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Abstract: Infertility is a global health issue affecting women and men of reproductive age with
increasing incidence worldwide, in part due to greater awareness and better diagnosis. Assisted re-
production technologies (ART) are considered the ultimate step in the treatment of infertility. Recently,
artificial intelligence (AI) has been progressively used in the many fields of medicine, integrating
knowledge and computer science through machine learning algorithms. AI has the potential to
improve infertility diagnosis and ART outcomes estimated as pregnancy and/or live birth rate,
especially with recurrent ART failure. A broad-ranging review has been conducted, focusing on
clinical AI applications up until September 2022, which could be estimated in terms of possible appli-
cations, such as ultrasound monitoring of folliculogenesis, endometrial receptivity, embryo selection
based on quality and viability, and prediction of post implantation embryo development, in order
to eliminate potential contributing risk factors. Oocyte morphology assessment is highly relevant
in terms of successful fertilization rate, as well as during oocyte freezing for fertility preservation,
and substantially valuable in oocyte donation cycles. AI has great implications in the assessment of
male infertility, with computerised semen analysis systems already in use and a broad spectrum of
possible AI-based applications in environmental and lifestyle evaluation to predict semen quality.
In addition, considerable progress has been made in terms of harnessing AI in cases of idiopathic
infertility, to improve the stratification of infertile/fertile couples based on their biological and clinical
signatures. With AI as a very powerful tool of the future, our review is meant to summarise current
AI applications and investigations in contemporary reproduction medicine, mainly focusing on the
nonsurgical aspects of it; in addition, the authors have briefly explored the frames of reference and
guiding principles for the definition and implementation of legal, regulatory, and ethical standards
for AI in healthcare.

Keywords: artificial intelligence (AI); infertility; assisted reproductive technology; oocyte; embryo;
legal and regulatory frameworks
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1. Introduction

Infertility is a global health issue of women and men of reproductive age with in-
creasing incidence worldwide, in part due to improved awareness and better diagnosis.
It is defined as the failure to achieve pregnancy after 12 months of regular unprotected
sexual intercourse [1]. Besides female and male infertility causes, an unknown cause
is present in circa 85% infertile couples, 15% of whom have unexplained infertility [2].
Female infertility causes include: ovarian dysfunction and anovulation, tubal infertility,
endometriosis, and diminished ovarian reserve. A male factor is likely to be a primary
or contributing cause in approximately 50% of couples and can be related to congenital,
acquired, or idiopathic factors that impair spermatogenesis [3]. The best approach to initiate
a diagnostic–therapeutic pathway is the simultaneous evaluation and treatment of both
female and male infertility factors [4]. Infertility treatment includes ovulation induction
and/or stimulation in order to produce multiple mature ovarian follicles. Both clomiphene
citrate, a selective estrogen receptor modifier, and letrozole, an aromatase blocker, cause an
increase of hypothalamic gonadotropin-releasing hormone (GnRH) pulse frequency and
pituitary gonadotropin secretion-inducing ovarian folliculogenesis [2]. The main problem
is a multiple pregnancy rate of less than 10%, most of which are twin gestations, and the
risk of ovarian hyperstimulation syndrome [5,6].

In women with hypogonadotropic hypogonadism, pulsatile GnRH administration
induces follicular maturation and ovulation due to the stimulation of endogenous go-
nadotropins. Folliculometry and planned intercourse or intrauterine insemination (IUI)
may be used to achieve fertilization at the time of ovulation [2]. IUI is a first-line treatment
for mild male fertility, and it could be combined with ovarian stimulation in the treatment
of couples. If not successful, in vitro fertilization (IVF) is the next step. Undergoing an IVF
program consists of a GnRH agonist or antagonist protocol, individually chosen, followed
by gonadotropin stimulation. The initial doses of gonadotropin are adjusted according to
patient age, estimated ovarian reserve, and response to prior stimulation, and are set during
the first three to four days. Transvaginal ultrasonography and measuring of blood estradiol
[E2] are used to estimate the ovarian response in order to modify the gonadotropin dose,
and final oocyte maturation is induced [7].

