
 

 

 

 

 

Structural Bioinformatics: Methods 

development and applications to 

biomedical problems 
 

 

Ph.D. course in Biochemistry 

XXXVI Cycle (2020-2023) 

 

Candidate 

Gianmarco Pascarella 

 

 

Supervisor        Coordinator 

Dr. Veronica Morea   Prof. Maria Luisa Mangoni 



 

 

 

2 

 

Index. 

 

Aim of the thesis.            5 

 

1. Introduction.             7 

 

1.1 Bioinformatics background.        7 

1.2 Structural Bioinformatics.         8 

1.3 Virtual Screening.          9 

1.4 Homology Modelling.         10 

1.5 Alphafold.            11 

1.6 Protein Structural Alignment.        13 

 

2. The σ1 receptor as a target against neurodegenerative disease  14 

 

 2.1 Background            14 

 2.2 Aim of the work           17 

 2.3 Methods             18 

2.3.1 Identification of known drugs able to bind σ1 

receptor and increase growth of Huntington  

disease patient-derived cells      18 

  2.3.2 Investigation of the entry pathway and molecular  

nature of σ1 receptor ligands      20 

2.4 Results             23 

2.4.1  Identification of known drugs able to bind σ1   

receptor and increase growth of Huntington  

disease patient-derived cells      23 

2.4.2 Investigation of the entry pathway and molecular    

nature of σ1 receptor ligands      38 

2.5 Conclusions            54 

 



 

 

 

3 

 

3.  Computational study of the mode of COX binding of thiocanthal and 

thiocanthol, two novel biologically active compounds that can be obtained 

from extra virgin olive oil by eco-sustainable procedures .   61 

 

3.1 Background            61 

3.2 Aim of the work           64 

3.3 Methods             64 

3.4 Results             67 

3.5 Conclusions            71 

 

4. Identification of the molecular basis of the antiproliferative activity of 

Arabidopsis thaliana sirtuins           74 

  

4.1 Background            74 

4.2 Aim of the work           76 

4.3 Methods             77 

4.4 Results             78 

4.5 Conclusions            86 

 

5. Identification of the structural determinants underling the substrate 

specificity of the Arabidopsis N-acetyltransferase activity 2 protein 88 

 

5.1 Background            88 

5.2 Aim of the work           90 

5.3 Methods             90 

5.4 Results             93 

5.5 Conclusions            104 

 

6. Implementation of a pipeline to identify consensus results  

from protein structure alignment programs.      107 

 

6.1 Background            107 

6.2 Aim of the work           108 

6.3 Methods             109 



 

 

 

4 

 

6.4 Results             110 

6.5 Conclusions            118 

 

7. General conclusions           121 

 

8. Publications resulting from this thesis       125 

 

References              126 

 

Glossary              140 

 

Appendix A              142 

 

Appendix B              143 

 

 

 

  



 

 

 

5 

 

Aim of the thesis. 

 

In this thesis, I have tackled several biological and biomedical problems by 

structural bioinformatics methods, in collaboration with experimental groups:  

1) Implementation a virtual screening (VS)-aided drug-repositioning 

procedure to investigate whether known drugs may be endowed with 

therapeutic activity against Huntington’s disease (HD), a very severe 

neurodegenerative disease for which no therapy is currently available 

(Chapter 2 and Battista et al., 2021)  

2) Identification of the potential physiological ligands of the σ1 receptor, 

an endoplasmic reticulum resident protein of great pharmacological 

interest since its agonists and antagonists have neuroprotective and 

analgesic activity, respectively (Chapter 2 and Pascarella et al., 2023).  

3) Inference of the potential affinity and mode of binding towards COX-

2 and COX-1 enzymes of thiocanthol and thiocanthal, two novel anti-

inflammatory compounds that our collaborators obtained from olive oil 

precursors through eco-sustainable procedures (Chapter 3 and Di 

Risola et al, submitted for publication to Green Chemistry). 

4) Identification of the sequence and structure determinants underlying 

the antiproliferative activity of Arabidopsis thaliana sirtuins, which has 

been demonstrated by our collaborators (Chapter 4 and Bruscalupi et 

al, 2023).  

5) Identification of the structural determinants underlying the substrate 

specificity of the Arabidopsis thaliana N-acetyltransferase 2, whose 

kinetic and thermodynamic parameters have been determined by our 

experimental collaborators (Chapter 5 and Mattioli et al, 2022).  



 

 

 

6 

 

6) The development of an automated method to identify the consensus 

regions that are structurally aligned by different protein structure 

alignment methods, which usually give largely different results in the 

case of divergent protein structures (Chapter 6 and Pascarella et al, in 

preparation). 
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1. Introduction. 

 

1.1 Bioinformatics background. 

 

Bioinformatics is an interdisciplinary computational science involving 

informatics, biochemistry, physics, mathematics, and biology principles. The 

term “bioinformatics” appeared for the first time in the 1970s, thanks to Ben 

Hesper and Paulien Hogeweg who used it to define their research as ‘‘the study 

of informatic processes in biotic systems’’. They started from the consideration 

that the defining properties of life was information processing in its various 

forms, like information accumulation during evolution, information 

transmission from DNA to intra- and intercellular processes, and the 

interpretation of such information at multiple levels and assumed that 

information processing could be a “useful metaphor for understanding living 

systems.” (Hogeweg 2011). 

Despite two of the major bioinformatics databases were already established, 

namely GenBank, founded in 1982, and the Protein Data Bank (PDB), founded 

in 1973, only in the 1990s bioinformatics started to emerge as a science, both 

in Europe, with the “Bioinformatics in the 90s” conference, held in Maastricht 

in 1991, and in the USA, with the establishment of the National Center for 

Biotechnology Information (NCBI) (Attwood et al. 2011). This field of science 

began a rapidly and steady expansion from the 2000s onwards, due to the 

increasing amount of computational power available. According to Altman and 

Dugan, bioinformatics can be divided into two main branches of molecular 

biology. The first branch is based on the central dogma of molecular biology: 

DNA sequences are transcribed into mRNA sequences, and mRNA sequences 
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are translated into protein sequences. In this case, bioinformatics applications 

are used to transfer information at any stage of the central dogma, such as the 

organization and control of the genes in the DNA sequence, the identification 

of transcriptional units in DNA, the prediction of protein structure from 

sequence, and the analysis of molecular function. The second branch is based 

on the scientific method: formulation of the hypothesis, design of the 

experiments to test it, evaluation of the results and extension or modification 

of the hypothesis itself according to data. In this case bioinformatics 

applications are used to create systems to generate hypotheses, design 

experiments, store and organise information in databases, test the compatibility 

between data and models and remodulate hypotheses (Altman & Dugan 2005) 

 

 

1.2 Structural Bioinformatics. 

 

Structural bioinformatics is the branch of bioinformatics involved in the 

investigation, analysis, prediction, representation, and maintenance of 

information about biomolecular structures, such as protein structures and DNA 

complexes. For this reason, structural bioinformatics has two main objectives 

that are interrelated: the development of methods for manipulating information 

about biomolecular structures and the application of methods to solve 

biological problems (Altman & Dugan 2005). The large amount of data 

produced by genome-wide sequencing projects, high-throughput methods for 

expression analysis and the increase of structures stored in the PDB, is the new 

challenge of structural bioinformatics, which is focusing on emerging and 

increasingly promising techniques based on artificial intelligence (AI). 
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In this thesis we have pursued both of the objectives of structural 

bioinformatics: on the one hand, we have applied three of the most frequently 

used methods in structural bioinformatics, namely protein structure 

comparison, protein structure prediction and virtual screening, to solve 

biological problems; on the other hand, we have developed a method to 

improve the manipulation of protein structures. 

