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ABSTRACT

The physical processes that make a galaxy a Lyman alpha emitter have been extensively studied over the past 25 yr. However, the
correlations between physical and morphological properties of galaxies and the strength of the Lyα emission line are still highly
debated. Here, we investigate the correlations between the rest-frame Lyα equivalent width and stellar mass, star formation rate,
dust reddening, metallicity, age, half-light semi-major axis, Sérsic index, and projected axis ratio in a sample of 1578 galaxies in the
redshift range of 2 ≤ z ≤ 7.9 from the GOODS-S, UDS, and COSMOS fields. From the large sample of Lyα emitters (LAEs) in the
dataset, we find that LAEs are typically common main sequence (MS) star-forming galaxies that show a stellar mass ≤109 M�, star
formation rate ≤100.5 M� yr−1, E(B − V) ≤ 0.2, and half-light semi-major axis ≤1 kpc. Building on these findings, we have developed
a new method based on a random forest (RF) machine learning (ML) classifier to select galaxies with the highest probability of
being Lyα emitters. When applied to a population in the redshift range z ∈ [2.5, 4.5], our classifier holds a (80 ± 2)% accuracy and
(73 ± 4)% precision. At higher redshifts (z ∈ [4.5, 6]), we obtained an accuracy of 73% and precision of 80%. These results highlight
the possibility of overcoming the current limitations in assembling large samples of LAEs by making informed predictions that can
be used for planning future large-scale spectroscopic surveys.
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1. Introduction

The Lyα emission line is one of the brightest emission lines pro-
duced in star-forming galaxies, due to the abundance of hydro-
gen and because it is produced by a common atomic electron
transition. At z > 2 and z > 7, the line shifts (respectively) to the
optical and near-IR regime and, thus, it allows us to identity faint
high-z objects very efficiently. Throughout 25 years of obser-
vations and discoveries (e.g., Steidel et al. 1996; Stiavelli et al.
2001; Ouchi et al. 2003; Hayashino et al. 2004; Pentericci et al.
2018; Saxena et al. 2023), Lyα has shifted the observational red-
shift frontier, shedding light on the Epoch of Reionization (EoR)
at z > 6.

Traditionally, Lyα emitting galaxies are defined as Lyα emit-
ters (LAEs) if they show a rest-frame Lyα equivalent width of
EW0 ≥ 20 Å (for details, see Shibuya et al. 2019; Ouchi et al.
2020; Runnholm et al. 2020). Searches for LAEs are often
conducted through the use of narrow band (NB) filters (with
variable central λNB and width δNB limited to 100 Å–200 Å,
see Cowie & Hu 1998; Ajiki et al. 2003; Gronwall et al. 2007;
Grove et al. 2009) that pinpoint the emission line in a certain
redshift range targeted, namely, z = (λNB ± δNB)/1216 Å − 1.

In this case, the basic technique of finding LAE candidates
involves comparing images taken through a narrow-band filter
(which samples the flux from the emission line) with a broad-
band one at close wavelengths (which samples the continuum
emission). At increasingly high redshifts, the efficiency of this
approach on ground based facilities is optimized by design-
ing narrow band filters with wavelength centered in low back-
ground regions of the sky spectrum between the OH atmospheric
emission lines, which begin to plague substantial wavelength
ranges beyond λ ∼ 7000 Å. This highlights the main limita-
tion of narrow band (NB) surveys: they probe very limited red-
shift ranges and, hence, small cosmological volumes for a given
survey area. Moreover they can only uncover the fraction of
the galaxy population that displays relatively bright Lyα emis-
sion. In general, a spectroscopic follow-up of a representative
sample of the targets is required to ascertain the nature of the
candidates. In fact NB surveys are subject to contamination of
galaxies at lower redshifts that emit metal lines, such as CIV
emission at 1549 Å (e.g., Fynbo et al. 2003), MgII at 2798 Å
(e.g., Dunlop 2013), [OII] at 3727 Å (e.g., Fujita et al. 2003),
or [OIII] at 5007 Å (e.g., Ciardullo et al. 2002), which can fall
in the same narrow band filter used to detect Lyα from higher
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redshift sources. Other potential sources of contamination,
which have to be considered if the narrow band and broad
band images are taken in different periods, are transient objects,
namely, variable AGN or supernovae in the field (Dunlop et al.
2013). Large samples of LAEs are also assembled trough spec-
troscopic observations that have the advantage of covering a
large redshift range. For example, spectroscopy in a single obser-
vation extending over the wavelength range from 4000 Å to
8000 Å can unveil LAEs approximately from z = 2.3 to z = 5.6,
thus allowing us to sample larger cosmological volumes. The
deepest samples of LAEs to date come from this identification
approach, successfully discovering LAEs reaching flux levels
as low as a few 10−18 erg s−1 cm−2 (Drake et al. 2017). Because
most of spectroscopic surveys (e.g., VANDELS; McLure et al.
2018; Pentericci et al. 2018; Garilli et al. 2021) are conducted
though multi object spectrographs (MOS), which observe simul-
taneously only a relatively limited number of objects from few
10 s to 100 s in the best cases, target selection has remained a
key point thus far. Only integral field unit spectrographs, such
as MUSE, can observe unbiased sample of the galaxies’ spectra,
but their small field of view limits their ability to work as wide
survey probes.

The above considerations are the focus of the present work,
which is aimed at understanding whether it is possible to over-
come the current limitations in assembling large samples of
LAEs and making informed predictions on the bases of galax-
ies photometric and physical properties alone. The technique we
propose is based on a machine learning (ML) algorithm that
employs ensembles of decision trees, namely, a random for-
est (RF) classifier (Breiman 2001). This approach relies on the
fact that, as shown by many previous studies, the physical and
morphological properties of LAEs are, on average, quite differ-
ent from galaxies that do not show such a bright Lyα emission
(NLAEs; Nakajima et al. 2012; Hagen et al. 2014; Ouchi et al.
2020; McCarron et al. 2022). In particular, a key factor that
shapes the final appearance of the Lyα emission in a galaxy is
dust that can absorb the UV continuum and Lyα photons. The
recurrent scattering nature of Lyα (for a review, see Dijkstra
2017) driven by the neutral hydrogen gas actually increases
the chance of the photon to be destroyed by dust absorption
(Verhamme et al. 2015; Gurung-López et al. 2022). As a result,
even small amounts of dust can quench the Lyα emission, result-
ing in the absence of the emission line. Thus the NHI column
density of neutral hydrogen and the dust content are thought to
be the most important physical quantities that determine the rate
of escape of Lyα photons. The key role of dust was demon-
strated by previous observations, which reported that galaxies
showing Lyα in emission tend to have bluer UV continuum
slopes (β ∼ −2) than NLAEs (Shapley et al. 2001; Vanzella et al.
2009; Pentericci et al. 2009; Kornei et al. 2010). This scenario
also implies that the particular orientation of the emission path
relative to the geometrical distribution of gas and dust in the
emitting region should (in principle) be important for determin-
ing whether or not we are able to observe the line in emission.
Theoretical models (Zheng et al. 2010; Verhamme et al. 2012;
Behrens & Braun 2014; Smith et al. 2019, 2022) predict a view-
ing angle effect where Lyα photons escape more easily when the
disk of the host galaxy is oriented face-on with respect to our
line of sight (LoS). However clumpy structures have been iden-
tified in high-z LAEs (Shibuya et al. 2016; Cornachione et al.
2018), thus their morphological structure cannot be modeled as
a simple disk. This further complicates the viewing angle sce-
nario of the Lyα escape and subsequent studies are needed to
explore this idea, since the morphology of a galaxy is intrinsi-