In further courses, oocyte retrieval is carried out, and those chosen based on quality un-
dergo IVF or, in the case of male factor infertility, intracytoplasmic sperm injection (ICSI) [8].
ICSI is also recognised as a method of choice for women with thyroid autoimmunity (TAI)
undergoing ART [9,10]. Embryos are cultured under optimal conditions [11], and then
those of the highest quality are transferred on the second, third, or fifth day after oocyte
aspiration into the uterus under ultrasound guidance (US is not mandatory) [2]. Over the
next 5–10 years, further increases in birth rates in women with infertility are expected due
to greater awareness of lifestyle factors, as well as a possible refinement of current ART and
the development of new forms of treatment relying on germ cell manipulation, artificial
gametes, genetic screening of embryos, and gene editing of embryos [12]. Donor oocytes or
sperm may be options in specific situations.

Artificial Intelligence in Reproductive Medicine

Artificial intelligence (AI) as an official term first appeared at the Dartmouth conference
in 1956. Ever since, it has been used as a reference to the continual study of artificial
intelligence. Such a wide-ranging research endeavour hinges on the use of devices such
as computers to reproduce human mental processes, such as cognition, learning, decision
making, judging, and language usage [13]. Nowadays, AI is already in use in a lot of
different industries, and there is a lot of ongoing research. There are a lot of fascinating
applications of AI, such as in the transport and automotive industry (e.g., development
of autonomous vehicles [14], transport mapping [15], solving financial problems [16],
face and speech recognition [17,18]), and others which raise concerns and are potentially
destructive, such as the development of Lethal Autonomous Weapon Systems (LAWS) [19],
e.g., missile systems with selective targeting capabilities and learning machines with the
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cognitive ability to select their enemies with no need for intervention by humans [20].
The developmental foundations for this research area are grounded in a subdiscipline of
philosophy called philosophy of mind. Assumptions about the mind such as connectivism,
computation theory of mind, and behaviourism are essential for understanding AI [21].

In order to optimally run software needed for AI, adequate hardware is essential.
For example, to run some deep learning algorithms, graphics processing units (GPUs)
produced by “Nvidia” are used. In modern times, the amount of electronic data created
every day is astonishing. Technological advancements have been made for storing this
data. This was a necessity to accommodate the 2.5 quintillion bytes saved each day [22,23].
Such an amount of data needs some kind of analytics that are automated; hence, AI is a
very powerful tool to fulfil that task. The core element that constitutes AI is algorithms.
In general, algorithms are specific steps to solve some problem. For a computer to be
able to “read “and process vast amounts of data, a specific type of technology is needed,
so-called natural language processing (NLP). NLP uses algorithms that allow computers to
“understand“ and process human language, so this part of AI research is tightly connected
with linguistics. This technology is used to construct information that is valuable and
meaningful from some unstructured data, such as electronic medical records. In that way, a
computer is able to further analyse data given to it [24]. The cornerstone of AI is constituted
by empirical machine learning algorithms. There are different types of machine learning,
and they are classified by how they analyse data and their level of dependence.

In short, machine learning (ML) is classified in three main groups: ML capable of
recognizing patterns (unsupervised ML), ML that has algorithms that perform classification
and prediction based on previous examples (supervised ML), and ML that uses a system
with reward and punishment methods to form a solution strategy to solve some problem
(reinforcement learning) [25]. The first big success of AI in medicine started with predictions
of protein complexes in molecular medicine that led to some new drug targets discoveries.
The big data that electronic medical records (EMRs) and hospital data have within are per-
fect for AI to analyse and give some useful information. The current status of EMRs is that
they are cumbersome and lack inter-record communication. It is of great value to analyse
this vast amount of data. An example includes AI that has the ability to detect subjects that
are at risk for chronic disease; furthermore, AI could facilitate faster, more efficient health
system calculations of cost–benefit ratios and help in decision making. AI is vastly used
nowadays to analyse and learn to recognise patterns in image processing, so there is great
interest in fields such as radiology, pathology, ophthalmology, and dermatology—so-called
“vision- orientated specialties“. It is of great value that AI can reduce common errors in
everyday clinical practice and make predictions in real-time [26,27].