 

 

1.3 Virtual Screening. 

 

Virtual Screening (VS) is a computational approach to screen databases of 

small molecules (such as metabolites, drugs, etc.) to identify compounds with 

potentially desired biological activity against a given target. This technique can 

be used in drug discovery to screen a large number of molecules either already 

existing or even created from scratch with the aim of assembling a small 

dataset of potential candidates for further in vitro experiments (Lavecchia & 

Di Giovanni 2013). For example, with sufficient computational power, it is 

possible to screen all the conceivable molecules, as well as the existing ones, 

against a given target, to extract only the ones above a reasonable threshold, to 

reduce the number of molecules to be experimentally tested. This approach is 

a crucial alternative in pharmaceutical research, which usually utilises 

expensive and time-consuming processes. 

VS is divided into two main categories: ligand-based (LBVS) and structure-

based (SBVS). The first one utilises structure-activity data from a set of known 

active molecules, such as similarity and substructure searching, 

pharmacophore and three-dimensional shape matching, to create the dataset 
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useful in experimental methods. The second one, instead, uses the 3D structure 

of the target, experimentally or computationally determined, to perform 

ligands-target docking and rank them based on binding affinity predictions 

and/or complementarity with the binding site(Lavecchia & Di Giovanni 2013). 

In general, in a SBVS simulation there are three fundamental parameters: the 

identification of a valid target; the construction of a valid and robust dataset of 

ligands; and the correct definition of the binding site. Indeed, if one or more of 

these three parameters is not accurate the results might not be representative of 

the real situation. Typical errors include target structures determined with low 

resolution (i.e., structure not well determined experimentally); a small set of 

ligands; or ligands with unfavourable properties related to the binding site, for 

example too big or too small with respect to the binding site.  

 

 

1.4 Homology Modelling. 

 

Homology modelling is a technique utilised to build the structure of a protein 

in the absence of experimental information except the amino acid sequence. 

This computational approach is based on previous knowledge, derived from 

both experimental work and database analyses, that i) protein 3D structures are 

determined by their amino acid sequences and that ii) proteins with similar 

sequences have similar structures. Currently, in the protein structure database 

(PDB) (Berman et al. 2000) more than 200,000 structures are registered, while 

the number of protein sequences is about 220 millions, according to Blastp 

(Camacho et al. 2009) info box. Due to this discrepancy, computational 

methods capable of transferring structural information between proteins are 
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essential tools. Among all methods to predict protein structures, homology 

modelling has long been considered to be the most accurate, as well as time- 

and cost-effective, and it has been widely used to generate 3D structures of 

proteins employed in virtual screening and docking simulations (Muhammed 

& Aki-Yalcin 2019). 

This type of prediction is based on multiple steps: I) research of a structure 

(template) in the PDB database that is expected to be similar to that of the 

protein to model (target); II) Initial target-template alignment and 

subsequential refinement; III) Transfer of template coordinates to the target to 

generate the backbone; IV) Loop and side-chain modelling; V) Model 

optimization and VI) Model validation (Krieger et al. 2005). 

 

 

1.5 Alphafold. 

 

In the last few years, Artificial Intelligence (AI) and machine learning have 

emerged as powerful resources and have been implemented in almost all fields 

of human knowledge, ranging from internet browsers to vehicles, and in 

scientific research. The prediction of 3D protein structures gained a particular 

benefited from the developments in this field. Indeed, in 2018, DeepMind, a 

Google subsidiary, developed the first version of Alphafold (AF) (Senior et al. 

2020), a method based on Artificial Intelligence. AF participated in the 13th 

edition of the Critical Assessment of Structure Prediction (CASP) experiment 

(Kryshtafovych et al. 2019), which is a community-wide experiment to assess 

the results of protein structure prediction methods in blind tests, and ranked 

first among all programmes. The improvement of AF compared to other 
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methods was significant, in that not only it performed way better than the best 

methods of CASP12, but there was an average of 15% better accuracy over 

other groups of CASP13. In the following CASP (CASP14, 2020) DeepMind 

introduced the second version of AF, Alphafold2, which further improved 

performance, by about 70%, compared to the first version (Figure 1.1), as 

measured by Global Distance Test (GDT) values (GDT indicates the 

percentage of atoms of two structures whose distance is lower than a specified 

threshold, see Appendix A). 

 

Fig.1.1. The graph shows the average GDT value of the best programme for each CASP 

edition.  
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1.6 Protein Structural Alignment. 

 

This approach aims at finding structural similarities between two or more 

proteins. This is useful for example for evolutionary inferences, since structure 

is more conserved than sequence during evolution, therefore proteins with 

similar structures can be evolutionarily related even if their sequences have 

diverged beyond the ability of current sequence comparison methods to 

recognize these relationships. Additionally, structural alignments are useful to 

obtain more accurate sequence alignment than those provided by sequence 

comparison methods and, therefore, to recognize homology at a residue level, 

as well as at a global protein level. Finally, structure alignments are useful for 

functional inferences, since protein function, in addition to structure, is often 

conserved during evolution. Currently available protein structure alignment 

methods are widely different from one another in the following features. i) The 

protein region that they try to align: for example, some programmes only 

consider Cα-Cα atoms, others the whole main-chain atoms. ii) The type of 

output that they provide: the oldest and the simplest programs return only a 

global structure similarity value, while others also provide a structure 

alignment in terms of coordinate superposition and/or sequence alignments 

corresponding to the structure superposition. iii) The type of scoring function 

that they utilise: the most frequently used parameter to evaluate structure 

similarity is root-mean square deviation (RSMD, see Appendix A), while other 

methods use other scoring functions, such as GDT-TS (see Appendix A), in 

addition, or as an alternative, to RMSD.   
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2. The σ1 receptor as a target against neurodegenerative 

disease 

 

 

2.1 Background. 

 

The sigma-1 receptor (σ1R) is an intracellular receptor expressed in central 

nervous system regions and known to regulate calcium signalling and cell 

protection. The σ1R gene encodes a 24 kDa protein of 223 amino acids, which 

is anchored to the endoplasmic reticulum and plasma membranes. The human 

σ1-R is implicated in a variety of diseases affecting the CNS, such as 

depression, drug addiction and neuropathic pain (Schmidt et al. 2016). 

