN,p,J(t, x).

As stated in Sec. I, when dealing with spin-glasses, we need to enlarge our analysis to the s-replicated version of the configuration space.
To this aim, we use the following.
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Definition 3. Let Σ(s)N = (ΣN)
⊗s
≡ {−1,+1}sN be the s-replicated configuration space. We denote with σ = (σ1, . . . , σs

) ∈ Σ(s)N the global
configuration of the replicated system. The space Σ(s)N is naturally endowed with the s-replicated Boltzmann–Gibbs measure associated to the
partition function

Z(s)N,p,J(t, x) = ∑
σ∈Σ(s)

N

exp
⎛

⎝

√
tp!

2Np−1

s

∑
a=1

N

∑
1≤i1<⋅ ⋅ ⋅<ip≤N

Ji1...ip σ(a)i1
. . . σ(a)ip

+
√

x
s

∑
a=1

N

∑
i=1

Jiσ(a)i
⎞

⎠
. (4.6)

We will denote with B(s)N,p,J(t, x) the Boltzmann factor appearing in the s-replicated partition function. Given an observable O : Σ(s)N → R on the
replicated space, the Boltzmann average with respect to the s-replicated partition function is

Ω(s)t,x (O) =
∑σ O(σ)B(s)N,p,J(t, x)

∑σ B(s)N,p,J(t, x)
. (4.7)

Remark 3. The thermodynamics of the original model is recovered with t = β2 and x = 0.

Remark 4. Since the replicas are independent, Z(s)N,p,J(t, x) ≡ (ZN,p,J(t, x))s.

In the following, in order to lighten the notation, the replica index s of the Boltzmann average Ω(s)t,x can be dropped, since it is understood
directly from the function to be averaged.

Definition 4. Given an observable O : Σ(s)N → R on the replicated space, the quenched average is defined as

⟨O⟩t,x = EJ Ωt,x(O). (4.8)

Remark 5. In the last definition, the average EJ is again the expectation value performed over all the quenched disorder, thus including the
auxiliary random variables in the interpolating setup.

Definition 5. The order parameter for the p-spin SK model is the replica overlap

qab =
1
N

N

∑
i=1

σ(a)i σ(b)i , (4.9)

where σ(a) and σ(b) are two generic configurations of different replicas of the system labeled, respectively, a and b.

We can now focus on the PDE approach to the statistical mechanics of the p-spin SK model. The final goal is to prove the following
theorem.

Theorem 1. The expectation value of the order parameter for the p-spin Derrida model under the RS ansatz is given by the function
q̄(β) = u(β2, 0), where u(t, x) is the solution of the inviscid limit of the p-th element Burgers hierarchy with initial profile (4.32), i.e.,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∂tu(t, x) −
1
2
∂xup
(t, x) = 0,

u(0, x) = EJ tanh2
(
√

xJ).
(4.10)

To this aim, it is necessary to first prove some preliminary properties, as detailed below.

Definition 6. For all p ≥ 2, Guerra’s action functional is defined as

SN,p(t, x) = 2AN,p(t, x) − x −
t
2

. (4.11)

Lemma 1. The spacetime derivatives of Guerra’s action functional read as follows:

∂tSN,p(t, x) = −
1
2
⟨qp

12⟩t,x + RN(t, x), (4.12)
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∂xSN,p(t, x) = −⟨q12⟩t,x, (4.13)

where RN(t, x) takes into account the contributions coming from (4.2) and vanishing in the N →∞ limit.

The proof of this lemma can be found in Appendix A.

Lemma 2. Given an observable O : Σ(s)N → R on the replicated space, the following streaming equation holds:

∂x⟨O(σ)⟩t,x =
N
2

s

∑
a,b=1
⟨O(σ)qab⟩t,x − sN

s

∑
a=1
⟨O(σ)qa,s+1⟩t,x

−
s
2

N⟨O(σ)⟩t,x +
s(s + 1)

2
⟨O(σ)qs+1,s+2⟩t,x. (4.14)

Proof. The proof is long and rather cumbersome, so we will just give a sketch. First of all, we recall that

⟨O(σ)⟩t,x = EJ
1

ZN,p,J(t, x)s ∑

σ∈Σ(s)
N

O(σ)B(s)N,p,J(t, x). (4.15)

When taking the x-derivative of this quantity, we will get two contributions: the first one follows from the derivative of B(s)N,p,J(t, x) and the
second one follows from the derivative of 1/Zs

N,p,J (which results in adding a new replica). In quantitative terms,

∂x⟨O(σ)⟩t,x =
1

2
√

x
EJ
⎛

⎝

s

∑
a=1

N

∑
i=1

Ji
1

ZN,p,J(t, x)s∑
σ(1)

. . .∑
σ(s)

O(σ)σ(a)i B(s)N,p,J(t, x)

− s
N

∑
i=1

Ji
1

ZN,p,J(t, x)s+1∑
σ(1)

. . . ∑
σ(s+1)

O(σ)σ(s+1)
i B(s+1)

N,p,J (t, x)
⎞

⎠
. (4.16)

The presence of Ji in both terms of the right-hand side can be carried out by applying the Wick–Isserlis theorem. Then, each Ji-derivative
results in two different contributions that can be recast as the difference of two s-replicated Boltzmann averages (in fact, notice that the
action of the derivative on the denominators involving the partition functions results in the appearance of a replicated Boltzmann factor).
Furthermore, the explicit x-dependence of the derivative precisely cancels out (since the Ji-derivative will produce factors proportional to
√

x). After all these passages, and remembering ⟨⋅⟩t,x = EJ Ωt,x(⋅), we get

∂x⟨O(σ)⟩t,x =
1
2

s

∑
a,b=1

N

∑
i=1
⟨O(σ)σ(a)i σ(b)i ⟩t,x −

s
2

s

∑
a=1

N

∑
i=1
⟨O(σ)σ(a)i σ(s+1)

i ⟩t,x

−
s
2

s+1

∑
s=1

N

∑
i=1
⟨O(σ)σ(a)i σ(s+1)

i ⟩t,x +
s(s + 1)

2

N

∑
i=1
⟨O(σ)σ(s+1)

i σ(s+2)
i ⟩t,x. (4.17)

Recalling Definition 5 and after some rearrangements of the quantities, we get the thesis. ◻

In order to proceed, we have now to make some physical assumptions on the model. As standard in spin-glass theory, the simplest
requirement is the RS in the thermodynamic limit. In fact, as we are going to show, this makes the PDE approach feasible due to the fact that
we can express nontrivial expectation values of functions of the replicas in a very simple form.

Proposition 1. For the interpolated Derrida model (4.4) and (4.5), the following equality holds:

⟨qp
12⟩t,x = (

1
N
∂x + ⟨q12⟩t,x)

p−1
⟨q12⟩t,x +Q(p−1)

N (t, x), (4.18)

where Q(p−1)
N (t, x) vanishes in the N →∞ limit and under the RS assumption.

Proof. Let us consider the x-derivative of ⟨q12⟩ and try to rearrange the first contribution as follows:

⟨ql
12q23⟩t,x = ⟨ql

12Δ(q23)⟩t,x + ⟨q23⟩t,x⟨ql
12⟩t,x, (4.19)
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where Δ(qab) = qab − ⟨qab⟩t,x ∀a, b is the fluctuation of the overlap with respect to its thermodynamic value. Furthermore,

⟨ql
12q23⟩t,x = ⟨Δ(ql

12)Δ(q23)⟩t,x + ⟨ql
12⟩t,x⟨Δ(q23)⟩t,x + ⟨q23⟩t,x⟨ql

12⟩t,x

= ⟨q12⟩t,x⟨ql
12⟩t,x + R(1,l)

N (t, x), (4.20)

where R(1,l)
N (t, x) represents the terms involving the fluctuation functions of the overlap. In the last equality, we also used the fact that ⟨q23⟩t,x

= ⟨q12⟩t,x since the average is independent of the labeling of replicas.
We now notice that, by using O(σ) = ql

12 in Lemma 2, we reach the following equality for each l ∈ N:

∂x⟨ql
12⟩t,x = N(⟨ql+1

12 ⟩t,x − 4⟨ql
12q23⟩t,x + 3⟨ql

12q34⟩t,x), (4.21)

and for the last contribution in the right-hand side, we can apply an expansion analogous to (4.20),

⟨ql
12q34⟩t,x = ⟨q12⟩t,x⟨ql

12⟩t,x + R(2,l)
N (t, x). (4.22)

Thus, combining (4.20)–(4.22), we finally get

⟨ql+1
12 ⟩t,x =

1
N
∂x⟨ql

12⟩t,x + ⟨q12⟩t,x⟨ql
12⟩t,x + R(l)N (t, x), (4.23)

where R(l)N (t, x) = 4R(1,l)
N (t, x) − 3R(2,l)