In reproductive medicine (RM), AI application started in the late twentieth century.
Nowadays, there are a lot of different subtypes of AI technology that have applications
in reproductive medicine. Supervised learning methods (decision tree, support vector
machines and naive Bayes classifier) are mostly used in non-surgical areas of RM. These
algorithms need human assistance and use instances supplied externally to predict the
fate of instances given in the future; they are designed to categorise data from given
information [28,29]. So, the usage of this type of AI found its application in determining
the morphokinetic parameters of the embryos that are most optimal [30], determining cost
effectiveness in human oocyte cryopreservation [31], predicting IVF and ICSI outcomes,
and classification of sperm cells [32]. Unsupervised learning models are not yet fully used
in RM. Such algorithms are effective at so-called class discovery, since they use unlabeled
data to “discover” the underlying structure and relationship within and to cluster it [33].
Types of unsupervised ML used are principal component analysis and K means that are
mostly used in image processing. They can predict pregnancy based on the quality of
oocytes, with a success rate of around 60% [34]. Other subtypes of AI commonly used in
medicine include artificial neural networks (ANN). ANNs borrow structures from neuronal
connections and consist of layers such as the input layer (where data start to be analysed),
inner or hidden layer (where data are analysed), and output layer (where final data are
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presented), with weight connections and bias nodes between these layers. Deep networks
are complex forms of ANN, and these AI technologies are widely used today in speech
recognition, visual object recognition, and object detection, as well as in medical fields, such
as drug discovery and genomics [35]. In RM, ANN are used in embryo segmentation [36],
to describe blastocyst expansion and rank-order blastocysts for transfer [37], and to predict
an overall outcome of IVF.

Meanwhile, for robotic aspects of RM, reinforcement AI machine learning is more
commonly used [28,38]. Robotic surgery serves as a bridge between conventional open
surgery and the minimally invasive laparoscopic surgery, and there are currently several
different applications in this field. Examples are robotics-assisted myomectomy, tubal
reanastomosis, endometriosis, ovarian tissue cryopreservation, and ovarian transposition.
In addition, their applications include male infertility operations such as vasectomy reversal,
subinguinal varicocelectomy, targeted spermatic cord denervation, and robotics-assisted
microsurgical testicular sperm extraction (microTESE). These procedures, although costly
and time consuming, have good results in terms of shorter hospital stay, decreased blood
loss, less post-operative pain, and faster convalescence compared to open or laparoscopic
surgeries, whereas reproductive outcomes were described as similar to nonrobotic surgical
approaches [38–40].

Overall, AI has the ability to do work that would require thinking with strict or not-so-
strict guidelines given by humans, with AI being able to analyse pixels from pictures and
videos and recognise the context of the given image, as well as analysing text information
and predicting outcome based on the given inputs.

Most of the research done in AI applied to RM is still lacking randomised controlled
trials to prove its value, and it is mostly used for some automatic jobs. Furthermore, the
legal aspects and ethics of the usage of this type of technology need to be clarified more in
the future. Because of its immense potential and essential need to use large quantities of
data to train itself, AI is dependent on more efficient and easier ways of data connection,
which is, nowadays, the first step to the inclusion of this type of technology in everyday
practice. In the following paper, we have set out to summarise some of the most common
applications of AI in contemporary RM, mainly focusing on its nonsurgical aspects. Figure 1
summarises AI usage in reproductive medicine.

Diagnostics 2022, 12, 2979 4 of 14 
 

 

analysed), inner or hidden layer (where data are analysed), and output layer (where final 
data are presented), with weight connections and bias nodes between these layers. Deep 
networks are complex forms of ANN, and these AI technologies are widely used today in 
speech recognition, visual object recognition, and object detection, as well as in medical 
fields, such as drug discovery and genomics [35]. In RM, ANN are used in embryo seg-
mentation [36], to describe blastocyst expansion and rank-order blastocysts for transfer 
[37], and to predict an overall outcome of IVF. 

Meanwhile, for robotic aspects of RM, reinforcement AI machine learning is more 
commonly used. [28,38]. Robotic surgery serves as a bridge between conventional open 
surgery and the minimally invasive laparoscopic surgery, and there are currently several 
different applications in this field. Examples are robotics-assisted myomectomy, tubal re-
anastomosis, endometriosis, ovarian tissue cryopreservation, and ovarian transposition. 
In addition, their applications include male infertility operations such as vasectomy re-
versal, subinguinal varicocelectomy, targeted spermatic cord denervation, and robotics-
assisted microsurgical testicular sperm extraction (microTESE). These procedures, alt-
hough costly and time consuming, have good results in terms of shorter hospital stay, 
decreased blood loss, less post-operative pain, and faster convalescence compared to open 
or laparoscopic surgeries, whereas reproductive outcomes were described as similar to 
nonrobotic surgical approaches [38–40]. 

