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A B S T R A C T

Objective Image Quality Assessment (IQA) methods often lack of linearity of their quality estimates with respect
to scores expressed by human subjects and therefore IQA metrics undergo a calibration process based on
subjective quality examples. However, example-based training presents a challenge in terms of generalization
hampering result comparison across different applications and operative conditions. In this paper, new Full
Reference (FR) techniques, providing estimates linearly correlated with human scores without using calibration
are introduced. We show that on natural images, application of estimation theory and psychophysical principles
to images degraded by Gaussian blur leads to a so-called canonical IQA method, whose estimates are linearly
correlated to both the subjective scores and the viewing distance. Then, we show that any mainstream IQA
methods can be reconducted to the canonical method by converting its metric based on a unique specimen
image. The proposed scheme is extended to wide classes of degraded images, e.g. noisy and compressed images.
The resulting calibration-free FR IQA methods allows for comparability and interoperability across different
imaging systems and on different viewing distances. A comparison of their statistical performance with respect
to state-of-the-art calibration prone methods is finally provided, showing that the presented model is a valid
alternative to the final 5-parameter calibration step of IQA methods, and the two parameters of the model have
a clear operational meaning and are simply determined in practical applications. The enhanced performance
are achieved across multiple viewing distance databases by independently realigning the blur values associated
with each distance.
1. Introductive notes

Image Quality Assessment (IQA) is based on subjective as well as
objective methods.

The subjective quality of an image is defined as the average quality
score assigned to it by a reference class of human subjects, usually
expressed in the MOS (Mean Opinion Score) scale. Likewise, the sub-
jective quality loss with respect to a pristine version of the same image
considered of perfect quality (also referred to as reference or original
image) is expressed using DMOS (Difference of Mean Opinion Score)
units.

The objective quality consists instead of the algorithmic prediction of
the subjective quality based on measurable image features, expressed as
well in MOS/DMOS units. In the recent decades, many objective qual-
ity assessment methods have been proposed. Formulation of existing
metrics was inspired by different criteria. Some metrics measure the
similarity among image representations (reproduction fidelity) [1–4],
possibly accounting for constraints suggested by more or less sophis-
ticated models of the Human Visual System (HVS). Other classical
metrics measure a loss of a somehow defined visual information caused
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by the image degradation, with explicit reference to a cognitive inter-
pretation of the HVS role [5,6]. Metrics have mostly the form of scalar
metrics, even if some vector metrics have been adopted to distinguish
among different types of image degradation [7].

Methods requiring a complete representation of the reference image
are referred to as Full Reference (FR) IQA methods, while methods
using incomplete representations are referred to as Reduced Ref. [8].
Methods based only on the knowledge of degraded images are finally
referred to as No Reference methods [9]. The present paper concerns
FR methods.

The typical scheme of objective FR IQA methods includes (𝑖) a local
comparative analysis of corresponding details of the pristine and of the
degraded images, followed by (𝑖𝑖) a pooling stage over the whole image;
the result 𝜁 is referred to as IQA metric (sometimes termed ‘‘objective
quality’’ for short). The final step is (𝑖𝑖𝑖) the scoring function �̂�(𝜁 )
converts the IQA metric 𝜁 into the estimated subjective MOS/DMOS �̂�
(for short, the result is sometimes referred to as ‘‘subjective quality’’).

The scoring function is typically parametric and it models thresh-
old and saturation phenomena. Parameters are adjusted by non-linear
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regression using available empirical examples. The larger the number
of parameters, the more accurate is the fitting of the specific training
examples during calibration and the larger the variability across differ-
ent sets of examples. The VQEG scoring function �̂�𝑉 𝑄𝐸𝐺(𝜁 ) for a scalar
metric consists of a logistic function whose typical form is [6,10]:

�̂�𝑉 𝑄𝐸𝐺(𝜁 ) = 𝛽1

[

1
2
− 1

1 + 𝑒𝛽2(𝜁−𝛽3)

]

+ 𝛽4𝜁 + 𝛽5 (1)

where 𝜁 is the IQA metric value, �̂�(𝜁 ) is the estimated DMOS value [11],
and 𝛽𝑖 are parameters usually adjusted minimizing the Euclidean dis-
tance of empirical DMOS values from the estimated ones. In [12] a
S-shaped function regulated by three parameters only is advocated.

Calibration compensates for the variability of methodologies em-
ployed for subjective quality example collection. Still, it is hard to
find default values for calibration parameters in the available literature
and this prevents the fair comparison of quality measurement across
different applications [13].

The calibration parameters critically depend on many factors,
namely protocols, computation of the MOS/DMOS values from raw
data, different experimental settings such as display contrast, room
illumination, and mostly they depend on the viewing distance [14]. In
fact, the objective quality is calculated using the images reproduced
on the display, while the subjective quality depends on the images
perceived on the retina, whose scale is determined by the viewing
distance. Unfortunately, the parametric forms of scoring functions
generally lack an explicit dependence of this parameter.

Herein, we fill this gap in the literature by analyzing the role of the
viewing distance in the case of natural images.

The main contributions of the paper are:

• We introduce a model of the Human Vision System (HVS) that
accounts for pattern orientation selectivity and for 2D spatial fre-
quency selectivity by means of a single, complex valued, Virtual
Receptive Field (VRF) and accounts for the viewing distance.

• We propose a VRF based canonical IQA method for natural im-
ages in Gaussian blur, and show that any IQA metric can be
decomposed into the cascade of a metric conversion rule and
the canonical IQA method. The reason is that different types of
degradations properly map onto perceptually equivalent level of
normalized Gaussian blur.

• We demonstrate the performance improvement in the case of mul-
tiple viewing distances in the same dataset and the lower compu-
tational cost due to a low number of FLOPS and the need for only
two parameters, providing comparisons with the state-of-the-art
of both classic and deep learning based IQA methods.

The structure is organized as follows. In Section 2, an essential
account of the employed HVS model is provided. In Section 3, the
canonical IQA method for Gaussian blurred images is illustrated. In
Section 4, it is shown how the canonical method can be used to lin-
earize a-priori classical IQA methods for blur metrics. In Section 5, the
extension to other image degradation types is discussed. In Section 6,
the performance of the calibration-free methods are compared to the
popular competitors on different databases. Implementation issues are
discussed in Section 7. Finally, some remarks are outlined in Section 8
and conclusion is drawn in Section 9.

2. The virtual receptive field model of HVS

We present an accurate model useful for the evaluation of visual
perception of blur in the case of natural images.

The retina in the foveal region is modeled as a distribution of light
receptors whose position is individuated by the Cartesian coordinate
pair 𝐩 ≡ (𝑥1, 𝑥2). The projection of an image on the retina gener-
ates a luminance component 𝐼 (𝐩) (the chrominance components are
ignored here). It is assumed that 𝐼 (𝐩) is sampled by a grid of receptors

whose average density is assumed as 60 samples per one visual degree. s

2 
Since these receptors are not regularly placed on the retinal surface,
invoking the generalized theory for non-baseband and nonuniform
samples of [15], 𝐼 (𝐩) is correctly represented provided that its 2D
bandwidth does not exceed (−30,+30) cycles∕degree, i.e., (−1∕2,+1∕2)
cycles∕arcmin. This assumed retinal resolution corresponds to the so-
called Snellen acuity.

On the other hand, a display is formed by a rectangular array of pix-
els characterized by its resolution 𝑅 expressed in pixel∕mm, i.e., spaced
by 𝑑 = 1

𝑅 mm apart.
The image is projected onto the retina without loss of information

and without redundancy if the spacing 𝑑 matches the said 60∕degree
density of receptors on the retina. This occurs at a viewing distance 𝛿0
such that:

𝛿0 × tan(1) = 1
𝑅

= 𝑑 (2)

where lengths are expressed in mm and angles in arcmins. This distance
s referred here to as nominal viewing distance. In the ITU recommen-

dations [16] this distance is referred to as the Design Viewing Distance
(DVD), or Optimal Viewing Distance (OVD).

Specifically, for a display of height 𝐻 (in mm) and characterized by
𝐿 rows of square pixel with reference to the center of the screen orthogonal
to the line of sight, we have (in mm):

𝛿0 =
𝐻

𝐿 tan(1)
= 3438 × 𝐻

𝐿
(3)

where 1 radian = 3438 arcminute.
At nominal viewing distance 𝛿 the spatial Fourier spectra of the

images projected onto the retina are limited into the range (−1∕2,+1∕2)
cycles∕arcmin or (−30,+30) cycles∕degree, according to the Nyquist cri-
terion.

For a generic viewing distance 𝛿, the spectrum of the retinal images
lies within the band

(

− 1
2
𝛿
𝛿0
,+ 1

2
𝛿
𝛿0

)

cycles∕arcmin or
(

−30 𝛿
𝛿0
,+30 𝛿

𝛿0

)

cycles∕degree both in horizontal and vertical directions. Thus, if the
viewing distance is less than the nominal one, the bandwidth of the
sensed image shrinks. If the distance exceeds the nominal one, the
bandwidth broadens.