N (t, x). We can then express higher moments of the overlap in terms of lower ones,

⟨ql+1
12 ⟩t,x = (

1
N
∂x + ⟨q12⟩t,x)⟨ql

12⟩t,x + R(l)N (t, x). (4.24)

Iterating this procedure from l = 1 up to l = p − 1, we obtain

⟨qp
12⟩t,x = (

1
N
∂x + ⟨q12⟩t,x)

p−1
⟨q12⟩t,x +Q(p−1)

N (t, x), (4.25)

where Q(p−1)
N (t, x) collects all the terms involving R(l)N (t, x) and, thus, vanishes in the N →∞ limit. ◻

At this point, we have at our disposal all the ingredients needed for making explicit our approach. Using (4.25) in (4.12), we get

∂tSN,p(t, x) = −
1
2
(

1
N
∂x + ⟨q12⟩t,x)

p−1
⟨q12⟩t,x + RN(t, x) −

1
2

Q(p−1)
N (t, x). (4.26)

Deriving (4.26) with respect to the spatial coordinate x, we have

∂t∂xSN,p(t, x) = −
1
2
∂x(

1
N
∂x + ⟨q12⟩t,x)

p−1
⟨q12⟩t,x + VN(t, x),

where VN(t, x) ∶= −∂x(RN(t, x) − 1
2 Q(p−1)

N (t, x)) is vanishing in the N →∞ limit. Then, recalling Eq. (4.13), we can write the following
equation:

∂t⟨q12⟩t,x −
1
2
∂x(

1
N
∂x + ⟨q12⟩t,x)

p−1
⟨q12⟩t,x = VN(t, x). (4.27)

On the lhs, we recognize a Burgers hierarchy structure, while on the rhs, we have a source term (which further vanishes in the thermodynamic
limit).

We are finally ready to prove Theorem 1, as reported hereafter.

Proof 1. By taking the limit of Eq. (4.27) for N →∞ and recalling that VN(t, x)→ 0 for N →∞, we get

∂tu(t, x) −
1
2
∂xup
(t, x) = 0, (4.28)
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where u(t, x) ∶= limN→∞⟨q12 ⟩t,x. The initial profile of the Cauchy problem associated with the PDE (4.28) is easily determined, since for t = 0,
the partition function reduces to a one-body problem. Thus, we have to compute u(0, x) = limN→∞ ⟨q12⟩0,x. To achieve this aim, we start from
the partition function evaluated at t = 0, which is

ZN,p,J(0, x) =∑
σ

exp(
√

x
N

∑
i=1

Jiσi) =
N

∏
i=1

2 cosh(
√

xJi). (4.29)

Taking the logarithm and averaging over the quenched disorder J, we have the intensive pressure,

AN,p(0, x) =
1
N
EJ log

N

∏
i=1

2 cosh(
√

xJi) = log 2 +
2
N

N

∑
i=1

EJ log cosh(
√

xJi). (4.30)

Recalling that Guerra’s action is defined as in (4.11) and that the Ji are i.i.d., so the sum of quenched averages of functions of Ji is N times the
average with respect to a single quenched variable J ∼ N (0, 1), we get

SN(0, x) = 2 log 2 + 2EJ log cosh(
√

xJ) − x. (4.31)

Finally, taking the derivative with respect to the spatial coordinate, we have the initial profile for the overlap expectation value, which reads

u(0, x) = lim
N→∞

⟨q12⟩0,x = EJ tanh2
(
√

xJ). (4.32)

Here, we again used the Wick–Isserlis theorem for normally distributed random variables. Putting together (4.28) and (4.10), we get the
thesis. ◻

Corollary 1. The implicit solution of the inviscid Burgers hierarchy (4.10) is the self-consistency equation for the order parameter q̄(β) for
the p-spin model under the RS ansatz.

Proof. Let us rewrite the differential Eq. (4.10) as

∂tu −
p
2

up−1∂xu = 0. (4.33)

This is a nonlinear wave equation and, as well-known, it admits a solution of the form u(t, x) = u0(x − v(t, x)t), where u0 is the initial profile
and v(t, x) is the effective velocity. For the case under consideration, we have v(t, x) = − p

2 up−1
(t, x); thus,

u(t, x) = EJ tanh2
(

√

x + t
p
2

u(t, x)p−1J). (4.34)

Recalling that q̄(β) = u(β2, 0), we finally have

q̄ = EJ tanh2
(β
√

p
2

q̄ p−1J), (4.35)

which is precisely the self-consistency equation for the p-spin glass model, as reported also in Ref. 27. ◻

Corollary 2. The (ergodicity breaking) phase transition of the p-spin model coincides with the gradient catastrophe of the Cauchy problem
(4.10), and the critical temperature is determined by the system parameters,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Tc =

√

−F′(ξ̄),

ξ̄ =
F(ξ̄)
F′(ξ̄)

,
(4.36)

where F(ξ) = − p
2EJ tanh2

(
√

xJ).

Proof. The determination of the critical temperature can be achieved with the usual analysis of intersecting characteristics of the Cauchy
problem (4.10), and follows the same lines of Ref. 36. ◻

As a comparison, in Fig. 1, we reported the solutions of the self-consistency Eq. (4.35) for p = 2, . . . , 8 (solid curves) and the critical
temperatures as predicted by the system (4.36) (dashed lines).
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FIG. 1. Solutions of the self-consistency Eq. (4.35) for p = 2, . . . , 8 (solid curves) and the critical temperatures as predicted by the system (4.36) (dashed lines).

V. APPLICATION TO DENSE ASSOCIATIVE MEMORIES
Going beyond the pure spin-glass case, in this section, we will approach the DAMs that constitute a generalization of the Hopfield model

where neurons are embedded on hyper-graphs of order p, in such a way that they interact in groups of p units and the Hopfield reference is
recovered for p = 2. These systems are the main focus of this work.

Definition 7. Let σ be the generic point in the configuration space ΣN ≡ {−1,+1}N of the system. Given K random patterns {ξμ
}

K
μ=1 each

made of N i.i.d. binary entries drawn with equal probability P(ξμ
i = −1) = P(ξμ

i = 1) = 1
2 ∀i = 1, . . . , N, the Hamiltonian of the p-th order

DAM is

HN,p,ξ,K(σ) ∶= −
1

Np−1

K

∑
μ=1

N

∑
i1 ,...,ip

ξμ
i1
. . . ξμ

ip
σi1 . . . σip. (5.1)

Remark 6. The normalization factor 1
Np−1 ensures the linear extensivity of the Hamiltonian, in the volume of the network N, i.e.,

limN→∞∣
HN,p,ξ,K

N ∣ ∈ (0,+∞).

As anticipated in Sec. I, DAMs have been proved to exhibit high computational skills.21–23 Among these, we recall that they are able
to store a number of patterns K scaling as K ∼ Np−122,23 and that, if supplied with a relatively small number of patterns, they can retrieve
them also in the presence of additional and extensive sources of noise.21,49 In general, the network performance can be split into two regimes:
(1) the low-load one, where limN→∞

K
Np−1 = 0, and (2) the high-storage one, where limN→∞

K
Np−1 > 0; in the following, we will address both

of them.

A. Low storage
Let us begin the analysis of the network in a low-load regime, setting the number of stored patterns as finite. Again, the goal is to use

interpolation techniques and derive PDEs able to describe the thermodynamics of the system. To do this, let us start by defining the below
quantity.

Definition 8. The order parameters used to describe the macroscopic behavior of the model are the so-called Mattis magnetizations,
defined as

mμ(σ) ∶=
1
N

N

∑
i=1

ξμ
i σi ∀μ = 1, . . . , K, (5.2)

measuring the overlap between the network configuration and the stored patterns.

Remark 7. The Hamilton function (5.1) in terms of the Mattis magnetizations is

HN,p,ξ,K(σ) = −N
K

∑
μ=1
(mμ(σ))p.
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Next, we define the basic objects of our investigations within the interpolating framework.

Definition 9. Given (t, x) ∈ RK+1, the spacetime Guerra’s interpolating partition function for the DAM model (in the low-load regime)
reads as

ZN,p,ξ,K(t, x) = ∑
σ∈ΣN

exp(−HN,p,ξ,K(t, x)), (5.3)

HN,p,ξ,K(t, x) = tN
K

∑
μ=1

mμ(σ)p
−N

K

∑
μ=1

xμmμ(σ). (5.4)

Remark 8. The spacetime Guerra’s interpolating partition function recovers the one related to the DAM by setting t = −β and x = 0.