Overall, AI has the ability to do work that would require thinking with strict or not-
so-strict guidelines given by humans, with AI being able to analyse pixels from pictures 
and videos and recognise the context of the given image, as well as analysing text infor-
mation and predicting outcome based on the given inputs. 

Most of the research done in AI applied to RM is still lacking randomised controlled 
trials to prove its value, and it is mostly used for some automatic jobs. Furthermore, the 
legal aspects and ethics of the usage of this type of technology need to be clarified more 
in the future. Because of its immense potential and essential need to use large quantities 
of data to train itself, AI is dependent on more efficient and easier ways of data connection, 
which is, nowadays, the first step to the inclusion of this type of technology in everyday 
practice. In the following paper, we have set out to summarise some of the most common 
applications of AI in contemporary RM, mainly focusing on its nonsurgical aspects. Figure 
1 summarises AI usage in reproductive medicine. 

 
Figure 1.Usage of AI in reproductive medicine. Figure 1. Usage of AI in reproductive medicine.



Diagnostics 2022, 12, 2979 5 of 14

2. Materials and Methods

This narrative review was performed for all available articles published as of Septem-
ber 2022 in PubMed. The search keywords used included “artificial intelligence and
infertility,” “artificial intelligence and female infertility,” “artificial intelligence and male in-
fertility,” “artificial intelligence and oocytes,” “artificial intelligence and embryos,” “in vitro
fertilization and artificial intelligence,” “artificial intelligence and assisted reproductive
technology”, “artificial intelligence and reproductive medicine”, “artificial intelligence and
reproductive endocrinology”, “artificial intelligence ethics”, “legal/regulatory challenges”,
and “human-centered AI”. All sources not specifically focused on the issue of an ethically
and legally sustainable implementation of AI applications in reproductive care, and in
healthcare as a whole, were left out.

3. Results
3.1. Artificial Intelligence and Female Infertility

Pregnancy rates after IVF treatment are approximately 30–70%, depending on the age
of the female patient and the different protocol regimes used based on individual lists of
parameters [41]. As mentioned before, female infertility may have several causes; hence,
an adequate assessment is essential. The main steps in female infertility investigation
are careful medical history, physical examination, endocrinologic assessment, ultrasound
examination, hysterosalpingography, hysteroscopy, and laparoscopy [42].

Recently, many machine learning algorithms, including traditional logistic regression,
support vector machines, decision trees, and random forests which have been presented in
order to improve the ART success rate, using parameters such as age, body mass index,
endometrial thickness, estradiol and progesterone level on the day of embryo transfer, type
of infertility, good-quality embryo rate, and others [43].

Goyal et al. established the machine learning model to predict a successful live birth
through 30 IVF clinical features [44], while others established six classification models to
predict early pregnancy loss [45]. Many studies pointed out the random forest model as
a platform in prediction [41]. Vogiatzi et al. constructed and validated an efficient ANN
based on parameters with statistical correlations to live birth to predict clinical outcomes
for patients undergoing ART [46].

The evaluation of ovarian reserve and endometrial receptivity using ultrasound (US) is
very important for female fertility [47]. With regards to ovarian reserve follicular monitoring
in the diagnosis of Polycystic Ovary Syndrome (PCOS), as well as prediction of oocyte
quality and pregnancy outcomes, variables such as ovarian follicular diameter and volume,
number of follicles, and ovarian stromal blood flow index were considered [48]. On
the other hand, endometrial thickness and volume, endometrial morphology, and spiral
arterial blood flow index are effective evaluation indicators [49]. There is a lot of ongoing
research considering AI analysis of US images. These semiautonomous systems tend to
save time and eliminate subjectiveness and inter- and intra-observer differences [50–52].
Hysteroscopy, as one of the main points in infertility investigation, is also being investigated
within the scope of AI image analysis, with studies that successfully used the VGG NET 16
model to classify endometrial lesions [53].

