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Abstract
Landau damping plays a crucial role in preserving single-

bunch stability. In view of delivering the beam to the
High-luminosity LHC (HL-LHC), the Super Proton Syn-
chrotron (SPS) must double the intensity per bunch. In this
intensity range, the loss of Landau damping (LLD) in the
longitudinal plane can pose an important performance limi-
tation. Observation of the beam response to a rigid-bunch
dipole perturbation is a common technique in studying the
LLD. This contribution presents measurements for a single
bunch at 200 GeV in a double-harmonic RF system with a
higher harmonic voltage at four times the fundamental RF
frequency, showing the impact on Landau damping. Be-
yond the analytical estimates, the observations are moreover
compared to the results from novel stability criteria imple-
mented in the semi-analytical code MELODY, as well as
with macroparticle simulation in BLonD.

INTRODUCTION
The stability of particle beams in hadron synchrotrons is a

critical issue for achieving high-intensity and quality beams.
One of the most effective mechanisms for maintaining beam
stability is Landau damping [1]. In the longitudinal plane,
the synchrotron frequency spread of individual particles,
caused by the non-linear voltage of the RF system, estab-
lishes this damping mechanism, which was studied for many
years [2–11]. To enhance beam stability, a common tech-
nique is to employ a higher harmonic RF system, which can
modify the synchrotron frequency spread. For example, the
Super Proton Synchrotron (SPS) at CERN is equipped with
200 MHz and 800 MHz RF systems, operating in phase at
the bunch position, resulting in the so-called bunch shorten-
ing mode (BSM) to suppress longitudinal instabilities [12].

Analytical expressions for the loss of Landau damp-
ing (LLD) threshold in the single harmonic RF case
have been derived [13] using the Lebedev equation [2]
they are confirmed by numerical calculations with the
code MELODY [14] and macroparticle simulations with
BLonD [15]. The predictions are consistent with available
beam measurements, and it has also been observed that the
beam response to a rigid-dipole perturbation is strongly in-
fluenced by Landau damping. Recently, studies have been
extended to a specific configuration of the double harmonic
RF system, and a new analytic expression has been pro-
posed [16].

This contribution presents beam-based measurements per-
formed in the SPS to estimate the LLD threshold. The find-
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ings are compared with calculations using the MELODY
code and macroparticle tracking using BLonD.

LOSS OF LANDAU DAMPING
The LLD occurs when the coherent synchrotron frequency

of a bunch moves out from the incoherent frequency band.
An analytical expression for the LLD threshold has been
proposed in BSM, based on refined estimates of the syn-
chrotron frequency distribution [16]. This expression is de-
signed explicitly for particle distributions that are modeled
by a binomial family, denoted as:

𝜆(𝜙) ∝ (1 − 𝑈tot(𝜙)
𝑈tot(𝜙max))

𝜇+1/2
, (1)

where 𝑈tot(𝜙) is the total RF potential well including inten-
sity effects, and 𝜙max is the maximum phase deviation in the
bunch. Equation 1 is applicable to a wide range of realistic
bunch distributions in proton synchrotrons, depending on 𝜇.
Assuming the SPS configuration, the LLD threshold can be
expressed as:

𝑁th ∝ 1 + 64𝑟
𝜇(𝜇 + 1)(1 + 4𝑟)1/2

𝜙4
max

Im𝑍eff𝑓𝑐
, (2)

where 𝑟 and Im𝑍eff represent the voltage ratio and the ef-
fective impedance model with cutoff frequency 𝑓𝑐. Similar
to the single RF (SRF) case [13], the LLD threshold in the
double-harmonic RF system is highly sensitive to the fourth
power of the bunch length, depending on the voltage ratios.

The subsequent section outlines the experimental eval-
uation of the LLD threshold prediction made by a self-
consistent semi-analytical calculation using MELODY. The
code implements the latest beam coupling impedance model
of the SPS [17] along with the one-turn delay feedback
model [18, 19]. However, as is shown in Eq. (2), the ac-
curacy of the threshold prediction is directly correlated with
the precision of the impedance model and its cutoff fre-
quency, 𝑓𝑐.

SINGLE RF
Based on the machine parameters outlined in Table 1,

this section will present the principal outcomes acquired
from beam-based measurements in the SPS. After injecting
a single bunch from the Proton Synchrotron (PS) at a total
energy of 26 GeV, the beam is accelerated to an energy of
200 GeV, minimizing space charge contributions. Within a
few milliseconds of reaching the flat-top energy, the bunch
is excited by a dipole kick, allowing it to oscillate in a rigid
bucket. Throughout the process, the beam phase loop [20]
was disabled. The evolution of the bunch offset was obtained
by measuring the phase difference between the beam pickup



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA013

MC5.D06: Coherent and Incoherent Instabilities Measurements and Countermeasures

2669

WEPA: Wednesday Poster Session: WEPA

WEPA013

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Table 1: Accelerator Parameters of the SPS at Flat-Top

