
Received 3 October 2024, accepted 14 October 2024, date of publication 17 October 2024, date of current version 11 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3482850

DC-DOES: A Dual-Camera Deep Learning
Approach for Robust Orientation Estimation
in Maritime Environments
FABIANA DI CIACCIO 1, SALVATORE TROISI 2, AND PAOLO RUSSO 3
1Department of Civil and Environmental Engineering, University of Florence, 50139 Florence, Italy
2Department of Science and Technology, Parthenope University of Naples, 80143 Naples, Italy
3Department of Computer, Control and Management Engineering ‘‘Antonio Ruberti,’’ University of Rome La Sapienza, 00185 Rome, Italy

Corresponding author: Paolo Russo (paolo.russo@diag.uniroma1.it)

ABSTRACT Attitude and Heading Reference Systems (AHRS) have achieved significant accuracy and
reliability, making them suitable for various applications. This is possible through the integration of high-
rate measurements, though they remain prone to errors, particularly sensor drift over time. As a potential
solution, AHRS can be combined with complementary devices, such as camera-based systems, which have
attracted attention for their cost-effectiveness and simplicity. This study introduces the Double Camera -
Deep Orientation (roll and pitch) Estimation at Sea (DC-DOES), a Deep Learning model developed to
enhance roll and pitch estimations obtained from conventional AHRS at sea. In comparison to previous
versions, DC-DOES operates in a novel configuration utilizing a double-camera system. This system is
based on a Jetson Nano embedded platform, integrating a low-cost AHRS and two synchronized cameras,
resulting in a fully customizable acquisition and processing setup. DC-DOES is trained and validated on
shore to assess its effectiveness and robustness in controlled conditions and will be further deployed on board
for real-time applications at sea. It is trained on the Double Camera - ROll and PItch at Sea (DC-ROPIS)
dataset, which was specifically collected for this purpose. Both the code and the dataset have been made
publicly available to encourage further use and improvement. The results are promising, achieving a Mean
Absolute Error (MAE) of approximately 1◦, highlighting the potential of this cost-effective, reliable solution
for orientation estimation tasks. Additionally, tests in low-light scenarios demonstrated its robustness under
challenging conditions, making DC-DOES a suitable solution for maritime navigation and beyond.

INDEX TERMS AHRS, dataset acquisition, double-camera, deep learning, embedded systems, orientation
estimation.

I. INTRODUCTION
The problem of pose estimation, i.e., determining the position
and orientation of a vehicle, device, or human, is currently
addressed using a variety of sensors, either integrated or
stand-alone. Recent advancements across multiple fields—
from terrestrial, maritime, and aerial navigation to human
motion tracking and virtual reality—have increased the
demand for more accurate orientation estimation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Fadda .

While position can be reliably determined using Global
Navigation Satellite Systems (GNSS), certain scenarios
require alternative solutions [1], [2]. These latter often
integrate techniques utilizing inertial sensors, odometry,
laser, and sonar ranging sensors [3], combined with under-
water positioning systems where necessary. The maritime
environment, particularly in open-sea navigation, congested
harbors, and waterways, presents a challenging setting where
precise and accurate orientation data is crucial. This is also
true for robotic navigation, both surface and underwater,
especially considering the widespread use of low-cost,
resource-constrained embedded systems in oceanographic
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research and environmental monitoring [4]. Here, research
strategies and technological developments focus on achieving
high mission productivity while minimizing operational
costs.

Micro Electro-Mechanical Systems (MEMS)-based Atti-
tude Heading Reference Systems (AHRS) integrate mag-
netometers with accelerometers and gyroscopes, enhancing
orientation estimation in Inertial Measurement Units (IMU).
These systems offer reduced size, weight, and cost. However,
the low-cost nature of MEMS technologies introduces
challenges that can affect the accuracy of pose estima-
tion, necessitating both reliable and accurate solutions for
optimizing localization and improving overall operational
performance.

A cost-effective and easy-to-implement alternative is to
utilize cameras to detect visual features, with significant
advancements in visual-based techniques, such as Visual
Odometry (VO) [5] and Visual Simultaneous Localization
and Mapping (VSLAM) [6]. However, non-textured envi-
ronments or poor lighting conditions remain challenges that
the integration of IMU and camera systems—Visual Inertial
Odometry (VIO) techniques—can only partially solve, even
with precise parameter tuning [7].
Ongoing research in attitude estimation has benefited

from the strong results produced by Deep Learning (DL)
techniques, specifically through Deep Neural Networks.
These models demonstrate robustness to camera parameters
and challenging environments, making them a valuable tool
for strengthening integrated systems [8].

Particularly relevant are the advancements in embedded
technologies, where microprocessors and microcontrollers,
functioning as small computers, are capable of performing
real-time tasks. These devices, often categorized by pro-
cessing power, cost, and architecture, have become integral
components of small-scale robots. Recent technological
developments have enabled even these small systems to run
Deep Learning algorithms in real time [9].