cally linked to the Lyα emission observed. Also, the correlation
between stellar mass and the presence of the Lyα line is debated:
Nakajima et al. (2012) reported that LAEs are likely to be low-
mass, faint-continua galaxies. However, the results presented by
Hagen et al. (2014) showed that LAEs are not exclusively low-
mass sources. In order to get a clearer picture of the nature
of LAEs, both physical and morphological properties have to
be considered. In this context Paulino-Afonso et al. (2018) sug-
gested a size evolution perspective: when the star formation is
confined to a compact region ≤1 kpc, there are conditions to
boost the escape of Lyα photons to our line of sight, so that we
observe the galaxy as a LAE. As time progresses, each galaxy
grows in size, stellar mass, dust content, and metallicity. There-
fore, we end up measuring less Lyα emission in larger galaxies,
that is, there is an apparent anti-correlation between Lyα and the
galaxy’s size.

The physical processes that make a galaxy a LAE are still
highly debated, as well as the precise correlations between
the galaxies’ properties and the presence and strength of the
emission line. In this work, we assemble a large sample of
intermediate-redshift galaxies with known spectroscopic, mor-
phological, and physical properties to further investigate the cor-
relations between Lyα emission and both physical (stellar mass,
SFR, reddening, metallicity, and age) and morphological (Sérsic
index, half-light radius, and projected semi-major axis) galaxy
properties. We then use the same sample to train and test a new
method to identify LAEs, based on a supervised ML technique
that builds on existing correlations. The point is to select galaxies
with the highest probability of being LAEs based just on the pho-
tometric information, which could, for example, drive informed
target selections for future spectroscopic surveys.

To date, ML techniques have been successfully applied
to remove contaminants from NB selected LAE candi-
dates (Ono et al. 2021) and to select LAEs in the HET-
DEX survey with an unsupervised learning approach
(Shanmugasundararaj et al. 2021). An analysis of the physical
properties (stellar mass, SFR, and dust extinction) of 72 spec-
troscopically confirmed LAEs from the HETDEX survey was
also carried out by McCarron et al. (2022) in order to predict the
value of Lyα EW for 10 LAEs at z > 7. Finally Runnholm et al.
(2020) used a linear regressor to predict Lyα EW for 42 galaxies
in the local Universe. Compared to these works, our analysis
will build on a much larger sample of galaxies whose Lyα line
was already measured through spectroscopy and we therefore
aim to construct a robust method to identify LAEs from large
surveys.

The paper is organized as follows. We describe the data set
in Sect. 2 and the methodology used in Sect. 3. We discuss the
correlations found in our data in Sect. 4. In Sect. 5, we present
the results of the ML method adopted. We summarize our results
and conclusions in Sect. 6. In the following, we adopt the ΛCDM
concordance cosmological model (H0 = 70 km s−1 Mpc−1, ΩM =
0.3, and ΩΛ = 0.7).

2. Data

For our purposes we need to assemble the largest possible sam-
ple of sources that are associated with spectroscopic follow-up
and with a measurement of both morphological and physical
properties. In this sense, the CANDELS survey (Grogin et al.
2011; Koekemoer et al. 2011) provides the optimal dataset: the
5 CANDELS fields have homogeneous photometry obtained
through HST observations (F125W, F160W, and F814W in
common), which is key for deriving unbiased morphological
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properties. These fields have been extensively studied thanks
to many photometric and spectroscopic campaigns. Our sam-
ple includes sources from only three of the CANDELS fields,
namely GOODS-S, UDS, and COSMOS, whose spectra are
mostly publicly available. The use of three widely separated
fields also have the advantage to mitigate cosmic variance yield-
ing statistically robust samples of galaxies.

2.1. Photometric catalogs and AGN removal

For the UDS and COSMOS fields we used the official photomet-
ric catalogs (Galametz et al. 2013; Nayyeri et al. 2017, respec-
tively) and photometric redshifts (Kodra et al. 2023), while in
the case of GOODS-S, we adopted the updated 43-band cata-
log and photometric redshifts provided by Merlin et al. (2021).
Since we are interested in searching for candidate Lyα emitters
amongst the star forming galaxy population, we flagged all the
sources which show known X-ray emission, to remove AGN
contaminants. For GOODS-S, we used the AGN flags given
by Luo et al. (2017), for UDS the sources by Kocevski et al.
(2018) which have a LX > 1042 erg s−1 were removed (see, e.g.,
Chen et al. 2017; Mukherjee et al. 2019), while for COSMOS
we relied on the galaxy classification flags given by each spec-
troscopic survey considered in Sect. 2.3.

2.2. Morphological catalogs

We assumed that galaxies are well represented by a Sérsic pro-
file (Sersic 1968). For each galaxy we extracted the half-light
semi-major axis (Re), the Sérsic index (n) and the projected axis
ratio (q) from the catalog by van der Wel et al. (2012) obtained
by fitting the HST/WFC3 HF160W observations. The H band cov-
ers restframe emission around 4000 Å, depending on the redshift
of the sources and it was the detection band of the CANDELS
catalogs.

2.3. Spectroscopic catalogs

We assembled a catalog containing all the Lyα spectral informa-
tion both in emission and absorption of galaxies at z ≥ 2 in the
GOODS-S, UDS, and COSMOS fields (see Table 1). In the fol-
lowing, we briefly describe the surveys that we considered (see
also Table 2).

The ESO public spectroscopic survey VANDELS. The final
data release provides redshifts and spectra for 2087 galaxies in
the CDFS and UDS fields in the range 1 < z < 6.5 (McLure et al.
2018; Pentericci et al. 2018; Garilli et al. 2021). We took all data
associated with spectral quality flags QF ≥ 2, namely, a redshift
reliability ≥80%. Line fluxes and EWs were derived using Gaus-
sian fit measurements performed with slinefit (Schreiber et al.
2018). The complete emission line catalogs for the VANDELS
sources will be published in Talia et al. (2023).

VUDS, the VIMOS Ultra Deep Survey (Cassata et al. 2015;
Le Fèvre et al. 2015; Tasca et al. 2017) targeted star-forming
galaxies at 2 ≤ z ≤ 6 in the COSMOS, VVDS and CDFS
fields. The Lyα emission line were measured manually using the
IRAF splot tool, integrating the area encompassed by the line
and the continuum. We considered only galaxies with quality
flags QF ≥ 3, namely, sources associated to a redshift reliability
≥95%, by taking into account the line fluxes and EWs given by
the team.