Parameter Unit Value

Circumference, 2𝜋𝑅 m 6911.55
Beam energy, 𝐸 GeV 200
Main harmonic number, ℎ 4620
Main RF frequency, 𝑓RF MHz 200.39
RF voltage at main harmonic, 𝑉RF MV 4.5

signal and the sum of the cavity voltages (i.e., phase-loop
error [21]), as shown in Fig. 1. When the beam intensity is
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Figure 1: Bunch phase offset evolution with different in-
tensities obtained measuring the phase-loop error in SRF.
The red lines represent the envelopes of the traces computed
using a Hilbert transform.

below the LLD threshold (e.g., blue line), the bunch oscilla-
tions rapidly lose their coherence, followed by subsequent
slow decoherence. However, phase oscillations persist above
the LLD threshold (e.g., purple line), and their amplitudes
depend on the bunch intensity. This relationship between
residual oscillation amplitude and intensity is attributed to
crossing the LLD threshold. Below this intensity threshold,
damping is dominant.

In the SRF configuration, measurements were con-
ducted [similarly to [22]] to acquire various bunch inten-
sities ranging from 3.0 × 1010 to 7.0 × 1010, in increments
of ∼ 0.5 × 1010. Figure 2 shows the time evolution of the
bunch phase oscillation amplitude (color coding), following
a dipole excitation, for different intensities. The oscillation
amplitude from turn-by-turn bunch offset was extracted us-
ing a Hilbert transform [23]. The measured profiles were
fitted with Eq. (1) and subsequently provided as input to
simulations. In particular, Fig. 2c is obtained with a self-
consistent semi-analytical approach (also used in [13,24])
performed by means of MELODY, whereas, Fig. 2b is de-
rived from a conventional macroparticle tracking simulation
with BLonD. Both methods assume accelerator parameters
according to Table 1, including the SPS impedance model.
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(a) Measurement.
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(b) BLonD.
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(c) MELODY.

Figure 2: Time evolution of the normalized bunch phase
oscillation amplitude (color coding) after a dipole excitation
in the SRF. The measurement results (2a) are compared with
outcome of BLonD (2b) and MELODY (2c) analysis for
different intensities. The MELODY prediction of the LLD
threshold at 𝑁th ≈ 6.1 × 1010 is shown in a red dashed line.
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Figure 3: Measured time evolution of the bunch phase oscil-
lation, normalized by the kick strength, in BSM for different
intensities with voltage ratio 𝑟 = 0.1.

The two approaches exhibit similar behavior and agree well
with the LLD threshold predicted by MELODY (red dashed
line). However, the residual oscillation amplitude depicted
by measurement in Fig.2a results in being larger than from
the simulations. The resulting LLD threshold predictions of
𝑁SRF

th = 6.13 × 1010 overestimates the measurements.
The SPS impedance model was developed for many

years based on measurements and simulations of accelera-
tor components [25,26]. Nevertheless, obtaining accurate
impedance behavior at high frequencies presents significant
challenges. As illustrated by Eq. (2), the LLD threshold
highly depends on the cutoff frequency 𝑓𝑐. Consequently, in-
accuracies in the impedance model or in its cutoff frequency
have a significant impact on the computed threshold.

BUNCH SHORTENING MODE
This section extends the studies to BSM configuration

to evaluate the relative change of the LLD threshold when
transitioning from an SRF to a double-harmonic RF system
for the case of the fourth harmonic RF.

Figure 3 illustrates the measured time evolution of the
normalized bunch phase oscillation amplitude, relative to
the kick strength, in BSM for a voltage ratio of 𝑟 = 0.1. A
significant benefit can be observed when employing a double-
harmonic RF system as compared to the SRF case shown
in Fig. 2a. In particular, the usage of BSM results in an
increase of approximately ∼ 6 in terms of the LLD threshold.
However, direct comparison is not straightforward since
beam conditions at significantly higher intensities differ. In
particular, Fig 4 shows the measured bunch profile with the
corresponding binomial fit (1) in orange. Moving from the
SRF scenario (top) to the BSM case (bottom), it is visible a
reduction in bunch length and a noticeable change in bunch
shape (lower 𝜇). Moreover, the theoretically predicted LLD
threshold in BSM is, similarly to the SRF case, overestimated
𝑁BSM

th ≈ 77 × 1010.
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Figure 4: Comparison between measured line density in
SRF (top) and BSM (bottom). The binomial fit [Eq. (1)] of
the profile is depicted in orange.

CONCLUSION
Landau damping is one of the most effective methods

for stabilizing coherent beam instabilities in hadron syn-
chrotrons. Recent investigations have led to new analyti-
cal criteria for predicting the LLD threshold, which can be
applied to double-harmonic RF systems operating above
the transition energy. In this work, the kick-response tech-
nique was applied to experimentally study LLD threshold
in the SPS. In particular, the threshold increase for double-
harmonic RF configurations has been demonstrated. The
findings were benchmarked with a self-consistent semi-
analytical calculation using MELODY and macroparticle
tracking simulation with BLonD. Both methods exhibit ex-
cellent agreement. However, discrepancies between the mea-
surements and simulations may indicate imperfections in
the SPS beam coupling impedance model. Further investi-
gations will focus on refined measurements as well as theo-
retical benchmarks.
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