We recall that, for the CW model, the Guerra mechanical analogy consists in interpreting the statistical pressure as the Burgers hierarchy
describing the motion of viscid nonlinear waves in 1 + 1-dimensional space. In the case of the DAMs, we have K Mattis magnetizations, and
the dual mechanical system describes nonlinear waves traveling in a K + 1-dimensional space.

Definition 10. For each configuration σ ∈ ΣN of the system, the Boltzmann factor corresponding to the partition function (5.3) is

BN,p,ξ,K(t, x) = exp
⎛

⎝
−tN

K

∑
μ=1

mμ(σ)p
+N

K

∑
μ=1

xμmμ(σ)
⎞

⎠
. (5.5)

Lemma 3. The first-order spacetime derivatives of the Guerra intensive pressure associated to the partition function (5.3) read as

∂tAN,p,ξ,K(t, x) = −
K

∑
μ=1

ωt,x(mμ(σ)p
), (5.6)

∂μAN,p,ξ,K(t, x) = ωt,x(mμ(σ)), (5.7)

where ∂μ ∶= ∂xμ .

Proof. Recalling the definition of the intensive pressure AN,p,ξ,K(t, x) = 1
N log ∑σ∈ΣN

BN,p,ξ,K(t, x), along with Eq. (5.5), the proof follows
straightforward computations. The temporal derivative reads

∂tAN,p,ξ,K(t, x) =
1
N

Z−1
N,p,ξ,K(t, x)∑

σ∈ΣN

⎛

⎝
−N

K

∑
μ=1

mμ(σ)p⎞

⎠
BN,p,ξ,K(t, x) = −

K

∑
μ=1

ωt,x(mμ(σ)p
),

while the spatial derivative reads

∂μAN,p,ξ,K(t, x) =
1
N

Z−1
N,p,ξ,K(t, x)∑

σ∈ΣN

(Nmμ(σ))BN,p,ξ,K(t, x) = ωt,x(mμ(σ)).

◻

Proposition 2. The higher (non-centered) momenta of the Mattis magnetizations are realized as

ωt,x(ms+1
μ ) = (

1
N
∂μ + ωt,x(mμ))ωt,x(ms

μ), (5.8)

for each integer s ≥ 1.

Proof. We start by computing the spatial derivative of the Mattis magnetizations expectation value,

∂νωt,x(ms
μ) = ∂ν

⎛

⎝
Z−1

N,p,ξ,K(t, x)∑
σ∈ΣN

mμ(σ)sBN,p,ξ,K(t, x)
⎞

⎠

= NZ−1
N,p,ξ,K(t, x)∑

σ∈ΣN

mμ(σ)smν(σ)BN,p,ξ,K(t, x)

−NZ−1
N,p,ξ,K(t, x)∑

σ∈ΣN

mμ(σ)sBN,p,ξ,K(t, x) ⋅ Z−1
N,p,ξ,K(t, x) ∑

σ′∈ΣN

mν(σ′)BN,p,ξ,K(t, x)

= Nωt,x(ms
μmν) −Nωt,x(ms

μ)ωt,x(mν).
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In particular, for ν = μ, we have
∂μωt,x(ms

μ) = N[ωt,x(ms+1
μ ) − ωt,x(ms

μ)ωt,x(mμ)].

Expressing the higher order moment in terms of the other quantities, we reach the thesis. ◻

By calling u(s)μ (t, x) ∶= ωt,x(mμ(σ)s
), we can express all u(s)μ (t, x) in terms of u(1)μ (t, x) ∶= uμ(t, x) for each s > 1. Indeed,

u(s+1)
μ (t, x) = (

1
N
∂μ + uμ(t, x))u(s)μ (t, x) = (

1
N
∂μ + uμ(t, x))

s
uμ(t, x). (5.9)

To simplify the notation, we define the operator Dμ ∶=
1
N ∂μ + uμ(t, x).

Theorem 2. The expectation value of the Mattis magnetizations of the interpolated DAM model (5.3) and (5.4) satisfies the nonlinear
evolutive equations given by

∂tuμ(t, x) = −
K

∑
ν=1

∂μDp−1
ν uν(t, x). (5.10)

Proof. First, we put s = p − 1 in (5.9) so that
u(p)ν (t, x) = Dp−1

ν uν(t, x).

Now, recall that u(p)ν (t, x) = ωt,x(mν(σ)p
) and ∂tAN,p,ξ,K(t, x) = −∑K

μ=1 ωt,x(mμ(σ)p
); thus,

∂tAN,p,ξ,K(t, x) = −
K

∑
ν=1

u(p)ν (t, x) = −
K

∑
ν=1

Dp−1
ν uν(t, x).

Taking the derivative ∂μ, commuting ∂t and ∂μ and recalling that ∂μAN,p,ξ,K(t, x) = ωt,x(mμ(σ)) = uμ(t, x), we directly reach the thesis. ◻

Before proceeding, it is useful to recall that the evolutive Eq. (5.10) can be linearized by means of the Cole–Hopf transform. In fact,
performing the multidimensional Cole–Hopf transform uμ(t, x) = 1

N ∂μ(log Ψ), we have

1
N
∂t
∂μΨ

Ψ
= −

1
Np

K

∑
ν=1

∂μ(∂μ +
∂μΨ

Ψ
)

p−1 ∂μΨ
Ψ

,

and by using the basic identities

(∂μ +
∂μΨ

Ψ
)

s ∂μΨ
Ψ
=
∂s+1

μ Ψ
Ψ

,

∂t
∂μΨ

Ψ
= ∂μ

∂tΨ
Ψ

,

we have

∂μ(
∂tΨ
Ψ
+

K

∑
ν=1

∂
p
μΨ
Ψ
) = 0.

Setting the argument of the spatial derivative to zero and assuming Ψ ≠ 0, we have

∂tΨ +
1

Np−1

K

∑
ν=1

∂
p
ν Ψ = 0.

Remark 9. In the proof, the function Ψ is nothing but Guerra’s interpolating partition function, as can be understood by comparing
the definitions uμ(t, x) = 1

N ∂μ log Ψ(t, x) and uμ(t, x) = ∂μAN,p,ξ,K(t, x). Indeed, by computing the derivatives of the partition function, we
easily get

∂tZN,p,ξ,K(t, x) = −N
K

∑
μ=1
∑

σ∈ΣN

mp
μ(σ)BN,p,ξ,K(t, x),

∂
p
μZN,p,ξ,K(t, x) = Np

∑
σ∈ΣN

mp
μ(σ)BN,p,ξ,K(t, x).

A direct comparison shows that Guerra’s interpolating partition function satisfies the same differential equation of the Ψ potential.
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Remark 10. The case K = 1 corresponds to the p-spin CW model treated in Ref. 36. Indeed, the partition function of the system can be
handled as

ZN,p,ξ,K=1(t, x) = ∑
σ∈ΣN

exp(−tN(
1
N∑i

ξ1
i σi)

p

+Nx(
1
N∑i

ξ1
i σi))

= ∑
σ∈ΣN

exp(−tN(
1
N∑i

σi)

p

+Nx(
1
N∑i

σi)) = Z(CW)
N,p (t, x),

where we used the invariance of the partition function under the transformation σi → ξ1
i σi. In this particular case, we recover the Burgers

hierarchy with viscosity parameter 1/N: calling x1 = x and u1(t, x) = u(t, x), family (5.10) reduces to

∂tu + ∂x(
1
N
∂x + u)

p−1
u = 0.

Within this framework, we generate the multidimensional generalization of Burgers hierarchy, see Appendix B for further details and
examples.

B. High storage
Here, we will study the p-spin DAMs in the high-load regime limN→∞

K
Np−1 = α > 0 for even p, which, unlike the low-load regime just

discussed, exhibits a complex behavior. Let us start by observing that, in this case, the partition function related to the Hamiltonian (5.1) can
also be written in the following form (notice the little abuse of notation in the expression ZN,p,ξ,α(β): in the subscript, α is meant as the ratio
K/Np−1 by-passing the thermodynamic limit):

ZN,p,ξ,α(β) ∶= ∑
σ∈ΣN

exp(−βHN,p,ξ,α(σ))

= ∑
σ∈ΣN

exp
⎡
⎢
⎢
⎢
⎢
⎣

β
p!Np−1

K

∑
μ=1

N

∑
i1 ,...,ip

ξμ
i1
. . . ξμ

ip
σi1 . . . σip

⎤
⎥
⎥
⎥
⎥
⎦

.
(5.11)

Here, we used the index α rather than K in order to distinguish between the partition function of low- and high-storage regimes.
As standard in statistical mechanics of (complex) neural networks, we will assume that a single pattern is the candidate to be retrieved, say

ξ1. Under this assumption, we can treat separately the Mattis magnetization m ∶= m1 corresponding to the recalled pattern from those associ-
ated with non-retrieved ones. Accordingly, in the partition function (5.11), the sum over μ is split into a signal contribution (corresponding
to μ = 1) and a noise contribution (corresponding to μ > 1). For the latter, we apply a generalization of the quenched-noise universality
property,50–52 whence

K

∑
μ≥2

N

∑
i1 ,...,ip

ξμ
i1
. . . ξμ

ip
σi1 . . . σip ∼ V

K

∑
μ≥2

⎛

⎝
∑

i1<⋅ ⋅ ⋅<ip/2

Jμ
i1 ,...,ip/2

σi1 . . . σip/2

⎞

⎠

2

, (5.12)

where Jμ
i1 ,...,ip/2

∼iid N (0, 1) are effective interaction strengths and the parameter V controls the scale of these effective interactions. In the
expression above, the symbol ∼means that the two sides are Gaussian random variables in the thermodynamic limit, i.e., N, K →∞, with the
same second moment (the first moment is unessential since it would contribute to the free energy as O(log N/N)). The quantity V can be
computed as detailed in Appendix C, and it reads

V = p
2

!