The receptive fields calculate a weighted sum of the luminance 𝐼(𝐩)
in a neighborhood of 𝐩, modeled by a spatial convolution, indicated by
the symbol ∗, between 𝐼(𝐩) and the Virtual Receptive Field (VRF) ℎ(𝐩):

𝑦 (𝐩) = 𝐼 (𝐩) ∗ ℎ (𝐩)
ℎ (𝐩) = 𝑅𝑒{ℎ (𝐩)} + 𝑗𝐼𝑚{ℎ (𝐩)}

(4)

The output image 𝑦 (𝐩) will be referred to as visual map and ℎ(𝐩) is
the complex valued Point Spread Function, represented by the visual
map of a single lighting point in the dark [17].

The role of the VRF model ℎ(𝐩) is to extract the Positional Fisher
Information (PFI) as a measure of the pattern localizability (see Lumi-
nance and Gradient layers of Fig. 2).

In the polar coordinates 𝑟 =
√

𝑥21 + 𝑥
2
2 and 𝜑 = 𝑡𝑔−1 𝑥2𝑥1

the VRF
model assumes the polar separable form:

ℎ(𝑟, 𝜑) = 𝑟
2𝜋𝑠2𝐺

𝑒
−
𝑟2

2𝑠𝐺2 𝑒𝑗𝜑 (5)

where the parameter 𝑠𝐺 is the spread of the VRF.
This VRF is a eigen-function with respect to 2D Fourier transforma-

ion [18], i.e., the Fourier transform of the VRF is the Virtual Neural
ransfer Function:

(𝜌, 𝜗) = 𝑗2𝜋𝜌𝑒𝑗𝜗𝑒−𝑆
2
𝐺𝜌

2
(6)

eing 𝜌 =
√

𝑓 2
1 + 𝑓 2

2 and 𝜗 = 𝑡𝑔−1 𝑓2𝑓1
the polar coordinates in the

requency domain.
According to the experimental data in [19], 𝐻(𝜌, 𝜗) is an accurate

odel of the Contrast Sensitivity Function (CSF) of the HVS [1], as

hown in Fig. 1 (blue line).
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Fig. 1. The radial frequency response magnitude of the Virtual Neural Transfer
Function 𝐻(𝜌, 𝜗) for 𝑠𝐺 = 2.5 arcmins. The maximum is set at about 8.5 cycles/degree.
It is the product of a linear component (red line) and a Gaussian-shaped component
(green line).

The maximum along the radial frequency is set at about 8.5 cy-
cles/degree. This does correspond to a spread 𝑠𝐺 = 2.5 arcmin, and
a contrast loss of ∼40 dB at the Nyquist frequency. The Virtual Neural
Transfer Function is naturally interpreted as the cascade of two func-
tions. The first one is the magnitude of 𝑗2𝜋𝜌𝑒𝑗𝜗 (red line in Fig. 1), that
represents the complex spatial gradient operator [20] defined as

∇𝐼 (𝐩)
𝛥
=
𝜕𝐼

(

𝑥1, 𝑥2
)

𝜕𝑥1
+ 𝑗

𝜕𝐼
(

𝑥1, 𝑥2
)

𝜕𝑥2
(7)

This operator acts as an ideal edge extractor. The magnitude of its
output 𝑦 (𝐩) indicates the local edge strengths, while its phase indicates
the edge orientations.

The second factor (green line in Fig. 1)

𝐺(𝜌, 𝜗) = 𝑒−𝑆
2
𝐺𝜌

2
(8)

represents a low-pass Gaussian-shaped filter acting as noise and aliasing
suppressor. It is interpreted as the source of a neural blur.

Unlike models oriented to the study of visual acuity, employing
specific stimuli localized both in space and in the spatial frequency
domain, or even in both domains [21], the abstract, functional model
of the receptive fields of the HVS presented here allows for a direct
computation of the PFI. The model is oriented to the evaluation of the
visual impact of blur in the vision of natural scenes. To this purpose,
a generic image projected onto the retina is viewed as an element of
the random set of natural images, characterized by stable statistical
features. The model accounts for the orientation selective behavior and
the spatial frequency selective behavior of the HVS according to the
general principles of [22].

3. The canonical IQA method for a DMOS estimation on Gaussian
blurred natural images

In this section, we introduce the canonical IQA method for a DMOS
estimation only for natural images degraded by Gaussian blur.

Accurate pattern localization is a primary goal of living beings.
We assume as a principle that the fine position of patterns in the
observed images is determined by the HVS with the maximum allow-
able accuracy, given some macro-structural constraints. The maximum
achievable accuracy when measuring the fine position of patterns in
the background noise is deduced from Fisher Information on positional
parameters (see the estimation theory in [23]): the Fisher Information
inverse yields the minimum estimation variance.

As shown in Fig. 2 (Local averaging layer), the PFI of a detail of a
pristine image, extracted by a window 𝑤𝐩(𝐪), centered on 𝐩 in presence
of background white Gaussian noise with variance 𝜎2 , is calculated
𝑉

3 
in [24] as �̃� (𝐩) = 𝜆(𝐩)
𝜎2𝑉

, where 𝜆 (𝐩) = ∑

𝐪𝑤𝐩(𝐪)2 ||𝑦 (𝐩 − 𝐪)|
|

2 is the energy
of the detail and

𝑦 (𝐩) = 𝐼𝐷

(

𝐩 𝛿
𝛿0

)

∗ ℎ(𝐩) (9)

is the visual map of a pristine (non-degraded) image on the display
𝐼𝐷 (𝐩) projected onto the retina ( 𝛿

𝛿0
is the scale factor). Likewise, for the

same detail of a degraded version of the image we have 𝜓 (𝐩) = 𝜆(𝐩)
𝜎2𝑉

,

where 𝜆 (𝐩) = ∑

𝐪𝑤𝐩(𝐪)2 |𝑦 (𝐩 − 𝐪)|2, and

𝑦 (𝐩) = 𝐼𝐷

(

𝐩 𝛿
𝛿0

)

∗ 𝑏
(

𝐩 𝛿
𝛿0

)

∗ ℎ(𝐩) (10)

is the visual map of a blurred version of a pristine image on the display
𝐼𝐷 (𝐩) ∗ 𝑏 (𝐩) projected onto the retina.

Let us now calculate the PFI �̃� , 𝜓 for the original and degraded
images in the frequency domain. Here, a Gaussian blur applied to
the observed image is described in polar frequency coordinates by the
function

𝐵(𝜌, 𝜗) = 𝑒−𝑠
2
𝐵𝜌

2
(11)

where the parameter 𝑠𝐵 will be referred to as the spread of the blur
operator. Referring to the Fourier spectra of a generic detail, by the
Parseval theorem we have2:

𝜓 (𝐩) = 1
𝜎2𝑉

∫

2𝜋

0 ∫

+∞

0

|

|

|

𝐷𝐩 (𝜌)
|

|

|

2
𝜌2 |𝐺(𝜌, 𝜗)|2 |𝐵(𝜌, 𝜗)|2 𝜌 𝑑𝜌𝑑𝜗

̃ (𝐩) = 1
𝜎2𝑉

∫

2𝜋

0 ∫

+∞

0

|

|

|

𝐷𝐩 (𝜌)
|

|

|

2
𝜌2 |𝐺(𝜌, 𝜗)|2 𝜌 𝑑𝜌𝑑𝜗

where 𝐷𝐩(𝜌) is the energy spectrum of the detail 𝑑𝐩(𝐪) = 𝑤𝐩(𝐪)𝑦(𝐩− 𝐪),
𝐺(𝜌, 𝜗) is defined in (8) and 𝐵(𝜌, 𝜗) in (11).

Let us now refer to natural images, modeled as elements of a random
set whose ensemble radial spectral energy distribution decays as 1

𝜌2
,

with the expected value [25]

𝐸
{

|

|

|

𝐷𝐩(𝜌, 𝜗)
|

|

|

2
}

= 𝑓 (𝜗) 1
𝜌2

(12)

Therefore, for the random set of natural images, the expected value
of the PFI in presence of blur is calculated as

𝛹 = 𝐸
[

𝜓 (𝐩)
]

= 𝐾 ∫

+∞

0
|𝐺(𝜌, 𝜗)|2 |𝐵(𝜌, 𝜗)|2 𝜌 𝑑𝜌 (13)

and, in the absence of blur,

�̃� = 𝐸
[

�̃� (𝐩)
]

= 𝐾 ∫

+∞

0
|𝐺(𝜌, 𝜗)|2 𝜌 𝑑𝜌 (14)

where 𝐾 = 1
𝜎2𝑉

∫ 2𝜋
0 𝑓 (𝜗)𝑑𝜗.