Interestingly, σ1-R is an evolutionary isolate with no discernible similarity to 

other proteins. The only known σ1-R homologue is the yeast C-8 sterol 

isomerase ERG2. ERG2 is one of the proteins involved in the biosynthesis of 

ergosterol, which is essential to modulate fungal cell membrane fluidity, like 

cholesterol does in animal cells. In particular, ERG2 catalyses the reaction that 

shifts the delta-8 double bond to delta-7 position in the B ring of sterols, 

thereby converting fecosterol to episterol (Jordá & Puig 2020). The 

endogenous ligand of this receptor is still unknown, although N,N-dimethyl 

tryptamine, sphingosine, and myristic acid have been proposed to act as σ1R 

endogenous modulators (Chu & Ruoho 2016). Many molecules have been 

shown to have agonist or antagonist activity, based on their ability to 

recapitulate the phenotype of receptor overexpression or knockdown, 

respectively (Nguyen et al. 2015). Agonists have been associated with 



 

 

 

15 

 

cytoprotective activity (Mancuso et al. 2012; Maher et al. 2018). Antagonists 

have analgesic effect in both animals and humans (Hayashi et al. 2011; Castany 

et al. 2018). Additionally, σ1R antagonists potentiate signalling by G-protein 

coupled receptors (Kim et al. 2010; Navarro et al. 2010) whereas agonists 

increase IP3-dependent calcium flux, at least with IP3 receptors type 3 (Wu & 

Bowen 2008), and inhibit sodium and potassium channel current (Aydar et al. 

2002). While the detailed mechanism of σ1R activity has not been unveiled 

yet, modulation of σ1R activity by agonists has been shown to significantly 

attenuate oxidative stress, neuroinflammation, hypoxia, apoptotic pathways, 

and other processes caused by neurodegenerative diseases such as Huntington 

disease (HD) (Geva et al. 2016), Alzheimer’s disease (AD) (Ryskamp et al. 

2019), Parkinson’s Disease (PD) (Francardo et al. 2019) and amyotrophic 

lateral sclerosis (ALS) (Ionescu et al. 2019). The 3D structures of the human 

σ1-R receptor (Hsσ1-R) have been experimentally determined by X-ray 

crystallography in two different works conducted by the same group. In the 

first work, the structure of σ1-R was determined in complex with PD144418 

(PDB ID: 5HK1), which has antagonist activity, and 4-IBP (PDB ID: 5HK2), 

whose activity has not been clearly classified (Schmidt et al. 2016). In the 

second work, the X-ray crystal structure of σ1R in complex with two additional 

antagonists, namely haloperidol and NE-100, and the (+)-pentazocine agonist, 

has also been determined. Intriguingly, the overall structure of σ1R did not 

change significantly upon agonist vs. antagonist binding. In addition, the 

mechanism of access to the binding site was investigated by molecular 

dynamics (MD) simulations (Schmidt et al. 2018). 

Accelerated MD simulations (aMD) of the Hsσ1-R monomer inserted in a 

hydrated lipid bilayer were performed in four different conditions (Schmidt et 
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al. 2018): (i) on the (+)-pentazocine-bound structure (PDB ID: 6DK1); (ii) on 

the haloperidol-bound structure (PDB ID: 6DJZ); (iii) in condition (i) except 

for the absence of the ligand; and (iv) in condition (i) with the ligand placed in 

water at a distance > 10 Å from the protein. As a result of these simulations, it 

was proposed that major conformational rearrangements of the protein should 

take place to make the binding site accessible to the ligand. The first of these 

rearrangements is the opening of the ‘lid’ of the β-barrel, following disruption 

of the backbone hydrogen bonds between W136 in β-strand 6 and A161 in β-

strand 9. This lid, comprising β-strands 6 and 7 and the loop that connects 

them, points toward the aqueous medium and is the region of the β-barrel 

farthest from the ligand. Then, the backbone hydrogen bonds between E123 

and R175 are broken and the β-strands 5 and 10, where these residues are 

located, respectively, separate from each other, thus exposing the binding 

pocket. Finally, the ligand enters the binding site and assumes a position 

similar (i.e., RMSD < 3.0 Å) to that observed in the crystal structure (Schmidt 

et al. 2016; Schmidt et al. 2018). Two pathways were investigated: (i) pathway 

1, directed towards the aqueous solvent, through a polar region occluded by 

Q135, H154 and E158 in β-strands 6 and 8 and in the loop between β-strands 

8 and 9, respectively; and (ii) pathway 2, directed towards the membrane, 

through the α-helices 4 and 5 that are in contact with the membrane. Based on 

the magnitude of the force and the time required for the ligand to be completely 

dissociated from the protein, the pathway connecting the ligand binding site 

with the aqueous milieu was proposed to be the most likely ligand access route, 

in agreement with the results of the previously performed MD studies (Schmidt 

et al. 2016; Schmidt et al. 2018). This hypothesis implies that, to reach the 

binding site, the ligand would initially interact with the polar residues Q135, 
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H154 and E158 even if, based on lipid/water partition coefficients, the three 

compounds studied in this work would preferentially be associated with lipid 

environments (Rossino et al. 2020). In contrast with the results of MD 

simulations, the results of a recent work performed on the σ1-R homologue 

from Xenopus laevis (Xlσ1-R) indicate that the ligand is more likely to enter 

the binding site from the membrane side (pathway 2), thanks to conformational 

changes determining an opening between the α4 and α5 helices, rather than 

from the aqueous medium (pathway 1), following major structural 

rearrangements of the cupin-fold domain. Interestingly, although the structures 

in coordinate files 7W2B (“closed” conformation) and 7W2E (“open-like” 

conformation) were solved in the putative apo-form, an electron density peak 

was identified in proximity to the Xlσ1-R binding site in the Fo-Fc electron 

density map of both structures (Meng et al. 2022). 

 

 

2.2 Aim of the work. 

 

In these works, we established several objectives to achieve. In the first work, 

we performed a virtual screening (VS) of a library of compounds approved by 

the FDA for clinical use. In order to identify one or more already known drugs 

with the ability to potentially bind σ1R. The selected compounds were 

analysed, by our collaborators, to verify in vitro whether the predicted data 

were supported by experimental data. In the second work, we tried to 

contribute to the elucidation of the entrance mechanism of the ligand in the 

binding site. We, also, tried to identify the physiological ligand with the 

auxilium of virtual screening on a large number of compounds (comprising 
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human metabolites, sterols, etc.). Thanks to our collaborator, we also analysed 

hypotheses about the possible entry modes of ligands in the binding site with 

molecular dynamics (MD) starting from the data produced by our VS.  