√
(2p − 1)‼ − ((p − 1)‼)2

2
. (5.13)

For later convenience, we define V = p
2 !V0 (notice that, for p = 2, we have V0 = 1). With this definition, we can directly replace the noisy

contribution in the partition function with the rhs of (5.12) and perform a Hubbard–Stratonovich transformation.

Definition 11. Given (t, x) ∈ R4, the spacetime Guerra’s interpolating partition function for the DAM model in the high-load regime
reads as

ZN,p,ξ,α(t, x) = ∑
σ∈ΣN

∫

⎛
⎜
⎝

K

∏
μ=1

dτμ
e−

τ2
μ
2

√
2π

⎞
⎟
⎠

exp(−HN,p,ξ,α(t, x)), (5.14)
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HN,p,ξ,α(t, x) = −
tN
2

mp
−

√
t

Np−1

√
V

K

∑
μ=2

N

∑
i1<⋅ ⋅ ⋅<ip/2

Jμ
i1 ,...,ip/2

σi1 . . . σip/2 τμ

−
√

x
N

∑
i=1

ηiσi −

√

N1−p/2y
K

∑
μ=1

θμτμ +
N1−p/2

2
[V0(t − t0) + y]

K

∑
μ=1

τ2
μ −

N
2

zm, (5.15)

where x = (x, y, z) and Jμ
i1 ,...,ip/2

, ηi, θμ ∼ N (0, 1) are i.i.d. standard Gaussian variables.

Remark 11. An integral representation of the partition function of the original DAM model (5.11) is recovered by setting t0 =
2β
p! and

(t, x, y, z) = ( 2β
p! , 0, 0, 0); then, by performing the Gaussian integration in (5.14), we recover the straight partition function.

In the case under consideration, the Boltzmann average induced by the interpolating partition function (5.14) reads as

ωt,x(O) =
∑σ ∫ dμ(τ)O(σ, τ)BN,p,ξ,α(t, x)

ZN,p,ξ,α(t, x)
, (5.16)

and, by averaging also with respect to the quenched noise,

⟨O(σ, τ)⟩t,x ∶= Eξ,η,θ[ωt,x(O(σ, τ))], (5.17)

where O(σ, τ) is a generic observable in the configuration space of the system, Eξ,η,θ denotes the quenched average over the set of i.i.d.
Gaussian standard variables specified in the subscript, and BN,p is the generalized Boltzmann factor defined as

BN,p,ξ,α(t, x) ∶= exp
⎛

⎝

tN
2

mp
+

√
t

Np−1

√
V

K

∑
μ=2

N

∑
i1<⋅ ⋅ ⋅<ip/2

Jμ
i1 ,...,ip/2

σi1 . . . σip/2 τμ

+
√

x
N

∑
i=1

ηiσi +

√

N1−p/2y
K

∑
μ=1

θμτμ −
N1−p/2

2
[V0(t − t0) + y]

K

∑
μ=1

τ2
μ +

N
2

zm
⎞

⎠
.

As mentioned in Sec. I, the high-storage regime of associative neural networks exhibits both ferromagnetic and spin-glass features. Thus,
in order to fully characterize the system behavior, besides the usual Mattis magnetizations, we need the overlap for the two sets of relevant
variables in the integral formulation of the partition function (5.14).

Definition 12. The order parameters used to describe the macroscopic behavior of the model are the Mattis magnetization m (already
defined in (8) and used to quantify the retrieval capability of the network), the replica overlap in the σ variables,

q12 ∶=
1
N

N

∑
i=1

σ(1)i σ(2)i , (5.18)

and the replica overlap in the τ′s variables,

p12 ∶=
1

Np/2

K

∑
μ=1

τ(1)μ τ(2)μ . (5.19)

The main result of this section is given by the following theorem, which establishes that the expectation of the order parameters of the
p-th order DAM in the high-storage limit fulfills a set of PDEs that generalize the Burgers hierarchy structure.

Theorem 3. The high-storage regime for the DAM models under the RS assumption in the thermodynamic limit can be described by the
following system of partial differential equation (PDEs):

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∂t q̄ + ∂xm̄ p
− V0∂xq̄ p/2p̄ = 0,

∂t p̄ + ∂ym̄ p
− V0∂yq̄ p/2p̄ = 0,

∂tm̄ − ∂zm̄ p
+ V0∂zq̄ p/2p̄ = 0,

(5.20)
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with the initial conditions
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̄(0, x) = Eη[tanh2
(
√

xη +
z
2
)],

p̄(0, x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αy
(1 + y − t0)2 if p = 2,

αy if p = 2k with k = 2, 3, . . . ,

m̄(0, x) = Eη[tanh(
√

xη +
z
2
)],

(5.21)

where Eη is the Gaussian average over the variable η.

Again, in order to prove the theorem, we need to undergo some preliminary passages.

Definition 13. For all even p ≥ 2, Guerra’s action functional is defined as

SN,p,α(t, x) ∶= 2AN,p,α(t, x) − x. (5.22)

Lemma 4. The partial derivatives of Guerra’s action SN,p(t, x) can be expressed in terms of the generalized expectations of the order
parameters as

∂tSN,p,α = ⟨mp
⟩t,x − V0⟨p12qp/2

12 ⟩t,x,
∂xSN,p,α = −⟨q12⟩t,x,
∂ySN,p,α = −⟨p12⟩t,x,
∂zSN,p,α = ⟨m⟩t,x.

(5.23)

The computation of the spacetime derivatives is fairly lengthy but straightforward. We report the computation of the derivatives in
Appendix D.

In order to derive differential identities for the expectation values of the order parameters, we need to compute the spatial derivatives of
a generic function of two replicas O(σ(1), σ(2), τ(1), τ(2)

).

Lemma 5. Let σ = (σ(1), σ(2)) and τ = (τ(1), τ(2)) be the configurations of the 2-replicated system. Then,

∂x⟨O(σ , τ)⟩t,x =
N
2

2

∑
a,b=1
⟨O(σ , τ)qab⟩t,x − 2N

2

∑
a=1
⟨O(σ , τ)qa3⟩t,x −N⟨O(σ , τ)⟩t,x

+ 3N⟨O(σ , τ)q34⟩t,x, (5.24)

∂y⟨O(σ , τ)⟩t,x =
N
2

2

∑
a,b=1
⟨O(σ , τ)pab⟩t,x − 2N

2

∑
a=1
⟨O(σ , τ)pa3⟩t,x −N⟨O(σ , τ)p33⟩t,x

+ 3N⟨O(σ , τ)p34⟩t,x, (5.25)

and

∂z⟨O(σ , τ)⟩t,x = N(⟨O(σ , τ)m⟩t,x − ⟨O(σ , τ)⟩t,x⟨m⟩t,x). (5.26)

The complete proof is given in Appendix E.
Again, we will assume the RS in order to simplify the computations by neglecting the fluctuations of the order parameters with respect

to their expectation values, in particular, the below proposition.