From known results of integral calculus, we obtain the positional
information of the blurred and pristine images in the closed form
results:

𝛹 = 𝐾 ∫

+∞

0
𝑒−2(𝑠

2
𝐺+𝑠

2
𝐵 )𝜌

2
𝜌 𝑑𝜌 = 𝐾

4
(

𝑠2𝐺 + 𝑠2𝐵
) (15)

�̃� = 𝐾 ∫

+∞

0
𝑒−2𝑠

2
𝐺𝜌

2
𝜌 𝑑𝜌 = 𝐾

4𝑠2𝐺
(16)

Now, leverage the following assumptions:

• The perceived increase of positional uncertainty is proportional
to the objective one, considering the consistency of the position
estimates in the 3D Euclidean space during the interaction of the
subject with its surrounding world.

• The differential sensitivity to stimuli is inversely proportional to
the size of the initial stimuli (Weber law [17]).

2 It is assumed that the shape of the detail window is so smooth that it does
not influence significantly its spectrum.
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Fig. 2. The flow chart of the 𝑑𝐿𝐼𝑄𝐴(𝜁 ) which shows the computational layers.
Fig. 3. The blur DMOS estimator 𝑑(𝜉) versus the metric 𝜉 = 𝑠𝐵∕𝑠𝐺 . The blue dot
indicates the point of maximum sensitivity of the HVS with respect to the variations
in blur.

The Gaussian blur increases the positional uncertainty. Therefore,

the uncertainty increase 𝜀(𝜉) = 𝜓−1∕2 − �̃�−1∕2

𝜓−1∕2
provides a psychophysi-

cally motivated measure of the quality loss.
Introducing the normalized blur 𝜉 𝛥

= 𝑠𝐵
𝑠𝐺

, we have:

𝜀(𝜉) =

√

𝑠2𝐺 + 𝑠2𝐵−
√

𝑠2𝐺
√

𝑠2𝐺 + 𝑠2𝐵
= 1 −

√

1
1 + 𝜉2

. (17)

Hence, the percentage positional uncertainty increase

𝑑(𝜉) = 100

[

1 −

√

1
1 + 𝜉2

]

(18)

provides a theoretically grounded DMOS estimator.
In Fig. 3, plotting 𝑑(𝜉), we see the magenta curve at the nominal

viewing distance and we recognize that it exhibits a characteristic
sigmoidal behavior, with a threshold for small input values and a
saturation for large input values. The rating function complies with the
typical ‘‘dipper’’ shape [26,27] of the incremental blur producing a Just
Noticeable Difference (JND) of the perceived quality. The sensitivity
with respect to the normalized spread 𝜉 is calculated as

𝑑𝜀(𝜉)
𝑑𝜉

= 𝜉
[

1
1 + 𝜉2

]
3
2
; (19)

and the increment 𝛥𝜉 necessary to produce a given increment 𝛥𝜀(𝜉) is
approximated as:

𝛥𝜉 = 1
𝜉
[

1 + 𝜉2
]

3
2 𝛥𝜀(𝜉). (20)

In Fig. 4, the typical ‘‘dipper’’ shape is shown. Specifically, its theo-
retical minimum occurs at 𝜉 =

√

1
2 , corresponding to 𝑑(𝜉) = 18.4 (see

Figs. 3 and 4).
In addition to the physical parameter related to the objective view-

ing distance, to fit different dataset characteristics, we introduce a gain
4 
Fig. 4. The theoretical increment 𝛥 (𝜉) versus 𝜉 for 𝛥𝜀 = 0.05 in a log/log scale.
The typical ‘‘dipper’’ shape is shown, with a minimum at 𝜉 = 0.707, corresponding
to 𝑑(𝜉) = 18.4.

factor Q and set it to

𝑄 =
𝑑𝐴
100

[

1 −

√

1
1 + 𝜉𝐴

]−1

, (21)

where 𝑑𝐴 is the DMOS of the worst quality image of the dataset (anchor
image). Depending on the experiments, 𝑑𝐴 may vary from 80 to 100
DMOS.

The above estimates refer to the nominal viewing distance, i.e., to
the case where 𝛿 = 𝛿0. Accounting for the scaling of the retinal image
due to the actual viewing distance, let us define the normalized viewing
distance 𝜏 𝛥

= 𝛿
𝛿0

for notational simplicity. We assume that the spread of
the VRF 𝑠𝐺 is proportional to the viewing distance and the spread of
the blur operator 𝑠𝐵 is inversely proportional to the viewing distance.
Thus, replacing 𝑠′𝐺 = 𝜏 ⋅𝑠𝐺 and 𝑠′𝐵 = 1

𝜏 ⋅𝑠𝐵 in (15) and (16), we modified

the (17) as 𝜀(𝜉; 𝜏) = 1 −
√

1

1+ 𝜉2

𝜏4

.

Thus, we finally obtain the following theoretical formula for the
prediction of the DMOS of blurred natural images:

𝑑𝐶𝐴𝑁 (𝑄; 𝜏; 𝜉) = 100 ×𝑄 ×

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 − 1
√

1 +
𝜉2

𝜏4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(22)

referred to as canonical estimate of the DMOS of Gaussian blurred
natural images. It is characterized by the scoring gain parameter 𝑄
and the dimensionless parameter 𝜏 (see PFI metric layer of Fig. 2). In
Fig. 3, The model is shown at different viewing distances of experiments
known in the literature and, in Fig. 5, it is possible to observe the
variable behavior of the model under saturation, dependent on the
image with the highest DMOS (worst quality).

Fig. 6 shows the canonical estimate of DMOS as a function of 𝜏 and
𝜉. It can be observed how subjective quality improves with increasing
viewing distance and decreasing distortion. Consider, for instance, the
subjective perception of blur: for a fixed value of 𝜉, as we move
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Fig. 5. The DMOS estimator 𝑑(𝜉) versus the metric 𝜉 (in centesimal units DMOS) at
different values of Q.

Fig. 6. The canonical DMOS estimator 𝑑(𝜉) (in centesimal units DMOS) versus the
metrics 𝜉 and 𝜏 as a contour plot at the fixed value Q = 1.

Fig. 7. The specimen image ‘‘Iceroad’’ extracted from the database LIVE MD.

away from the image, subjective quality increases; furthermore, if we
fix a viewing distance 𝜏, subjective quality worsens with increasing
distortion.

At this point, it is possible to use the canonical model to choose a
typical image (image representative of the average perception of sub-
jective quality for each blur level). We selected the specimen within the
LIVE MD collection employed for statistical verification, whose images
are not shared by the other collections. Fig. 7 shows the selected specimen
image ‘‘Iceroad’’. In Fig. 8, it is shown the canonical model (continuous
green line) and how the typical image (filled circles) is representative
of an average image trend following the canonical model, for each blur
level in the LIVE MD database. We obtained results with comparable
performance using typical images from other databases.

4. From the canonical IQA method to general IQA methods

In the previous section, we proposed the canonical method for
estimating the DMOS 𝑑 of a Gaussian blurred natural image as a
𝐶𝐴𝑁

5 
Fig. 8. The canonical DMOS estimator 𝑑(𝜉) (green curve), and three blur levels of the
specimen image (red points) for the LIVE MD database.

function of the blur IQA metric 𝜉. We now demonstrate how any IQA
metric can be decomposed into a combination of a metric conversion
rule and the canonical IQA method.

Let us consider now a generic IQA method based on a scalar
metric 𝜁 . We assume that 𝜁 is monotonically related with the degree
of Gaussian blur applied to images, i.e., with the canonical metric 𝜉: as
blur increases, visual discomfort increases, just as it does with noise or
jpeg distortion.

The method is founded on the conversion of the values of the metric
𝜁 utilized by a generic IQA method into the corresponding value of the
metric 𝜉 (normalized blur) utilized in the canonical method, in the case
of typical natural images. For these typical images, it is assumed that
the canonical method and the generic IQA method do provide the same
estimates 𝑑𝐶𝐴𝑁 (𝜉; 𝜏) and 𝑑𝐼𝑄𝐴(𝜁 ; 𝜏) respectively:

𝑑𝐶𝐴𝑁 (𝜉; 𝜏) = 𝑑𝐼𝑄𝐴(𝜁 ; 𝜏) (23)

This equality is obtained by searching for the function 𝜉(𝜁 ; 𝜏). The func-
tion 𝑑𝐶𝐴𝑁 (𝜉; 𝜏) is available in an analytical closed form (22), whereas
𝑑𝐼𝑄𝐴(𝜁 ; 𝜏) is numerically calculable for a specific image. 𝑑𝐼𝑄𝐴(𝜁 ; 𝜏) are
the empirical values of a chosen estimator (e.g., the Visual Information
method (VIF) [5]) as the level of blur increases on a reference image,
as shown in Section 4.1.

4.1. Building the conversion function

To solve for the conversion function 𝜉(𝜁 ; 𝜏) we adopted a semi-
numerical method, resorting to the specimen image 𝐼𝑇 𝑦𝑝 sufficiently
representative of natural images, with respect to image content, another
factor affecting perceived quality loss in addition to Gaussian blur and
viewing distance.