In this context, this paper presents Double Camera - Deep
Orientation Estimation at Sea (DC-DOES), a Deep Learning
model designed to enhance orientation estimation inmaritime
navigation. DC-DOES builds upon the previous model [10],
improving performance by incorporating a dual-camera
setup and a low-cost AHRS sensor integrated into a fully
customizable embedded Linux-based device. Moreover, the
novel dataset Double Camera - ROll and PItch at Sea (DC-
ROPIS), which contains paired images and corresponding
orientation ground truth, was collected specifically for this
purpose.

The approach aims to improve robustness in traditional
methods under specific conditions, such as GNSS signal
unavailability or long-lasting outages that cause significant
drift in inertial sensors. It also addresses potential confusion
with nearby robots equipped with SONAR or RADAR sys-
tems. However, DC-DOES is not intended to replace current
systems but rather to complement them. Once deployed,
DC-DOES relies entirely on visual features, making it

immune to sensor drift over time. During deployment, the
system architecture does not depend on AHRS, which is only
used during the training phase.

The main contributions of this work are summarized as
follows:

• A dual-camera system that captures two synchronized
images of the horizon with perpendicular views.

• The development of a new embedded system for data
acquisition and processing, based on the Nvidia Jetson
Nano and a low-cost AHRS.

• The collection of a specific dataset reflecting the
system’s improvements and changes.

• Extensive testing of different Deep Learning model
architectures, considering recent advancements to select
the best-performing model for the task.

The rest of paper is organized as follows: Section II
provides an overview of the existing literature on orientation
estimation using inertial- and vision- based (included DL)
methods. Section III introduces theoretical concepts related
to attitude estimation and describes the tested Deep Learning
architectures. Section IV details the integrated systems used
to collect the DC-ROPIS dataset and describes the sensors
and the dataset structure. Section V outlines the model
training process and evaluation metrics, with the results
presented and discussed in Section VI; final considerations
and future objectives conclude the work in Section VII.

II. RELATED WORKS
In recent years, traditional orientation estimation techniques
based on inertial measurements have significantly improved
due to the incorporation of additional sensor data. This
multi-sensor approach helps mitigate the error accumulation
typical of AHRS systems and enhances their robustness.

As previously mentioned, one of the most common
integration methods involves leveraging visual data, which
is not only cost-effective but also rich in useful features.
Therefore, the following subsections provide a brief overview
of the existing literature in orientation estimation, beginning
with traditional inertial-based methods before introducing
vision-based approaches.

A. INERTIAL-BASED METHODS
Many studies have explored the use of inertial sensors for
orientation estimation across various applications, including
robotics [11], [12], human motion tracking [13], bio-
logging for animal behavior research [14], aerial vehicles,
aerospace [15], [16], gaming, virtual reality, and indoor
pedestrian navigation [17], [18], [19].

Inertial sensors are widely favored due to their robust
algorithms and high-accuracy results. Even relatively sim-
ple algorithms for position and orientation estimation are
effective in practice, although the choice of the model
can significantly affect overall accuracy [20]. Originally
introduced in navigation systems, accurate inertial sensors
and magnetic compasses are now commonly found in
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consumer electronics, game consoles, and virtual reality
devices. Nevertheless, challenges persist in representing
orientation and fusing sensor data effectively [21].

Several studies have investigated real-time orientation
estimation algorithms using low-cost IMUs. These range
from earlier methods based on the Extended Kalman
Filter [22] and complementary filter [23] to more recent
applications for smartphone AHRS [24], [25]. Other work
focuses on calibration methods for MEMS IMUs [26] and
advanced denoising techniques using Deep Learning [27].
For example, Laidig et al. [28] proposed a filtering technique
for acceleration measurements in a nearly inertial frame,
achieving impressive results on public datasets. Similarly,
Sun et al. [29] developed an algorithm that decouples
pitch and roll estimates from magnetically disturbed envi-
ronments, delivering superior performance across several
experiments.

Additionally, the integration of neural networks with
IMU-based data is gaining traction. Choi et al. [30] proposed
an end-to-end recurrent neural network for attitude and
heading estimation under various disturbance conditions,
while Li et al. [31] combined a long short-term memory
network and a Gauss–Markov model to reduce the impact
of linear acceleration and magnetic disturbances. Seo et al.
introduced DO IONet [32], a novel inertial odometry frame-
work that minimizes drift errors through direct orientation
estimation using inertial, gravitational, and geomagnetic data.
Unlike existing methods, DO IONet estimates six degrees of
freedomwithout initial values or cumulative errors, even over
extended periods.