Proposition 3. The following equalities hold:

⟨mp
⟩t,x = (

1
N
∂z + ⟨m⟩t,x)

p−1
⟨m⟩t,x, (5.27)

⟨p12qp/2
12 ⟩t,x = (

1
N
∂x + ⟨q12⟩t,x)

p/2
⟨p12⟩t,x + R

(
p
2 )

N (t, x), (5.28)

where R
(

p
2 )

N (t, x) collects the terms involving the fluctuations of the order parameters and thus vanishes in the N →∞ limit and under the RS
assumption.
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Proof. To simplify the notation, we will drop the subscript t, x from the quenched averages. The derivation of (5.27) is achieved by
iterating the property (5.26) with O(σ, τ) = m(σ)p−1. Let us now observe that

⟨p12ql
12q13⟩ = ⟨p12qh

12Δ(q13)⟩ + ⟨p12ql
12⟩⟨q13⟩ = ⟨p12ql

12⟩⟨q13⟩ + R(1,l)
N (t, x)

and
⟨p12ql

12q34⟩ = ⟨p12ql
12Δ(q34)⟩ + ⟨p12ql

12⟩⟨q34⟩ = ⟨p12ql
12⟩⟨q34⟩ + R(2,l)

N (t, x),

where Δ(qab) ∶= qab − ⟨qab⟩ and R(1,l)
N , R(2,l)

N collect the contributions involving the fluctuations.
Now, we use O(σ , τ) = p12ql

12 in Lemma 5 and get

∂x⟨p12ql
12⟩t,x =

N
2
(⟨p12ql

12⟩t,x + ⟨p12ql
12q12⟩t,x + ⟨p12ql

12q21⟩t,x + ⟨p12ql
12⟩t,x)

− 2N(⟨p12ql
12q13⟩t,x + ⟨p12ql

12q23⟩t,x) −N⟨p12ql
12⟩t,x + 3N⟨p12ql

12q34⟩t,x

= N⟨p12ql+1
12 ⟩t,x − 4N⟨p12ql

12q13⟩t,x + 3N⟨p12ql
12q34⟩t,x,

whence the following equality holds for all l ∈ N+:

∂x⟨p12ql
12⟩t,x = N(⟨p12ql+1

12 ⟩t,x − 4⟨p12ql
12q13⟩t,x + 3⟨p12ql

12q34⟩t,x). (5.29)

Combining the previous expressions, we obtain

⟨p12ql+1
12 ⟩ =

1
N
∂x⟨p12ql

12⟩ + 4⟨p12ql
12⟩⟨q13⟩ − 3⟨p12ql

12⟩⟨q34⟩ + R(l)N (t, x)

=
1
N
∂x⟨p12ql

12⟩ + ⟨p12ql
12⟩⟨q12⟩ + R(l)N (t, x),

where R(l)N (t, x) ∶= 4R(1,l)
N (t, x) − 3R(2,l)

N (t, x) and we used ⟨q34⟩ = ⟨q13⟩ = ⟨q12⟩, which follows from invariance under replica labeling. The
previous equation can be written as follows:

⟨p12ql+1
12 ⟩ = (

1
N
∂x + ⟨q12⟩)⟨p12ql

12⟩ + R(l)N (t, x). (5.30)

Iterating the procedure, we get

⟨p12ql+1
12 ⟩ = (

1
N
∂x + ⟨q12⟩)

l+1
⟨p12⟩ + R

(
p
2 )

N (t, x), (5.31)

where R
(

p
2 )

N (t, x) collects all the terms involving the rest of previous expansions (and thus vanishes in the N →∞ limit and under the RS
assumption). Then, by imposing l = p/2 − 1, we get the thesis. ◻

Now, we can use all the information obtained to build a PDE that can describe the thermodynamics of the DAM models. Indeed, recalling
the temporal derivative of the Guerra’s action (5.23) and using the result obtained in Proposition 3, we have

∂tSN,p,α = (
1
N
∂z + ⟨m⟩t,x)

p−1
⟨m⟩t,x − V0(

1
N
∂x + ⟨q12⟩t,x)

p/2
⟨p12⟩t,x − R

(
p
2 )

N (t, x). (5.32)

Finally, taking the spatial derivatives of this expression and denoting DN(t, x) = −∇R(p/2)N , we have

−∂t⟨q12⟩t,x − ∂x(
1
N
∂z + ⟨m⟩t,x)

p−1
⟨m⟩t,x + V0∂x(

1
N
∂x + ⟨q12⟩t,x)

p/2
⟨p12⟩t,x = DN,x,

−∂t⟨p12⟩t,x − ∂y(
1
N
∂z − ⟨m⟩t,x)

p−1
⟨m⟩t,x + V0∂y(

1
N
∂x + ⟨q12⟩t,x)

p/2
⟨p12⟩t,x = DN,y,

∂t⟨m⟩t,x − ∂z(
1
N
∂z + ⟨m⟩t,x)

p−1
⟨m⟩t,x + V0∂z(

1
N
∂x + ⟨q12⟩t,x)

p/2
⟨p12⟩t,x = DN,z.

(5.33)
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The lhs of the system of PDEs constitutes the 3 + 1-dimensional DAM generalization of the Burgers hierarchy structure. Similar to the Derrida
model case, at finite N, we have a source term on the rhs, which vanishes in the limit N →∞ under the RS assumption of the order parameters.
In this case, we can analyze the thermodynamic limit and describe the equilibrium dynamics of the model.

We are now ready to prove Theorem 3.

Proof 3. First, let us call

m̄(t, x) = lim
N→∞

⟨m⟩t,x, q̄(t, x) = lim
N→∞

⟨q12⟩t,x, p̄(t, x) = lim
N→∞

⟨p12⟩t,x

the expectation values of the order parameters in the thermodynamic limit. Taking N →∞ in (5.33) and recalling that the source contributions
DN(t, x) vanish in this limit under the RS assumption, we arrive at the PDE system (5.20). Let us now find the initial conditions (5.21). To do
this, we start calculating the interpolating partition function in t = 0,

ZN,p,ξ,α(0, x) =∑
σ
∫ dμ(τ) exp

⎛

⎝

√
x

N

∑
i=1

ηiσi +

√
y

Np/2−1

K

∑
μ=1

θμτμ −
y − V0t0

2Np/2−1

K

∑
μ=1

τ2
μ +

z
2

N

∑
i=1

σi
⎞

⎠

=∑
σ

exp(
N

∑
i=1
(
√

xηi +
1
2

z)σi)∫ dμ(τ) exp
⎛

⎝

√
y

Np/2−1

K

∑
μ=1

θμτμ −
y − V0t0

2Np/2−1

K

∑
μ=1

τ2
μ
⎞

⎠

=
N

∏
i=1

2 cosh(
√

xηi +
z
2
)

K

∏
μ=1

1
√

N1−p/2(y − V0t0) + 1
exp
⎛

⎝

N1−p/2 yθ2
μ

2(N1−p/2(y − V0t0) + 1)
⎞

⎠
.

By using the definition of the interpolating statistical pressure (2.4), we see that

AN,p,α(0, x) =
1
N

N

∑
i=1

Eη log 2 cosh(
√

xηi +
z
2
) +

1
N

K

∑
μ=1

Eθ
⎛

⎝

N1−p/2yθ2
μ

2(N1−p/2(y − V0t0) + 1)
⎞

⎠

−
K

2N
log(N1−p/2

(y − V0t0) + 1)

= Eη log 2 cosh(
√

xη +
z
2
) +

K
Np/2

y
2(N1−p/2(y − V0t0) + 1)

−
K

2N
log(N1−p/2

(y − V0t0) + 1),

where we used the fact that the η′i s are i.i.d. random variables and Eθ[θ2
μ] = 1 for all μ = 1, . . . , K. Now, recalling Eq. (5.22), we can

straightforwardly derive the initial condition for the order parameters according to (5.23). First,

q(0, x) = lim
N→∞
(−∂xSN,p,α(0, x)) = −∂x[Eη log 2 cosh(

√
xη +

z
2
) − x]

= Eη[tanh2
(
√

xη +
z
2
)]. (5.34)

Analogously, we have

p(0, x) = lim
N→∞
(−∂ySN,p,α(0, x))

= − lim
N→∞

∂y(
K

Np/2
y

1 +N1−p/2(y − V0t0)
−

K
N

log[1 +N1−p/2
(y − V0t0)])

= − lim
N→∞
(−

K
Np−1

y
[1 +N1−p/2(y − V0t0)]2

)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αy
[1 + (y − t0)]2

if p = 2,

αy if p = 2k and k = 2, 3, . . . ,
(5.35)

where we used the fact that for p = 2, we have V0 = 1. Finally,
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m(0, x) = lim
N→∞

∂zSN,p,α(0, x) = ∂zEη log 2 cosh(
√

xη +
z
2
) = Eη tanh(

√
xη +

z
2
). (5.36)

This concludes the proof. ◻

Corollary 3. The system of PDEs (5.20) can be rewritten in a nonlinear wave equation as

∂tϕ + (v ⋅ ∇)ϕ = 0, (5.37)

where ϕ ∶= (q̄, p̄, m̄) is the vector of the order parameters and v ∶= (−V0
p
2 q̄ p/2−1p̄,−V0q̄ p/2,−pm̄ p−1

) is the effective velocity.