A suite of fifty Gaussian blurred versions of the specimen image
spanning the whole DMOS range was generated from the reference
pristine image, using a Gaussian filter with an incremental value of blur
𝑠𝐵 . Thus, it is possible to calculate the value of the IQA metrics for each
pair of reference and blurred images and obtain a conversion function
to map the 𝜁 values to 𝜉 = 𝑓 (𝜁 ; 𝜏).

Based on these samples, to obtain continuous functions in 𝜁 , the
functions 𝑓 (𝜁 ; 𝜏) were defined using a Piecewise Cubic Hermite In-
terpolating Polynomial (PCHIP) Matlab® function. We remark that
(i) the model is not trained on the data, (ii) preserves the claimed
calibration-free nature, since the functions 𝑓 (𝜁 ; 𝜏) are fixed once for all.

Fig. 9 shows the functions 𝑓 (𝜁 ; 𝜏)||
|𝜏=0.76

obtained on the specimen

image ‘‘Iceroad’’ for the IQA metrics from the Visual Information
method (VIF) [5], Multi-Scale Structural Similarity (MSSIM) [28], the
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Fig. 9. The metric conversion function for the considered IQA methods. The scales of
the metrics of the MSSIM, FSIM and GMSD, for 𝜏 = 0.76, are purposely modified and
aligned to the scale of the VIF metric to put into evidence their common asymptotic
behavior.

Fig. 10. The metric conversion function for the VIF method at different viewing
distances: 𝜏 = 0.53, 𝜏 = 0.44, 𝜏 = 0.60, and 𝜏 = 0.76, corresponding respectively to
the LIVE DBR2, TID2013, CSIQ and LIVE MD viewing distances, and 𝜏 = 1 for the
nominal viewing distance.

Feature Similarity Index (FSIM) [3] and the Gradient Magnitude Simi-
larity Deviation (GMSD) [29].3 The databases presented are useful only
for experimental verification of the theoretical model.

Let us observe that the fundamental behavior of the functions 𝜉 =
𝑓 (𝜁 ; 𝜏) is analogous for all the considered IQA metrics 𝜁 . It compresses
the equivalent blur values for highly degraded images and conversely
expands them for slightly degraded images. In Fig. 10, it is shown how
the functions change with the viewing distance in the VIF case.

4.2. Mapping from 𝜁 to 𝜉

It is possible to map each value of the IQA estimates (for instance,
the VIF calculated on each pair of reference-degraded images) with
the conversion function and obtain the equivalent blur values. In
Fig. 11, VIF values for blurred-only images of DBR2 are mapped to the
conversion function to obtain blur equivalent values.

Once mapped onto the equivalent Gaussian blur axis 𝜉 = 𝑓 (𝜁 ; 𝜏), a
linear estimate 𝑑(𝜁 ) of the DMOS of blurred natural images, is given by
the canonical rating function

𝑑(𝑄; 𝜏; 𝜁 ) = 100 ×𝑄 ×

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 − 1
√

1 +
𝜉(𝜁 ; 𝜏)2

𝜏4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (24)

3 The whole set of functions is available to the reader in the supplementary
data.
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Fig. 11. The VIF values of blurred images (blue stars) of DBR2 mapped on the
conversion function (continuous red line).

The metric in (24) represents an innovative model for accurately as-
sessing the visual discomfort induced by the blurring of natural scenes.
This 2-parameter a-priori linearized method, in which the viewing
distance parameter plays a dominant role, is presented as an alternative
to the 5-parameter VQEG model.

4.3. Extension of the method beyond Gaussian blur

The analysis conducted refer to the case of Gaussian blurred natural
images, is of mainly theoretical interest. We here extend the analysis
to images subject to different types of degradation, which are neatly
distinct with respect to blur from a perceptual viewpoint [30].

IQA metrics are purposely designed to fit the subjective DMOS
under different type of degradation [31]. This aspect is explicitly
discussed in [5] where the concept of perceptual quality equivalence for
some degradation viewed as mixtures of noise and blur is introduced.
In [7] two metrics are jointly employed in a two-dimensional scoring
function. Therein, it was outlined the distinct perception of detail loss
due to blur and spurious details due to noise, and the perceptual quality
equivalence among blur and noise is assumed as constant. See also [32],
where a bijective mapping between the 2-D noise/blur space and the 3-
D MSSIM space was defined. Therefore, the conversion function 𝜉(𝜁 ; 𝜏)
applies even if the values of the metric 𝜁 are not only determined by
the presence of blur, but by other factors that produce the same values
of 𝑑𝐶𝐴𝑁 (𝜉) = 𝑑𝐼𝑄𝐴(𝜁 ). For instance, in the VIF method the metric
is computed as the contribution of many terms measuring losses of
Shannon information, where the effect of noise is equivalent to blur.

Following these considerations, the method obtained in this way
can be directly extended from blur to other distortions and is herein
referred to as Linearized IQA (LIQA), whose estimates have the same
form as the (24): 𝑑𝐿𝐼𝑄𝐴(𝜁 ) ≡ 𝑑(𝜁 ). The overall flow chart of the 𝑑𝐿𝐼𝑄𝐴(𝜁 )
is shown in Fig. 2.

5. Performance evaluation

The proposed VRF-based LIQA method is calibration-free and it al-
lows comparison of MOS/DMOS estimates across different applications
and viewing distances.

To assess its performances, we present here a statistical performance
comparison of some popular classical IQA methods already considered
above, subject to final calibration according to VQEG recommenda-
tions, with their LIQA counterparts, which do not make use of empirical
calibration. For the sake of completeness, we also present a comparison
with the most advanced deep IQA methods and evaluate the perfor-
mance on the same datasets in terms of linearity and absolute error, as

well as computational cost.
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Fig. 12. The DMOS scatterplots versus the values predicted using respectively the theoretically linearized IQA method (upper row) and the conventional, empirically calibrated
IQA method (lower row) for blur, noise, JPEG, JPEG2000 distortions for VDID2014. The first quartet of distorsions represents the data of the first session of the experiment (at
𝜏1, in magenta) and the second quartet represents the data of the second session (at 𝜏2, in green).
Table 1
Experimental verification for the a-priori linearized IQA metrics (left table) and empirically calibrated IQA metrics (right table) for
VDID2014. Four distortions subsets: blur, noise, JPEG, JPEG2000. The viewing distance is 𝜏1 = 0.57 for the first session of the experiment
and 𝜏2 = 0.65 for the second session.
A-priori linearized
IQA metric

VDID2014 Empirically calibrated
IQA metric

VDID2014

RMSE SROCC LCC RMSE SROCC LCC

LVIF 6.1059 0.94482 0.94103 VIF 6.6367 0.91774 0.92393
LMSSIM 8.3164 0.92540 0.87787 MSSIM 7.7583 0.90094 0.89442
LFSIM 6.5765 0.94858 0.92554 FSIM 6.9776 0.92592 0.91577
LGMSD 6.5816 0.95366 0.92533 GMSD 6.8077 0.92717 0.91978
In the Multi-Scale Structural Similarity (MSSIM) [28] and the Fea-
ture Similarity Index (FSIM) [3], the dependence of their scoring func-
tion on the viewing distance is attenuated by adjusting a mix of metrics
calculated at different scales.

The present comparative analysis focuses degradation types that ap-
peared suitable for conversion into the canonical metric, namely, addi-
tive noise, JPEG and JPEG2000 compression, including some examples
of multiple degradations [33].

To this purpose, VDID2014 database [14] is presented here to show
the superior performance of the a-priori linearized IQA methods in the
case of multiple distances in the same database. A single stimulus based
judgments was adopted. Subjects were asked to provide their overall
sensation of quality on a continuous quality scale from 0 to 1 during
two consecutive sessions with two different viewing distances. In the
original experiment, a preprocessing stage is applied to different IQA
methods. Images are rescaled to emulate different viewing distances,
and the corresponding metrics are combined using the criterion of
optimizing the overall statistical performance. Here, the performance
of the canonical method applied to raw data is shown.

Moreover, four different well-known collections of examples have
been employed, namely the above indicated subsets of the LIVE DBR2,
the TID2013, the CISQ and the LIVE MD databases. These databases
are built using independent protocols and methods for calculating the
DMOS, which is used here as a common measure of quality loss.

Specifically, in the LIVE DBR2 experiments used single stimulus
based judgments, including reference images [34]. Subjects were asked
to express a score among five quality levels with a slider.

In the TID2013 experiments, a tristimulus methodology [35] was
adopted, where subjects simply selected the best between two degraded
images in the presence of the reference image.

In the CSIQ experiments, subjects were asked to order the quality
of four images simultaneously displayed on an array of monitors [36].

In the LIVE MD, a single stimulus [34] with hidden reference

methodology was adopted.
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These basic differences, along with diverse viewing conditions and
protocols, ensure that the selected series of measurements, if they
yield coherent results, will reflect the essential nature of the subjective
quality rating phenomenon, independent of the way it was observed
and measured.