B. VISION-BASED METHODS
The use of visual data for orientation and pose estimation has
garnered considerable attention over the past few decades.
Many studies focus on horizon line detection, a crucial
task for applications such as visual geo-localization and
port security. However, marine environments present unique
challenges, including interference from various factors.
Wang et al. [33] developed a Sea-Sky Line (SSL) detection
method for Unmanned Surface Vehicles (USVs) based on
gradient saliency computation, while Jeong et al. [34]
introduced a fast horizon line detection method for maritime
scenarios using multi-scale approaches and region-of-interest
(ROI) detection.

Horizon detection is also critical for unmanned aerial
navigation. Carrio et al. [35] developed attitude estimation
methods for thermal images using horizon line fitting
and Convolutional Neural Networks (CNNs). Yoon et al.
introduced MODAN [36], a multifocal object detection
network for maritime horizon surveillance, using color
quantization and ROI selection. Zardoua et al. [37]
provided a comprehensive survey of horizon detection
techniques.

A major challenge for vision-based methods lies in
accounting for camera intrinsic and extrinsic parameters.

To address this, several studies integrate visual, inertial,
and magnetic data using Extended Kalman Filters (EKFs)
[38], [39]. Visual Odometry (VO), Visual-Inertial Odometry
(VIO), and Simultaneous Localization andMapping (SLAM)
algorithms are particularly popular for efficient ego-motion
estimation in robotics [40], [41], [42], leveraging Deep
Learning architectures such as LSTMs [43] and CNNs [44].
Mokssit et al. [45] conducted a survey on recent Deep
Learning applications for SLAM.

Dual-camera setups have also been explored in UAV
attitude estimation. Moore et al. [46] proposed a system using
wide-angle imagery and fuzzy classification to determine
the 3-DOF attitude of aircraft, outperforming an inertial
unit in flight tests, though it was sensitive to lighting
conditions. Duan et al. [47] improved visual odometry for
UAV indoor navigation by rejecting outliers in stereo camera
data. Teed et al. [48] developed Deep Patch Visual Odometry,
a recurrent neural network for tracking image patches over
time. Fu et al. [49] combined a hyper-Laplace filter with
a CNN to enhance horizon line detection in the infrared
spectrum.

A detailed review of Deep Learning models for inertial
positioning estimation can be found in Chen et al. [50].
However, most of the literature focuses on stereo cam-
eras [51], [52], [53] for orientation estimation and visual
odometry. To the best of our knowledge, DC-DOES is
the first approach that leverages a dual-camera system
in a non-stereo configuration to develop a vision-based
orientation estimation solution.

III. METHOD
This study presents DC-DOES, a hardware and software
system for attitude estimation that leverages dual-camera
data and a fully customizable Linux embedded platform
for enhanced performance. The system consists of a low-
cost, low-power embedded hardware platform equipped
with an AHRS and a synchronized dual RGB camera
setup. From a software perspective, DC-DOES has been
developed through two sequential phases: first, training
is performed using the previously acquired dataset DC-
ROPIS, consisting of synchronized dual-camera images and
corresponding AHRS measurements (used as ground truth).
Next, a Deep Learning-based algorithm processes the image
pairs from the two cameras to estimate roll and pitch
angles.

DC-DOES is an improved version of DOES [10], which
employed a low-cost monocular smartphone system to
estimate orientation by analyzing the horizon at sea. In the
previous version, the ROPIS dataset was collected using the
FrameWOAndroid application, and training was carried out
on a high-performance workstation.

This section provides an overview of the orientation
estimation process (Sec. III-A), followed by a description of
the deep neural network architectures selected as backbones
for DC-DOES (Sec. III-B).
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FIGURE 1. Coordinate frame definition of the BNO055 IMU [55].

A. THEORETICAL BACKGROUND ON ORIENTATION
ESTIMATION
Transformation matrices are commonly used to define the
orientation of a rigid body [54]. Among the available
parameterizations, Euler angles are adopted in this work
due to their intuitive representation of rotation around the
principal axes of the body. The three Euler angles are defined
as follows:

• Roll angle φ: rotation around the X axis.
• Pitch angle θ : rotation around the Y axis.
• Yaw angle ψ : rotation around the Z axis.

Figure 1 illustrates the coordinate frame of the AHRS
device (IMU BNO055) used in this study.

To derive Euler angles, one can integrate raw measure-
ments from a gyroscope, accelerometer, and magnetometer
provided by an IMU or AHRS device. While angular
velocity from the gyroscope can theoretically provide direct
rotation angles through integration, this method often leads
to accumulated errors over time (gyroscope drift). The
accelerometer measures total acceleration, including gravity,
which can be used for pitch and roll estimation, though it’s
highly sensitive to noise. The magnetometer, by providing a
reference for the Earth’s magnetic field, helps determine the
yaw angle. Integrating these sensors’ measurementsmitigates
individual sensor limitations, forming a standard approach for
accurate orientation estimation.

