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Abstract
Carbon nanomaterials (CNMs) have some excellent properties that make them ideal candidates as sorbents for solid-phase 
extraction (SPE). However, practical difficulties related to their handling (dispersion in the atmosphere, bundling phenomena, 
reduced adsorption capability, sorbent loss in cartridge/column format, etc.) have hindered their direct use for conventional 
SPE modes. Therefore, researchers working in the field of extraction science have looked for new solutions to avoid the 
above-mentioned problems. One of these is the design of CNM-based membranes. These devices can be of two different 
types: membranes that are exclusively composed of CNMs (i.e. buckypaper and graphene oxide paper) and polysaccharide 
membranes containing dispersed CNMs. A membrane can be used either as a filter, operating under flow-through mode, or 
as a rotating device, operating under the action of magnetic stirring. In both cases, the main advantages arising from the use 
of membranes are excellent results in terms of transport rates, adsorption capability, high throughput, and ease of employ-
ment. This review covers the preparation/synthesis procedures of such membranes and their potential in SPE applications, 
highlighting benefits and shortcomings in comparison with conventional SPE materials (especially, microparticles carbo-
naceous sorbents) and devices. Further challenges and expected improvements are addressed too.
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Introduction

A widely accepted definition encompasses as nanomaterials 
all materials that have an inner or outer dimension between 
1 and 100 nm at least. Thus, nanoobjects include nanopar-
ticles (which are zero-dimensional because all three exter-
nal dimensions are less than 100 nm), nanofibers/nanotubes 
(which are mono-dimensional because two outer dimensions 
are in the nanoscale), and nanoplates (which are bidimen-
sional since only one dimension is in the nanoscale) [1] 
Based on the previous definition, nanomaterials also com-
prise nanostructured materials, i.e. materials having external 

dimensions in the micro- or macro-range but inner dimen-
sions or surface structures in the nanoscale range [2]; exam-
ples are nanocomposites, which are composed of polymers 
entrapping nanoobjects in the bulk [3]; nanosponges, which 
are porous materials with their internal cavities, pores, or 
voids, in the nanometre range [4]; agglomerates of nanoob-
jects, such as buckypaper (BP), composed of carbon nano-
tube (CNT) bundles [5], and graphene oxide (GO) paper [6].

In the last two decades, both nanoobjects and nanostruc-
tured materials have found an increasing use as sorbents for 
solid-phase extraction (SPE) thanks to their unique prop-
erties [1, 7, 8]. Besides low density, their major qualities 
as sorbents are the large specific surface area, high chemi-
cal activity, chemical stability, and easy surface function-
alization. Among the different types of nanomaterials that 
fit the purpose [1, 9] carbon nanomaterials (CNMs) have 
found wide application, both used individually [10, 11] and 
in combination with other materials [12–15]. Raw CNMs 
display a strong affinity towards nonpolar and moderately 
polar organic compounds, especially when bearing aromatic 
moieties. A telling example is that of CNTs, which are the 
most used CNMs in SPE applications. As it is well-known, 
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CNTs look like one graphene (G) sheet (single-walled CNTs, 
SWCNTs) or multiple G sheets (multi-walled CNTs, MWC-
NTs) rolled up into cylinders with a hexagonal honeycomb 
sp2 carbon structure. With their nanometre-sized diameters 
and micrometre-sized lengths, SWCNTs have a length-to-
diameter ratio of about 1000, exhibiting a large surface area 
and high absorption capacity. As a consequence of the dis-
tortion of the planar G sheet into a cylinder, the π-orbitals of 
a CNT rearrange in a way that the outer part is much larger 
than the inner one. Thus, CNTs can exert van der Waals 
interactions stronger than usual towards organic compounds 
and effective π-π interactions with aromatic compounds. On 
the other hand, for the same reason, they tend to aggregate 
into bundles because of the extraordinary intertube forces. 
Each bundle is typically composed of 100–500 tubes and 
exhibits a lower surface area to volume ratio [16], which 
trims down their adsorption capability significantly. Unfor-
tunately, this agglomeration phenomenon easily happens 
packing CNTs into a SPE cartridge: the stationary phase 
becomes gradually more compacted, increasing backpres-
sure and slowing down the SPE operations (sample loading 
and analyte elution). Moreover, CNMs (CNTs, G sheets, 
etc.) may escape from the SPE cartridge, especially under 
high pressure in online SPE systems. To surmount such limi-
tations, CNTs have been combined with magnetic nanopar-
ticles [17], used to prepare disks [18–20], or supported on/
dispersed in membranes [20]. The last ones are very prom-
ising solutions, used as disks packed in a cartridge or as a 
rotating device. Membranes have distinct advantages due 
to their porosity, high internal surface area, high loading 
of dispersed CNMs, high transport rates, easy accessibil-
ity to active sites, and operational flexibility [21]. In fact, 
regarding this last aspect, membranes to perform disk-SPE 
can operate either under the flow-through mode, acting as a 
filter, or in diffusive mode, acting as a rotating device. The 
development of such extraction units is still in its infancy, 
but the literature is already presenting notable examples of 
CNM-based membranes for SPE applications [22].

This review aims to highlight the latest progress in the 
design and development of novel SPE devices, based on 
membranes composed exclusively of CNMs or prepared by 
dispersing CNMs in a polymeric matrix. Synthesis meth-
odologies of such sorbents as well as their ability in the 
effective isolation of target compounds from environmental 
and biological samples are discussed in detail. The evolution 
and future perspective of such devices are also evaluated.