 

 

2.3 Methods. 

 

2.3.1 Identification of known drugs able to bind σ1 receptor and 

increase growth of Huntington disease patient-derived cells. 

 

The atomic coordinates of all the σ1R 3D structures were downloaded from 

the PDB (https://www.rcsb.org/) (Berman et al. 2000). The structures were 

visual inspected with Chimera (Pettersen et al. 2004). The structure in 

coordinate files 5HK1, which has been solved with the highest resolution (2.51 

Å) (Schmidt et al. 2016), was used to perform virtual screening. 

Crystallographic waters and ligand molecules were removed using Chimera. 

AutoDock Tools (ADT) v. 1.5.6 was used to add hydrogen atoms, merge non-

polar hydrogen atoms and automatically assign Gasteiger charges. 

The ligand dataset was composed by: I) 1576 compounds FDA approved and 

available for sale from the ZINC15 database (http://zinc15.docking.org/) 

(Sterling & Irwin 2015); II) ligands coming from literature, which are proved 

to bind σ1R; III) ligands present in the available σ1R 3D structures.  The FDA 

compounds from Zinc were converted to PDB format in two steps: first, the 

SMILE format was converted to mol2 with MarvinSketch 18.26 

(https://chemaxon.com); second, the mol2 format was converted to PDB using 

Open Babel v. 2.3.1 (O’Boyle et al. 2011). All ligands were then converted in 

https://www.rcsb.org/
http://zinc15.docking.org/
https://chemaxon.com/
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pdbqt format using a script from ADT 1.5.6 (Morris et al. 2009) using the 

additional parameters: “-A ‘hydrogen_bonds’” to add hydrogens and build 

bonds among non-bonded atoms; and “-U ‘nphs_lps’” to merge both non-polar 

hydrogens and lone pairs. 

Virtual screening was performed with the program Autodock Vina (Trott & 

Olson 2009) and using the following parameters for the binding site: spacing 

value at 0.375 Å; center on coordinates 12.168, 36.423 and −34.778; and 30 × 

24 × 34 grid points. The Vina parameters were been: “–num_modes 100”, 

which represents the maximum number of binding modes to generate; and “–

energy_range 9”, in order to maximize the energy difference between the best 

binding mode and the worst one and keeping all other values as default, as 

Vina parameters. After virtual screening, the 20 hits with the best Vina score 

were extracted using the “vina_screen_get_top.py” script from Autodock Vina 

tools (Trott & Olson 2009). 

The 20 lowest energy results from virtual screening against 5HK1_A were 

docked again into the same monomer using ADT. The same space searching 

parameters reported for virtual screening were used, plus: 100 genetic 

algorithm runs; population size of 150; RMS cluster tolerance of 2 Å. All other 

parameters were left as default. 

Python scripts were developed to extract the best 20 from the virtual screening 

results, ranked by energy, and to perform a preliminary analysis on these 

compounds (Pettersen et al. 2004). The analysis comprised the reconstruction 

of the complexes receptor-ligand, the extraction from the VS results of the 

energy values, and a calculation of protein-ligand interactions such as 

hydrogen bonds, number of contacts and number of unfavourable interactions 

(clashes). The script utilized to extract this information was ran with the 
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Chimera bash interface. Scripts interfacing with Chimera were written in 

Python version 2.7, required by Chimera. All other scripts were written in 

Python version 3.6. The 20 complexes protein-ligand were also visually 

inspected with the program PyMol (https://www.pymol.org/). 

 

 

2.3.2 Investigation of the entry pathway and molecular nature of σ1 

receptor ligands. 

 

The 3D structures of human and X. laevis σ1-R used in this work were 

downloaded from the Protein Data Bank (PDB: https://www.rcsb.org/; 

accessed on 18 March 2022) (Berman et al. 2000). 

To perform the VSs, different structures were selected: I) 5HK1, determined 

in complex with the PD144418 antagonist, 

which has been solved with the highest resolution (2.51 Å); II) 6DK1, which 

is the only available Hsσ1-R structure that has been determined in complex 

with a classic agonist, namely (+)-pentazocine (Schmidt et al. 2018); III) 

7W2E and 7W2B from Xenopus laevis σ1-R structures, that both shown a not 

yet identified ligand in the binding site (Meng et al. 2022), while the 7W1B 

structure was determined in a “closed” conformation, like that observed in 

Hsσ1-R structures, the 7W1E structure displayed an “open-like” conformation, 

where the α4 helix rotates slightly away from α5, thus enlarging an opening 

that may allow ligand entry; iv) the coordinates of ERG2 model were 

downloaded from AlphaFold protein database (Jumper et al. 2021). 

Structure visualization and analysis were performed using the programs 

InsightII (Dayringer et al. 1986), Swiss-PDBViewer (Guex & Peitsch 1997), 

https://www.pymol.org/
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Chimera (Pettersen et al. 2004) and PyMol (https://www.pymol.org). For each 

of these structures, we selected chain A, we removed the water molecules and 

all others molecule present in the coordinates files. AutoDock Tools (ADT) 

v.1.5.6 was used to add hydrogen atoms, merge non-polar hydrogen atoms and 

automatically assign Gasteiger charges. 

The dataset utilised in the VS against the Hsσ1-R structure in coordinate files 

5HK1_A or 6DK1_A or against yeast ERG2 model was constructed with the 

following compounds: I) molecules from ZINC15 database tagged as 

“metabolites” (15,871 compounds); II) molecules tagged as “FDA approved” 

or “World not-FDA” (1538 and 3192 compounds, respectively), which have 

been approved as drugs by the FDA or other regulatory agencies, excluding 

redundant molecules; III) Due to the demonstrated ability of neurosteroids to 

act as σ1-R agonists or antagonists (Maurice & Su 2009), and the fact that the 

homologous ERG2 protein present in fungi binds steroid-based compounds, 

we selected all the compounds belonging to the sterol_lipids, sterols, steroids, 

androgens, estrogens, cholesterol or ergosterol biosynthetic pathway 

categories and available for sale from the LIPID MAPS database 

(https://www.lipidmaps.org/; accessed on 1 July 2021) (Sud et al. 2007), 

comprising 3761, 1593, 362, 101, 63, 442 and 347 compounds, respectively; 

IV) molecules derived from literature that showed binding affinity for σ1-R 

and/or σ2-R, to use as positive controls. The final comprehensive dataset 

comprised 21,359 non-redundant compounds (several compounds are present 

in more than one of the listed categories). The structures of these compounds 

were downloaded from ZINC, whenever available, or from the ChEbi 

(Hastings et al. 2016) or PubChem (Bolton et al. 2011) databases. 

https://www.pymol.org/
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For VS against Xlσ1-R A chain monomers in coordinate files 7W2E or 7W2B 

(i.e., 7W2E_A and 7W2B_A, respectively), or against the yeast ERG2 model, 

we used a 1332 molecule dataset obtained from the yeast metabolome database 

(YMDB)(Ramirez-Gaona et al. 2017) by eliminating all compounds whose 

molecular weight was higher than 400 Da. This was done to speed up the VS 

procedure, since a preliminary visual inspection of the density map in the 

ligand binding site of 7W2E_A and 7W2B_A had revealed that the unknown 

Xlσ1-R ligand in these two apo structures was not larger than a cholesterol 

molecule, which has a molecular weight of about 387 Da. 

