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The results of this case presented the MONDP in 68% of 
the inventory levels. The levels of inventory that represent 
the policy were mostly at the extremities of the range in 
our instant. Limited sensitivity analysis on the costs was 
performed, without showing any improvements in the policy. 
A more detailed account of this case study and methodology 
can be found in [10].
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Supervised Classification and Classification Trees.
In the context of supervised classification, a set of samples 
belonging to different classes is given, and the goal is to build 
a Machine Learning (ML) model for classifying new samples 
into the correct class. Mathematical optimization plays a major 
role in the training phase, i.e. the process of building such ML 
models. In this phase, the aim is not solely to identify a model 
which correctly classifies all the input data, but rather one 
which is capable to generalize to never seen data. Classification 
problems are faced in many real-world contexts, including 
medical diagnosis (to diagnose a patient based on symptoms, 
medical history, and other factors), fraud detection (to 
identify fraudulent activities by analyzing patterns in financial 
transactions) and credit scoring (to assess the creditworthiness 
of borrowers and make informed lending decisions), etc. In 
such high stakes domains, it is crucial to use interpretable ML 
models [12], which can provide explanatory insights on their 
decision-making process. Decision trees are among the most 
popular Supervised ML tools for solving classification tasks. 
They are renowned for their ease of use, transparent structure, 
and, most of all, for their interpretability. Indeed, the logic of 
a classification tree is easily understandable by humans and 
it is straightforward to extract decision rules from the model 
as a conjunction of predicates, in contrast to other machine 
learning methods that are perceived as opaque ”black boxes”.

Fig. 1 reports a toy example of a classification tree trained to 
classify customers for the approval or denial of a loan request. 
According to the decision rule defined by the tree, first if the 
applicant has a credit score above 550, the loan request is 
approved; otherwise if the applicant has a stable source of 
income above $50,000, the loan request would be approved 
too; otherwise it is denied.

More formally, let us consider a training dataset composed 
of P samples (xi,yi), each with input features xi Є  and a 
class label yi Є {1, . . . , K}, indicating which of the K possible 
classes the sample i belongs to. During the training phase, a 
classification tree method builds up a binary tree structure of 
a maximum predefined depth. A decision tree is composed 
of branch nodes and leaf nodes. Each branch node t applies a 
splitting rule on the feature space, routing samples to its left or 
right child node. Each splitting rule is defined by a separating 
hyperplane   , where   is 
the hyperplane function and   and  . If  
, sample i will follow the right branch of node t, otherwise it 
will follow the left one. Leaf nodes are the terminal nodes of 
the tree and they act as collectors of samples. In particular, 
each leaf is assigned a class label according to some simple 
predefined rule, usually the most common label among the 
samples in the node. 
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Decision trees can be divided into univariate and 
multivariate trees depending on the type of hyperplane 
splits employed. In a univariate tree, hyperplanes are axis-
aligned involving one single feature per split. Thus, the 
branching rule simply checks if the value of a single feature 

 is above or under a given threshold . Multivariate trees, 
instead, apply oblique hyperplanes which may involve 
several features. Consequently, multivariate splits allow for 
more flexibility yielding shallow trees with less branching 
levels than univarate ones, even though they are less 
interpretable. According to the hierarchical tree structure, 
the feature space will be recursively partitioned into disjoint 
regions and each final partition corresponds to a leaf node. 
Each sample in the leaf will be classified with the same class 
label, the one assigned to the leaf. The obtained tree is then 
used to classify out-of-sample data: every new sample will 
follow a unique path within the tree ending up in a leaf 
node. The training phase aims at finding coefficients  and 

 and at assigning class labels to leaves optimizing some 
measure of performance.

Overview on Classification Trees
It is well-known that learning an optimal binary decision tree 
is an NP-complete problem [11]. For this reason, traditional 
approaches build univariate decision trees based on simple 
iterative heuristics. In general, they rely on a top-down 
greedy strategy for growing the tree by generating splits at 
each node, and, once the tree is built, a bottom-up pruning 
procedure is applied to handle the complexity of the tree, 
i.e. the number of splits. Breiman et al. [6] developed a 
heuristic algorithm known as CART (Classification and 
Regression Trees), for finding univariate decision trees. 
Starting from the root node, each hyperplane split is 
generated by minimizing a local impurity function, e.g. 
the Gini impurity for classification tasks. Other univariate 
approaches employing different impurity functions were 
later proposed by Quinlan (ID3, C4.5). The main drawback 
of these approaches lies on their greedy nature which may 
lead to myopic decisions. Indeed, each split is determined 
in isolation in the tree, yielding tree classifiers not able to 
capture well the underlying truth of the dataset. Thus, these 
heuristics lead to short computational times, but may result 
in poor generalization performances. In order to overcome 
these shortcomings, tree ensemble methods, such as 
Random Forests and XGBoost, have been proposed. These 
approaches aggregate together decision trees achieving 

better predictive performances at the 
expense of lower interpretability, resulting in 
”black-box” models.