Membranes exclusively composed of CNMs

The study of free-standing paper-like materials, based on 
nanoscale components such as CNTs and GO, has led to the 
development of BP [23] and GO paper [6]. These relatively 

new materials (their first preparation dates back to 1998 and 
1999, respectively) exhibit macroscopic flexibility and stiff-
ness as a result of a unique interlocking-tile arrangement of 
their nanoscale components. They have been prepared and 
applied in several technological sectors as electromechani-
cal actuators [24], biocompatible membranes [25], bioel-
ectrodes [26], and water filtration systems [27]. Only very 
recently, their utilization has been extended to analytical 
chemistry as sorbent materials in SPE applications. Table 1 
lists some selected applications of membranes exclusively 
composed of CNMs.

SPE modes by using buckypaper

Unlike membranes with vertically aligned CNTs [20, 32, 
33], membranes containing bundles of CNTs, such as BP, 
do not exhibit filtration capability based on size exclusion 
or sieving in the inner core of the tubes, but rather on the 
sorption capabilities of the material. The first application 
of such membranes for extraction purposes goes back to 
2008 [18]. In this case, it is not possible to talk about 
BP in the strict sense of the word because a qualitative 
filter paper (QFP) was employed as a support to reinforce 
the obtained sorbent layer and protect it against breaking, 
which is a weak point of BP and similar material. In order 
to prepare a disk with a diameter of 47 mm (the common 
size for a conventional disk for SPE), only 30 mg of SWC-
NTs was employed. For the analytical application, two 
stacked disks were used in dynamic flow-through mode to 
extract phenols, phthalate esters, and chlorophenols from 
large volumes of environmental waters, without revealing 
breakthrough problems and obtaining the same extraction 
capability (90–100%) as a SPE cartridge packed with 500 
mg of free MWCNTs [34]. When compared with conven-
tional sorbents (C18 and activated carbon disks (500 mg)), 
the two SWCNT disks could extract chlorophenols more 
efficiently than the C18 disk at a higher sample loading 
flow rate and required a lower volume of organic solvents 
than activated carbon disks to desorb the analytes. The 
same authors prepared a triple-layered SWCNT system to 
extract sulfonylurea herbicides and other pesticides from 
water samples [19] after acidification at pH 3.0, with 
recoveries greater than 76%.

The first actual applications of BP are more recent and 
were published between 2016 and 2020 [28–31, 34]. The BP 
used in these investigations is a commercial material, sold as 
a free-standing paper, composed of bundles of MWCNTs, 
unoriented and partially oxidized. The paper is a 3D porous 
network that has a thickness of about two hundred microns. 
According to the provider information, its preparation is 
preceded by a step of CNT purification with hydrochloric 
acid to remove catalyst iron particles, and with nitric acid to 
wash off amorphous carbons and to oxide CNTs partially. 
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After washing with water, CNTs are suspended in deionized 
water with the surfactant Triton X-100 and their suspension 
is pressurized through a filter to form a uniform CNT layer. 
Compared with the lab-made disks previously described, 
this method of preparation guarantees membrane uniformity 
and greater strength avoiding the combination with a support 

disk. The properties of such commercial BP have been speci-
fied in Table 2.

BP has a specific surface area of about 110 m2/g, which 
is similar to that of microparticle carbonaceous sorbents 
used in SPE such as graphitized carbon black (GCB) and 
porous graphitic carbon (PGC) [35]. Unlike PGC, both BP 

Table 1   Selected SPE applications involving the use of carbon nanomaterial-based membranes

Sorbent material Analytes Matrix Extraction procedure Instrumental tech-
nique

Recovery, LOD, 
LOQ, EF

Ref

Double and triple-
layered SWCNTS 
supported on a 
qualitative filter 
paper

Phenols, phthalates, 
chlorophenols

Tap water, river 
water, wastewater 
samples

Disk SPE under flow-
through mode

HPLC-FLD and 
HPLC-DAD

Recovery: 59–100 %
LOD: 7–38 ng/L
EF = 570–1000

[18]

Double and triple-
layered SWCNTs 
supported on a 
qualitative filter 
paper

Sulfonylurea herbi-
cides

Tap water and river 
water samples

Disk SPE under flow-
through mode

HPLC-DAD Recovery: 76–102%
LOD: < 8 ng/L
EF = 760–1020

[19]

BP membranes Humic acids River water Disk SPE under flow-
through mode

UV/VIS spectropho-
tometer

Removal efficiency 
> 93%

EF = /

[27]

BP-OASIS HLB Cobalamins Cow’s milk Conventional SPE on 
cartridge

HPLC/MS/MS Recovery: 44–100%
LOD: 0.36–1.62 

µg/L
LLOQ: 0.61–2.69 

µg/L
EF = 17.6–40

[28]

BP membrane Pesticides and phar-
maceutical drugs

River and lake waters Stir-disk-SPE HPLC/MS/MS Recovery: 1–100%
LOD: 0.1–12,000 

ng/L
LOQ: 0.7–40,000 

ng/L
EF = 1000–100,000

[29]

BP membrane F2-isoprostanes Cord and maternal 
plasma samples

Rotating-disk-SPE HPLC/MS/MS Recovery: 30–120%
LOD: 1.47–4.06 

µg/L
LLOQ: 2.45–6.77 

µg/L
EF = 3–12

[30]

BP membrane Pesticides, drugs, 
recreational drugs, 
and flame retard-
ants

River sediments Stir-disk-SPE UHPLC/MS/MS Recovery: 41–109%
LOD: 0.02–3.1 ng/g
LOQ: 0.1–9.9 ng/g
EF = 81–218

[31]