All compounds present in the selected datasets were converted: (i) from 

the .smi or .sdf to the PDB format, using an ad hoc developed bash script that 

included the “molconvert” command from MarvinSketch v18.26 

(https://chemaxon.com, accessed on 1 July 2021); (ii) from the PDB to the 

pdbqt format, using a script from AutoDock Tools v1.5.6 (ADT) (Morris et al. 

2009) where the following parameters were added: “-A ‘hydrogen_bonds’” to 

both add hydrogens and build bonds among non-bonded atoms; and “-U 

‘nphs_lps’” to merge both non-polar hydrogens and lone pairs. 

For VS against Hsσ1-R structures in coordinate files 5HK1_A and 6DK1_A, 

the following space searching parameters were adopted: spacing value at 0.375 

Å; centre on coordinates 12.168, 36.423 and −34.778; and 30 × 24 × 34 grid 

points. For virtual screening against Xlσ1-R monomers 7W2E_A and 

7W2B_A, only coordinates and dimension of the binding pocket were 

changed: centre on coordinates −31.000, −26.000 and 34.000; and 12 × 12 × 

12 grid points. VS was performed using the program VINA (Trott & Olson 

2009) and the same parameters for all four σ1-R structures and the ERG2 

model, namely: “–num_modes 100”, which represents the maximum number 
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of binding modes to generate; and “–energy_range 9”, in order to maximize 

the energy difference between the best binding mode and the worst one. For 

each VS, was used the “vina_screen_get_top.py” script from AutoDock Vina 

tools (Trott & Olson 2009) to extract the best 20 ligands from the VS results. 

Previously developed Python scripts were used to parse VINA output files and 

perform a preliminary analysis of the selected ligand–receptor complexes. In 

particular, the pose energy of each ligand was extracted from the VINA pdbqt 

file; features of protein–ligand interactions such as hydrogen bonds, number 

of contacts and number of unfavourable interactions (clashes) were calculated 

by the structure visualization and analysis program Chimera, following 

rebuilding of receptor–ligand complexes. Information on the clinical 

indication and mechanism of action of each compound was manually obtained 

from KEGG (Kanehisa & Goto 2000) and DrugBank  (Wishart et al. 2018). 

 

 

2.4 Results. 

 

2.4.1 Identification of known drugs able to bind σ1 receptor and 

increase growth of Huntington disease patient-derived cells. 

 

All the 3D structures of σ1R experimentally determined by X-ray 

crystallography and available from the Protein Data Bank (PDB: 

https://www.rcsb.org/)  (Berman et al. 2000) contain quaternary assemblies of 

three monomers, each comprising an N-terminal transmembrane helix and C-

terminal ligand binding domain. 

https://www.rcsb.org/
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Structure comparisons indicate that the ligand binding domain, which 

comprises the whole ligand binding site, is highly conserved in all of the 

monomers present in the different structures, as previously reported by the 

authors (Schmidt et al. 2016; Schmidt et al. 2018) and shown by the low root 

mean square deviation (RMSD), values reported in Table 2.1, which are a 

measure of structural difference based on the distance between equivalent pairs 

of atoms, in Å. Therefore, the monomer chosen for virtual screening, i.e., chain 

A in coordinate files 5HK1 (5HK1_A), which is the 3D structure determined 

with the highest resolution, adequately represents the structures of other 

monomers. 

 

Table2.1. All-against-all structure comparison of σ1R ligand binding domain in the available 

3D structures determined by X-ray crystallography. The ligand binding domain comprises 

residues 29-212 in 5HK2 chain B and 35-218 in all other chains. RMSD values calculated 

after optimal all-against-all pairwise superposition of either Cα or all atoms are reported in 

the lower and upper part of the matrix, respectively. 
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The chemical formulas, clinical indication and information on the mechanism 

of action of the 20 virtual screening hits having the best predicted interaction 

energy with 5HK1_A are reported in Figure 2.1. The interaction of these 20 

FDA drugs with σ1R was further investigated by computational docking to 

5HK1_A binding site. This step was performed because the free binding 

energy predicted by docking methods has an accuracy of ~2–3 kcal/mol 

standard deviation (Huey et al. 2007), therefore ranking of poses based on this 

parameter alone is not reliable. Conversely, highly populated clusters have 

been shown to be enriched in compounds that show strong binding in 

experimental tests (Cosconati et al. 2010). The poses of the 20 FDA drugs 

having the best energy among those in the largest clusters produced by 

molecular docking, were visually analysed using the Chimera program 

(Pettersen et al. 2004). To evaluate the likelihood of ligand-receptor binding, 

we took into account: i. Parameters calculated by Chimera, such as the number 

of hydrogen bonds and non-polar interactions, and number of unfavourable 

Van der Waals contacts, if present; and ii. Whether ligand moieties comprised 

in previously reported pharmacophore models (i.e., the positively charged 

group and hydrophobic regions) were involved among the aforementioned 

interactions. 
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Figure 2.1. Clinical indication and chemical structures of the compounds listed in Table 2. 

Compounds selected for experimental validation by SPR are indicated by an asterisk (*). 

 

Additionally, we visually inspected each of the poses to assess whether 

additional interactions might occur, in case small conformational adjustments 
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with respect to the poses predicted by docking programs were allowed. At the 

end of this analysis, we selected six compounds to be experimentally evaluated 

for r σ1R binding by SPR: nilotinib, paliperidone, iloperidone, linagliptin, 

flibanserin and vilazodone. The complexes of these ligands and of pridopidine, 

for comparison purposes, with 5HK1_A predicted by molecular docking are 

shown in Figure 2.2a–h. 
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Figure 2.2. Ligand binding to σ1R. The protein backbone in co-ordinate file 5HK1 is shown 

as transparent green ribbon. σ1R residues involved in ligand binding in the 3D structures 

listed in Table 1 are labelled, shown as sticks and coloured by atom type: C, green; N, blue; 
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O, red. Ligands are shown as sticks and coloured by atom-type: C, white; N, blue; O, red; S, 

yellow F, light green. Glu172 side-chain oxygen and the closest ligand atom able to establish 

a polar interaction with it are connected by a dashed line. The co-ordinates of the complex 

with PD144418 (a) have been experimentally determined by X-ray crystallography (PDB ID: 

5HK1). The conformation of Pridopidine (b) was predicted by virtual screening. The 

conformation of all the other ligands corresponds to the best energy pose of the most populated 

cluster predicted by docking simulations (see Materials and Methods): (c) Iloperidone; (d) 

Paliperidone; (e) Nilotinib; (f) Vilazodone; (g) Linagliptin; (h) Flibanserin. 