MUSE-Wide and MUSE-Deep. These programs targeted
two different fields, COSMOS and CDFS, providing spectro-

Table 1. CANDELS fields selected and data sample in the redshift range
z ∈ [2, 7.9].

Field Galaxies LAEs NLAEs

GOODS-S 841 340 501
COSMOS 408 107 301
UDS 329 78 251
TOTAL 1578 525 1053

Notes. We consider LAEs as galaxies with EW0 ≥ 20 Å.

Table 2. Spectroscopic surveys with 3σ limiting flux in units of
10−18 erg s−1 cm−2 and redshift range.

Survey LAEs NLAEs flim Redshift

VANDELS 143 472 1.2 [2.9, 6.1]
VUDS 21 141 5.2 [2.0, 6.0]
MUSE-Wide 232 39 7.8 [3.0, 6.3]
MUSE-Deep 23 8 0.43 [2.9, 6.4]
CANDELS-z7 30 79 1.9 [5.4, 7.9]
GMASS 1 19 2.5 [2.0, 2.9]
GOODS-S VIMOS-LR 12 71 6.7 [2.5, 3.0]
GOODS-S VIMOS-MR 13 33 2.5 [3.0, 3.9]
GOODS-S FORS 5 10 3.7 [4.0, 6.2]
DEIMOS 10K 14 27 6.6 [3.3, 6.0]
zCOSMOS-Deep 31 154 6.0 [2.0, 3.7]

scopic data for 2052 confirmed emission line galaxies at 1.5 <
z < 6.4 (Schmidt et al. 2021). Line fluxes and EWs were
extracted through Gaussian fits by the team. We used all sources
with a confidence flag greater than 1, referring to line emitters
with at least a single trustworthy line detection.

CANDELSz7 (Pentericci et al. 2018). This program aimed
at spectroscopically confirming a homogeneous sample of z ∼ 6
and z ∼ 7 star-forming galaxies. Candidates were selected in
the GOODS-S, UDS, and COSMOS fields. The Lyα flux was
measured by means of a Gaussian fit, while to determine the
EW, the continuum was obtained directly from the broad band
images. We included all galaxies from this sample, regardless of
QF.

The ESO GOODS-South follow-up. To complement the
previous published spectroscopic catalogs we exploited all data
available in the ESO archive for high redshift galaxies in this
field. Data were obtained by several surveys, as follow up
of the GOODS-South project including GMASS (Kurk et al.
2013), GOODS-S FORS (Vanzella et al. 2008), GOODS-S
VIMOS-LR, and GOODS-S VIMOS-MR (Popesso et al. 2009;
Balestra et al. 2010). For the above programs we only found pub-
lished values for spectroscopic redshifts and quality flags, but no
measurement of the Lyα line. We therefore derived the Lyα line
flux and EW directly from the 1D spectra with a Gaussian fit (see
Sect. 3.2 for details).

DEIMOS 10K. This survey (Hasinger et al. 2018) targeted
the COSMOS field. For each source, it provides the associated
spectroscopic redshift. We directly measured the Lyα line infor-
mation from the 1D spectra with a Gaussian fit (Sect. 3.2).

zCOSMOS-deep. This survey targeted star-forming galax-
ies in the range 1.4< z< 3.0 (Lilly et al. 2007, and in prep.;

A138, page 3 of 12



Napolitano, L., et al.: A&A 677, A138 (2023)

Kashino et al. 2022). We obtained the redshift and QF informa-
tion directly from the team (private communication). We used a
Gaussian fit to extract Lyα line flux and EW directly from the
1D spectra (Sect. 3.2).

There were few cases in which the spectroscopic informa-
tion of a source was reported multiple times. In this case just
one estimate of EW and Lyα flux was retained. To select dupli-
cated sources (i.e., the ones with the same CANDELS ID), we
applied the following criteria listed in order of importance: 1)
non-detection (EW = −99. and flux =−99) was always dis-
carded if we had any other measurement on the same galaxy. In
this case only the latter was retained. 2) Sources with VANDELS
quality flags 4 and 3 had the priority on all other detections. 3)
Galaxies associated with MUSE confidence flags 3 and 2 were
preferred. 4) Data in CANDELSz7 catalog had then the prior-
ity. 5) The spectral information obtained through our Gaussian
fit analysis was taken. Our final sample is composed of 1578
unique galaxies in the redshift range z ∈ [2, 7.9], whose Lyα
line EW, physical and morphological parameters are measured
(Sect. 3).

3. Methods

3.1. Measurements of physical properties

Physical properties were originally estimated by the CANDELS
collaboration (Santini et al. 2015). However, given the availabil-
ity of many new spectroscopic redshifts obtained in the past
years we re-evaluated them following the method outlined in
Santini et al. (2022), fixing the redshift of each source to the
current spectroscopic measurement when available, or to the
photometric one (Merlin et al. 2021; Kodra et al. 2023). We
measured the stellar mass (mass), the star formation rate (SFR),
dust reddening E(B − V), metallicity (Z), and age by fitting syn-
thetic stellar templates to the photometry of the sources with
the SED fitting code Zphot (Fontana et al. 2000). We adopted
Bruzual & Charlot (2003) models, the Chabrier (2003) IMF and
assumed delayed star formation histories (SFH(t) ∝ (t2/τ) ·
exp(−t/τ)), with τ ranging from 100 Myr to 7 Gyr. The age could
vary between 10 Myr and the age of the Universe at each galaxy
redshift, while metallicity assumed values of 0.02, 0.2, 1 or
2.5 times Solar metallicity. For the dust extinction, we used the
Calzetti et al. (2000) law with E(B − V) ranging from 0 to 1.1.
Nebular emission was included following the prescriptions of
Castellano et al. (2014) and Schaerer & de Barros (2009).

3.2. Lyα emission line measurements

For the ESO GOODS-S, DEIMOS 10K, and zCOSMOS-deep
surveys (see Sect. 2.3) a measurement of the Lyα EW is not
available; therefore, we measured it from the spectra. The latter
were obtained from the ESO archive, from the COSMOS data
access website1 and by private communication, respectively. We
fitted a single Gaussian profile on the Lyα lines in emission or
in absorption using Mpfit (Markwardt 2009). The code requires
the 1D spectrum and the spectroscopic redshift of the source.
The latter was used to get an estimate of the portion of the spec-
trum to fit near λobs

Lyα: only the range [λobs
Lyα − 300, λobs

Lyα + 300]Å
was used for the fit. Furthermore, two out of three free param-
eters of the Gaussian profile were constrained to be within the
following ranges: the mean, µ ∈ [λobs

Lyα − 25, λobs
Lyα + 25]Å and

1 https://irsa.ipac.caltech.edu/data/COSMOS/spectra/
deimos/

Fig. 1. LAEs (blue) and NLAEs (red) populations considered in the
redshift range z ∈ [2, 7.9].