Another way to improve prediction quality 
which retains interpretability is to use 
multivariate decision trees which employ 
oblique hyperplane splits. In this case, top-
down greedy approaches are not efficient 
and cannot be used anymore. In the last 
years, there has been a growing interest in the 
defintion of exact optimization approaches 
to find Optimal Classification Trees (OCTs) 
using mathematical programming tools and, 
in particular Mixed Integer Programming 
(MIP). Thanks to the great improvement of 
both algorithms for MIP and hardware, MIP 
approaches became viable in the construction 
of OCT models. Such approaches adopt an 
holistic view of the decision tree to define a 
single optimization model accounting for the 
tree hierarchical structure. Indeed, the MIP 
framework is perfectly suitable to express 
the combinatorial nature of the decisions 
involved in the construction process of a 

tree. Discrete decisions can be related to the tree topology 
and the branching rules, e.g. whether to split in a node 
and which features to select in a split. Other choices may 
regard the discrete outcomes, e.g. which leaf a sample is 
assigned to and whether a point is well classified. Beyond 
this expressive power, the mixed-integer framework also 
lends itself to handle global objectives and constraints to 
embed desirable properties such as fairness, sparsity, cost-
sensitivity, robustness.

In their seminal paper [3], Bertsimas and Dunn proposed for 
the first time mixed-integer linear models to build optimal 
trees with a fixed maximum depth both with univariate 
splits and with multivariate ones. The objective is to seek a 
trade-off between the minimization of the misclassification 
loss and either the complexity of the tree or the sparsity of 
the hyperplanes. In both models, each sample is forced to 
end up in a single leaf (assignment constraints) and a class 
label for each leaf node is chosen according to the most 
common label rule. The classification error in the objective 
function is computed according to the assignment of 
each sample to a leaf. Routing constraints enforce each 
sample to follow a unique path, while other constraints 
control the complexity of the tree by imposing a minimum 
number of points accepted by each leaf. Along these lines, 
several other formulations have been proposed. Some 
of the most recent works are: [13], where the authors 
presented an integer linear formulation whose size is 
largely independent from the training data size; [10], where 
a mixed-integer model is derived by exploiting the special 
structure of categorical features for binary classification 
tasks; [1], where a flow-based mixed-integer linear model 
with a stronger linear relaxation is proposed for learning 
optimal trees with binary features. Alongside integer 
optimization approaches, continuous optimization ones 
have also been investigated in the optimal trees context. 
In [5], Blanquero et al. proposed a nonlinear programming 
model to find an optimal ”randomized” tree with oblique 
splits. At each node, a random decision is made and a 
sample is not assigned to a class in a deterministic way but 
only with a given probability. For the interested reader who 
wishes to further investigate the topic, we suggest taking 
a closer look at the survey by Carrizosa et al. [7], which 
provides an extensive analysis of optimization approaches 
for constructing optimal classification trees.

Figure 1: Classification tree example.
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Maximum Margin Optimal Trees.
Following a different view point, approaches using Support 
Vector Machines (SVMs) [8] for each split in the tree have been 
investigated (e.g. [2, 4]). In this context, in [9] a novel mixed-
integer quadratic formulation for training optimal trees for 
solving binary classification tasks is proposed. The resulting 
model, Margin Optimal Classification Tree (MARGOT), exploits 
the generalization properties of SVMs and defines branching 
rules as maximum margin hyperplanes by following a linear 
SVM paradigm in a hierarchical tree structure. The maximum 
depth of the tree is predetermined, and each branch node 
of the model defines an SVM-based problem. The overall 
objective function is a trade-off between minimization 
of the misclassification cost and the maximization of the 
margin of each splitting hyperplane. Routing and assignment 
constraints are used to nest the ”local” SVM problems together. 
In MARGOT model, it is possible to induce sparsity of the 
hyperplanes by limiting the number of features used at each 
split. Indeed, sparsity is a core component of interpretability 
[12] and having fewer features selected at each branch node 
allows the end user to identify the key factors influencing the 
outcome. Two alternative versions of MARGOT are proposed 
which train the optimal tree performing a feature selection 
either by adding budget constraints on the number of used 
features or by penalizing the number of used features in the 
objective function.

Fig. 2 shows a synthetic dataset (i) used to compare two 
heuristic and two optimal approaches for constructing a 
classification tree. CART (ii) uses axis aligned splits, and it 
needs higher depths in order to achieve good classification 
performances; it is prone to overfitting. Local SVM (iii) [9] is a 
simple top-down approach which, for each branch node, solves 
an SVM problem defined only on the data routed to that node. 
Even though it creates oblique splits which are more flexible 
than ortogonal ones, the overall tree lacks of generalization 
capabilities. OCT-H (iv) [3] creates hyperplanes which correctly 
classify all samples but do not take into account their distance 
from the cluster of points of the same color. Finally, MARGOT (v) 
builds a more robust tree which mostly resembles the ground 
truth. The good performance of MARGOT are confirmed on a 
benchmark of datasets from the UCI Repository. More details 
about the formulations and the computational results can be 
found in [9]. The source code of the experiments is available at: 
https: //github.com/m-monaci/MARGOT.
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Figure 2: Comparison of heuristic and optimal approaches on a 2D synthetic dataset.