B. DEEP ORIENTATION ESTIMATION
DC-DOES is a Deep Learning-based orientation estimation
algorithm composed of a backbone neural network and two
fully connected (FC) layers, designed to output roll and
pitch estimates in parallel. The neural network processes two
input images, positioned side by side along the horizontal
axis. These images are resized to a resolution of 224 ×

224 pixels, which is suitable for the selected backbone
networks. Training is conducted using AHRS Euler angles
as ground truth, with the corresponding image pairs serving
as input in a regression task where roll and pitch are predicted
as real-valued quantities.

A single backbone network is employed, while two
separate fully connected layers are added after the last
feature layer to perform distinct regression tasks for roll and

pitch estimation. The deep models selected as backbones
for DC-DOESincludeMaxViT, DenseNet161, ResNet18, and
MobileNet V3.

MaxViT [56], based on the Vision Transformer (ViT) [57]
architecture, introduces multi-axis parallelism, processing
the input image across multiple sequences along differ-
ent axes. This design leads to significant computational
speedups. MaxViT also reduces the input image resolution
using pooling and projection operations while preserving
essential features, and it integrates an efficient attention
mechanism for faster training and inference.

ResNet is a widely-used family of convolutional models
that employ a residual architecture, which consists of
residual blocks. In these blocks, feature maps produced
by convolutional layers are combined with the input to
compute an update (or residual) to the input feature maps.
This structure addresses the vanishing gradient problem [58],
improving both convergence speed and final accuracy. The
lightweight ResNet18 model is selected for its efficiency and
strong overall performance.

DenseNet [59], unlike ResNet, employs concatenation in
its identity mappings to more efficiently preserve informa-
tion. Each layer receives feature maps from all preceding
layers, concatenates them, and passes the result through a
non-linear transformation. This approach enhances feature
reuse and improves gradient flow throughout the network. For
this study, DenseNet161 was tested to evaluate DC-DOES’s
performance with a deeper, more computationally intensive
network.

MobileNet V3 [60] is a state-of-the-art convolutional neu-
ral network designed for efficient performance on mobile and
embedded devices. In its V3 iteration, MobileNet incorpo-
rates hardware-aware network architecture search, leveraging
the NetAdapt [61] algorithm to optimize functionality.
Key improvements include the hard swish activation func-
tion and squeeze-and-excitation modules within MBConv
blocks, providing enhanced efficiency compared to earlier
versions.

The backbone network and the fully connected layers are
trained jointly using back-propagation with a Mean Square
Error (MSE) loss function. Separate losses are computed for
roll (Lroll) and pitch (Lpitch) as shown in Equations (1) and (2),
where y represents the ground truth values and ŷ the predicted
values. The final loss, Lfinal , is the sum of these two losses,
as shown in Equation (3).

Lroll(yroll, ŷroll) =
1
n

n∑
i=1

(yroll − ŷiroll)
2 (1)

Lpitch(ypitch, ŷpitch) =
1
n

n∑
i=1

(ypitch − ŷipitch)
2 (2)

Lfinal = Lroll + Lpitch (3)

All models are pre-trained on the ImageNet 1K
dataset [62], allowing for the fine-tuning of pre-trained
features to adapt them for the task at hand.
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IV. ACQUISITION SYSTEM AND DATASET
This section presents the key components of the acquisition
system (Sec. IV-A) and the new dataset, DC-ROPIS , created
to train DC-DOES (Sec. IV-B). As discussed earlier, DC-
DOES required a new dataset comprising paired images
with environmental characteristics similar to the original
ROPIS dataset to ensure a fair comparison. Additionally,
using a custom, low-power Linux platform provided greater
flexibility and customizability compared to the original
Android platform. Therefore, a dual-camera smartphone was
not used, and instead, a custom embedded system was built.
This system consists of an Arducam 12MP MINI IMX477
Synchronized Stereo Camera mounted on a Nvidia Jetson
Nano, with a BNO055 AHRS for ground-truth orientation
measurements. The entire setup was enclosed in a 3D-printed
chassis, as shown in Figure 2.

A. DEVICE INTERNAL SENSORS AND CHARACTERISTICS
One of the main challenges in creating a dual-camera dataset
is ensuring the simultaneous capture of frames from both
cameras. To address this, the Arducam 12MP MINI IMX477
Synchronized Stereo Camera Bundle Kit was used, allowing
for simultaneous frame acquisition without delay when
connected to the Jetson Nano platform. This bundle includes
two high-quality cameras with a 1/2.3’’ 12.3 Megapixel
IMX477 sensor, offering a maximum resolution of 4056(H)
x 3040(V) and a pixel size of 1.55µm.

Each camera is equipped with an M12-Mount lens,
featuring a manual focus ring and adjustable aperture. The
lenses have a focal length of 3.9mm, a maximum aperture
of 2.8, and a 75◦ horizontal field of view (FOV). Table 1
summarizes the main specifications of the cameras and
lenses, as provided by the manufacturer [63].
Additionally, the camera baseline is adjustable, offering

flexibility for use with different devices and enabling
dynamic adjustments for a stereo binocular vision system.