the standard deviation σ ≤ 3000 km s−1. The third parameter,
the maximum flux, was left free. We note that we allow µ to
vary within the defined range, because we have no information
on the feature that was used for the spectroscopic redshift iden-
tification. To consider the possible absorption of the continuum
at wavelengths shorter than λobs

Lyα, whenever the median of the
blue continuum flux (i.e., λobs < λobs

Lyα) was dimmer than the
median of the red continuum by more than a standard devia-
tion, the spectrum (including the continuum) was fitted in the
range [λobs

Lyα, λ
obs
Lyα + 300]Å. We want to highlight that the lines

were fitted with a single Gaussian profile, with no clear cases
suggesting the presence of a significant asymmetric line shape.
This is also due to the medium-to-low resolution of all spectra.
For each spectrum, we then visually inspected the final fit result.
The visual inspection assures the quality of the results obtained
and the lack of AGN emitters (i.e., sources with strong CIV
1548 Å or NV 1239 Å emission lines; Taniguchi et al. 2005) that
we might have missed to remove with the X-ray identification.

4. Physical properties of the selected population

According to the standard definition, we considered LAEs to
be all galaxies that exhibit a rest-frame Lyα equivalent width
of EW0 ≥ 20 Å (see Shibuya et al. 2019; Ouchi et al. 2020;
Runnholm et al. 2020), whilst the remaining sample is composed
of NLAEs. In Tables 1 and 2, we report (respectively) the total
number of galaxies in the different CANDELS fields and in the
spectroscopic surveys employed. Table 2 also presents for each
survey the limiting (3σ) flux flim and redshift range targeted. In
Fig. 1, we show the redshift distribution of the whole population,
with the LAEs indicated in blue and the NLAEs in red. We note
that from the two distributions, it can be clearly seen that at very
high redshift (z ≥ 4.0) galaxies preferentially show Lyα in emis-
sion. This is due to a real effect, as was found, for instance, by
Stark et al. (2010) and Cassata et al. (2015), stating that galax-
ies tend to have increasingly brighter Lyα emission as we move
to earlier epochs; it is also due to an observational effect since
it is easier to confirm the spectroscopic redshift of a galaxy if
the spectrum presents a bright emission line. In our data set, we
can also see that the dominance of the LAEs fraction ends at
z ∼ 6.5, where it is known that the intergalactic medium (IGM)
is still highly neutral and effectively suppresses the Lyα pho-
tons (Zheng et al. 2010; Ouchi et al. 2010; Pentericci et al. 2011;
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Fig. 2. Distributions of the physical parameters of the 1115 galaxies in
the redshift range z ∈ [2.5, 4.5]. We show a direct comparison between
LAEs (blue) and NLAEs (red). The thick and thin black lines corre-
spond to the median, 25 percentile, and 75 percentile values of the
distributions.

Jensen et al. 2013). Therefore above this redshift (which is con-
sidered a proxy of the cosmic time at the end of the EoR) LAEs
again become rarer. We analyzed the physical properties of the
1115 galaxies residing in the redshift range of z ∈ [2.5, 4.5].
This redshift range was chosen to be broad enough to get good
statistics and, at the same time, to avoid possible consider-
able evolution of the intrinsic Lyα emission properties and the
effect of the increasing neutral hydrogen fraction in the IGM
at z ≥ 5.5. Most importantly, in this redshift range, our sam-
ple is 99% complete for the identification of Lyα emission with
EW ≥ 20 Å down to the magnitude limit of each survey (see
Fig. A.1). The exception is the MUSE-Wide survey whose lim-
iting Lyα EW is higher than 20 Å for the faintest galaxies in
the sample. In the first and second rows of Fig. 2, we show
the distributions for the five physical parameters determined in
Sect. 3.1 for LAEs and NLAEs, respectively. The histograms
were designed to easily compare the two populations; in each
plot, the black lines correspond to the median values of the distri-
butions. From these figures, we can see that overall LAEs show
smaller stellar mass, smaller SFR, and lower values of E(B − V)
and metallicity than NLAEs. In Fig. 3, we also show the stellar
mass versus SFR relation (that is the main sequence). Both pop-
ulations are mainly comprised of star forming galaxies along the
main sequence, in agreement with the best fit relation found by
Speagle et al. (2014) and Schreiber et al. (2015) at the same red-
shifts. However the LAE population tends to gather in the region
described by Mass ≤109 M� and SFR≤ 100.5 M� yr−1. This is in
agreement with the known properties of LAEs found in litera-

Fig. 3. Main sequence diagram of the 1115 galaxies in the redshift range
z ∈ [2.5, 4.5]. The yellow dot-dashed line indicates the best fit relation
Schreiber et al. (2015) at z = 3.5, the continuous yellow lines refer to
the fits at z = 2.5 and z = 4.5. The pink dashed line indicates the fit by
Speagle et al. (2014) at z = 3.5, while the continuous pink lines refer to
the fits at z = 2.5 and z = 4.5.

Fig. 4. Same as Fig. 2, but for the morphological properties Re, n, and q.

ture (e.g., Fynbo et al. 2001; Nakajima et al. 2012; Hagen et al.
2014; Ouchi et al. 2020). We note that in the upper-left region
of the main sequence relation the galaxies with the highest
sSFRs are clustered together in a filament-like structure. This
is a spurious effect, which is due to the choice of the minimum
age considered (10 Myr) when using Zphot. A similar analy-
sis was conducted for morphological properties, whose distri-
butions are shown in Fig. 4 separately for LAEs and NLAEs.
We note that LAEs are more compact galaxies, that is, they
have smaller Re, and tend to have smaller projected axis ratios
than NLAEs.

In Figs. 5–8, we present the variation of the Lyα EW as
a function of the stellar mass, SFR, reddening, and half-light
semi-major axis, Re. For reference, in each plot we indicate the
EW = 20 Å threshold with a horizontal black dashed line.
In Fig. 5, we show that the stellar mass tends to be higher for
sources with lower Lyα EW. We also show median values in
mass bins of 0.5 dex separately for GOODS-S (in red), COS-
MOS (in blue), and UDS (in green) to check whether any sys-
tematic is present. The plot shows that GOODS-S, being the field
with the deepest photometry comprises many low mass faint
galaxies. Typically, LAEs are galaxies with stellar mass lower
than 109 M�, similar to what reported by Ouchi et al. (2020). We
also find there are few LAEs which have stellar mass in excess
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Fig. 5. Lyα EW vs. total stellar mass estimates. The horizontal black
dashed line shows the 20 Å threshold a source has to exceed to be con-
sidered a LAE. For readability, the blue and red portions of the figure
mark LAE and NLAE populations respectively. Red, blue, and green
trends represent respectively the EW median values in Mass bin of
0.5 dex for GOODS-S, COSMOS, and UDS fields. They are associated
with an error bar, accounting for the median absolute deviation.