Table 2   Main characteristics of buckypaper

Properties of buckypaper Technique Ref

A surface area of 110 ± 2 m2/g Brunauer-Emmett-Teller (BET) surface area analysis [24]
High porosity: 80% with mean size of pores 140 nm. In detail, macropores and 

mesopores are present, the last ones having a distribution that ranges from 35 
to 12.5 Å

Atomic force microscopy (AFM) [24]

Wettability: BP rapidly absorbs amounts of water up to 4 times its dry weight Thermogravimetry (TG) [34]
A permeability of (3.9 ± 0.3)10−13 m2 (see the reference for the measurement methodology) [24]
An oxygen/carbon atomic ratio of 0.23 (level of CNT oxidation) X-ray photoelectron spectroscopy (XPS) [24]
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and GCB bear oxygenated groups on their surface which 
make them able to establish electrostatic interactions and act 
as ion exchangers; nevertheless, due to the different meth-
ods of preparation and oxygen content, their ion exchange 
capabilities differ [34, 35]: GCB has a low oxygen content, 
ascribable to γ-pyrone like structures which show basic 
properties and act as anion exchange sites after activation 
with hydrochloric acid [29–31, 33, 36–40]; BP has a high 
oxygen content, mainly represented by carboxylic groups 
which confer it acid properties and cation exchange capabili-
ties [28]. Moreover, compared with GBC and PGC, BP has a 
superior sorptive mass capacity due to the larger surface-to-
volume ratio. As reported in Table 2, BP is also character-
ized by high porosity referable to the presence of macropores 
and mesopores, the last ones spanning from 35 to 12.5 Å, as 
determined by means of atomic force microscopy [24]; the 
occurrence of macropores favours the absorption phenom-
enon, prodromal to the analyte adsorption [28]. Besides, BP 
has good wettability, a characteristic that is advantageous 
to preserve the analyte retention even if the sorbent dries 
out [24, 32]. The high permeability of BP allows the direct 
treatment of samples from very complex matrices without 
clogging problems, which is a limitation of the classic SPE 
on a cartridge. After a 2-h acid treatment with HNO3, X-ray 
photoelectron spectroscopy (XPS) measurements revealed 
an O/C atomic ratio of 0.23 (see Fig. 1 a and b) [24].

Strictly speaking, BP was used for the first time in combi-
nation with a microparticle copolymeric sorbent for the SPE 
clean-up of cobalamin from milk [28]. To this end, two BP 
12-mm disks were packed into the cartridge, separated from 
the underlying bed of OASIS-HLB by a Teflon frit. The large 
cross-sectional area and the thin thickness of the disks allow 
high flow rates without channelling effects. When extrac-
tions were performed from Milli-Q water, spiked with the 
analytes, the yields were very high (82–93%) and more than 
additive considering that, when the two sorbents were tested 

individually, BP (13 mg) and OASIS-HLB (500 mg) pro-
vided an averaged recovery of 29% and 53%, respectively. 
Applying the device to the extraction of real samples, after a 
preliminary step of isoelectric precipitation of caseins at pH 
4.6, the relative recoveries, calculated towards an internal 
standard (dicyanocobinamide) were around 60% that, in the 
case of problematic analytes such as water-soluble vitamins 
and a complex matrix such as milk, is a good result. In this 
work, for the first time, this approach has permitted the char-
acterization of the natural distribution of the vitamin B12 
homologues in cow’s milk, finding that methylcobalamin is 
the prevalent form.

With the SPE configuration just considered [28], the 
dynamic flow-through mode does not permit BP to achieve 
an adequate contact time with analytes either in the load-
ing or in the elution step, so its adsorption capability is not 
completely exploited. Thus, to increase the time useful for 
the analyte adsorption, a completely different configuration 
has been conceived by preparing different disk-SPE devices, 
useful to treat environmental samples or biological samples 
[29–31].

The system shown in Fig. 2a is very effective for pro-
cessing high sample volumes, such as the case of environ-
mental waters [29]. The first advantage of a such device 
is that the BP membrane has both sides available for the 
analyte adsorption and so a diameter of 34 mm is enough 
to obtain a disk with the same geometric surface as a con-
ventional 47-mm disk that works in flow-through mode 
using only one side. However, to increase the mechanical 
integrity and allow the magnetic stirring, the BP disk is 

Fig. 1   a C1s XP spectrum. b O1s XP spectrum of BP. The three 
peaks centred at 286, 287, and 288 eV can be assigned to different 
types of oxidized carbon: carbon involved in a single bond with an 
oxygen atom (phenols and ethers); carbon involved in a double bond 

with an oxygen atom (ketones and aldehydes); carbon involved simul-
taneously in single and double bond with an oxygen atom (carboxylic 
groups). (Reproduced with permission from [25])

Fig. 2   a Schematic illustration of the stir-disk SPE unit, compo-
nents for its assembly, and operational steps. b Investigation of the 
individual influence of logP and pKa on the recovery of the model 
compounds extracted by the stir-disk SPE device. (Reproduced with 
permission from [29])