Follicular fluid is very important for oocyte maturation and its quality. Some authors
combined gonadotrophin levels, multivariate analysis and machine learning methods, and
infrared spectra of follicle fluid to determine idiopathic female infertility [54]. Oocyte
morphology assessment is of great importance for the successful fertilization rate, but it is
also very useful during oocyte freezing for fertility preservation and in oocyte donation
cycles. Adding oocyte morphology to AI may improve the precision of the algorithms.
By including a total of 52 articles in this study, it has been shown that dark colour of the
cytoplasm, homogeneous granularity of the cytoplasm, and ovoid shape of oocytes had no
influence on treatment outcomes, but abnormalities such as refractile bodies, fragmented
first polar body, dark zona pellucida, enlarged perivitelline space and debris were likely
to affect the treatment outcome, whereas cytoplasmic vacuoles, centrally located cytoplas-
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mic granularity, and clusters of smooth endoplasmic reticulum had negative impact on
infertility treatment outcomes [55].

3.2. Embryo Transfer and Artificial Intelligence

It is of great importance to choose quality embryos for the transfer based on number
of blastomeres, presence of nucleation and percentage of fragmentation. Pre-implantation
genetic testing can be used in order to assess morphology, but with limited clinical util-
ity [56]. Hence, newly described scoring systems such as AI have been developed, although
their application and actual success rate still lacks clinically based evidence [57]. According
to the Association for the Study of Reproductive Biology (ASEBIR) criteria and Gardner
grading, inner cell mass, blastocyst expansion, and the trophectoderm are the best criteria
for evaluating and selecting embryos on day five of development [58]. There is a tight
connection between maternal and paternal Human Leukocyte Antigen [HLA] genes during
embryo development and recurrent miscarriage, but no evident genetic markers have been
identified. Mora-Sánchez and co. developed a methodology to analyze HLA haplotypes
from couples with histories of either successful pregnancies or recurrent miscarriages in
order to calculate the risk. This algorithm, called IMMATCH, is used to retrospectively
predict recurrent miscarriage with an AUC = 0.71 (p = 0.0035) thanks to high-resolution
typing and the use of linear algebra on peptide binding affinity data [59].

As mentioned earlier, the use of AI has been proposed as a viable solution for many
of the present problems involving the empirical or subjective assessment of clinical and
embryological decision points during the treatment of infertility, and embryo transfer (ET)
is no exception. ET represents the last and most critical phase of the IVF procedure, and it
is a crucial step, as the entire IVF cycle depends on the careful positioning of the embryos
at the proper location—near the middle of the endometrial cavity. Therefore, achieving
a live birth is the ultimate purpose of IVF, so the clinical decision making is centred on
increasing a woman’s chance of getting pregnant [60]. ET is a stage composed of many
variables, strategies, and techniques. During the previous century, and even nowadays,
transferring several embryos was the most common strategy for a successful pregnancy [61].
However, not only does this method increase the chances of a viable pregnancy, but it also
makes multiple pregnancies more likely, which is linked to higher rates of maternal and
perinatal morbidity and mortality [62–64]. In light of this, the single embryo transfer (SET)
approach has gained widespread acceptance as the only practical solution to resolve this
issue and prevent multiple pregnancies in ART cycles. As a result, numerous countries have
established regulations encouraging or requiring increased use of the SET approach [65–69].
Even so, to this day, reliable and valid ART outcome prediction is regarded as an unsolved
issue, and no consensus yet exists among doctors as to treatment options and pregnancy
probability estimation [60,70]. This is the point where AI gets into the picture.