Fig. 6. Lyα EW vs. star formation rate. Symbols and colours are
described in Fig. 5.

of M ≥ 1010 M�, in good agreement with the results presented
by Hagen et al. (2014).

From Fig. 6, we can see that LAEs typically are galax-
ies which show an SFR lower than few solar masses per year
≤100.5−10 M� yr−1. This result is in agreement with the one
reported by Ouchi et al. (2020; ∼1−10 M� yr−1). From Fig. 7, we
can see that as expected the emission line becomes progressively
fainter as the dust content increases. On average, LAEs show lit-
tle dust content, with typical reddening E(B − V) ∼ 0−0.2 and a
median value of 0.06, since Lyα can be easily suppressed by dust
present in a galaxy. A null reddening is reported by Ono et al.
(2010) on a population of ∼600 LAEs selected with narrow band
techniques, while Kojima et al. (2017) found the same redden-
ing range obtained in our work. However as already found by
Hagen et al. (2014), we notice that there are also some LAEs
that show larger reddening values, exceeding 0.3. This might be
due, for example, to a displacement between regions from which
stellar and nebular flux originate or to a non-uniform distribu-
tion of dust which could differentially suppress UV photons and
not Lyα as first discussed by Neufeld (1991). Finally, in Fig. 8,
we show the variation of the Lyα EW as a function of the half-
light semi-major axis, Re. Even though the three median trends
associated to the different fields are the most scattered relations
amongst the properties studied, LAEs are very compact galax-

Fig. 7. Lyα EW vs. E(B − V). Symbols and colours are described in
Fig. 5.

Fig. 8. Lyα EW vs. half-light semi-major axis Re. Symbols and colours
are described in Fig. 5.

ies which (on average) have smaller Re values than NLAEs do.
This is in agreement with the result found in a number of previ-
ous works (see also Taniguchi et al. 2009; Malhotra et al. 2012;
Paulino-Afonso et al. 2018).

To quantify all the correlations described above, we ran a
Spearman rank test (Spearman 1904) between the Lyα EW and
the physical and morphological properties of the galaxies. We
note that this test assesses whether a monotonic relation exist
between two variables, without any assumptions on the form
of the relation. The relevant p-value p(rs) is the probability of
the null hypothesis of absence of any correlation. We consider
a correlation to be present whenever p(rs) < 0.01. The results
on our sample are shown in Fig. 9 and reported in Table 3: we
see that all features show anti-correlations, except for the Sèr-
sic index which is positively correlated and for the age, whose
p-value is >0.01, thus the no correlation scenario could not
be discarded. The stellar mass, reddening, SFR, and the half-
light semi-major axis are found to be the features that corre-
late more strongly with the observed Lyα EW. Similar results
on the strong correlation of the Lyα EW with stellar mass,
SFR, and dust extinction were previously found by many works
(e.g., Kornei et al. 2010; Pentericci et al. 2010; Oyarzún et al.
2017; Du et al. 2018; Marchi et al. 2019; McCarron et al. 2022;
Chavez Ortiz et al. 2023).

In the next section, we try to exploit the above correlations to
build a ML algorithm that can identify LAEs only on the basis of
the physical and morphological properties (which can be derived
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Fig. 9. Spearman correlation coefficients between the Lyα EW and each
physical and morphological feature, calculated on the 1115 galaxies
which reside in the redshift range z ∈ [2.5, 4.5] and are associated to
a direct measure of Lyα EW.

Table 3. Spearman correlation coefficients with the Lyα EW.

Feature Coefficient p-value Null hypothesis rejected

Mass −0.561 <10−5 Yes
E(B − V) −0.551 <10−5 Yes
SFR −0.509 <10−5 Yes
R_e −0.313 <10−5 Yes
q −0.201 <10−5 Yes
Z −0.158 <10−5 Yes
n 0.120 10−5 Yes
Age −0.024 0.4 No

Notes. Features are ranked by increasing p-values.

by multi-wavelength photometry), without the need for costly
spectroscopic observations.

5. RF classifier

We developed a ML classifier aimed at distinguishing LAEs
from NLAEs, namely, a binary class problem in which the
target labels (LAEs/NLAEs) are discrete. We opted for a
supervised approach because we want to use all the physical,
morphological, and spectroscopic data available from the
GOODS-S, COSMOS, and UDS fields. The task of learning con-
sists in mapping features (i.e., physical and morphological prop-
erties) to class labels (i.e., LAEs/NLAEs identification thanks to
spectroscopic data), based on training example pairs (i.e., fea-
tures and labels shown to the classifier). To train the ML meth-
ods on the classification task of selecting LAEs, we employed
only the spectroscopic labels (LAEs and NLAEs) without
directly using the specific information about the Lyα line flux
and EW.

5.1. Brief overview of the RF classifier

Random forest (Breiman 2001) is a publicly available scikit-
learn (Pedregosa et al. 2011) ensemble learning classifier that
combines multiple decision trees to improve classification per-
formance. Each tree in the forest is built on a random subset
of the training data. During prediction, each tree votes for the
class label and the final prediction of the ensemble classifier is
the majority vote of all the trees. The general idea beneath a sin-

gle tree classifier consists in finding the optimal set of rules to
partition the space of features to distinguish data points of dif-
ferent classes. A single tree-classifier works in such a way that
each time a new rule is applied, the data set splits into two new
branches, creating a node. Because this process is recursive, the
decision graph resembles the schema of an upside-down tree.
The root node at the top of a decision tree contains the entire
data set. At each branch of the tree, data are divided into two
child nodes subsets, based on a decision boundary: one node
contains data below the decision threshold and the other one
includes data above it. Geometrically speaking, boundaries are
hyper-surfaces axes aligned in the space of features. The splitting
process repeats until a predefined stopping criteria is achieved
in the leaves nodes, where all data contained are finally cat-
alogued with just one class label, namely, the most recurrent
label in the subset associated to the terminal leaf node itself.
The fraction of samples of the same class in all the leaf nodes
is also used as the class probability output for the objects clas-
sified. The application of a single decision tree for classifying
new unlabeled data consists in following the tree’s branches
through a series of binary decisions until a leaf node is reached.
Training a decision tree algorithm on a labeled data set means
finding the optimal order of rules to minimize the number of
objects not correctly classified. This is done trying to maximize
purity in each node, namely, an indicator that the considered
subset contains predominantly observations from a single class.
To measure the purity, the Gini index is commonly adopted: it
estimates the probability that a randomly selected source would
be incorrectly classified in the subset node if its label was
drawn randomly, based on the label distribution of the same data
subset.

Single decision trees are prone to overfitting: as the split-
ting process progresses thanks to the rule set by the Gini index,
the error on the training set will decrease; however, at some
point in its growth, the tree will cease to represent the corre-
lations within data and will reflect the noise within the train-
ing set. The core idea of the RF method is thus to introduce
random perturbations into the learning procedure of an ensem-
ble of tree classifiers to obtain several different models from
a single learning set. This is achieved during training through
the hyper-parameters (i.e., internal parameters to be set by the
user) of the method: their role is to control the growth of each
decision tree and to introduce random perturbation in the split-
ting process. The final prediction is then obtained combining
the results of the whole ensemble of classifiers: the class of
each object is determined by a majority vote among all the
trees. The RF classifier also outputs the class probability asso-
ciated to each object through the internal method predict_proba.
The predicted class probabilities of an input sample are com-
puted as the mean predicted class probabilities of the trees in the
forest.