◂
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inserted into a polypropylene mesh pouch. Before using 
the device, a step of washing, activation (oxidation), and 
conditioning is performed as for the conventional SPE on 
a cartridge involving carbonaceous sorbents, for example 
GCB. Based on kinetic study outcomes, it has resulted that 
the adsorption step is controlled by the analyte diffusion 
into the mesopores of BP. This explains why, unlike the 
conventional SPE on a cartridge, the adsorption step needs 
more time to reach analogous recoveries. However, consid-
ering the advantage to perform simultaneous extractions on 
a multi-position stirrer without the strict control of an ana-
lyst, a convenient compromise is to realize the adsorption 
overnight. A shorter desorption time (30 min) is enough for 
the analyte elution, using a dicloromethane:methanol 
(50:50, v/v) solution, which is necessary to overcome the 
strong analyte-BP interactions but it is not an ideal choice 
from the perspective of green analytical chemistry. Inves-
tigating the recovery dependence on the physicochemical 
properties of different classes of contaminants, it has been 
observed that logP and pKa are two key parameters [29]. 
Figure 2 b depicts the level curves correlating absolute 
recoveries with these parameters and shows that com-
pounds having logP greater than 1 have recoveries between 
50% and 100% depending on their pKa. In particular, com-
pounds with pKa greater than 9 and logP between 2 to 4 
have a greater probability of being adsorbed on BP, prob-
ably due to hydrophobic interaction with its graphenic por-
tion; supplementary interactions such as hydrogen bonds 
and electrostatic interactions with the polar surface groups 
of the oxidized BP can improve the adsorption.

Further studies have highlighted that the oxidation grade 
of BP is crucial in affecting extraction yields, especially 
for those analytes interacting with the polar groups on its 
surface [30]. As a case study, it was considered the extrac-
tion of F2-isoprostanes (log P~4; pKa~4,3) from plasma 
samples [30]. Figure 3 illustrates the device assembled to 
perform rotating-disk SPE experiments, suitable for biologi-
cal applications. Studying the average recovery (R%) of the 
analytes vs activation times (i.e. repeated 2h-cycles of oxida-
tion using nitric acid at 65%), it was observed that a plateau 
was reached after 6 h of activation with absolute recover-
ies greater than 80%. This increase in recovery (about 60% 
higher than that after 2 h of treatment) is explained consid-
ering the introduction of hydroxyl, carbonyl, and carboxyl 
groups on the BP surface. However, after 10 h, the BP disks 
become fragile because of the prolonged oxidation which 
causes their rupture [39].

The results obtained in this study indicate the possibility 
of modulating the extraction capability of BP, but also the 
possibility of reusing it. It was verified that the recycle is 
possible eight times. However, since each oxidation treat-
ment modifies the BP surface, a disk can be reused to extract 
substances with increased polarity.

The potential of GO paper

As far as the GO paper [6] is concerned, such material has 
become commercially available only lately, marketed as a 
circular, flexible black sheet having 4 cm in diameter and 
10 µm in thickness. Recently, micrometre-thick films of 
GO paper have also been named GO membranes. However, 
despite their great potential in sample preparation, no appli-
cations have been developed so far, probably also because of 
the high price of each disk.

Polysaccharide‑CNM composite membranes

Polysaccharides are a class of biopolymers, characterized by 
renewable nature, which are biocompatible, biodegradable, 
available at low-cost, and easy to functionalize; they can 
also be shaped into different forms, such as films and gels, 
with a different grade of porosity depending on the prepara-
tion technique and % of crosslinking [40]. Polysaccharides 
easily form gels, i.e. two-component systems in which a liq-
uid is dispersed in a solid. Aerogel, xerogel, hydrogel, and 
cryogel are gels that can be classified based on the process 
used to remove the liquid from the solid network of the gel 
[41]. Since there is often an inappropriate use of the names, 
Table 3 reports the main types of gels and the corresponding 
method of preparation.

Among polysaccharides, those that have been most used 
to prepare composite membranes/gels with CNMs (poly-
saccharide matrix@CNM) are chitosan (CS), cellulose, and 
gellan. Their combination with CNMs is useful not only 
to obtain a material with an excellent adsorption capability 

Fig. 3   Schematic illustration of the whole extraction procedure: a 
protein precipitation and b operational steps of rotating-disk micro-
SPE clean-up. (Reproduced with permission from [30])
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(due to the dispersion of CNMs within the polysaccharide 
matrix that avoids their aggregation) but also to strengthen 
the mechanical stability of the resulting composite mem-
brane. Despite the structural similarities between polysac-
charides, there are significant differences that allow a con-
siderable grade of flexibility in the membrane preparation. 
The main of them are related to the polymerization degree, 
position and/or stereochemistry of the glycosidic bond, 
occurrence or not of branching, and eventually but of utmost 
importance, the functional group present at C2 in each sac-
charide unit (i.e. OH group in cellulose, NH2 in CS, etc.).

CS‑based membranes

CS is a linear copolymer obtained by deacetylation of chi-
tin, a highly ordered polysaccharide composing the exoskel-
etons of insects and crustaceous and the walls of fungi; it 
is so extremely widespread that 10 Gtons of chitin are con-
stantly distributed in nature [42]. Whereas chitin is made of 
N-acetyl-D-glucosamine residues linked by β-1,4 linkages, 
CS is harder to define in terms of its exact chemical com-
position since it depends on the deacetylation degree. The 
presence of 2-amino-2-deoxyglucose units makes it soluble 
in acid solutions through salt formation since the primary 
aliphatic amine is easily protonated by common organic 
acids. This cationic polymer can be crosslinked with differ-
ent reagents taking advantage of the amino group reactiv-
ity: anionic crosslinkers (sodium tripolyphosphate, sodium 
citrate, sulphosuccinic acid, oxalic acid) promote physical 

interactions, while chemical crosslinkers (genipin, epichlo-
rohydrin, glutaraldehyde) favour covalent bonds. The forma-
tion of polymeric networks is a way to avoid its dissolution 
and to enhance its mechanical properties. Due to its biodeg-
radability, it has also been the most used polysaccharide for 
extraction purposes over the last years.