Van Loendersloot et al. used the decision tree model to determine the cost-effectiveness
of the different embryo transfer strategies in IVF in relation to female age. However, in their
study, they also determined the more effective embryo transfer approach according to the
age of the participants. This demonstrates how AI may address multiple problems at once
and offer potential solutions. As expected, SET, followed by an additional frozen-thawed
single embryo transfer if available and necessary, was dominant, less expensive, and more
effective in patients under the age of 32, as shown in this study. On the contrary, in patients
older than 32, double embryo transfer (DET) was shown to be more effective, but also
more costly [71]. This opened the possibility of looking for a model that would predict the
implantation outcome after an embryo transfer cycle, which could potentially increase the
chances of a successful SET outcome in patients over the age of 32 and therefore improve
the quality of life of the mother during and after the pregnancy, but also reduce the costs.
This is exactly what Raef et al. aimed to do. They made a substantial contribution in the
field of IVF using a significant ET data set with enough records to train a model using
powerful machine learning prediction techniques. This data set included comprehensive
and thorough aspects of patient demographics, embryo parameters, and cycle variables
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containing 82 features of IVF cycles. They discovered that among the six classification
algorithms they used, random forest was the best classifier [70]. Recurrent implantation
failure (RIF) is another big challenge for clinicians and a painful experience for couples
that have experienced it. Shen et al. performed a study that provided a targeted and
personalised treatment of RIF patients to help them achieve efficient and reliable pregnancy.
They determined that among the four classification algorithms they used, the AdaBoost
model obtained the best performance in the DET group, whereas the GBDT model proved
to be the best in the SET group [72]. It is worth stressing that clinical judgment cannot be
replaced by an AI decision-making system. It is a tool that provides suggestions and guides
medical professionals in choosing the most individualised path to a successful pregnancy.

3.3. Artificial Intelligence and Male Infertility

By WHO estimations, the male factor contribution to infertility is somewhere around
50% of all causes of couple infertility. A lot of different medical conditions and states
could facilitate male infertility, for instance, a variety of comorbidities such asliver failure,
renal disease, chronic obstructive pulmonary disease, and multiple sclerosis. In addition,
lifestyle factors, malignancies, drugs, hormonal disturbances, varicoceles, and recently
investigated sperm DNA fragmentation can contribute to this state. Almost every medical
condition that affects hormonal homeostasis, sexual function, and spermatogenesis could
potentially contribute to male infertility. Nevertheless, 30% of all male infertility cases are
still idiopathic [73]. Basic assessment of male infertility consists of taking a reproductive
history and one or two semen sample analyses. Semen characteristics commonly analysed
are sperm concentration, total sperm count, sperm motility, sperm vitality and sperm
morphology. In a further investigation through hormonal evaluation, genetic testing and
some imaging techniques could be obtained [3].

Numerous chemicals and physical agents produced by industrial or agricultural
activities have been documented to have a significant negative impact on male reproductive
function. These substances are frequently present in the environment and in certain
occupational activities [74]. By assessing lifestyle and environmental factors, AI was used
to predict the fertility rate and semen quality of male individuals. A data mining method
using five different AI techniques (multilayer perception, decision tree, naive Bayes, support
vector machine, and support vector machine + particle swarm optimisation) was applied
to a data set that had environmental and lifestyle parameters and found that AI could be
used to predict semen quality, analysing those parameters with good accuracy [75]. In
a study performed a couple of years prior to the previous one, Gil et al. used three AI
networks to analyse how environmental and/or lifestyle factors may have an impact on
semen quality. The factors they evaluated included body mass index (BMI), alcohol intake,
and cigarette smoking and/or exposure. They found that, out of the three AI methods
they used, Multilayer Perceptron and Support Vector Machines showed the highest level
of accuracy for sperm concentration (~86%) and for sperm motility (73–76%). Decision
three, on the other hand, provided an excellent visual and illustrative approach, but still
slightly lower accuracy [76]. Artificial neural networks used in another study based on
questionnaire results obtained from male individuals also had 85.71% success in predicting
the semen profile of the individual [77]. These studies prove that AI methods can be very
useful to predict a person’s seminal profile based on environmental factors and lifestyle
habits, and they can potentially lead to developing new preventive strategies and treatment
methods for male infertility. There are different biochemical markers in seminal fluid that
are associated with male infertility and could implicate semen quality (e.g., total protein
content, fructose, glucosidase, zinc). In a study by Vicram and Rao Kamini, an ANN was
constructed to predict those markers from categorised semen samples, with mean absolute
error from −0.057 to 0.166 for different biomarkers [78]. The most advanced and broadly
used investigation nowadays that relies on AI technology in RM is semen analysis (SA).
AI is being used to perform this time-consuming job of SA, which is usually performed
manually with a microscope [79]. SA performed by AI technology uses image and video
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sample assessment to categorise sperm characteristics. There are computer-aided sperm
analysis (CASA) systems that can report motile percentage and kinematic parameters, as
well as defining subpopulations of sperm cells [80].