5.2. Training the optimal RF classifier

The search for the optimal set of hyper-parameters which
fully describes the optimal RF classifier was performed by a
“5 k-fold cross validation” approach and through a standard
grid search. The optimal classifier is defined as the RF that
maximizes the cross-validation set accuracy, namely, the aver-
age fraction of the galaxies correctly classified on the cross-
validating sets. When applied to boolean data, using the defi-
nition of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN), the accuracy score is expressed
as (TP + TN)/(TP + FP + TN + FN). In our case, TP and TN
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are, respectively, the number of sources that belong to LAEs
and NLAEs classes in both spectroscopic data and algorithm
guesses; FP is the number of sources labeled as LAEs by the
algorithm but being NLAEs in the truth; finally, FN is the num-
ber of sources that belong to the LAEs target class according to
the spectroscopic data and mis-guessed by the ML algorithm.
Precision refers to the fraction of truly LAEs predictions over
all data predicted as LAEs by the RF classifier (TP/(TP + FP)),
is a scoring metric that was also monitored through training and
testing, but was not considered for the search of the optimal clas-
sifier.

Through the grid search, we explored the most critical hyper-
parameters of the method that regulate the growth of the for-
est during training. First, “n_estimators” are the total number
of trees in the forest. The more decision trees, the more oppor-
tunities the algorithm has to learn from a variety of features
and subset combinations. However after exceeding a thresh-
old, new trees do not reveal any more information because they
get highly correlated with each other. This parameter varied
in our grid between 50 and 600 (in multiples of 50). Then,
“max_depth” is the maximum depth for each tree in the splitting
process. This parameter, which controls the classifying capabil-
ity of each tree, varied between 5 and 30 (in multiples of 5).
Finally, “max_features” is the number of features to consider
when looking for the best split in the splitting process. It is of
key importance for growing trees slightly different from each
other. Uncorrelated trees make the majority voting process of
the forest more robust. We note that the forest, as an ensemble,
is guaranteed to use all the features in the dataset. This parame-
ter assumes all values between 2 and 8, namely, up to the total
number of features we have in our dataset.

The final grid explored contains ∼500 models. A key
aspect during training was setting the hyper-parameter
class_weight=“balanced_subsample” such that for every tree
grown during the training, learning weights associated to the
input data were inversely proportional to class frequencies.
This prevents the algorithm to be biased to classify correctly
only the NLAEs majority class. The other hyper-parameters,
which controls the branching of each tree were left as default:
min_samples_split = 2, min_samples_leaf = 1. The first one con-
trols the minimum number of samples required to split a parent
node into two child nodes, while the latter sets the minimum
number of samples required to be at a leaf node. In other words, a
split point at any depth will only be considered if the parent node
holds more than min_samples_split data and it leaves at least
min_samples_leaf training samples in each of the left and right
branches. These additional requirements are also referred to as
the “pruning technique”. By setting these two hyper-parameters
to the recommended default values, we consider an ensemble of
unpruned trees (see the scikit-learn Pedregosa et al. 2011 web-
site2 for a detailed reference).

To search for the optimal classifier the training+validating
dataset has been chosen to be the 80% of the 1115 galaxies in
the redshift range z ∈ [2.5, 4.5], while the remaining sources
(20%) have been used as a test set to check the results. The stan-
dard decision of partitioning the training+validating dataset in
“5 folds” ensures to have a validation set size that is compa-
rable to the test data. The splitting was performed choosing a
fixed random seed, such that the fraction of LAEs in the train-
ing and test set would remain similar to the percentage of LAEs
(33.4%) in the complete dataset (see Table 4). We used the same

2 https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html

Table 4. Training and test sets considered in the search of the optimal
model’s hyper-parameters.

LAEs NLAEs LAEs fraction Total

Complete data 372 743 33.4% 1115
Train set 297 595 33.3% 892
Test set 75 148 33.6% 223

Fig. 10. Confusion matrix computed on the test set. From the upper
left to lower right in order the total number of TN, FP, FN, and TP are
reported. The total number of galaxies in the test set is 223.

internal random seed to get reproducible results. The best perfor-
mances achieved by maximizing the cross-validation set accu-
racy were obtained when setting the following hyper-parameters:
n_estimators = 500, max_depth = 20, and max_features = 3. This
optimal RF classifier achieves accuracy values of (79.4 ± 3.6)%
and 82.5% for the cross-validation and test set, respectively.
The scores for the precision are (74.4 ± 8.2)% and 79.0% for
the cross-validation and test set respectively. The uncertainty on
cross-validation results is the standard deviation on the “5 folds”,
while the test results do not have an uncertainty, given we are
dealing with a single sample. Maximizing precision instead of
accuracy over the cross-validation set does not change the results
significantly. We note that the final accuracies obtained are
comparable to those reached by narrow band selected samples,
whose contamination rates range from few to 30%, depending on
redshift and magnitude limit (Ouchi et al. 2018). In Fig. 10 (from
the upper-left to lower-right), we report the confusion matrix val-
ues accounting for the TN, FP, FN, and TP in the test set of
223 galaxies. In Fig. 11, we highlight the most important fea-
tures used for the classification task during training: the order
of importance is in very good agreement with the absolute val-
ues of the Spearman correlation coefficients found between the
Lyα EW and the features analyzed (Fig. 9). This proves that the
RF method builds on these correlations and succeeds in recog-
nizing that Lyα emitters tend to be low-mass, low-SFR galaxies
that have little dust content and very compact sizes. The galax-
ies’ orientation with respect to the line of sight, accounted by
the projected axis ratio, q, represents the middle point in order
of importance of the presented correlations found both from the
Spearman test within data and the RF classifier. The remaining
features (Sérsic index, age, and metallicity) fall behind in terms
of significance.
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Fig. 11. Ranking of the most important features used by the optimal RF
classifier method during its training.

5.3. Misclassified objects

We further investigated the causes that would make the RF mis-
classify 26 LAEs (FN sample) by comparing the median values
of this sample with the ones related to the LAEs showed dur-
ing training. The FN sample and the LAEs in the training set
respectively have median log(Mass) of 9.1 and 8.8, log(SFR) of
1.1 and 0.8, E(B − V) of 0.10 and 0.06, and log(Re) of 0.08 and
0.05. The FN sample is thus composed of LAEs, whose stellar
mass, SFR, reddening, and half-light semi-major axis values are
all higher than the ones of the LAEs in the training. Since those
are the most important features (Fig. 11) that the RF tool is using
for classification, the method gets misled and fails to recognize
them.