In DC-DOES, the two cameras are positioned for a
composite perspective: one camera faces forward, while the
other is rotated 90 deg to the left, aligning with the X and Y
axes of the AHRS sensors (Figure 2a). The Arducam stereo
camera HAT facilitates the simultaneous operation of both
cameras via a single MIPI CSI-2 connection, using ArduChip
to present the dual-camera setup as a single camera to the
Jetson Nano.

For inertial measurements, the low-cost BNO055 sensor
by Bosch was chosen. This smart sensor integrates a triaxial
14-bit accelerometer, a triaxial 16-bit gyroscope, a triaxial
geomagnetic sensor, and a 32-bit microcontroller running
the BSX3.0 FusionLib software, all within a System in
Package (SiP). The integration of these sensors with built-in
sensor fusion simplifies its usage, while offering different
configuration options. Detailed specifications are available in
the official datasheet.1 The AHRS was securely mounted on

1https://www.bosch-sensortec.com/products/smart-sensor-
systems/bno055/

a breadboard to ensure precise alignment with the cameras’
X and Y axes. The breadboard and camera HAT were then
connected to the Jetson Nano (Figure 2b).
The Nvidia Jetson Nano is a system-on-module featuring

a Maxwell™GPU with 128 CUDA cores and a Quad-Core
ARMCortex-A57CPU, supported by 4GB of 64-bit memory.
The Nvidia development kit2 provides support for various
APIs and Deep Learning frameworks such as PyTorch,
TensorFlow, and ONNX. The Jetson Nano offers a 40-
pin expansion header, a Micro-USB port for power input,
a Gigabit Ethernet port, four USB 3.0 ports, an HDMI
output, and two MIPI CSI-2 camera connectors. The system
is powered by a standard smartphone power bank connected
via theMicro-USB port, making it portable and deployable in
diverse scenarios. A Samsung Evo Plus 64GBmicroSD card3

with read/write speeds of 100MB/s and 60MB/s respectively,
was used for booting the system and primary storage.

To protect the embedded system, a 3D-printed PLA case
was created using a Creality Ender 3 printer.4 The 3D model,
designed using the AUTODESK Thinkercad webapp,5 was
specifically crafted to ensure the secure placement of all
components and maintain precise sensor alignment. While
slight misalignments between the camera and AHRS are
not detrimental to DL-based methods due to their ability
to implicitly learn camera rotation associations [64], a rigid
structure ensures consistency throughout training and testing.

For usability, a touchscreen and an integrated mouse-
keyboard device were connected to the Jetson Nano. The cho-
sen touchscreen was a 121.11 × 95.24 mm Jun-Saxifragelec
capacitive display with an 800 × 480 resolution, com-
patible with multiple platforms (Raspberry Pi, Windows,
Ubuntu, Mac), supporting Raspbian, Ubuntu, and WIN11
IOT systems, and offering a framerate of up to 80fps.
The screen connects to the Jetson Nano via HDMI and
USB ports, with external power provided through the USB
port. The keyboard-mouse combo, a Rii Mini i8,6 has
a QWERTY layout, a 1000DPI resolution touchpad, and
wireless connectivity with a range of up to 10m (RF 2.4 GHz)
and 8m (Bluetooth 4.0) (Figure 2a).

B. DATASET
To train the Deep Learning model, the dataset must contain
a large volume of horizon images with the new dual-camera
perspective, accompanied by precise ground truth (GT) data
for roll and pitch angles. High accuracy in GT data is crucial,
as it directly influences the learning process, depending on
the instrumentation used (i.e., the BNO055 IMU).

A Python script has been developed to synchronize the
Arducam stereo camera with the inertial measurement unit.

2https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-
devkit

3https://www.samsung.com/it/memory-storage/memory-card/evo-plus-
64gb-sd-card-2021-mb-sc64k-eu/

4https://www.creality.com/products/ender-3-3d-printer
5https://www.tinkercad.com/
6http://www.riitek.eu/IT/Prodotti/RT-MWK08+_IT.html
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TABLE 1. Key specifications of the Arducam 12MP MINI IMX477 Synchronized Stereo Camera Bundle Kit, sensor and lens [63].

FIGURE 2. Embedded system configuration for the deployment of
DC-DOES and its 3D printed case.

Using the OpenCV7 and Bosch BNO055 libraries,8 the script
efficiently retrieves visual and sensor data, ensuring minimal
overhead and excellent synchronization between devices. The
complete code is publicly available on GitHub at this link.