GO/CS composites can be prepared using several strate-
gies, including solvothermal reactions, hydrothermal reac-
tions, and freeze-drying. The formation of hydrogels is 
favoured by electrostatic interactions between protonated 
amino groups of CS and the -COO− on GO (at neutral 
pH), hydrogen bonding, and covalent interactions between 
CS and GO (see Fig. 4) [43, 44]. Porous CS/GO aerogels 
prepared by crosslinking and freeze-drying allow one to 
obtain a material with high porosity (~ 98%), low density 
(0.021–0.035 g/cm3) and high adsorption capacity (about 
600 mg/g using methyl orange and amido black 10B as tar-
get analytes) [45]. Crosslinking agents, besides improving 
the mechanical properties of GO/CS, can play a role in the 
adsorption of pollutants. For example, freeze-dried GO/CS 
sorbents are more efficient in the retention of dyes when 
cross-linking is performed after the freeze-drying step due 
to a higher degree of pore interconnectivity [46].

The solution casting technique was applied to prepare 
GO/CS composite membranes with different percentages of 
GO (from 1 to 20% w/w) [47]. Such a technique is a process 
in which a polymer phase is dissolved in a solvent and mixed 
with a nanosized material prior to casting on a flat surface 
(for example a Petri dish). Polymer concentrations of 15–20 

Table 3   Gel classification based on the preparation procedure [41]

Types of gel Preparation technique

Xerogel Xerogels are formed following the slow evaporation at room temperature of the liquid of the gel.
Aerogel Aerogels are formed following the removal of the liquid from gel in its supercritical state.
Cryogel Cryogels are formed following the removal of the liquid of the gel for sublimation (under 

vacuum, after freezing of the material).
Hydrogel and alcogel The terms hydrogel and alcogel are used when the liquid (solvent) in the gel network is water 

and alcohol, respectively.

Fig. 4   Illustration of interac-
tions between GO and CS 
(reproduced with permission 
from [43])
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w% generally lead to a membrane with a porous structure. In 
this case, a 2% w/v concentration of CS in 1% v/v acid acetic 
solution was prepared under stirring and the solvent phase 
was removed by evaporation after the crosslinking reaction, 
performed by covering the sample surface with a 0.1% (w/v) 
glutaraldehyde solution. The resulting crosslinked network 
exhibited great stability in water. SEM analyses revealed the 
formation of more homogeneous composite membranes at 
low GO percentages. However, an improvement in mechan-
ical properties and adsorption capability was observed at 
high GO contents. The adsorption capability was assessed 
through recovery experiments of pesticides having different 
logP (from 0.80 to 6.37) from water samples. Unlike BP, 
the CS/GO membranes are mechanically more resistant but 
much less porous and their insertion into a polypropylene 
pouch is necessary only to fix a magnetic bar in a task on 
one side of the pouch. Absolute recoveries (R%) using these 
devices as rotating disks depended on the hydrophobicity of 
the membranes. The best yields (up to 90%) were achieved 
by using the membranes containing 20% w/w GO due to the 
formation of hydrogen bonds and hydrophobic interactions 
between the analytes and the membrane.

A simple solvothermal synthetic strategy was studied 
and applied to prepare CS-reduced GO composites with 3D 
structures (3D CS-rGO) [48]. Solvothermal synthesis is a 
widely used one-step approach to prepare a wide range of 
nanostructured materials [49]. In this process, a chemical 
reaction takes place in a solvent at temperatures above the 
boiling point and pressures above 1 bar. One of the key fea-
tures of this method is that temperature and pressure condi-
tions facilitate the dissolution of the chemical reagents and 
the production of products whose morphology and size can 
be well controlled. In order to synthesize the 3D CS-rGO 

(3:17) composite, CS was added to a suspension of GO in 
ethylene glycol, and then, the mixture was transferred to the 
solvothermal reactor at 185 °C for 5 h. The solid product was 
collected by centrifugation, washed, and dried at 70 °C. The 
resulting sample is an assembly of 2D G sheets into 3D G 
structures exhibiting superior physical and chemical proper-
ties. This is because the 3D network prevents the restacking 
and aggregation among individual G sheets, guarantees bet-
ter mass transport, and enhances adsorption performance. 
The sorbent was applied to extract 70 pesticides from tea 
samples. Compared with conventional microparticle sorb-
ents such as GCB, C18 and primary secondary amine (PSA), 
3D CS-rGO allowed the best matrix interference removal 
and absolute recoveries between 70 and 120%. When applied 
to analyse catechins from tea, the recovery was 10 times 
higher than that of GO used alone.

CS-based sorbents have also been prepared and applied 
for the adsorption of metal ions, but not in form of mem-
branes. In a case [50], a SPE column for the extraction and 
preconcentration of heavy metals from biological and envi-
ronmental samples was packed with a novel Schiff base-CS-
grafted MWCNTs (S-CS-MWCNTs). The grafting process 
had the aim of improving the chemical stability of CS in 
acid media and its metal-ion-sorptive properties. Grafting 
is an effective method to modify (bio)polymers by impart-
ing a variety of functional groups to them; basically, it is a 
method wherein monomers are covalently bonded onto a 
polymer chain [51]. Panel a of Fig. 5 schematizes the graft-
ing process, while panel b shows the main steps to (i) graft 
CS with aldehydic groups (S-CS), (ii) synthesize acyl-chlo-
ride-modified MWCNTs (MWCNTs-COCl), and finally (iii) 
prepare the composite sorbent S-CS-MWCNTs [50]. The 
developed method was applied to the ICP-MS determination 

Fig. 5   a Schematic representa-
tion of the grafting method for 
polymer modification (modified 
from [51]). b Synthesis and 
structure of S-CS-MWCNTs. 
(Modified from [50])
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of the metal ions in food and environmental samples with 
quantitative recoveries.