A double blind prospective study, which compared two SA analysing systems (SQA-V
GOLD and CASA CEROS) to the manual semen assessment, showed that CASA systems
have advantages such as standardisation, speed, precision, reduced potential for human
error, automated data recording, and less need for skilled professionals to run the systems.
The problem with these systems lies in testing some atypical samples and the inability
to perform an assessment of morphology abnormalities [81]. Riordon and McCallum
trained ANNs with a true positive rate of 94% to classify sperm into WHO categories. They
used freely available sperm data sets (HuSHeM and SCIAN). Furthermore, studies that
investigated sperm motility applied machine learning to videos of sperm specimens and
showed good and consistent prediction results [82]. Research studies that investigated
machine learning spectrophotometry in SA found that it was more effective and reliable
than the available spectrophotometry methods currently in use [83]. In addition, there is
multimodal SA that uses data from SA video frames, patients’ serum levels of sex hormones,
lifestyle habits, and semen parameters, so these data sets will be very practical for applying
AI to investigate patterns that lie within [84]. Most importantly, digital home kits are
being developed to allow SA in a domestic environment. These kits can be connected to
a smartphone application and give results in real time, although these systems remain
limited by reporting too few semen parameters. In the foreseeable future, more advanced
systems accounting for more parameters should be developed, thus saving the time needed
for an individual to go and bring specimens to the laboratories [85].

3.4. Artificial Intelligence and Idiopathic Infertility

Idiopathic or unexplained infertility affects 30% of couples worldwide. It is defined as
an absence of a clear cause for a couple’s infertility and the female’s inability to become
pregnant after at least 12 cycles of unprotected sexual activity, or after 6 cycles in the case
of women over 35 years old whose standard evaluations are normal [86]. Environment
and lifestyle factors have been pointed out as likely causes of idiopathic infertility, even
if no definitive explanation has been found yet. Obesity and metabolic syndrome are
known to have a negative impact on fertility in both men and women, even after using
ART [87–89]. Bachelot et al. [90] conducted a study in which they set forth a very promising
machine learning model that can stratify infertile/fertile couples on basis of their bioclinical
signature, thus helping the management of couples with unexplained infertility. To our
knowledge, this is the only study so far to use a couple-modelling approach instead of
evaluating the parameters individually, since the cause of infertility is often multifactorial.
Anthropometric assessment, antioxidative status, and metabolic status were among the
variables used in this study. They used an unsupervised method, principal component
analysis (PCA), and a supervised machine learning method, Orthogonal Partial Least
Square-Discriminant Analysis (OPLS-DA). They also trained and assessed four additional
machine learning models in order to confirm the discriminatory ability of the data, regard-
less of the model used—Support Vector Machine, Nearest Neighbours Classifier, Decision
Tree and logistic regression using Python 3.8.2, Scikit-Learn library 0.22.2, Numpy library
1.18.1, and Pandas library 1.0.1. The suggested model may be used to manage couples with
idiopathic infertility as part of routine care, but even though it is promising, prospective
interventional studies are required to test the hypothesis this algorithm suggests and to
certify such a model for clinical use [90].

3.5. Legal and Ethical Quandaries in AI-Based Healthcare

As has always been the case with any major scientific breakthrough throughout human
history, innovative technologies with major potential to profoundly change vital aspects of
our lives are likely to outpace the core values, ethics, and legal standards which govern
society. That is even more true when reproductive medicine is involved, as was the case