Proof. We prove Eq. (5.37) for the first component, as the others follow accordingly. Let us define the function G(ϕ) = m̄ p
− V0q̄ p/2p̄, so

that the PDE for the order parameter q̄ can be rewritten as

∂t q̄ + ∂xG(ϕ) = 0.

The x-derivative of the function G is straightforwardly computed,

∂xG(ϕ) = ∂x(m̄ p
− V0q̄ p/2p̄) = pm̄ p−1∂xm̄ −

p
2
V0q̄ p/2−1p̄ ∂xq̄ − V0q̄ p/2∂xp̄.

Now,
∂xp̄ = ∂x(− lim

N→∞
∂ySN,p,α(t, x)) = ∂y(− lim

N→∞
∂xSN,p,α(t, x)) = ∂yq̄.

In the same way,

∂xm̄ = ∂x( lim
N→∞

∂zSN,p,α(t, x)) = ∂z( lim
N→∞

∂xSN,p,α(t, x)) = −∂zq̄.

With these results, we have

∂xG(ϕ) = −
p
2
V0q̄ p/2−1p̄ ∂xq̄ − V0q̄ p/2∂yq̄ − pm̄ p−1∂zq̄ = (vx∂x + vy∂y + vz∂z)q̄ = (v ⋅ ∇)q̄.

This leads to
∂t q̄ + (v ⋅ ∇)q̄ = 0.

◻

Corollary 4. The equilibrium dynamics of the DAM models is given by the following set of self-consistency equations:

q̄ = Eη[tanh2
(

√

β′
p
2
V0q̄ p/2−1p̄η + β′

p
2

m̄ p−1
)],

m̄= Eη[tanh(
√

β′
p
2
V0q̄ p/2−1p̄η + β′

p
2

m̄ p−1
)],

p̄ =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αβq̄
[1 − β(1 − q̄)]2

if p = 2,

αβ′V0q̄ p/2 if p = 2k with k = 2, 3, . . . ,

(5.38)

where β′ ∶= 2β
p! .

Proof. In order to prove our assertion, we use the vector PDE (5.37), whose solution can be given in implicit form as

ϕ(t, x) = ϕ0(x − vt),

where ϕ0(x) is the initial profile given by conditions (5.21). For the first component, we have

q̄(t, x) = ϕ0,x(x − vt) = Eη tanh2
(
√

x − vxtη +
z − vzt

2
)

= Eη tanh2
(

√

x +
p
2
V0q̄ p/2−1p̄tη +

z + pm̄ p−1 t
2

). (5.39)
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Analogously,

m̄(t, x) = ϕ0,z(x − vt) = Eη tanh(
√

x +
p
2
V0q̄ p/2−1p̄tη +

z + pm̄ p−1t
2

). (5.40)

Finally, if p = 2, we have

p̄(t, x) = ϕ0,y(x − vt) =
α(y − vyt)

(1 + y − vyt − t0)2 =
α(y + q̄t)

(1 + y + q̄ t − t0)2 , (5.41)

while, for p = 2k with k ≥ 2, the same order parameter satisfies the self-consistency equation

p̄(t, x) = ϕ0,y(x − vt) = α(y − vyt) = α(y + V0q̄ p/2t). (5.42)

Recalling that the thermodynamics of the DAM models is reproduced when t = t0 = β′ = 2β
p! and x = 0, we easily get the thesis. ◻

Remark 12. The self-consistency equations in Corollary 4 are in agreement with those obtained by Gardner in Ref. 53 by means of the
replica approach.

Remark 13. As expected, for p = 2, the expressions given in Eq. (5.38) reduce to the Hopfield case. For p = 2k > 2, upon eliminating p̄ from
the self-consistency equations, we get

m̄ = Eη tanh

⎡
⎢
⎢
⎢
⎢
⎢
⎣

β
(p − 1)!

⎛
⎜
⎝

¿
Á
ÁÀ2αV 2

0
p

q̄ p−1η + m̄ p−1
⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (5.43)

q̄ = Eη tanh2
⎡
⎢
⎢
⎢
⎢
⎢
⎣

β
(p − 1)!

⎛
⎜
⎝

¿
Á
ÁÀ2αV 2

0
p

q̄ p−1η + m̄ p−1
⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (5.44)

suggesting that the system has an effective thermal noise level of βeff = β/(p − 1)! and an effective capacity αeff = 2αV 2
0/p (controlling the level of

glassy noise in the model). For large enough p, we have (2p − 1)!!≫ ((p − 1)!!)2, so that

2V 2
0

p
=
[(2p − 1)‼ − ((p − 1)‼)2

]

p
) ≃
(2p − 1)‼

p
=
(2p − 1)(2p − 3)‼

p
≃ 2(2p − 3)‼,

meaning that
K

Np−1 ∼
αeff

2(2p − 3)‼
,

which is the same scaling found by Hopfield and Krotov19 in the perfect retrieval definition of the critical storage capacity.

By solving these self-consistency Eq. (5.38) numerically by a fixed-point method for a given p and tuning the parameters T and α, we
obtain the phase diagrams shown in Fig. 2. As expected, the diagrams exhibit the existence of three different regions:

● For high levels of noise T, no matter the value of storage α, the only stable solution is given by m̄ = 0, q̄ = 0, thus the system is ergodic
(III).

● At lower temperatures and with relatively high load, the system exhibits spin-glass behaviors (II), and the solution is characterized by
m̄ = 0 and q̄ ≠ 0.

● For relatively small values of α and T, we have m̄, q̄ ≠ 0 and the system is located in the retrieval phase (I). In this situation, the system
behaves as an associative neural network performing pattern recognition spontaneously. In particular, we can see that the retrieval
region observed for values of T and α relatively small can be further split in a pure retrieval region—where pure states are global
minima for the free energy—and a mixed retrieval region—where pure states are local minima, yet their attraction basin is large
enough for the system to end there if properly stimulated.
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FIG. 2. Phase diagram for p = 4 [panel (a)], p = 6 [panel (b)], p = 8 [panel (c)], and p = 10 [panel (d)], in the space of control parameters α [through the combination αV 2
0,

with the latter factor given by Eq. (5.13)] and β′ = 2β/p!. Region I (in yellow), delimited by the solid black line, is the retrieval region, while region II (in red) and region III
(in blue) are, respectively, the spin-glass and the ergodic phases. The dashed line is the prolongation of the spin-glass phase inside the retrieval region. Finally, the lighter
dotted line inside region I identifies the portion of the parameter space in which the retrieval states are global minima for the free energy. Notice that the indentation that can
be seen in the transition line delimiting the retrieval phase is a spurious effect due to the RS approximation.48

Thus, by increasing p, we need to afford higher costs in terms of resources since the number of connection weights to be properly set
grows as (N

p ), but we also have a reward on a coarse scale, since the number of storable patterns grows as K ∼ Np−1, as well as on a fine scale,
since the critical load αc also increases with p.

VI. CONCLUSIONS
In this work, we focused on DAMs, which are neural-network models widely used for pattern recognition tasks and characterized by

high-order (higher than quadratic) interactions between the constituting neurons. Extensive empirical evidence has shown that these models
significantly outperform non-dense networks (displaying only quadratic interactions), especially as for the ability to correctly recognize adver-
sarial or extremely noisy examples,19–21,49 hence making these models particularly suitable for detecting and coping with malicious attacks.
From the theoretical side, results are sparse and mainly based on the possibility of recasting these networks as spin-glass-like models with spins
interacting p-wise; these models can, in turn, be effectively handled by tools stemming from the statistical mechanics of disordered systems
(e.g., 44 and 54). Here, we pave this way and develop analytical techniques for their investigation. More precisely, we translate the original
statistical-mechanical problem into an analytical-mechanical one where control parameters play the role of spacetime coordinates, the free
energy plays the role of action, and the macroscopic observables that assess whether the system can be used for pattern recognition tasks
play the role of effective velocities and are shown to fulfill a set of nonlinear partial differential equations. In this framework, transitions from
different regimes (e.g., from a region in the control parameter space where the system performs correctly and another one where information
processing capabilities are lost) appear as the emergence of shock waves.
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A main advantage of this route is that it allows for rigorous investigations in a field where most knowledge is based on (pseudo) heuristic
approaches, with a wide set of already available methods and strategies to rely upon. Furthermore, by bridging two different perspectives,
statistical mechanics and analytical methods, we anticipate a cross-fertilization that may lead to a deeper comprehension of the system’s
subtle mechanisms and ultimately advance the development of a complete theory for (deep) machine learning.
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APPENDIX A: PROOF OF LEMMA 1

Proof. First of all, we compute the following temporal derivative:

∂tAN,p(t, x) =
1
N
EJ

1
ZN,p,J(t, x)∑σ

√
p!

2Np−1
1

2
√

t
∑

1≤i1<⋅ ⋅ ⋅<ip≤N
Ji1...ip σi1 . . . σip BN,p,J(t, x)

=
1
N

√
p!