In another case, mercapto-grafted GO–magnetic CS 
(GO–MCS) was synthesized and used as a sorbent for 
the magnetic SPE extraction of mercury ions from water 
samples with quantitative recoveries [52]. Magnetic CS 
was functionalized with 3-mercaptopropyltrimethoxysi-
lane (MPTS), an effective ligand because the sulphur 
atom is a non-metal with good affinity towards metals 
on the right of the d-block; on the other hand, the amine 
groups of magnetic CS reacted with the carboxyl groups 
of GO, providing a thiol-functionalized magnetic CS/
GO sorbent.

The possibility of blending different biopolymers sim-
plifies the preparation of a sorbent material with improved 
chemical properties and mechanical strength. An example 
is the membrane based on agarose/CS incorporated with 
MWCNTs (AG/CS-MWCNT) [53]. In this case, chemical 
properties can be modulated through amino groups of CS 
and mechanical strength can be enhanced by taking advan-
tage of the high pH resistance of AG. For the membrane 
preparation, both CS acidified solution and AG solution 
were individually heated at 90 °C until the complete dis-
solution of the polymers. After the sequential addition of 
the aqueous AG solution and MWCNTs to the solution of 
CS, an aliquot of the warm composite solution was cooled at 
room temperature in a Petri dish and dried at 60 °C for 48 h. 
The AG/CS-MWCNT film, characterized by Field Emission 
Scanning Electron Microscopy (FESEM) (Fig. 6), showed 
no agglomeration of MWCNTs, which is an advantage in 
terms of specific surface area, as also confirmed by the BET 
measurements. This sorbent was applied for the first time 
for the solid-phase microextraction (SPME) of three non-
steroidal anti-inflammatory drugs (NSAIDs) from water 
samples. In order to perform the SPME procedure, four disks 
were perforated by a needle which was dipped in an aque-
ous sample under stirring. The disks were then removed and 
sonicated with 100 μL of isopropanol, obtaining quantitative 
recoveries.

Cellulose‑based membranes

Cellulose is the most abundant natural polymer in nature: 
plants contain on average 33% cellulose with cotton con-
taining the purest form at 90%; other natural sources are 
also algae, plankton, and bacteria [54]. Cellulose is a lin-
ear polymer composed of β-d-glucopyranose units linked 
by β-(1,4) glycosidic bonds. The most relevant properties 
of such homopolysaccharide include excellent mechanical 
properties, superior ability of film and fibre formation, good 
biocompatibility, and tailorable surface chemistry.

Several CNTs/cellulose composites were prepared 
using different strategies and applied for SPE operations: 
from cellulose-based membranes impregnated with CNTs, 
which were used to perform the disk-SPE extraction (in 
flow-through mode) of triazole pesticides from aqueous 
samples [55], to mixed matrix membranes (MMMs) for the 
extraction of PAHs from sewage pond water samples [56]. 
The first ones were prepared simply by percolating a sur-
factant suspension of CNTs through a cellulose membrane, 
preliminary oxidized with a hot nitric acid solution. The 
preparation of MMMs was more articulated. First, MWC-
NTs and single-layer G were individually dispersed into a 
cellulose triacetate (CTA) matrix to form a MWCNT-MMM 
and G-MMM, respectively. Then, the membranes were pre-
pared by casting a solution of the desired proportions of 
CTA matrix and MWCNTs/G in dichloromethane on a flat 
glass surface. For recovery studies (see Fig. 7), enrichment 
factors (EFs) between 54 and 100 were achieved with quan-
titative recoveries. The performance of such a membrane 
was also compared with a conventional SPE procedure based 
on a C18 cartridge, obtaining similar values of recoveries, 
LODs, and LOQs. Finally, the membrane was found to be 
reusable for a maximum of eight analyses.

Gellan‑based membranes

Gellan, initially known as polysaccharide S-60, is an extra-
cellular bacterial polysaccharide, characterized by a linear 

Fig. 6   a FESEM surface 
morphology of the AG/CS-
MWCNT composite film. b 
the FESEM cross section. 
(Reproduced with permission 
from [51])
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anionic tetrasaccharide repeating sequence: two residues 
of β-d-glucose, one of β-d-glucuronate and one of α-l-
rhamnose [57]. The native polysaccharide has an l-glyceryl 
substituent on O(2) of the 3-linked glucose residue of the 
tetrasaccharide sequence and, in some repeat units, an acetyl 
group at O(6) of the same residue. Usually, both substitu-
ents are removed for treatment with hot alkali; the resulting 
deacylated polymer is known generically as “gellan gum” 
(GG) or Kelcogel (food-grade) or Gelrite (for non-food 
applications). It is toxic neither to humans nor to the envi-
ronment. The widespread use of GG is mainly due to its 
ability to retain water in interstitial spaces among polymer 
chains. It has been used to prepare composite hydrogels or 
gel beads as the adsorbents for the sorption studies of dyes 
[58–61] and heavy metals [62, 63] as well as membranes to 
catch organic contaminants [60, 64].