The BNO055 device can sample data at several hundred
hertz, depending on the acquisition mode. However, the
bottleneck in data collection arises during the reading of
RGB data and the writing process to disk. To prevent delays
and their cumulative effect on data acquisition, the rate has
been empirically set to 7 fps. This ensures synchronized
storage of both the images and the GT data, with the latter
being recorded immediately after the RGB data acquisition.
The GT data is provided directly by the internal integration
of the sensor signals, such as acceleration, rotation, and
magnetic field strength, using the NDOFFMCOFF mode.
This sensor fusion mode offers Nine Degrees of Freedom
(NDOF) but disables Fast Magnetic Calibration (FMC),
requiring manual calibration through a ‘figure 8’ pattern as

7https://opencv.org/
8https://github.com/boschsensortec/BNO055_SensorAPI

suggested by the manufacturer. This calibration process is
performed at the start of every acquisition to ensure reliable
data, and the results are saved in a calibration_data.txt file
for reference.

Once configured, the sensor provides fusion results like
quaternions, Euler angles, linear acceleration, and gravity
vectors at a fixed output rate. These values are accessible
through I2C, UART, or HID-over-I2C interfaces. For the
acquisition process, the default sensor axes orientation
has been adopted, corresponding to the Windows format,
with pitch values increasing with clockwise rotations (see
Figure 1).

The DC-ROPIS dataset was acquired in Gaeta (Lazio) and
Mondragone (Campania), Italy. It comprises 16,501 sRGB
TrueColor JPEG images at a resolution of 1920 × 1080,
totaling 15 GB, and is organized into 12 subdirectories.
The data was collected in various locations, each presenting
unique environmental factors, geographic characteristics, and
weather-marine conditions. To ensure robust training, data
was gathered in adverse weather conditions and low-light
settings. Additionally, at least one camera in the dual setup
faced partial occlusion in each scene, mimicking potential
real-world visual challenges onboard.

For training, 10 of the 12 acquisitions (13,432 images)
were used, while the remaining two (3,069 images) were
reserved for testing. The validation set, consisting of 15% of
the training set, includes 2,370 images. Figure 3 showcases
different samples from the DC-ROPIS dataset.

The inclusion of a dedicated test set composed of images
from separate acquisitions allowed the evaluation of DC-
DOES ’s generalization capability in new scenes. Each
acquisition was designed to simulate the behavior of a ship
in navigation, under both static and dynamic conditions,
replicating oscillations that mimic real ship movements.

It is important to highlight several key aspects of this
dataset:

• The perspective of DC-ROPIS images, though slightly
different from those captured onboard, includes fore-
ground elements such as sand and rocks. However, this
does not hinder the learning process, as Deep Learning
models can differentiate between relevant and irrelevant
image features.

• A true frame from a navigating vehicle would include
visual elements like bow structures and parts of the
bridge floor (or USV sections). While these specific
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FIGURE 3. Examples of DC-ROPIS dataset samples acquired in different settings.

features are absent in DC-ROPIS, DC-DOES has
demonstrated robustness in handling similar visual
clutter. Further experiments will assess the precise
impact of such elements on learning.

• The camera was positioned at a consistent height of
around 1.5 meters, with minimal vertical oscillations
(heave) to simulate vehicle movements. Given that
pitch estimation is closely tied to the horizon height,
maintaining the horizon within the frame is critical.

Future enhancements to the DC-ROPIS dataset will
involve acquiring data at various camera heights to analyze

their impact onmodel training. Additionally, acquisitions will
be expanded to more diverse scenarios, including adverse
weather conditions and platforms such as ship bridges and
USV platforms. The increased heterogeneity of data will
improve the model’s ability to generalize to complex, real-
world environments.

V. EXPERIMENTAL SETUP
This section details the training process and provides a
concise overview of the evaluation metrics used to assess the
performance of DC-DOES.
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FIGURE 4. Example of an image from the additional subset collected in
Gaeta, which has been acquired under low-light and cloudy conditions.
This challenging environment results in images with significant pixel
noise.

A. TRAINING DETAILS
The work on DC-DOES has been entirely performed using
Python as the programming language, employing PyTorch as
the Deep Learning library. The code is publicly available.9

Standard fine-tuning procedures were followed for the train-
ing, with the backbone convolutional kernels pre-trained on
ImageNet, while the last fully connected layer was replaced
with one with randomly initialized weights. The Adam
optimizer was employed for fine-tuning the final model on
the DC-ROPIS, with a learning rate fixed at 0.001. The
number of training epochs was set to 20, as a larger number
of epochs empirically corresponded to lower performance
due to overfitting. As previously mentioned, the images were
resized to 224 × 224 resolution, applying zero-padding to
obtain a squared input without loss of information. A standard
normalization procedure to zero mean-unit variance was
applied to both the input images and the ground truth
data, with normalization parameters calculated over the
entire training set. The data augmentation process involved
the application of random color variations to the images
using PyTorch’s ColorJitter transformation function. This
function adjusts brightness, contrast, saturation, and hue by
specified amounts, leading to an expanded training dataset
that improved the generalization capabilities of DC-DOES.
Due to the unique characteristics of the paired images,
no random crop function was applied. The data augmentation
procedure was disabled during the testing phase, while the
zero-padding and resizing processes were still applied to
the test images. Additionally, the predicted roll and pitch
values were de-normalized before calculating the evaluation
metrics discussed in the next section. Figure 5 visually
summarizes the workflow of DC-DOES in its three main
phases: data acquisition, training (including the specific data
augmentation process), and the test phase, with the final
performance evaluation.