2Np−1
1

2
√

t
∑

1≤i1<⋅ ⋅ ⋅<ip≤N
EJ Ji1...ip ωt,x(σi1 . . . σip). (A1)

Here, we can use the Wick–Isserlis theorem for normally distributed random variables, ensuring that EJ Jl f (J) = EJ∂Jl f (J) for each function
f of the quenched disorder J. Thus,

∂tAN,p(t, x) =
1
N

√
p!

2Np−1
1

2
√

t
∑

1≤i1<⋅ ⋅ ⋅<ip≤N
EJ∂Ji1...ip

ωt,x(σi1 . . . σip)

=
1
N

√
p!

2Np−1
1

2
√

t

√
tp!

2Np−1 ∑
1≤i1<⋅ ⋅ ⋅<ip≤N

EJ(ωt,x(1) − ωt,x(σi1 . . . σip)
2
)

=
p!

4Np ∑
1≤i1<⋅ ⋅ ⋅<ip≤N

(1 − EJ ωt,x(σi1 . . . σip)
2
). (A2)

The nontrivial contribution in round brackets in the last equality can be expressed in terms of the overlap order parameter. Indeed,

EJ ωt,x(σi1 . . . σip)
2
= EJ ω(1)t,x (σ

(1)
i1

. . . σ(1)ip
) ω(2)t,x (σ

(2)
i1

. . . σ(2)ip
)

= EJ Ω(2)t,x (σ
(1)
i1

σ(2)i1
. . . σ(1)ip

σ(2)ip
)

= ⟨σ(1)i1
σ(2)i1

. . . σ(1)ip
σ(2)ip
⟩t,x, (A3)
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where 1, 2 are the replica indices. Now, using Remark 2, in the thermodynamic limit, the following equality holds:

∂tAN,p(t, x) =
1

4Np

N

∑
i1 ,...,ip=1

(1 − ⟨σ(1)i1
σ(2)i1

. . . σ(1)ip
σ(2)ip
⟩t,x)

=
1
4
(1 − ⟨(

1
N∑

N
i=1 σ(1)i σ(2)i )

p
⟩

t,x
) =

1
4
(1 − ⟨qp

12⟩t,x). (A4)

Concerning the spatial derivative, we proceed in the same way,

∂xAN,p(t, x) =
1
N
EJ

1
Z N,p,J(t, x)∑σ

1
2
√

x

N

∑
i=1

JiσiBN,p,J(t, x)

=
1

2N
√

x

N

∑
i=1

EJ Jiωt,x(σi) =
1

2N
√

x

N

∑
i=1

EJ∂Ji ωt,x(σi)

=
1

2N

N

∑
i=1
(1 − EJ ωt,x(σi)

2
). (A5)

In this case, we express EJ ωt,x(σi)
2
= ⟨σ(1)i σ(2)i ⟩t,x. Thus,

∂xAN,p(t, x) =
1
2
(1 − ⟨q12⟩t,x). (A6)

By simply exploiting Definition 6 and the Remark 2, we get the thesis. ◻

APPENDIX B: PARTICULAR CASES OF LOW-STORAGE DAMS

In this appendix, having clarified the equations describing the general case of the DAM models in the low-storage regime, we will study
two special cases: the standard case where p = 2 and the more complex case with p = 3. In particular, we will observe that these two cases can
be described by the Burgers and Sharma–Tasso–Olver equations in a (K + 1)-dimensional space, respectively. To start, however, we first need
the following definition and lemma.

Lemma 6. For all μ, ν = 1, . . . , K, we have

1. [Dμ, Dν] = 0 and
2. [∂μ, Ds

ν] = N[Ds
ν, uμ] ∀s > 0,

where [⋅, ⋅] is the usual commutator.

Proof. The proof of statement 1. works by direct computation. Indeed,

[Dμ, Dν] = [
1
N
∂μ + uμ,

1
N
∂ν + uν]

=
1

N2 [∂μ,∂ν] +
1
N
[∂μ, uν] +

1
N
[uμ,∂ν] + [uμ, uν]

=
1
N
(∂μuν − ∂νuμ).

Since the field uμ(t, x) is conservative, i.e., uμ(t, x) = ∂μAN,p,ξ,K(t, x), we have

∂μuν − ∂νuμ = (∂μ∂ν − ∂ν∂μ)AN,p,ξ,K(t, x) = 0,

meaning that [Dμ, Dν] = 0. Let as now prove property 2. In this case, the proof works by exploiting the property [Dμ, Dν] = 0 (from which it
follows that [Dμ, Ds

ν] = 0) and the definition Dμ =
1
N ∂μ + uμ. Indeed,

0 = [Dμ, Ds
ν] =

1
N
[∂μ, Ds

ν] + [uμ, Ds
ν].

By rearranging the equality, we easily get the thesis. ◻
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From the previous lemma, we can then prove the following two propositions.

Proposition 4. In the p = 2 case with a generic finite K, the evolutive equation (5.10) reduces to the multidimensional Burgers equation.

Proof. In the p = 2 case, Eq. (5.10) reduces to

∂tuμ = −
K

∑
ν=1

∂μDνuν.

Now, using the second claim of Lemma 6 with s = 1, we have

∂μDνuν = (Dν∂μ +N[Dν, uμ])uν.

Recalling the definition of the D operator, we have

Dν∂μuν = (
1
N
∂ν + uν)∂μuν =

1
N
∂ν∂μuν + uν∂μuν,

[Dν, uμ] = [
1
N
∂ν + uν, uμ] =

1
N
[∂ν, uμ] =

1
N
∂νuμ.

Thus,

∂tuμ = −
K

∑
ν=1
(

1
N
∂ν∂μuν + uν∂μuν + uν∂νuμ).

However, now,

∂ν∂μuν = ∂ν∂μ∂νAN,p=2,ξ,K(t, x) = ∂2
ν uμ,

uν∂μuν = uν∂μ∂νAN,p=2,ξ,K(t, x) = uν∂νuμ.

Using these results, we can rewrite the equation as

∂tuμ +
K

∑
ν=1
(

1
N
∂2

ν uμ + 2uν∂νuμ) = 0

or, in vector form,

∂tu +
1
N
∇

2u + 2(u ⋅ ∇)u = 0,

which is precisely the Burgers equation in K + 1 spacetime. ◻

Proposition 5. In the p = 3 case (and generic K), the evolutive equation (5.10) reduces to the multidimensional Sharma–Tasso–Olver (STO)
equation.55,56

Proof. In the p = 3 case, Eq. (5.10) reduces to

∂tuμ = −
K

∑
ν=1

∂μD2
νuν.

Recalling that Dν ∶= (
1
N ∂ν + uν), we have

∂μD2
νuν = ∂μ(

1
N
∂ν + uν)(

1
N
∂ν + uν)uν

= ∂μ[
1

N2 ∂
2
ν uν +

1
N
∂ν(u2

ν) +
1
N

uν∂νuν + u3
ν]

= ∂μ[
1

N2 ∂
2
ν uν +

3
N

uν∂νuν + u3
ν].

Performing the derivative with respect to the μ-th component, we, therefore, get

∂μD2
νuν =

1
N2 ∂μ∂

2
ν uν +

3
N
(∂μuν∂νuν + uν∂μ∂νuν) + 3u2

ν∂μuν. (B1)
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Now, recalling that uμ(t, x) ∶= ωt,x(mν(σ)) and (5.7), we have

∂μ∂
2
ν uν = ∂μ∂

3
ν AN,p=3,ξ,K(t, x) = ∂3

ν uμ,
∂μuν = ∂μ∂νAN,p=3,ξ,K(t, x) = ∂νuμ,

∂μ∂νuν = ∂μ∂
2
ν AN,p=3,ξ,K(t, x) = ∂2

ν uμ.

Using these results, we can rewrite the equation as

∂tuμ = −
K

∑
ν=1
(

1
N2 ∂

3
ν uμ +

3
N
(∂νuμ)

2
+

3
N

uν∂
2
ν uμ + 3u2

ν∂νuμ).

◻

APPENDIX C: UNIVERSALITY OF NOISE IN DAMS

In this appendix, we show how quenched-noise contributions in the partition function (5.11) can be described in terms of Gaussian
variables, so that we can take benefit of Wick’s theorem. Let us start by considering the noisy contribution generated by non-retrieved
patterns,

1
Np−1∑

μ≥2
∑

i1 ,...,ip

ξμ
i1
. . . ξμ

ip
σi1 . . . σip = N∑

μ≥2
(

1
N

N

∑
i=1

ξμ
i σi)

p

≡ N∑
μ≥2

mp
μ,

where mμ are the Mattis magnetizations. Under the assumption of single-pattern retrieval of ξ1, it is easy to show that mμ ∼ N (0, N−1/2
) for

μ ≥ 2. With a straightforward application of Cramer’s lemma for large deviation theory (see, for example, Ref. 57), it can be shown that the
variable sμ,l ≡ ml

μ is described by the probability distribution

P(sμ,l)∝ s
−(1− 1

l )

μ,p exp(−
N
2

s
2
l

μ,l).