Biodegradable GG membranes embedded with MWCNTs 
were prepared by mixing MWCNTs in a hot GG solution, 
which was then crosslinked with glutaraldehyde to avoid 
excessive swelling during the micro-solid-phase extraction 
(μ-SPE) of PAHs from environmental water and fruit-juice 
beverage samples [64]. Such membranes allowed an effec-
tive good clean-up, quantitative recoveries, and relative 
standard deviations ≤ 10%. Aerogels composed of GG and 
GO were synthesized using the freeze-drying approach to 
obtain 3D structures with different level pore structures 
depending on the different freezing temperatures: 46% (− 80 
°C) and 61% (− 20 °C) [60]. The hierarchical thin sheet 
structure of the resulting 3D GG@GO aerogels favoured the 
analyte diffusion, showing excellent performance in methyl-
ene blue adsorption. The adsorption process of the dye was 
spontaneous and exothermic, and it followed pseudo-first-
order kinetics and the Freundlich isotherm model. The entire 
3D structure was characterized by high thermal stability due 
to strong electrostatics, hydrogen bonds, and physical entan-
glement between GG chains and GO.

Table 4 summarizes some relevant SPE applications, 
based on the use of polysaccharide-CNM composite 
membranes.

CNM‑based membranes with enhanced 
selectivity

In the last years, two opposite tendencies have become 
apparent within the field of extraction science: from one 
side, there is the necessity of isolating the maximum pos-
sible number of compounds simultaneously to perform 
multi-class, multi-analyte methods, mainly based on liq-
uid chromatography-mass spectrometry (LC-MS); on the 
other side, there is the necessity of extracting a series of 
compounds with similar physicochemical compounds 
from different complex samples. In the first case, the 
poor selectivity of CNMs as SPE sorbents is an advan-
tage which allows one to carry out analyses on large scale 
accepting compromise on recovery yields. In the second 
case, the use of sorbents, modified or combined with other 
materials to enhance their selectivity, is an added value 
to perform targeted analyses. From this point of view, 
several researchers have been working to develop even 
more specialized CNM-based sorbents, for example by 
resorting to the combination of CNMs with metal-organic 
frameworks (MOFs) [65–67] and molecularly imprinted 
polymers (MIPs) [68, 69].

MOFs are microporous hybrid materials with infinite 
framework structures built from organic linkers and inor-
ganic metal nodes. They are characterized by a high surface 
area and uniform nanostructured cavities. These peculiarities 
make MOFs suitable SPE sorbents since their pores and cav-
ities can be tailored for the selective adsorption of analytes 
on the basis of size and/or interaction with the framework 
[70]. Interesting examples of hybrid sorbent are those com-
posed of MOF-199, a copper-based MOF, combined with 
various CNMs such as G and fullerene [66]. Such materials 
were applied for the d-SPE of PAHs from water samples 
with recoveries greater than 92%. The MOF/G composite 
showed the greatest adsorption affinity probably due to the 
high porosity of G. However, there are few examples of 
hybrid membranes prepared with both these nanomaterials, 
not yet designed for SPE but rather for water purification 
[71]. One of these is the UiO-66@GO/polyethersulfone 
membrane prepared for water ultrafiltration [71]. UiO-66 
was specifically anchored to the GO layers as a porous modi-
fier and to prevent the GO layers from stacking. The aperture 
size of UiO-66 is about 6.0 Å, which falls between the size 
of water molecules (∼ 2.8 Å) and most organic contaminants 
(greater than 6.0 Å); as a result, the membrane UiO-66@
GO/PES exhibited high hydrophilicity and water purifica-
tion performance.

Fig. 7   Schematic illustration of a MMM microextraction and the 
setup for the simultaneous microextraction of 15 samples using a 
multiposition magnetic stirrer (reproduced with permission from 
[56])
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Using MIP-based sorbent, the selectivity of SPE is 
exasperated to the point that MIPs have been compared to 
synthetic antibodies [68]. The shortcomings of traditional 
bulk imprinting of MIPs (partial template removal, limited 
site accessibility, low mass transfer, and binding capac-
ity) have been overcome by surface molecular imprint-
ing [69, 72]. Such a technology involves the occurrence 
of polymerization reaction on the surface of solid-phase 
matrixes. During surface polymerization, the imprinted 
sites are created on the surface of (bio)polymers or solid 
substrates. The stereo cavities in the imprinted layer act as 
specific recognition sites and can selectively adsorb target 
analytes from complex samples [73]. Core–shell struc-
tures have been prepared depositing imprinted polymers 
on a core-shell structure with a large surface area and high 
porosity, such as CNTs, GO, and carbon spheres, so to 

obtain surface imprinted composite beads [72]. Multitem-
plate molecularly imprinted biopolymers were prepared 
using CS as the biopolymer to be imprinted and carbon 
nanospheres as the core [69]; the beads were then used 
as sorbents for the ultrasound-assisted d-SPE of vitamins 
B2, B3, and B6 from juice samples with recoveries greater 
than 76%. The surface imprinting technique has also been 
used to synthesize molecularly imprinted membranes 
(MIMs) for water purification [72] or as a dispersant sorb-
ent to realize the matrix solid-phase dispersion (MSPD) 
for extraction of parabens from powder sunscreen samples 
[74]. Nevertheless, despite the great potentiality of the 
surface molecular imprinting technique in the preparation 
of specialized membranes, there are no examples of com-
posites involving CNMs so far, probably because this kind 
of research is still moving its first steps.