For multiple viewing distance databases, as VDID2014, the DMOS
estimates based on canonical model are slightly better than realignment
with the logistic function, because it is possible to realign the blur
values of different viewing distances independently, as shown in the
scatterplots of empirical DMOS values versus the estimated ones of
Fig. 12. An exception is the MSSIM, which, however, exhibits strong
overfitting for images at high DMOS. The results of this comparative
analysis are reported in Table 1. The selected statistical quality indices
were the RMSE (indicative of the average distance between the actual
DMOS values and the ones provided by the method), the SROCC (Spear-
man Rank Correlation Coefficient) which reveals the monotonicity
between predicted and actual DMOS values, and the PLCC (Pearson
Linear Correlation Coefficient) which measures the linearity of the
DMOS mapping. Here, the PLCC and the SROCC indices improve by
indicating higher linearity of L-estimators compared with classical IQA
estimators.

We present a unique large database, called SUPERQUARTET, as the
union of LIVE DBR2, TID2013 and CSIQ. We can work on data from
different experiments as a single dataset. Fig. 13 shows the scatterplot
of the four distortions present in each database (blur, noise, JPEG,
JPEG2000) and Table 2 presents the performances of the a-priori
linearized IQA metrics.

For single viewing distance databases, the scatterplots of empirical
DMOS values versus the estimated ones are shown in Figs. 14–17,
for direct visual comparison. The comparative analysis are reported in
Table 3 (left table) for the calibration-free LIQA methods, and in the
right table for the IQA methods after empirical calibration [6,10]. These

tables indicate that the DMOS estimates based on theoretical modeling
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Fig. 13. The DMOS scatterplots versus the values predicted using the theoretically linearized IQA methods for blur, noise, JPEG, JPEG2000 distortions for SUPERQUARTET (LIVE
DBR2 + TID2013 + CSIQ).
Table 2
Experimental verification for the a-priori linearized IQA metrics (left table) and empirically calibrated IQA metrics (right table) for
SUPERQUARTET. Four distortions subsets: blur, noise, JPEG, JPEG2000.
A-priori linearized
IQA metric

SUPERQUARTET Empirically calibrated
IQA metric

SUPERQUARTET

RMSE SROCC LCC RMSE SROCC LCC

LVIF 7.8439 0.96006 0.95513 VIF 8.6157 0.94274 0.94356
LMSSIM 8.7550 0.95374 0.94260 MSSIM 9.2259 0.93997 0.93499
LFSIM 8.1944 0.96659 0.94999 FSIM 8.0509 0.95631 0.95090
LGMSD 7.2696 0.96956 0.96039 GMSD 7.6069 0.95899 0.95629
Fig. 14. The DMOS scatterplots versus the values predicted using respectively the theoretically linearized VIF method (upper row) and the conventional, empirically calibrated
VIF method (lower row) for blur, noise, JPEG, JPEG2000 distortions for LIVE DBR2, TID2013 and CSIQ, and blur, noise, JPEG, blur+JPEG, blur+noise distortions for LIVE MD.
are statistically slightly more dispersed than the ones determined using
empirical fitting to specific data, using the five parameter curve of
(1). Fig. 18 shows the RMSE boxplots for each database, comparing
each L-estimator to its empirically calibrated version. However, this
advantage does depend on the adopted fitting model. For instance, the
three-parameter curve of [37] would exhibit a larger RMSE in change
of a better stability across applications.

In general, it is observed that the mutual positions of the clusters
regarding the different degradations for the IQA methods tend to be
preserved by the corresponding LIQA versions. Furthermore, a slightly
more visible deviation from linearity of the LIQAs for the TID2013
dataset can be noted. This could be explained by the fact that the
viewing distance in these experiments is not controlled, but left to the
choice of the observers [35], whereas here it is determined by regres-
sion all over the subset of blurred image data. Finally, a numerical
saturation occurs towards the worst quality, in correspondence of the
vertical asymptotes of the conversion curve 𝜉(𝜁 ; 𝜏), resulting from the
conversion function used by the model (see Fig. 10).

In Table 4, the 95th percentile (95p) of residual magnitudes and
the residual kurtosis provide further insight about the fitting error
properties. The 95p values and kurtosis do not indicate troubling issues
or clear differences in the use of the metrics, with an acceptable 95𝑝 ≈
2 ⋅ 𝑅𝑀𝑆𝐸 and a moderate non Gaussianity of the residuals.
8 
6. LIQA vs. DL-IQA: A performance analysis

Deep Learning IQA (DL-IQA) models can offer significant advan-
tages due to their ability to learn more complex representations and
better capture the nuances of human visual perception. Classical met-
rics like PSNR, SSIM, and MS-SSIM are well-studied and optimized
for rapid calculation. This is crucial for real-time applications such as
video streaming, where low latency is essential to ensure a good user
experience. Moreover, the implementation of these metrics requires
fewer computational resources compared to deep learning models,
which often need specialized hardware like GPUs to run efficiently.
When dealing with a massive amount of video data and the need
to continuously assess the quality of these videos in real-time, clas-
sical metrics allow for greater scalability with limited computational
resources.

We select two of our most performant estimators, LVIF and LGMSD,
and compare them with some well-known deep learning-based estima-
tors in the Full Reference scenario.

The TOPIQ-FR [38] employs a top-down approach for image quality
assessment, directing the network to focus on locally distorted regions
of semantic importance. It utilizes a CFANet that leverages multi-scale
features and cross-attention mechanisms. This method builds upon
ResNet50 and enhances performance by emphasizing semantically
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Fig. 15. The DMOS scatterplots versus the values predicted using respectively the theoretically linearized MSSIM method (upper row) and the conventional, empirically calibrated
MSSIM method (lower row) for blur, noise, JPEG, JPEG2000 distortions for LIVE DBR2, TID2013 and CSIQ, and blur, noise, JPEG, blur+JPEG, blur+noise distortions for LIVE
MD.
Fig. 16. The DMOS scatterplots versus the values predicted using respectively the theoretically linearized FSIM method (upper row) and the conventional, empirically calibrated
FSIM method (lower row) for blur, noise, JPEG, JPEG2000 distortions for LIVE DBR2, TID2013 and CSIQ, and blur, noise, JPEG, blur+JPEG, blur+noise distortions for LIVE MD.
Fig. 17. The DMOS scatterplots versus the values predicted using respectively the theoretically linearized GMSD method (upper row) and the conventional, empirically calibrated
GMSD method (lower row) for blur, noise, JPEG, JPEG2000 distortions for LIVE DBR2, TID2013 and CSIQ, and blur, noise, JPEG, blur+JPEG, blur+noise distortions for LIVE MD.
active regions, making it more efficient compared to state-of-the-art
methods. TOPIQ-FR utilizes more than 20 parameters in its evaluation
process. We also present its variant TOPIQ-FR-PIPAL trained on the
PIPAL dataset (Perceptual Image Processing ALgorithms), specifically
9 
designed for image quality assessment, containing a wide range of
distortions and algorithmic corrections [39].

The DISTS model [40] is a full-reference image quality model that
uses a convolutional neural network to compare ‘‘texture similarity’’
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Fig. 18. The boxplot of the RMSE using respectively the theoretically linearized IQA methods and the conventional, empirically calibrated IQA methods.
Table 3
Experimental verification for the a-priori linearized IQA metrics (left table) and empirically calibrated IQA metrics (right table) for LIVE DBR2, TID2013, CSIQ and LIVE MD.
Four distortions subsets for LIVE DBR2, TID2013 and CSIQ: blur, noise, JPEG, JPEG2000. Five distortions subsets for LIVE MD: blur, noise, JPEG, blur+JPEG, blur+noise. The
viewing distances employed in the different databases were inferred by regression using the quality estimates for the subsets of blurred images, giving the following normalized
values: 𝜏 = 0.53 for LIVE DBR2, 𝜏 = 0.44 for TID2013, 𝜏 = 0.60 for CSIQ, and 𝜏 = 0.76 for LIVE MD.