Due to the absence of orientation estimation methods
that utilize images acquired at a 90-degree angle, a direct
comparison with other state-of-the-art solutions would be

9https://github.com/engharat/does2

unfair. Deep learning models are typically trained on specific
datasets, andwithout a comparable dataset of similarly angled
images, benchmarking would not yield valid results. This
limitation underscores the novelty of our approach while also
highlighting an opportunity for future research in developing
standardized datasets for orientation estimation at various
angles.

B. EVALUATION METRICS
The performance of DC-DOES has been evaluated using
standard regression metrics commonly employed in the
literature.

The Mean Absolute Error (MAE), defined in Equation 4,
is a risk metric that represents the expected value of the
absolute error. It calculates the average absolute difference
between predicted and actual values, maintaining the same
scale as the data being measured. In MAE, each error
contributes proportionally to its absolute value.

MAE(y, ŷ) =
1
n

n∑
i=1

|yi − ŷi| (4)

The Root Mean Square Error (RMSE) is the square root
of the average of squared differences between predicted
and observed values, also known as the quadratic mean of
these differences (residuals). RMSE serves as an accuracy
measure with particular sensitivity to outliers. By squaring
errors before averaging, RMSE gives more weight to larger
errors, making it especially useful when large errors are
particularly undesirable. It’s important to note that RMSE
doesn’t necessarily increase with error variance but grows
with the variance in the frequency distribution of error
magnitudes. Equation 5 presents the standard formulation of
RMSE.

RMSE(y, ŷ) =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (5)

The Standard Deviation (STD) quantifies the dispersion or
variation within a set of samples. A low standard deviation
indicates that values cluster closely around the mean (or
expected value), while a high standard deviation suggests a
wider spread of values. Equation 6 presents the formula for
standard deviation.

σ (ŷ) =

√√√√1
n

n∑
i=1

(yi − µ)2 (6)

where µ represents the mean of the sample.
These three metrics have been calculated using the

Scikit-learn library, specifically the sklearn.metrics module,
which provides a comprehensive set of utility functions for
measuring performance in regression tasks.

VI. RESULTS AND DISCUSSION
This section presents an analysis of the results obtained by
DC-DOES on the considered dataset.
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FIGURE 5. DC-DOES working flow: the data acquisition and dataset creation, the training phase with the applied data
augmentation procedures, and the final test phase with the computation of the evaluation metrics.

To better interpret the results, it is important to understand
the relationship between MAE and RMSE. These metrics
trace error variation in predictions: RMSE is typically higher
than MAE, and a larger difference indicates greater variance
in individual sample errors. Conversely, when RMSE is close
to MAE, it suggests that all errors have approximately the
same magnitude. The STD values provide insight into the
distribution of results relative to the mean. Smaller STD
values indicate higher clustering of results around the mean,
suggesting greater reliability. Due to RMSE’s sensitivity to
outliers, MAE has been selected as the primary metric for its
robustness and ease of interpretation.

Table 2 displays DC-DOES performances with various
backbone networks. The results demonstrate excellent per-
formance for both roll and pitch angles, with the best-tested
backbone achieving a Mean Absolute Error close to 1.5◦ for
roll and nearly 1◦ for pitch.
All considered backbones produce satisfactory results,

but the transformer model (MaxVit) demonstrates superior
performance, emerging as the most suitable architecture
for this task. The error reduction produced by MaxVit,
while tangible, is relatively small compared to other tested
convolutional networks.

A closer examination reveals that the performance gap
between backbones is narrower for the pitch angle, withMAE
values ranging from 1.17◦ (MaxVit) to 1.38◦ (MobileNetV3).
The difference is more pronounced for the roll angle, where
MaxVit achieves a MAE of 1.54◦, while MobileNet reaches
1.80◦.
The relatively poorer performance of MobileNet likely

stems from its reduced model capacity, with only 4 mil-
lion trainable parameters. However, it’s noteworthy that

MobileNet can run on low-powered embedded devices [9],
producing a mean absolute error below 2 degrees for both roll
and pitch angles—a satisfactory result for many applications.

Given these findings, the selection of DC-DOES
backbones should be guided by the specific application
requirements. MaxVit is the optimal choice for use with
high-powered devices, while MobileNet is better suited for
deployment on low-powered systems. ResNet18 provides a
balanced compromise between performance and inference
speed, with only a minor increase in MAE (0.16◦ for roll
and 0.04◦ for pitch) compared to MaxVit. Notably, despite
having a significantly higher number of trainable parameters,
DenseNet161 does not outperform ResNet18 in this
task.