 

Interestingly, known σ1R ligands were found at much lower virtual screening 

ranking positions. Pridopidine was at position 458 and haloperidol and N,N-

dimethyltriptamine, the highest and lowest ranking among known ligands, 

were at positions 51 and 1002, respectively. However, the differences in 

predicted binding energies between the highest-ranking known ligands and the 

20 highest ranking drugs are relatively small (Table 2a, b), especially when the 

lack of accuracy of binding energy differences <3 kcal/mol is taken into 

account (Cosconati et al. 2010). As an example, the binding energy difference 

between haloperidol and the 1st ranked hit (risperidone) is 1.7 kcal/mol, 

between haloperidol and pridopidine is 2.2 kcal/mol, and between haloperidol 

and N,N-dimethyltriptamine is 1.6 kcal/mol. Examination of the poses of the 

six selected drugs in comparison with that of pridopidine shows that the latter 

is somewhat smaller and, therefore, establishes a lower number of hydrophobic 

interactions, while the polar interactions with Glu172 is maintained. The lower 

number of interactions might account for the worse interaction energy and, 

therefore, ranking, predicted by Vina. 

 

Table 2.2. Results of virtual screening and computational docking procedures. (a) Twenty 

FDA approved compounds having the best interaction energy with the 1R structure in 

coordinate file 5HK1_A. Vina Best E: energy of the ligand-receptor pose calculated by Vina. 

Autodock largest cluster and lowest energy cluster: Best E, Mean E and #pos represent the 

energy of the best pose in the cluster, the mean energy of the poses in the cluster and the 
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number of poses in the cluster, respectively. #hb, #cla and #con: number of hydrogen bonds, 

clashes and contacts calculated by Chimera. Vina/Autodock RMSD (Å): root-mean square 

deviation (in angstroms) calculated after optimal superposition of the pose selected by Vina 

and the best pose of the largest cluster calculated by Autodock Compounds selected for 

experimental validation by SPR are indicated by an asterisk (*). (b) Ranking and Best energy 

calculated by Vina for known σ1R ligands in the compound library used for virtual screening. 

 



 

 

 

34 

 

 

 

 

In vitro SPR experiments show that all the compounds predicted by virtual 

screening to interact with the receptor are indeed able to bind to σ1R, with 

dissociation constant (KD) values in the micromolar range (Table 2.3). 

Interestingly, flibanserin, iloperidone and linagliptin (KD < 10 µM) showed 

higher affinity values for σ1R than pridopidine (KD about 15 µM). This value 

falls in a different concentration range with respect to the previously reported 

inhibition constant value (Ki = 81.7 nM) (Sahlholm et al. 2013), which, 

however, was determined in significantly different experimental conditions. In 

the previous assay σ1R was inserted in cell membranes and saturated with 

[3H](+)-pentazocine; the pridopidine Ki value was then measured based on its 
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ability to displace the radioactive ligand. Conversely, the KD value measured 

in SPR experiments indicates the binding affinity between pridopidine and the 

purified σ1R in conditions where ligand and receptor are allowed to interact 

directly. 

 

Table 2.3 σ1R affinity for selected compounds and pridopidine, as a control, measured by SPR 

experiments (*) Pridopidine Ki = 81.7 nM in a displacement assay (Sahlholm et al. 2013). 

 

 

 

To investigate whether cell proliferation rate was a suitable parameter to 

indicate the ability of selected drugs to interact with σ1R in a cellular context 

and exert an agonist or antagonist function, we cultured fibroblasts in the 

presence of the known σ1R agonist pridopidine. In the presence of pridopidine, 

the cell number of both HD and healthy lines was significantly increased with 

respect to the DMSO control after 72 h and, in the case of HD2 cells, at 48 h 

as well (Figure 2.3a–d). This increase was not paralleled by a reduced number 

of dead cells, which was only reduced to a small, not significant extent (Figure 

2.3e–h). 



 

 

 

36 

 

 

Figure 2.3. Pridopidine effect on CTR1 (a), CTR2 (b), HD1 (c) and HD2 (d) cell growth, and 

CTR1 (e), CTR2 (f), HD1 (g) and HD2 (h) percentage of dead cells. Fibroblast numbers were 

determined by direct counting of st0ained and unstained cells after 48 and 72 h and plotted 

against culture time. Data are shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.0001, 

compared with DMSO treatment (Two-way ANOVA, followed by uncorrected Fisher’s LSD 

for multiple comparisons). 

 

 

The same assay was conducted with all the six drugs, that were tested at the 

same concentration used for pridopidine (i.e., 1 µM) and all data were 

normalized with respect to the same cell lines treated only with the DMSO 

vehicle. 

All of the selected drugs significant increased fibroblast number at 72 h, in 

either HD1 or HD2 cell lines, and some of them at 48 h as well. Iloperidone, 

paliperidone and nilotinib had a consistent beneficial effect, since they 

significantly increased both HD1 and HD2 fibroblast number at 72 h, and 

paliperidone at 48 h as well (Figure 2.4c, d). However, while iloperidone did 

not have any effect on healthy fibroblasts at either 72 or 48 h, paliperidone 

significantly decreased CTR1 and increased CTR2 cell number at 72 h and 
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nilotinib significantly decreased CTR2 cell number at 72 h (Figure 2.4a, b). 

The effect of the other drugs on the different cell lines is less consistent. The 

number of HD1 fibroblasts is significantly increased by linagliptin, flibanserin 

and vilazodone at 72 h, and by vilazodone at 48 h as well, but none of these 

drugs increases the number of HD2 fibroblasts, flibanserin even determining a 

significant reduction in cell number at 72 h (Figure 2.4c, d). As far as control 

cell lines are concerned, all of these compounds determined significant 

increases in CTR2 and/or CTR1 cell number: CTR2 cells were increased by 

linagliptin and vilazodone at 72 h and by linagliptin and flibanserin at 48 h; 

CTR1 cells were increased by vilazodone at 72 h (Figure 2.4a, b). 