A-priori linearized Dataset RMSE SROCC LCC Empirically calibrated Dataset RMSE SROCC LCC
IQA metric IQA metric

LVIF LIVE DBR2 8.6653 0.96536 0.95636 VIF LIVE DBR2 7.3992 0.96535 0.96181
TID2013 7.0170 0.92782 0.92789 TID2013 6.3344 0.92782 0.94021
CSIQ 7.5789 0.95878 0.96336 CSIQ 9.5763 0.92283 0.93089
LIVE MD 9.2065 0.92673 0.93604 LIVE MD 7.3096 0.92199 0.94277

LMSSIM LIVE DBR2 9.5823 0.95323 0.93910 MSSIM LIVE DBR2 8.4663 0.95307 0.94969
TID2013 7.8579 0.91745 0.91394 TID2013 6.7297 0.91745 0.93224
CSIQ 8.5463 0.95445 0.95326 CSIQ 13.1528 0.88089 0.86502
LIVE MD 13.8323 0.87709 0.84556 LIVE MD 10.0285 0.87118 0.88922

LFSIM LIVE DBR2 8.8302 0.96851 0.95149 FSIM LIVE DBR2 7.2289 0.96846 0.96358
TID2013 7.3283 0.95341 0.93291 TID2013 5.4113 0.95343 0.95673
CSIQ 8.1802 0.96164 0.95810 CSIQ 10.5632 0.92742 0.91522
LIVE MD 12.0365 0.91389 0.88788 LIVE MD 7.9413 0.90831 0.93207

LGMSD LIVE DBR2 7.2629 0.96888 0.96478 GMSD LIVE DBR2 6.9278 0.96888 0.96660
TID2013 6.7091 0.95059 0.93579 TID2013 5.5523 0.95059 0.95440
CSIQ 7.7122 0.96909 0.96232 CSIQ 8.1502 0.95490 0.95044
LIVE MD 12.9031 0.90144 0.87629 LIVE MD 8.7612 0.89582 0.91666
Table 4
95p and Residual Kurtosis of the a-priori linearized IQA metrics (left table) and empirically calibrated IQA metrics (right table) for LIVE
DBR2, TID2013, CSIQ, LIVE MD and VDID2014. Four distortions subsets for LIVE DBR2, TID2013, CSIQ and VDID2014: blur, noise, JPEG,
JPEG2000. Five distortions subsets for LIVE MD: blur, noise, JPEG, blur+JPEG, blur+noise.
A-priori linearized Dataset 95p Kurtosis Empirically calibrated Dataset 95p Kurtosis
IQA metric IQA metric

LVIF LIVE DBR2 16.99 3.17 VIF LIVE DBR2 11.48 2.75
TID2013 12.30 3.80 TID2013 9.65 4.21
CSIQ 11.71 4.83 CSIQ 17.54 3.61
LIVE MD 13.09 3.31 LIVE MD 13.07 2.63
VDID2014 11.05 4.90 VDID2014 10.93 3.41

LMSSIM LIVE DBR2 17.29 2.91 MSSIM LIVE DBR2 14.90 2.93
TID2013 13.58 2.95 TID2013 11.00 3.31
CSIQ 14.14 3.96 CSIQ 19.40 3.83
LIVE MD 21.03 4.30 LIVE MD 16.59 2.82
VDID2014 15.85 3.99 VDID2014 12.67 3.71

LFSIM LIVE DBR2 16.56 3.33 FSIM LIVE DBR2 12.01 3.08
TID2013 15.63 4.14 TID2013 9.72 3.67
CSIQ 13.06 4.48 CSIQ 16.54 4.11
LIVE MD 15.73 6.05 LIVE MD 12.79 2.56
VDID2014 10.73 5.22 VDID2014 11.87 3.44

LGMSD LIVE DBR2 12.58 3.64 GMSD LIVE DBR2 10.88 3.29
TID2013 12.24 4.80 TID2013 9.44 4.92
CSIQ 13.76 5.68 CSIQ 13.26 4.66
LIVE MD 15.40 5.71 LIVE MD 13.17 2.66
VDID2014 11.26 6.47 VDID2014 10.64 3.48
and ‘‘structure similarity’’ between an original and a degraded im-
age, optimizing the parameters to align with human image quality
assessments. The model is designed to be insensitive to geometric trans-
formations and has shown good performance in tasks such as texture
classification and retrieval. DISTS employs more than 10 parameters,
including two key parameters, 𝛼 and 𝛽, which are structural and tex-
tural similarity parameters: 𝛼 controls the balance between structural
and textural similarities, and 𝛽 normalizes the overall similarity.
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Finally, we compare the performance with the LPIPS method [41],
both in its base version using the AlexNet network, and in the LPIPS-
VGG variant, utilizing the VGG (Visual Geometry Group) neural net-
work for feature extraction. This benefits from VGG’s ability to capture
fine details due to its greater depth and complexity. VGG is often chosen
because it balances depth and generalization capability effectively.
PIEAPP [42] is also presented.
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Fig. 19. The DMOS scatterplots versus the values predicted using the LGMSD, TOPIQ, DISTS and LPIPS methods for blur, noise, JPEG, JPEG2000 distortions for SUPERQUARTET
(LIVE DBR2 + TID2013 + CSIQ). This dataset addresses the issue of varying viewing distances.
Table 5
Experimental verification of the a-priori linearized IQA metrics versus the DL-IQA methods for the
SUPERQUARTET dataset. Four distortions subsets: blur, noise, JPEG, JPEG2000. The LIQA method LGMSD
outperforms classical and deep learning based methods.

IQA metric SUPERQUARTET

RMSE SROCC LCC

LVIF 7.8439 0.96006 0.95513
LGMSD 7.2696 0.96956 0.96039

TOPIQ FR 7.4752 0.96124 0.95782
TOPIQ FR PIPAL 10.1284 0.91518 0.92109
DISTS 9.5273 0.93066 0.93052
LPIPS 11.1168 0.91627 0.90408
LPIPS VGG 10.4791 0.90722 0.91527
PIEAPP 11.9807 0.90683 0.88764
For a fair performance comparison, the data obtained from the
methods presented have all been aligned following VQEG guidelines [6,
10] (see (1)).

In Fig. 19, we show the TOPIQ-FR, DISTS, and LPIPS-VGG methods
for the SUPERQUARTET dataset, and in Table 5, the performance of
these and other DL-IQA methods is presented. We observe that, in the
case of datasets with multiple viewing distances, LGMSD outperforms
the DL-IQA methods.

In Fig. 20, we show the TOPIQ-FR, DISTS, and LPIPS-VGG methods
for the LIVE DBR2, TID2013 and CSIQ datasets, for Gaussian blur,
noise, JPEG and JPEG2000 distorsions. In Table 6, we show the per-
formance of the different DL-IQA methods compared to our linearized
LIQA ones. In the case of a single viewing distance, TOPIQ-FR outper-
forms, but LGMSD takes second place. DL-IQA methods employ millions
of parameters, whereas the proposed LIQA method utilizes only two
parameters.

Finally, for each dataset complete with all distortions, in Table 7,
we present the linearity and rank ordering metrics. In blue bold, we
highlight the best performances of the estimators and in black bold
the second best. We note that in most cases, the LIQA estimators (last
two columns on the right) exceed or equal the performance of the best
DL-IQA, the TOPIQ FR (first column on the left).

With LIQA estimators, we only have computational cost calculations
related to spline and canonical model on blur images. The piecewise
polynomial is of degree 𝑑 and 𝑁 is the number of blur images to
interpolate.

FLOPStot = FLOPSspline + FLOPScanonical =

2 ⋅ 𝑑 ⋅ N + 8 ⋅ N = (2 ⋅ 𝑑 + 8) ⋅ N

From the TOPIQ article [38], we can estimate the number of FLOPS
used in various DL-IQA estimators. The TOPIQ model employs ap-
proximately 19 giga FLOPS with around 35 million parameters. The
DISTS [40] and LPIPS [41] models use approximately 62 giga FLOPS
with around 12 million parameters. The PIEAPP model [42] utilizes
approximately 155 giga FLOPS with around 80 million parameters.

In the context of IQA methods, classical methods are characterized
by fixed parameters derived from mathematical operations and only a
few trainable parameters, usually around five, typically from logistic
11 
regression. On the other hand, deep learning methods involve a signif-
icantly larger number of trainable parameters due to their reliance on
neural networks architectures.

For instance, classical IQA methods like VIF, GMSD, and SSIM
typically use fixed mathematical formulas and do not require extensive
training. VIF (Visual Information Fidelity) employs fixed mathematical
operations based on information theory and wavelet transforms without
trainable parameters. Similarly, GMSD (Gradient Magnitude Similarity
Deviation) involves fixed computations without trainable parameters,
akin to VIF.

We also consider data rectification, given the VQEG logistics, with
the number of iterations set to 250,000 (worst case). Assuming 𝑚 =
1000 (the number of observations or data points that the logistic
regression model is being fit to), the total FLOPS is:

FLOPS = (15 ⋅ 𝑚 + 5) ⋅ 250,000 = 3.75 (G)

In Table 8, we present the comparison of computational cost
(FLOPS) and parameters used by LIQA methods with classical IQA and
DL-IQA methods. The input image size is 3 × 224 × 224 to ensure a fair
comparison with DL-IQA methods. The FLOPS calculation for the metric
represents the computational cost for processing each pair of images.
The VQEG FLOPS refer to the entire final dataset, which is processed
once. From the table we see how the number of necessary parameters
is reduced to 2, compared to the 5 parameters suggested by the VQEG
rectification. Furthermore, the low computational cost allows us to use
IQA methods in real time while still maintaining high accuracy.