MaxVit’s superior performance is further confirmed by
RMSE analysis: roll is estimated with an RMSE below
2 degrees, and pitch with an RMSE even lower than
1.60 degrees. The RMSE results of other networks follow
a similar pattern to MAE, with ResNet18 and DenseNet161
showing comparable accuracy, whileMobileNet produces the
highest RMSE at 2.31 and 1.86 degrees for roll and pitch,
respectively.

Moreover, all four networks exhibit small STD values,
indicating uniform error distribution across the dataset, with
few samples producing high estimation errors. This trend
aligns with previous metrics, MaxVit showing the smallest
STD values for roll, while ResNet18 surprisingly performs
best for pitch.

Table 2 also presents inference speeds, measured as the
time required for a single roll and pitch angle prediction from
one image pair, excluding image loading and preprocessing.
This metric is particularly important for deploying the
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TABLE 2. Comparative results on different DC-DOES backbones. TP indicates the number of trainable parameters.

algorithm on devices where speed is a critical factor, such as
in real-time applications, typically defined as 30 fps.

In terms of the speed-accuracy trade-off, MobileNet
delivers the fastest inference at 4 milliseconds while keeping
theMAE below 2 degrees. MaxVit, though the most accurate,
is the slowest with an inference time of 56 milliseconds,
making it unsuitable for real-time predictions at 30 fps.
ResNet18 strikes a balance between accuracy and speed, with
an inference time of 11 milliseconds. It should be noted that
these timings can vary depending on the hardware used for
testing.

In summary, MaxVit is recommended when a dedi-
cated GPU is available, offering high-speed inference with
best estimation performance. For low-powered, embedded
devices, ResNet18 demonstrates good accuracy with lower
computational complexity, making it suitable for constrained
environments.

A comparison between DC-DOES and its predecessor,
DOES [10], reveals sensible improvements. The roll MAE
has improved by 0.11 degrees, while the pitch MAE shows
a significant improvement of 0.67 degrees, when comparing
the best-performing backbones. Using the same backbone,
ResNet18, DC-DOES maintains the roll performance of
DOES but substantially enhances pitch prediction, attributed
to the simultaneous use of two images. However, this
comparison remains task-specific due to differences in the
test datasets.

To assess the robustness of DC-DOES under challenging
conditions, an additional set of 1044 images with significant
noise was collected. As shown in Figure 4, these images
were captured at sunset with a cloudy sky and very low
light. Despite these adverse conditions, DC-DOES achieves
an MAE of 2.62 for roll angle and 1.98 for pitch angle,
demonstrating its robustness to varying lighting conditions.
Further data collection is ongoing to improve resilience
across diverse environmental setting.

VII. CONCLUSION
This paper introduces DC-DOES, Double Camera - Deep
Orientation (of roll and pitch) Estimation at Sea, a novel
approach to enhancing orientation estimation using Deep
Learning techniques and a dual-camera system. The study
demonstrates significant advancements in the accuracy of roll
and pitch angle estimations, which are essential for various
applications beyond the maritime domain.

Key contributions include the development of a dual-
camera embedded system integrated with an Nvidia Jetson

Nano, which enabled the creation of the Double Camera -
ROll and PItch (DC-ROPIS) dataset, tailored for orienta-
tion estimation tasks. A comparative evaluation of several
Deep Learning backbone architectures, including MaxVit,
MobileNetV3, ResNet18, and DenseNet161, showed that
MaxVit achieves the highest accuracy, with a Mean Absolute
Error (MAE) of 1.17◦ for pitch and 1.54◦ for roll angles. This
underscores the potential of transformer models in improv-
ing the robustness of visual-based orientation estimation
methods.

Despite MaxVit’s superior performance, ResNet18 offers
an attractive trade-off between accuracy and inference
speed, making it suitable for deployment on computationally
constrained embedded devices, such as those commonly used
in robotics. While MobileNetV3 exhibited the highest MAE
among the tested backbones, its fast inference time makes it
a viable option for real-time processing applications.

These findings highlight the importance of selecting
the appropriate backbone architecture based on specific
application requirements, such as prioritizing high accuracy
versus real-time performance. Additional experiments were
also conducted on a newly acquired subset of data, which
included noisy images and low-light conditions. The results
further validated DC-DOES’s robustness in challenging
environments, demonstrating its ability to maintain accuracy
under adverse conditions.

Future research will focus on refining the dual-camera
system to differentiate between pitch rotation and ver-
tical movement along the z-axis, potentially extending
the system’s applicability to other challenging scenarios.
Moreover, integrating additional sensor modalities and lever-
aging advanced Deep Learning techniques could further
enhance the system’s accuracy and robustness. This will be
supported by the collection of new datasets in more realistic
environments, such as mounting the embedded system on
robots, paving the way for the deployment of DC-DOES in
real-time operational contexts.

In conclusion, this research contributes to the growing
field of pose estimation by offering a cost-effective, accu-
rate, and reliable approach to orientation estimation, with
applications in various domains that require robust attitude
estimation.
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