Importantly, the effect of the tested drugs on HD fibroblasts was comparable 

to and, in several cases, better than that of pridopidine. In particular, at 72 h, 

the number of HD1fibroblasts in the presence of linagliptin, paliperidone or 

vilazodone, and the number of HD2 fibroblasts in the presence of iloperidone 

or paliperidone, was significantly higher than the number of the respective 

fibroblasts in the presence of pridopidine. 

In agreement with the above results, treatment with the selected drugs 

significantly increased the growth rates of either HD1 or HD2 fibroblasts to an 

extent comparable to, and, in several cases, better than that of pridopidine. 
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Figure 2.4 Effect of iloperidone, linagliptin, flibanserin, paliperidone, vilazodone and nilotinib 

on CTR1 (a), CTR2 (b), HD1 (c) and HD2 (d) cell growth, and percentage of dead cells in 

CTR1 (e), CTR2 (f), HD1 (g) and HD2 (h) cell lines. Fibroblast numbers were determined by 

direct counting of stained and unstained cells after 48 and 72 h and plotted against culture 

time. Data are shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.0001, compared with 

DMSO treatment (Two-way ANOVA, followed by uncorrected Fisher’s LSD for multiple 

comparisons). 

 

 

2.4.2 Investigation of the Entry Pathway and Molecular Nature of 

σ1 Receptor Ligands. 

 

To try and identify common structures among Hσ1-R ligands, we performed 

VS on a 21,359-compounds dataset. This dataset comprises: all human 

metabolites; several categories of steroid-based compounds (i.e., sterol lipids, 

sterols, steroids, androgens, estrogens and compounds belonging to the 

cholesterol or ergosterol biosynthetic pathway); known ligands of the σ1-R 

receptor and/or of the σ2-R receptor, which is known to share several ligands 

with σ1-R in spite of their different overall structure, as positive controls; and 
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compounds approved for clinical use by the FDA or other regulatory agencies, 

such as EMA (European Medicines Agency). This dataset comprises several 

compounds that are reported to bind human σ1R with very low affinity (i.e., 

Ki > 10,000 nM) by the Psychoactive Drug Screening Program (PDSP) Ki 

database (Roth et al. 2016) which we used as negative controls. 

The VS was performed against two of the five available Hσ1-R structures, 

namely the structures in coordinate files 5HK1, since it was solved with the 

highest resolution, and 6DK1_A, since it is the only one determined in 

complex with an agonist, rather than antagonist, compound, and against the 

molecular model of yeast ERG2 built by the AlphaFold2 program. 

The results of these VS experiments are summarized in Table 2.4 for two 

subsets of hits, defined on the basis of the values of their receptor binding 

energy calculated by the program used for VS (Ecalc), namely: (i) the 20 hits 

with the lowest Ecalc; and (ii) all the hits whose Ecalc does not differ more than 

3 kcal/mol from the lowest Ecalc. The rationale for choosing the first set of hits 

is that it is commonly reported to be selected for detailed analyses in the 

literature, due to the fact that 20 is a small enough number of compounds for 

visual inspection. However, it has been reported that Ecalc values have a 

standard deviation of 2–3 Kcal/mol (Huey et al. 2007). It follows that hits 

whose Ecalc differs by less than 3.0 Kcal/mol from the Ecalc of the best hit may 

have an actual binding energy to the receptor similar to, or even better than, 

that of the best hit, and may, therefore, be all considered as “best hits”. For this 

reason, we chose to analyse in greater detail this second set of hits, which, from 

now on, will be referred to as “best-E3”. We found that the “best-E3” subsets 

for the VS against Hsσ1-R in coordinate files 5HK1 and 6DK1 comprise 1666 

and 2987 hits, respectively, with Ecalc between −13.10 and −10.10 kcal/mol and 
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between −13.20 and −10.20 kcal/mol, respectively. Comparison of these 

results (data not shown) shows that 1271 compounds among the “best-E3” for 

both structures, whereas 395 and 1717 compounds are among the “best-E3” 

hits only for 5HK1 and 6DK1, respectively.  

Given the high similarity between the Hsσ1-R structures in coordinate files 

5HK1 and 6DK1, these results indicate that VS results are significantly 

affected even by the very small side-chain variations induced upon Hsσ1-R 

binding by different ligands. 

The “best-E3” results of the VS against ERG2 molecular model fall into an 

Ecalc range between −11.7 and −8.7 Kcal/mol, which is higher than those of the 

“best-E3” resulting from VS against the Hsσ1-R structure in coordinate sets 

5HK1 and 6DK1, although the difference is not significant when the expected 

2–3 kcal/mol standard deviation on Ecalc values is taken into account (Huey et 

al. 2007). Due to this expected standard deviation, the Ecalc values for fecosterol 

and episterol, which are the substrate and product of the reaction catalysed by 

the ERG2 protein, respectively, are higher (i.e., −10.3 and −9.4 kcal/mol, 

respectively) than the best hit (phaseolinisoflavan, Ecalc = −11.7 kcal/mol), 

which does not contain a steroid nucleus; additionally, other compounds 

belonging to the ergosterol synthesis pathway and, therefore, likely to have 

structures able to bind ERG2, have an Ecalc similar to, or higher than, that of 

unrelated compounds. 

 

Table 2.4. Summary of the results of VS experiments against the 3D structures of Hsσ1-R in 

coordinate files 5HK1 and 6DK1 and the molecular model of yeast ERG2. 5HK1_A and 

6DK1_A: monomer with chain ID “A” in coordinate files 5HK1 and 6DK1, respectively. 

ERG2: molecular model of yeast ERG2 protein built by AlphaFold2. B_20: 20 hits with lowest 

calculated interaction energy (Ecalc) with the target structure. E_3.0: “best-E3”, namely hits 

whose Ecalc with the target structure is ≤3.0 kcal/mol higher than that of the best hit. Nb. Hits: 
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number of hits in each results subset (i.e., B_20 and E_3.0). Ecalc (kcal/mol): range of 

interaction energy with the target protein in each results subset. Hb, Contacts and Clashes: 

range of hydrogen bonds, overall contacts and unfavourable van der Waals contacts between 

ligand and target protein in each subject. Ago-Ant: known σ1-R and/or σ2-R binders. Metab, 

FDA and World: molecules tagged as “metabolites + for sale”, “FDA approved + for sale” 

and “World-not FDA + for sale” in the ZINC15 database (Sterling & Irwin 2015). 

Ste_Lip, Sterols, Steroids, Androg, Estrog, Chol_P and Ergo_P: molecules belonging to the 

sterol_lipids, sterols, steroids, androgens, estrogens, cholesterol or ergosterol biosynthetic 

pathway categories, respectively, and available for sale in the LIPID MAPS database (Sud et 

al. 2007). 