The direction towards hybrid models represents a natural evolution
aiming to harness the best of both worlds: speed and reliability from
classical methods, and precision from deep learning models. Moreover,
combining traditional video quality metrics (such as PSNR, SSIM, MS-
SSIM, FSIM, VIF) using machine learning techniques to weigh and fuse
the results into an overall score that better reflects human perception
is currently the most effective solution. In this context, LIQA methods
can provide features to DL-IQA methods, leading to a reduction in the
number of parameters, with particular attention to high accuracy in
blur correction for the training of deep methods. As a further future
development, it is possible to consider shifting the curves, and thus
the model, to distances different from those used in the datasets, in
spaces where DMOS and reference images are not present, working
in Reduced Reference or No Reference environments [8,9]. Continuing
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Fig. 20. The DMOS scatterplots versus the values predicted using TOPIQ-FR (upper row), DISTS (second row) and LPIPS-VGG (lower row) for blur, noise, JPEG, JPEG2000
distortions for LIVE DBR2 (first column), TID2013 (second column) and CSIQ (third column).
Table 6
Experimental verification of the a-priori linearized IQA metrics versus the DL-IQA methods. Four distortions subsets: blur, noise, JPEG,
JPEG2000, for each single distance dataset LIVE DBR2, TID2013 and CSIQ. The best values are in bold blue, the second best in bold black.
DL-IQA methods use millions of parameters, while the proposed LIQA method uses only two parameters. The number of parameters for the
DL-IQA methods is expressed in millions (M).
IQA metric Parameter LIVE DBR2 quartet TID2013 quartet CSIQ quartet

no. RMSE SROCC LCC RMSE SROCC LCC RMSE SROCC LCC

LVIF 2 8.6653 0.96536 0.95636 7.0170 0.92782 0.92789 7.5789 0.95878 0.96336
LGMSD 2 7.2629 0.96888 0.96478 6.7091 0.95059 0.93579 7.7122 0.96909 0.96232

TOPIQ FR ∼35 M 6.1015 0.97699 0.97420 5.0277 0.95797 0.96277 6.2881 0.96731 0.97493
TOPIQ FR PIPAL >35 M 9.6088 0.93748 0.93470 6.9727 0.90586 0.92706 9.3209 0.92414 0.94403
DISTS ∼12 M 8.8388 0.94969 0.94503 8.0028 0.88691 0.90268 8.3521 0.94451 0.95532
LPIPS ∼12 M 11.3597 0.91557 0.90742 7.9131 0.90441 0.90497 10.1163 0.94097 0.93372
LPIPS VGG >100M 9.9120 0.92845 0.93035 8.7029 0.85383 0.88375 9.4743 0.92603 0.94212
PIEAPP ∼80 M 11.6897 0.90935 0.90167 8.4116 0.90658 0.89187 9.5894 0.94837 0.94066
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esearch on both approaches enables the development of more effective
nd versatile solutions for IQA.

. Implementation issues

The computational steps for the implementation of the a-priori
inearized methods are summarized as follows:

1. With reference to a typical natural image, stipulate a conven-
tional DMOS for that image at some level of blur (anchor value)
to determine the value of 𝑄, using the canonical method.

2. Calculate the conversion function 𝜉(𝜁 ; 𝜏) for the chosen conven-
tional IQA method and for a set of viewing distance values of
interest 𝜏1, 𝜏2,… , 𝜏𝑁 . To this purpose, the images are resampled
for each viewing distance of interest.

3. Calculate the equivalent blur for the image of interest starting
from the metric 𝜁 determined by the application of the chosen
conventional IQA and the associated conversion function 𝜉(𝜁 ; 𝜏)
for the wanted viewing distance.

4. Apply the rating function 𝑑𝐿𝐼𝑄𝐴(𝜁 ) using the already determined
values of 𝑄 and 𝜏.
 m

12 
Since the costly step 2 is off-line, the computational burden for the
stimation of the DMOS of a given degraded image reduces substan-
ially to that required by the calculus of the metric 𝜁 of the selected
onventional IQA method.

. Remarks

In the face of the concordant results of independent experiments
ased on different methods, protocols and viewing devices, one might
till wonder how it is possible to obtain such accurate objective qual-
ty estimates linearly correlated with subjective judgments without
-posteriori calibration. The multiplicity of factors influencing the qual-
ty judgments pushes rather towards the use of empirical analogies,
s done in classical and machine learning based IQA methods. To en-
ighten why the present unconventional calibration-free LIQA methods
o constitute a viable approach, let us further evidence that these meth-
ds are not aimed to predict the subjective quality of a specific image,
ut rather the expected value of a random set of images characterized
y a perceptual quality equivalent to Gaussian blur, which is regarded
s deterministic. Its differences with respect to actual quality measure-
ents are the effect of different unobserved factors. The good linear
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Table 7
Experimental verification of the a-priori linearized IQA metrics versus the DL-IQA methods for the entire TID2013, CSIQ, LIVE DBR2 and LIVE MD datasets. Each best value
distortion is highlighted in bold blue, the second best in bold black. We show the computational cost (FLOPS) and the number of parameters used by LIQA methods compared to
classical IQA and DL-IQA methods. The FLOPS calculation for the metric refers to the computational cost for each pair of images processed. The values for classic or deep metrics
are expressed in gigaflops (GFLOPS). The number of parameters for the DL-IQA methods is expressed in millions (M).

TOPIQ FR TOPIQ FR PIPAL DISTS LPIPS LPIPS VGG PIEAPP LVIF LGMSD

Parameter no. ∼35 M >35 M ∼12 M ∼12 M >100 M ∼80 M 2 2
GFLOPS ∼19 >19 ∼62 ∼62 >62 ∼155 8.876 10−6 8.876 10−6

Datasets Distortion type TOPIQ FR TOPIQ FR PIPAL DISTS LPIPS LPIPS VGG PIEAPP LVIF LGMSD

SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC

TID2013

Color additive noise 0.85940 0.88616 0.67623 0.69979 0.77524 0.77573 0.71814 0.70401 0.75052 0.74788 0.72645 0.73543 0.83099 0.86741 0.86893 0.90584
Gaussian blur 0.95781 0.94712 0.91187 0.91419 0.92792 0.91942 0.95482 0.94832 0.91346 0.91529 0.89515 0.88314 0.96529 0.95452 0.91136 0.89622
Gaussian white noise 0.92780 0.92943 0.81106 0.79340 0.83561 0.82461 0.80732 0.77647 0.82625 0.81714 0.85045 0.83958 0.89937 0.90233 0.94605 0.94605
High frequency noise 0.90949 0.95531 0.82910 0.87718 0.86140 0.88995 0.83918 0.85558 0.85056 0.87439 0.87153 0.91126 0.89724 0.94620 0.91640 0.95180
Impulse noise 0.81325 0.79520 0.60840 0.59069 0.67232 0.65150 0.66584 0.63559 0.61891 0.59871 0.76468 0.75597 0.85420 0.84968 0.76334 0.73752
Masked noise 0.82655 0.84550 0.71230 0.78138 0.82612 0.85448 0.78751 0.82222 0.80759 0.83119 0.82928 0.85959 0.84809 0.87843 0.70855 0.68861
Quantization noise 0.86733 0.87277 0.75364 0.74630 0.76881 0.76228 0.78646 0.77420 0.72987 0.72823 0.68225 0.66093 0.78650 0.77800 0.90568 0.90582
Spatially correlated noise 0.92012 0.91890 0.86254 0.85819 0.85465 0.83945 0.78417 0.76617 0.81180 0.80685 0.80005 0.80804 0.88341 0.87633 0.93485 0.92153
Block-wise distortions 0.19702 0.30319 0.38817 0.46027 0.33489 0.30580 0.45282 0.51352 0.52576 0.51080 0.15881 0.17683 0.52957 0.50336 0.66305 0.62960
Chromatic aberrations 0.89302 0.92203 0.86589 0.95021 0.88625 0.95555 0.89699 0.92945 0.88542 0.95942 0.87867 0.96144 0.88548 0.94853 0.85166 0.91602
Comfort noise 0.93331 0.96060 0.86779 0.91632 0.89312 0.89969 0.86773 0.86006 0.86985 0.89500 0.85927 0.91265 0.89502 0.90437 0.92979 0.92543
Contrast change 0.58866 0.74896 0.59626 0.72227 0.47560 0.70351 0.43942 0.54380 0.35533 0.44257 0.78930 0.85591 0.84816 0.88673 0.32532 0.43384
Image denoising 0.94726 0.96406 0.89383 0.93530 0.89007 0.92538 0.88555 0.90359 0.84314 0.89051 0.84322 0.87811 0.89321 0.88718 0.95250 0.95287
Dither color quantization 0.91863 0.92083 0.80180 0.80875 0.81463 0.82240 0.79670 0.78004 0.79092 0.79277 0.88463 0.88149 0.84551 0.85975 0.90982 0.91359
JPEG compression 0.92369 0.96303 0.88331 0.92695 0.88830 0.91495 0.89080 0.90589 0.87112 0.90253 0.84510 0.87099 0.91881 0.92737 0.95001 0.97397
JPEG transmission errors 0.91592 0.93322 0.84367 0.87318 0.91249 0.88573 0.90487 0.88561 0.87416 0.88934 0.85169 0.86723 0.84164 0.89794 0.84011 0.77471
JPEG2000 compression 0.96366 0.94797 0.92882 0.95202 0.93089 0.94130 0.92545 0.93467 0.92216 0.93213 0.94272 0.94964 0.95183 0.93798 0.96558 0.95607
JPEG2000 transmission errors 0.90369 0.90648 0.88542 0.87749 0.86650 0.83445 0.81598 0.80886 0.81816 0.81025 0.85437 0.85859 0.87722 0.86847 0.91347 0.88746
Lossy compression 0.94948 0.95371 0.91802 0.93107 0.92613 0.93125 0.90796 0.89874 0.91775 0.92247 0.86857 0.87879 0.92037 0.90062 0.96306 0.94040
Mean shift 0.81506 0.82059 0.40003 0.46071 0.80293 0.80866 0.77628 0.80274 0.74932 0.66693 0.50405 0.49472 0.63070 0.60276 0.73561 0.76624
Multiplicative Gaussian noise 0.89490 0.89799 0.76450 0.74778 0.78348 0.76232 0.72349 0.70283 0.75277 0.74788 0.82509 0.81782 0.84658 0.85800 0.88805 0.88722
Non-eccentricity pattern noise 0.82772 0.88367 0.80788 0.84865 0.84411 0.86185 0.80460 0.80576 0.82694 0.84176 0.78298 0.79848 0.77113 0.76875 0.81427 0.79593
Saturation change 0.80788 0.80052 0.47612 0.41774 0.79770 0.69480 0.81322 0.79161 0.77414 0.64074 0.69897 0.65795 0.16169 0.14065 0.19066 0.18733
Sparse sampling 0.95972 0.94306 0.93447 0.95867 0.94066 0.94059 0.93815 0.94436 0.94281 0.95338 0.91400 0.93581 0.93589 0.92261 0.96838 0.96408