A similar analysis was conducted for the 13 galaxies mis-
classified as LAEs (FP sample) by inspecting the most important
features. These galaxies have median log(Mass) of 8.7, log(SFR)
of 0.8, E(B − V) of 0.1, and log(Re) of 0.07, at variance with the
median values of the NLAEs population shown during training
(median log(Mass) of 9.4, log(SFR) of 1.4, E(B−V) of 0.15 and
log(Re) of 0.25). The FP sample seems to be composed of pecu-
liar NLAEs with smaller values of stellar mass, SFR, redden-
ing, and half-light semi-major axis than the ones shown during
training.

The RF tool tends to misclassify galaxies with intermediate
properties in the test sample. To improve the results from this
method, a larger training set set would be needed. Our results
would also benefit from adding further properties that could be
derived from photometry and that should be correlated (or anti-
correlated) with the Lyα equivalent width. For example we could
add the ξion, namely, the ionizing photon production efficiency,
which is given as output by some SED fitting codes (e.g., BEA-
GLE; Chevallard & Charlot 2016) and has been found to strongly
correlate with the Lyα emission strength, as recently shown by
Castellano et al. (2023). This would help in distinguishing LAEs
from NLAEs when the other features have intermediate values, as
in the cases discussed for the FP and FN samples.

We investigated which is the minimum probability to set
when looking at all the positive predictions, in order to get only
TP i.e. maximising the purity of the predictions to 100%. To this
aim, we used the predict_proba method provided for the clas-
sifier (described in Sect. 5.1). We found that with a 0.93 cut in
probability of being a LAE, the classifier finds only true positive
(LAEs). However in this way we would lose as many as ∼84%
of the real LAEs as well, thereby resulting in a very limited final
sample.

5.4. Testing the solidity of the optimal RF

The test set result obtained by searching for the optimal RF
classifier is linked to the particular sub-division in the train-
ing and test datasets, performed when splitting data through
the fixed random seed chosen. We thus evaluated the solidity
of the optimal RF (n_estimators = 500, max_depth = 20, and
max_features = 3; see Sect. 5.2) by creating 100 different train-
ing and test sets (with 80% and 20% ratios) through 100 unique
shuffling seeds applied to our sample of 1115 galaxies. In this
iteration process we required the two subsets to have roughly
the same LAEs percentage as the whole dataset. Since we have
already determined the optimal RF, in this procedure, we do not
need a validation set. The average results on the 100 test sets
for accuracy and precision are respectively (79.7 ± 2.1)% and
(73.1 ± 4.3)% in good agreement with the results obtained dur-
ing the cross-validation process. The uncertainties reported are
the standard deviations derived from the 100 test sets.

One of the purposes of training the optimal RF classifier is
to develop a robust method to select galaxies which have the
highest probability of being Lyα emitters from photometric cata-
logs. We therefore tested the optimal classifier in the case where
only the photometric information is available, namely, without
the spectroscopic redshift information. For this purpose, we re-
evaluated the physical properties of our sample through SED
fitting by fixing the redshift of each source to the photometric
estimate (Kodra et al. 2023) and following the same procedure
described in Sect. 3.1. We then defined the training+validating
(test) dataset as the 80% (20%) of the 1081 galaxies in the
redshift range of zphot ∈ [2.5, 4.5]. We note that by using the
photometric redshifts, we lost 34 previously considered galax-
ies, (∼3% of the total). Using the same procedure described
in Sect. 5.2, we re-trained and tested the optimal RF on this
new dataset, achieving a test accuracy and precision of 82.0%
and 81.1%, respectively. These values are in very good agree-
ment with the results previously obtained both in Sects. 5.2
and 5.4. In turn, this shows that the classification does not suffer
from the uncertainties derived from an SED fitting based on the
photometric redshifts instead of the spectroscopic ones, as also
shown by several works (Merlin et al. 2021; Kodra et al. 2023;
Arrabal Haro et al. 2023).

In Sect. 2.3 we described how we assembled the largest pos-
sible spectroscopic sample by considering 11 different obser-
vational programs. In each of these surveys targets were pre-
selected using different criteria (colour selection and/or photo-
metric redshifts). Clearly, this could cause selection biases in the
final sample, which are difficult to assess. To evaluate how the
different selection functions could affect our results we carried
out two different tests:

First, we trained and tested the optimal classifier on just
one survey – namely, a subset with a unique selection func-
tion. We considered the VANDELS survey because it is the
only subset with enough data (555 galaxies in the redshift range
z ∈ [2.5, 4.5]) which could be then split into the training and test
samples (80% and 20% respectively). After applying the same
procedure described in Sect. 5.2, we obtained a 79.3% test accu-
racy, consistent with results obtained with the entire sample.

Second, we trained the optimal classifier on all the data,
except for a survey to be left as the test set. We note that
this resembles the possible case in which the optimal classifier
trained in Sect. 5.2 would be applied to an independent data set
from a new survey with a different pre-selection. We used the
combined GOODS-S VIMOS and GOODS-S FORS samples as
the test set (given that they were selected in the same way). In
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this case, we used 982 galaxies for the training and 133 for test-
ing the performances, with a training-test ratio that is roughly
90%–10%. We obtained an 82.7% test accuracy again consistent
with the results on the entire sample.

In conclusion, although our tests are not exhaustive, we find
that the different selection effects do not change substantially the
efficiency of the optimal algorithm. This is probably due to the
fact that current photometric redshift codes in general are rather
robust and in reasonable agreement with each other, especially
for star forming galaxies in the redshift range where we carried
out our training process.

5.5. Application of the optimal method to higher redshift

Finally, we applied the optimal classifier on the 194 galaxies in
our initial sample with redshifts between 4.5 and 6. This sam-
ple contains a higher fraction (53.6%) of LAEs, compared to
the one used in our training and test. As already mentioned in
the introduction, this is due both to an evolution in the intrinsic
galaxy properties and to an observational effect, since spectro-
scopic surveys can constrain only emission lines brighter than a
limiting flux from galaxies. Since galaxies get fainter at increas-
ingly high redshift, at some point, we end up with a bias toward
the confirmation of the redshift more easily in the presence of
a Lyα emission. In Fig. A.2, we show the completeness of our
sample, finding that many surveys are not complete at the faint
end. Applying the optimal algorithm to this completely indepen-
dent dataset leads to a 73.2 % accuracy and 80.2 % precision.
The lower accuracy obtained can be caused by the partial com-
pleteness in terms of spectroscopic identification of this sample.
In any case, the high precision achieved indicates the possibil-
ity of using our trained method for identifying LAE candidates
during the EoR, where observations of large samples would be
needed, for instance, to map the spatial inhomogeneous distribu-
tion of the neutral hydrogen fraction in the IGM (Yoshioka et al.
2022). Assuming a 50% (25%) of Lyα transmission due to a
moderately neutral (highly neutral) IGM at z ' 7, if we optimally
selected our spectroscopic candidates using our method (which
has an 80% precision), we would obtain '40% (20%) LAEs
detection rate; this is much higher than current detection rates
at z ' 7 galaxies (Pentericci et al. 2018). This would open up the
possibility of distinguishing more easily amongst regions with
high or low neutral hydrogen content in the IGM. In addition
also other types of Lyα diagnostics that probe cosmic reioniza-
tion, such as an emission line shape analysis (Ouchi et al. 2020),
could be carried out with much larger samples.