Diagnostics 2022, 12, 2979 9 of 14

with practices such as heterologous fertilization [91]. The authors have therefore seen fit
to briefly explore the approaches and actions currently being undertaken with regard to
the legal, regulatory, and ethical governance of AI in healthcare. First, some AI methodolo-
gies are often regarded as “black-boxes”, in that they merely attempt to shed light on the
relationship between input and output variables based in the training set. That implicates
uncertainty regarding generalisation of the new data not included in previous data sets. In
addition, when certain AI algorithms are used, there is no guarantee that an optimal solu-
tion can ultimately be achieved, and there are still few broadly shared guiding standards to
determine how to tune parameters within algorithms [92]. When considering ethics of AI
in medicine, the primary principle and priority of AI programming must always be safety.
Programs must have transparency, credibility, auditability, and reliability, and they must be
recoverable [93]. Machine learning processes need large amounts of data, and the rights
to lawfully use such data are often unevenly regulated in different countries and regions,
particularly in terms of the degree of de-identification of the patient’s identity [94]. AI im-
plementation in RM still lacks randomised controlled trials, and there is growing awareness
that AI models used in RM need to be interpretable and rigorously controlled before they
can become mainstream in clinical practice [95]. The European Commission acknowledged
such urgency and set out to launch a coordinated plan on AI with EU Member States (in
addition to Switzerland and Norway) in December 2018 [96]. Technological shortcomings,
e.g., a low degree of interoperability and standardisation among medical IT systems, also
need to be dealt with. The ultimate purpose of such a blueprint is to foster AI development
in Europe for the fundamental purpose of making the old continent the world-leading
region for the development and implementation of highly innovative, but at the same time
ethically sustainable, human-centred AI interventions—that is, conceiving and developing
AI systems set to amplify and enhance, rather than supplant and displace, human capabili-
ties [97]. A more recent and comprehensive noteworthy contribution from the Commission
came in December 2019 with the release of the ethics guidelines for trustworthy artificial
intelligence, in which the importance of AI in healthcare is highlighted in reference to
Europe’s ageing population, as AI technologies and robotics have the potential to help
caregivers provide the elderly with more timely and effective care, in addition to keeping
patient conditions in check in real time [98]. Along similar lines, the first global report
on Artificial Intelligence in health, which enunciates six pivotal guiding principles for its
design and use, was issued by the World Health Organization on 28 June 2021 [99]. The
WHO report puts forth a set of guidelines meant to reaffirm foundational precepts which
emphasise, among other things, that human autonomy in the context of health care must be
prioritised at all times, i.e., humans must keep control of health-care systems and medical
decisions, whilst privacy and confidentiality are non-negotiable principles that must be
upheld [26,100]. In addition, valid informed consent must be granted by patients through
suitable legal frameworks for data protection. In order to achieve those goals, several
factors will have to be accounted for in order to create a cultural and anthropological shift
towards human-compatible AI by gaining a full understanding of how people engage with
and trust AI systems [101]. Being able to explain and get through to people the operation
of AI models and how AI systems operate is essential if we are to make the most out of
the looming AI breakthrough set to affect, and hopefully improve, almost all aspects of
our lives.

4. Conclusions

AI will bring a great innovation to the field of reproductive medicine and to healthcare
as a whole through the improvement of treatment options for infertile patients, better
planning of the procedures, and ultimately, higher ART success rates, thus reducing the
costs of the treatment. It will be the optimal tool to help us predict clinical outcome based
on the known initial parameters. Involving AI in everyday practice will take time, as
well as concerted efforts to best harness the potential of risk-assessment systems and to
reconfigure the way care is delivered. Ultimately, such a breakthrough will likely bring
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many advantages, such as the removal of the interfering factors: environmental and
emotional factors or physical limitations. It will not replace human presence, but it will
help with making the decision process in order to improve the final outcome and save time
in the infertility treatment. The introduction of AI in ART procedures will revolutionise
reproductive techniques, but it will definitely need a cautious and thoughtful approach,
particularly when drafting legislative and regulatory frameworks solidly grounded in
ethics precepts and core values, prioritising human dignity and upholding fundamental
rights to privacy, data protection, and equality. Ultimately, such goals can only be achieved
by preserving human control in order to make AI meet our needs, while at the same time
operating transparently and achieving equitable outcomes. Such priorities are all the more
essential when reproductive medicine is involved, since it also impacts the interest and
well-being of unborn children. Guidelines, recommendations, and best practices based on
widespread international consensus, at least among nations such as EU members, which
share the same set of core values, are of utmost importance. To that end, all stakeholders
need to make a concerted effort in order to make sure that human-centred AI, i.e., guided
by human awareness and fundamental principles, will improve and enhance human skills
and capabilities rather than replace them.
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