Clearly, for l = 1, this reduces to a Gaussian distribution as expected. Conversely, for l > 2, the probability distribution has support on ]0,+∞[,
with first and second moments given by

Esμ,l =
2

l
2 N−

l
2 Γ( l

2 +
1
2)√

π
,

Es2
μ,l =

2lN−lΓ(l + 1
2)√

π
.

In particular, for l = p even, we have Esμ,p = N−
p
2 (p − 1)!! and Es2

μ,p = N−p
(2p − 1)!! so that

Var(sμ,p) = N−p
[(2p − 1)‼ − ((p − 1)‼)2

].

Since the sμ,p’s are i.i.d. and their variance is finite, the sum

1
Np∑

μ≥2
∑

i1 ,...,ip

ξμ
i1
. . . ξμ

ip
σi1 . . . σip =∑

μ≥2
sμ,p

converges to a Gaussian distributed variable by virtue of the Central Limit Theorem (CLT), in particular,

1
Np∑

μ≥2
∑

i1 ,...,ip

ξμ
i1
. . . ξμ

ip
σi1 . . . σip Ð→

d
N (μ, σ2

)

for K →∞, with

μ = N−
p
2 K(p − 1)‼, (C1)

σ =
√

KN−p[(2p − 1)‼ − ((p − 1)‼)2]. (C2)

This means that the noise contribution N∑μ≥2mp
μ ∼ Nμ + zNσ, where z ∼ N (0, 1). Notice that the contribution of the expectation value can

be neglected from the whole partition function as it would contribute to the free energy with a factor of order O(log N/N).
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In the spirit of Gaussian universality of noise generated by non-retrieved patterns,50–52 we consider the random variable

NṼ∑
μ≥2

⎛

⎝
∑

i1<⋅ ⋅ ⋅<ip/2

Jμ
i1 ,...,ip/2

σi1 . . . σip/2

⎞

⎠

2

, (C3)

with Jμ
i1 ,...,ip/2

∼iid N (0, 1) and Ṽ a free parameter to be suitably tuned. By carrying out a totally analogous analysis as before, it is easy to show
that, in the large N and K limit,

Ṽ∑
μ≥2

⎛

⎝
∑

i1<⋅ ⋅ ⋅<ip/2

Jμ
i1 ,...,ip/2

σi1 . . . σip/2

⎞

⎠

2

Ð→
d

N (μ̃, σ̃ 2
),

where μ̃ = ṼK( N
p/2) and σ̃ = Ṽ

√
2K( N

p/2). Thus, the random variable (C3) behaves, in the thermodynamic limit, as Nμ̃ + zNσ̃, with z ∼ N
(0, 1). Again, we can forget about the first moment, as it would contribute as O(log N/N) to the free energy, and thus tune the Ṽ to match
the second moment (C2) of the noise generated by non-retrieved patterns,

σ = σ̃ Ô⇒
√

KN−p[(2p − 1)‼ − ((p − 1)‼)2] = Ṽ
√

2K(
N

p/2
), (C4)

leading to

Ṽ = N−
p
2

(
N

p/2)

√
(2p − 1)‼ − ((p − 1)‼)2]

2
.

In the large N limit, we have

(
N

p/2
) ∼ N

p
2 (

p
2

!)
−1

.

Thus,

Ṽ = N−p p
2

!

√
(2p − 1)‼ − ((p − 1)‼)2]

2
= N−pV.

To conclude, we see that, in the N, K →∞ limit,

1
Np−1∑

μ≥2
∑

i1 ,...,ip

ξμ
i1
. . . ξμ

ip
σi1 . . . σip ∼

1
Np−1 V∑

μ≥2

⎛

⎝
∑

i1<...<ip/2

Jμ
i1 ,...,ip/2

σi1 . . . σip/2

⎞

⎠

2

,

where, here, the symbol ∼ means that the two sides of the equation are two Gaussian variables with the same second moment (which is the
only relevant momentum for our concerns).

APPENDIX D: PROOF OF LEMMA 4

Proof. We prove the equality for the t-derivative of the Guerra’s action, as the others follow from similar calculations. To do this, we first
compute the temporal derivative of the interpolating statistical pressure,

∂tAN,p,α =
1
2
Eωt,x(mp

) +
1

2N
√

tNp−1

√
V∑

μ
∑

i1<⋅ ⋅ ⋅<ip/2

E Jμ
i1 ,...,ip/2

ωt,x(σi1 . . . σip/2 τμ) −
V0

2
Eωt,x(p11).

We can apply the Wick–Isserlis theorem on the second contribution to get

∂tAN,p,α =
1
2
⟨mp
⟩t,x +

V0

2Np
p
2

!∑
μ
∑

i1<⋅ ⋅ ⋅<ip/2

E[ωt,x(τ2
μ) − ω2

t,x(σi1 . . . σip/2 τμ)] −
V0

2
⟨p11⟩t,x

=
1
2
⟨mp
⟩t,x +

V0

2Np (N
p
⟨p11⟩t,x −Np

⟨qp/2
12 p12⟩t,x) −

V0

2
⟨p11⟩t,x

=
1
2
⟨mp
⟩t,x −

V0

2
⟨p12qp/2

12 ⟩t,x,
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where we used the fact that p
2 !∑i1<⋅ ⋅ ⋅<ip/2

≡ ∑i1 ,...,ip/2
in the thermodynamic limit and the definitions of the overlap order parameters (5.18) and

(5.19). Recalling that SN,p,α(t, x) = 2AN,p,α(t, x) − x, we finally get the result. ◻

APPENDIX E: PROOF OF LEMMA 5

Proof. We only prove Eq. (5.24), the other one can be obtained in an analogous way. We will denote for simplicity of notation ⟨⋅⟩t,x with
⟨⋅⟩. Thus,

∂x⟨O(σ , τ)⟩ =
1

2
√

x

N

∑
i=1

2

∑
a=1

EηηiΩ(2)(O(σ , τ)σ(a)i ) −
1
√

x

N

∑
i=1

EηiΩ(3)(O(σ , τ)σ(3)i )

=
1

2
√

x

N

∑
i=1

2

∑
a=1

Eη∂ηi Ω
(2)
(O(σ , τ)σ(a)i ) −

1
√

x

N

∑
i=1

E∂ηi Ω
(3)
(O(σ , τ)σ(3)i ), (E1)

where in the last line we used the Wick–Isserlis theorem. Now, it is simple to see that

∂ηi Ω
(2)
(O(σ , τ)σ(a)i ) =

√
x[

2

∑
b=1

Ω(2)(O(σ , τ)σ(a)i σ(b)i ) − 2Ω(3)(O(σ , τ)σ(a)i σ(3)i )] (E2)

and

∂ηi Ω
(3)
(O(σ , τ)σ(3)i ) =

√
x[

3

∑
b=1

Ω(3)(O(σ , τ)σ(3)i σ(b)i ) − 3Ω(4)(O(σ , τ)σ(3)i σ(4)i )]. (E3)

By using Eqs. (E2) and (E3) into (E1), we get

∂x⟨O(σ , τ)⟩ =
1
2

N

∑
i=1

2

∑
a, b=1

EΩ(2)(O(σ , τ)σ(a)i σ(b)i ) −
N

∑
i=1

2

∑
b=1

EΩ(3)(O(σ , τ)σ(3)i σ(a)i )

−
N

∑
i=1

3

∑
a=1

EΩ(3)(O(σ , τ)σ(3)i σ(a)i ) + 3
N

∑
i=1

EΩ(4)(O(σ , τ)σ(3)i σ(4)i ).

Recalling that qab =
1
N∑i σ(a)i σ(b)i ,we can write

∂x⟨O(σ , τ)⟩ =
N
2

2

∑
a,b=1
⟨O(σ , τ)qab⟩ −

2

∑
a=1
⟨O(σ , τ)qa3⟩ −

3

∑
a=1
⟨O(σ , τ)q3a⟩ + 3N⟨O(σ , τ)q34⟩

=
N
2

2

∑
a,b=1
⟨O(σ , τ)qab⟩ − 2N

2

∑
a=1
⟨O(σ , τ)qa3⟩ −N⟨O(σ , τ)⟩ + 3N⟨O(σ , τ)q34⟩, (E4)

thus obtaining Eq. (5.24). ◻
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