Table 4   Selected SPE applications involving polysaccharide-CNM membranes/gels composites

Sorbent material Analytes Matrix Extraction Instrumental analysis Recovery, LOD, 
LOQ, EF

Ref

CS/GO membrane Pesticides Water sample Rotating disk-SP HPLC/MS/MS R%:0–90%
LOD: /
LOQ: /
EF = 0–2250

[47]

3D CS-rGO com-
posites

Pesticides Tea sample d-SPE HPLC/MS/MS R%: 70–120%
LOD: 0.01–0.7 µg/L
LOQ: 0.04–3.2 µg/L
EF = 1.75–3

[48]

S-CS-MWCNTs Heavy metal ions 
(V(V), Cr(VI), 
Cu(II), As(V), and 
Pb(II))

Herrings, spinach, 
river, and tap 
waters

Mini-column SPE ICP/MS R%: 91–105%
LOD: 1.3–3.8 ng/L
LOQ: /
EF = 9.1–10.5

[50]

GO-MCS-MPTS Hg (II) Tap and seawater 
samples

d-SPE FAAS R%: 95.6–100%
LOD: 0.06 µg/L
LOQ: 0.12 µg/L
EF = 79.7–83.3

[52]

AG/CS-MWCNTs Non-steroidal anti-
inflammatory drugs

Well and river water 
samples

Dynamic mode via 
magnetic stirring

HPLC/UV R%: 94.3–109.7%
LOD: 0.89–8.05 ng/

mL
EF = 94.3–109.7

[53]

Cellulose membrane 
impregnated with 
CNTs

Triazole fungicides Lake water samples Disk-SPE GC/MS R%: /
LOD: 0.02–0.03 

µg/L
LOQ: 0.05–0.1 µg/L
EF > 2500

[55]

MWCNT-MMM 
and SLG-MMM 
(cellulose triacetate 
membrane)

PAHs Sewage pond water 
sample

Dynamic mode via 
magnetic stirring

HPLC/UV R%: 99–100.5%
LOD: 0.02–0.09 ng/

mL
LOQ: 0.06–0.28 ng/

mL
EF = 123.75–125.6

[56]

MWCNTs-GG PAHs Environmental 
waters and fruit 
juice beverage 
sample

Dynamic mode via 
magnetic stirring

HPLC/UV R%: 81.7–106.5 %
LOD: 0.01–0.06 

µg/L
LOQ: 0.04–0.2 µg/L
EF = 326.8–426

[64]
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Conclusion and perspectives

Membranes represent an alternative way to perform SPE and 
to overcome the limitations of the conventional procedure 
carried out on a cartridge in flow-through mode. Besides the 
improvement of the analytical figures of merit arising from 
smart uses of CNMs, the main practical advantages related 
to the employment of membranes are the great simplifica-
tion of the SPE operations and the possibility of process-
ing tens of samples simultaneously resorting to low-cost 
instrumentation (for instance a multiposition magnetic stir-
rer) and with a minimal effort of analysts. Safety aspects 
are also improved because the dispersion of CNMs in the 
atmosphere is avoided both using BP and polysaccharide 
matrices. An apparent limitation of CNM-based membranes 
might be identified in their poor selectivity because non-
polar compounds (particularly aromatic compounds) are 
retained via π-π interactions. However, low specificity is a 
characteristic common also to a large family of microparti-
cle sorbents (silica-based gels such as C18, C8, etc.; porous 
polymer sorbents such as poly(styrene-divinylbenzene), 
poly(divinylbenzene-N-vinylpyrrolidone), etc.; carbona-
ceous sorbents), which can be seen as a benefit when the 
objective is to realize multi-class multi-analyte analyses, 
usually via HPLC/GC-MS. More specific sorbents can be 
obtained either exploiting the ease with which oxidized 
CNMs can be derivatized or preparing composite sorbents 
with marked selectivity through the combination with MIPs 
and MOFs. Real weak points of CNM-based membranes 
can be identified in the brittleness of the BP disk borders 
or in the difficulty in removing water from polysaccharide 
membranes before the desorption step due to the hydrophilic 
nature of the matrix.

Other characteristics such as recyclability make these 
devices worthy of attention. For instance, BP can be reused 
several times, allowing cost amortization, and making it a 
competitive product for sample preparation. Due to their 
ability in forming physical and chemical porous hydrogels, 
there is growing interest in using polysaccharides to create 
functional materials from naturally available biomass; after 
their use, polysaccharide membranes are easily biodegrad-
able. Different considerations can be formulated regarding 
CNM recyclability which is not a trivial issue. To date, no 
effective method has been reported for their removal from 
liquid systems. It is easy to remove most CNMs from an 
aqueous solution by filtration, but a few types may pass 
through the filter pores and enter the environment. A sus-
tainable method could be that of recycling CNMs which are 
already well-dispersed in scrap materials, so that they can 
be integrated into new ones readily, using less energy and 
chemicals. Recently, some approaches have been proposed 
to completely degrade CNTs at the end of their life cycle. 

For example, the biodegradation of CNTs using horseradish 
peroxidase and myeloperoxidase through the formation of 
sodium hypochlorite or hypochlorous [75]. The direct use 
of these reagents has also been proposed since they are inex-
pensive and environmentally friendly oxidizing agents able 
to completely degrade CNTs into carbon oxides or carbonate 
ions [76].

Although BP and GO paper are commercially available, 
several types of CNM-based membranes for SPE are still 
lab-made. The main challenge for the mass production of 
such membranes is how to integrate CNMs with their unique 
properties into a robust membrane structure with outstand-
ing separation performance. Other major limitations include 
CNT dispersion, reproducibility among batches, presence 
of defects at the polymer/CNT interface and compatibility 
between the polymer and CNTs. Consequently, the homoge-
neous bulk fabrication of CNM-based membranes is still at a 
premature stage and requires further research to improve the 
technology for their scaled-up production [77–79].

Although the adoption of membranes in SPE is still at 
the development phase, this approach is very promising, 
can involve the preparation of more and more sophisticated 
devices (for instance, self-rotating systems following the 
incorporation of magnetic nanoparticles), and may find a 
host of applications in the immediate future.
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