6. Summary and conclusions

Searching for LAEs at high-redshift is a challenging task due
to both the limitations of the narrow-band deep imaging sur-
veys and the time constraints to be faced when planning a blind
spectroscopic survey. In this work, we present a new and effi-
cient method based on machine learning (ML), which builds on
the correlations found in the high-redshift star-forming galaxies
between the strength of the Lyα emission and physical and mor-
phological properties from multi-wavelength photometry. The
aim was to select galaxies with the highest probability of being
Lyα emitters.

We initially assembled a very large sample of 1578 galaxies
at z ∈ [2, 7.9] selected from the CANDELS GOODS-S, COS-
MOS, and UDS fields. For these we also had access to deep
spectroscopic observations, including the Lyα emission, as well
as accurate physical and morphological properties derived in an

homogeneous way from multi-wavelength photometry. We then
considered galaxies in the redshift range z ∈ [2.5, 4.5], where the
statistics is higher and where the spectroscopic surveys are com-
plete for the identification of Lyα emission with EW ≥ 20 Å.
This selected sample of 1115 sources, is mainly formed by
star-forming galaxies on the main sequence (MS), in agreement
with the best fit MS relation found in literature (Speagle et al.
2014; Schreiber et al. 2015). We find that the strength of the
Lyα emission is strongly correlated with stellar mass, dust con-
tent, SFR, and half-light radius, in the sense that the line tends
to be brighter for galaxies with small stellar mass, low SFR,
low dust content, and a small radius, as has already been found
by previous authors (Taniguchi et al. 2009; Ono et al. 2010;
Malhotra et al. 2012; Hagen et al. 2014; Kojima et al. 2017;
Paulino-Afonso et al. 2018; Ouchi et al. 2020). In turn, this can
be explained by the major importance of the neutral hydro-
gen column density and the dust content within the inter-stellar
medium in determining the rate of escape of Lyα photons from
a galaxy. We find that the galaxy orientation with respect to the
line of sight is only mildly correlated to the Lyα emission line.
This suggests a scenario in which the preferential channels in the
inter-stellar medium through which Lyα photons escape without
getting absorbed by dust are mildly dependent of the particular
galaxy orientation.

We then trained a RF classifier on the task of identifying LAEs
by using all the physical and morphological information available,
namely, eight features in total. The search of the optimal RF clas-
sifier was performed by a “5 k-fold cross-validation” approach
and through a standard grid-search. Our best results were obtained
by setting the following hyper-parameters: n_estimators = 500,
max_depth = 20, max_features = 3, min_samples_split =2, and
min_samples_leaf = 1. This optimally trained classifier, when
applied to an independent set of galaxies in the same redshift range
as the training set, recovers true LAEs with a (79.7± 2.1)% accu-
racy and (73.1 ± 4.3)% precision.

The method could be further refined both by enlarging the
training set to contain more numerous and more diverse galax-
ies, and by adding other predictive features, namely, properties
that can also be correlated with the Lyα strength. One possi-
bility could be the ionizing photon production efficiency, ξion,
which was found to be correlated with the Lyα equivalent width
(Harikane et al. 2018; Castellano et al. 2023). This could help
the method to be more robust to false classification of galaxies
with intermediate properties, as also suggested by our analysis
of the misclassified objects.

When applying the classifier to a higher redshift z ∈ [4.5, 6]
dataset of 194 galaxies, we obtained a slightly lower accuracy
of 73.2%, but a precision as high as 80.2%. The RF classifier is
therefore successful at selecting LAEs at high redshift and could
be used to optimally plan spectroscopic follow-up observations
in fields which boast good multi-wavelength photometric obser-
vations. This would allow us to maximize our chances of detect-
ing galaxies with Lyα emission that are one of the best tools to
study the EoR. As an example, our algorithm could be applied
to future high redshift target selection with MOONS, the next-
generation spectrograph for the VLT. With its large FoV and
very high multiplexing capabilities, it will offer the possibility
of obtaining the spectra of hundreds of high redshift galaxies in
the EoR (Maiolino et al. 2020). MOONS will be able to observe
the Lyα emission throughout all phases of reionization. With a
survey tailored at maximizing the high redshift galaxies (z ≥ 6)
which should intrinsically have strong Lyα emission, as selected
by our algorithm, we could easily distinguish between regions
that have a large IGM transmission (i.e., regions that are already
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highly ionized) from regions where the final escaping Lyα is
very reduced due the high fraction of IGM neutral hydrogen con-
tent. We could therefore directly analyze the patchy spatial dis-
tribution of neutral hydrogen and compare it to the predictions
from the simulations.
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Appendix A: Completeness of the surveys
considered

In this appendix, we show the test performed in order to assess
the completeness of our sample for each survey considered.
We first considered galaxies at 2.5 ≤ z ≤ 4.5, namely, the sam-
ple used for training our method. From the photometric catalogs
(Galametz et al. 2013; Nayyeri et al. 2017; Merlin et al. 2021),
we associated each survey with the magnitude range spanned
for the F160W HST filter, where the continuum emission near
to the Lyα line is redshifted. From the limiting (3σ) flux flim
reported in Table 2 and assuming the mean redshift of the sur-
vey for each subsample, we then computed the limiting Lyα EW
restframe. In Fig. A.1, we compare the limiting Lyα EW with
the F606W magnitude range. Overall, in this redshift range our
sample is >99% complete down to the magnitude limit of each
survey. The exception is MUSE-Wide whose limiting Lyα EW
exceeds the 20 Å for magnitudes >26.5. However, the number of
these sources is limited compared to the 1115 galaxies in the data
sample at this redshift range. Thus, losing some faint NLAEs for
this survey does not affect our analysis.
In Fig. A.2, we report the limiting Lyα EW with the F814W
magnitude range, for the subset of galaxies at 4.5 ≤ z ≤ 6. In
this case, the F814W HST filter holds the information on the
continuum emission near to the Lyα line. As a result, given the
limiting (3σ) flux flim reported in Table 2, many surveys are not
complete in the faint end population of galaxies. We decided not
to include galaxies at this redshift range for training our method
because of the partial completeness.

Fig. A.1. Limiting Lyα EW vs F606W magnitudes for galaxies at 2.5 ≤
z ≤ 4.5 derived from the limiting 3σ fluxes reported in Tab. 2. Each
survey covers a different magnitude range, according to the galaxies
targeted. The grey horizontal line shows the 20 Å threshold.

Fig. A.2. Limiting Lyα EW vs F814W magnitudes for galaxies at 4.5 ≤
z ≤ 6. Symbols are the same as in Fig. A.1
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