CSIQ

Gaussian white noise 0.96041 0.96301 0.86952 0.87738 0.92392 0.92232 0.92883 0.91415 0.92196 0.91569 0.94318 0.93977 0.95712 0.95848 0.96789 0.95846
Gaussian blur 0.97200 0.97329 0.94857 0.96028 0.96023 0.96818 0.95002 0.93379 0.95368 0.95499 0.94827 0.92709 0.97470 0.97409 0.97125 0.96023
JPEG compression 0.95119 0.97886 0.92813 0.96363 0.96370 0.97777 0.95144 0.96838 0.95631 0.96676 0.95000 0.97522 0.97049 0.98225 0.96554 0.96358
Contrast decrement 0.95136 0.95901 0.92738 0.93159 0.94791 0.94228 0.94761 0.92431 0.91165 0.87544 0.94197 0.92855 0.93609 0.89651 0.90440 0.91735
Additive pink gaussian noise 0.96488 0.95918 0.90333 0.90073 0.94172 0.93229 0.94522 0.93464 0.92539 0.91479 0.92559 0.91863 0.95093 0.94208 0.95064 0.93789
JPEG2000 compression 0.96600 0.97555 0.92977 0.95319 0.95400 0.95908 0.93835 0.94964 0.95246 0.95506 0.95730 0.96737 0.96731 0.97305 0.97177 0.96860

LIVE DBR2

Gaussian blur 0.97574 0.96679 0.96495 0.95138 0.97117 0.97516 0.94480 0.90429 0.95011 0.95875 0.93058 0.89410 0.98158 0.98714 0.97484 0.97930
Bit errors in JPEG2000 stream 0.97028 0.97090 0.96466 0.96699 0.96019 0.95859 0.95333 0.95294 0.95849 0.96124 0.95158 0.94491 0.97728 0.97692 0.96609 0.95633
JPEG compression 0.97361 0.97659 0.96391 0.96391 0.96826 0.96884 0.96338 0.96204 0.96602 0.96292 0.95280 0.95671 0.98569 0.98137 0.99059 0.98961
JPEG2000 compression 0.97138 0.97315 0.94187 0.94676 0.95180 0.95603 0.94719 0.95235 0.93976 0.93687 0.94525 0.94842 0.97912 0.97509 0.98786 0.98101
Gaussian white noise 0.98663 0.98750 0.97189 0.96351 0.97394 0.95180 0.96993 0.93007 0.96847 0.96488 0.96912 0.94721 0.98931 0.99311 0.98461 0.97430

LIVE MD Blur + JPEG 0.89785 0.92147 0.90259 0.92789 0.88377 0.88690 0.84737 0.89346 0.84184 0.84884 0.81801 0.87754 0.89974 0.92963 0.87355 0.86907
Blur + Gaussian noise 0.89079 0.91163 0.89874 0.93115 0.79769 0.80659 0.76607 0.80842 0.76942 0.78714 0.78372 0.85523 0.90560 0.93258 0.86864 0.85771
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Table 8
Computational cost (FLOPS) and parameter number used by LIQA methods compared
to classical IQA and DL-IQA methods. The input image size is 3 × 224 × 224 for a fair
comparison with DL-IQA methods. The calculation of FLOPS for the metric refers to
the computational cost for each pair of images processed. The VQEG FLOPS refer to
the entire final dataset to be rectified, once. The values for classic or deep metrics are
expressed in gigaflops (GFLOPS). The number of parameters for the DL-IQA methods
is expressed in millions (M).

IQA metric GFLOPS Parameter

Metric VQEG no.

LVIF 8.876 10−6 – 2
LGMSD 8.876 10−6 – 2

VIF 0.472 3.75 5
GMSD 0.001 3.75 5

TOPIQ FR ∼19 3.75 ∼35 M
DISTS ∼62 3.75 ∼12 M
LPIPS ∼62 3.75 ∼12 M
PIEAPP ∼155 3.75 ∼80 M

correlation of the theoretical estimates versus the empirical scores
follows from the validity of the adopted general principles, namely
the optimality of the HVS with respect to fine pattern localization,
and the Weber law, as discussed in Section 3. Just as you are certain
about the time that a stone takes to fall from a given height (believing
in mechanics), you should also regard such linearity as a necessary
consequence of the said principles.

As outlined in Section 4, the most critical point is the correct deter-
mination of a specimen original image representative of the universe of
natural original images, beyond the spectral fall-off property invoked
in the calculus of the expected average quality.

The specimen image covers the basic role of allowing conversion
between conventional quality metrics and a perceptually quality equiv-

alent Gaussian blur. In turn, the conversion rule constitutes the bridge a

13 
for converting the estimated quality among different viewing distances.
This possibility is precluded to conventional calibration-prone methods,
also because of the scarcity of empirical datasets containing experi-
ments for different viewing distances [43]. Among others, this feature
allows straightforward prediction of the subjective image quality using
jointly different databases, after equalization of the 𝜏 and of 𝑄.

As far as the generalization of LIQA methods to different image
egradation types is concerned, it is basically inherited from the prop-
rties of the corresponding IQA methods through the conversion for-
ulas, as deduced in Section 4.3 and corroborated by the observation

f the scatterplots of Section 5.
Extending the observations made regarding the choice of the speci-

en image, it is also outlined that, even though the quality equivalence
nvoked in Section 4 depends on empirical data through the settings of
he IQA methods, these settings were established in a long series of past
xperiments and can be considered firmly consolidated.

Still, the methods considered in this paper cannot be strictly said
‘calibration-free’’ whenever the parameters 𝑄 and 𝜏 are unknown. In
ractice, they have a clear operative meaning and are simply deter-
ined in applications.

. Conclusion

We have introduced a canonical estimator for a priori linearization
f the blur metric and have demonstrated how any classical Image
uality Assessment (IQA) metric can be mapped to an equivalent blur
etric. The study has provided a novel model for realistically estimat-

ng visual discomfort caused by the blur of natural scenes, taking into
ccount the cognitive needs of subjects and the adaptive capability of
he visual system.

We have presented a 2-parameter a-priori linearized model as an
lternative to the 5-parameter scoring function suggested by VQEG, so

s to remove the final linearization stage. The presented LIQA methods
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appear to predict with a reasonable accuracy the subjective quality loss
of natural images in the FR mode for a class of technically interesting
degradations. By the comparative analysis of a degraded image against
its pristine counterpart, LIQA methods provide quality loss estimates
using only DMOS anchoring and viewing distance information.

Since they conform to an abstract model of real subjects retaining
their essential, shared characteristics, it is expected that they will
properly reflect the statistical opinion of large populations of observers.
After all, this is the substantial goal of image providers.

Future advancements could involve adjusting the curves and con-
sequently the model to different distances than those used in the
datasets, operating in environments where DMOS and reference images
are absent, specifically in Reduced Reference or No Reference settings.
Moreover, LIQA methods can provide features to DL-IQA approaches,
resulting in a decrease in the number of parameters while maintaining
a focus on high precision in blur correction for training deep learning
models.
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