 

 

 

To verify whether the “best-E3” subsets were enriched with specific structures 

with respect to the whole 21,359 compounds dataset used for VS, we compared 

the number of compounds belonging to each category (e.g., metabolites, 

agonists/antagonists, etc.) comprised in this initial dataset with the number of 

hits of the same category comprised in the “best-E3” subsets, resulting from 

VS towards the Hsσ1-R structures in coordinate files 5HK1 and 6DK1, and 

towards the ERG2 molecular model (Table 2.5). Examination of these values 

shows that the “best-E3” subsets resulting from VS against the 5HK1 structure 

and ERG2 model are significantly enriched in compounds belonging to the 

agonists/antagonists category, which comprises experimentally validated σ1-

R ligands, the ratio between the percentage of this category among the “best-
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E3” hits and among the starting set of compounds (R) being 2.8 for the 5HK1 

structure and 2.4 for the ERG2 model. Conversely, no variation in the 

percentage of this category is observed in the results of VS against 6DK1. The 

percentage of compounds belonging to the “metabolites” category is 

significantly reduced among the “best-E3” subsets for both the Hsσ1-R 

structures and ERG2 model, with R values of 0.3, 0.3 and 0.7, respectively, 

whereas compounds approved by the FDA and other regulatory agencies do 

not show a regular trend (Table 2.5). Interestingly, compounds having a 

steroid-based structure (i.e., sterol lipids, sterols, steroids, androgens, 

estrogens and compounds in the cholesterol or ergosterol pathway) are 

significantly enriched in the “best E3” subsets of all three proteins, i.e., both 

the Hsσ1-R structures and the ERG2 model, with respect to categories 

comprising compounds with very diverse chemical structures, such as 

metabolites and compounds approved for clinical use by the FDA or other 

regulatory agencies. In detail, steroid-based compounds are less than 25% of 

the total number of compounds in the 21,359 compounds dataset used for VS, 

and 61%, 69% and 47% of compounds among the “best-E3” subsets of results 

against the Hsσ1-R structure in coordinate files 5HK1 and 6DK1 and the ERG2 

molecular model, respectively, which corresponds to an enrichment in steroid-

based compounds of 2.5, 2.8 and 1.9 folds, respectively. 

 

Table 2.5. Comparison between the percentage of compounds in each category used for VS 

against the 3D structures of Hs_1-R in coordinate files 5HK1 and 6DK1, or the molecular 

model of yeast ERG2, and the percentage of compounds in the same categories found in the 

“best-E3” subset obtained from VS against each structure. 
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Taken together, these results indicate that the program used for VS has a good 

ability to recognize actual Hsσ1-R ligands, which are enriched among the 

“best-E3” hits of both the highest resolution coordinate file 5HK1 and the ho-

mologous ERG2 protein model (although not among the “best-E3” hits of the 

lower resolution coordinate file 6DK1), as well as to identify low-affinity 

Hsσ1-R binders, and that steroid-based compounds are among the Hsσ1-R pre-

ferred ligands. 

To obtain further information about the nature of physiological binders of σ1-

R proteins, we tried to identify the compound(s) giving rise to the electron 

density peak near the binding site of the Xlσ1-R structure in coordinate files 

7W2B and 7W2E. We first performed a VS of the 1332 yeast metabolites da-

taset against the two Xlσ1-R apo structures in coordinate files 7W2B_A and 

7W2E_A. The results of this VS are summarized in Table 2.6. 

 

Table 2.6. Summary of the results of VS experiments against the 3D structures of Xlσ1-R in 

coordinate files 7W2B and 7W2E. 7W2E_A and 7W2B_A: monomer with chain ID “A” in 

coordinate files 7W2E and 7W2B, respectively. 
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To select compounds likely to fit in the electron density maps in the ligand 

binding site of Xlσ1-R structures, we visually inspected the 2D structures of 

the 88 “best-E3” hits that are common between the results of VS against the 

Xlσ1-R structures in coordinate files 7W2B and 7W2E (data not shown). We 

selected five compounds (Table 2.7) based on the following criteria: (i) the 

compatibility of their molecular shape with the electron density peaks observed 

in the apo 7W2B and 7W2E structures; and (ii) the fact that their molecular 

structures were quite different from one another and, at the same time, each of 

them was similar to other compounds satisfying the first criteria. 

 

Table 2.7 Average B-factor values of the five selected molecules after fitting in the electron 

density map of the Xlσ1-R structure in chain C of coordinate files 7W2E (7W2E_C) and 7W2B 

(7W2B_C). For each compound in each structure, occupancy = 1.00. 

 
 

 

For both Xlσ1-R structures, we selected the chain where the electron density 

map peak found in the proximity of the Xlσ1-R binding site in the Fo-Fc map 

is most intense, namely chain C for both coordinate files 7W2B (7W2B_C) 
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and 7W2E (7W2E_C). Then, we tested the selected compounds for their ability 

to fit the electron density peak in 7W2B_C and 7W2E_C, and calculated the 

average B-factor values of the resulting complexes (Table 2.7). 

Additionally, visual inspection of the generated complexes (Figure 2.5) 

indicated that the five selected compounds fit very well in the electron density 

map peak of both 7W2B_C and 7W2E_C. In line with the enrichment in 

steroid-based compounds in the “best-E3” results of VS experiments, 

ergosterol was the compound giving rise to the lowest B-factor value in the 

complex with coordinate file 7W2E_C and the second lowest B-factor value 

in complex with 7W2B_C. As shown in Figure 2.5 (panels B and H), the four 

A-D rings making the steroid nucleus are within the electron density peak, with 

only part of the ergosterol long chain substituent at position 17 falling outside 

the electron density. 
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Figure 2.5. Fitting of selected compounds into the electron density within the ligand binding 

site of Xl_1-R. The protein is shown as ribbon and colored green. The side-chains of residues 

surrounding the ligand binding site are shown as sticks and coloured by atom-type: C, N, O 

and S atoms are green, blue, red and yellow, respectively. The structures in coordinate files 
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7W2B and 7W2E are shown in panels (A–F) and (G–L), respectively. Ligands in panels (B–

F) and (H–L) are shown as sticks and coloured by atom-type in the same way as protein side-

chains, except that C atoms are orange. Ligands are: ergosterol, panels (B, H); catechin, pan-

els (C, I); 7,8-dihydropteroic acid, panels (D, J); myricetin, panels (E, K); and 30,50-cyclic 

dAMP, panels (F, L). 

 

 

Based on the results of VS experiments and electron density map fitting, indi-

cating that compounds comprising a steroid nucleus are likely to be among the 

preferred σ1-R ligands, we inspected the results of VS against Hsσ1-R in co-

ordinate sets 5HK1 and 6DK1 (data not shown), to identify a steroid-based 

compound suitable for experimental assessment of Hsσ1-R binding ability. We 

selected 16,17-didehydroprogesterone (LIPID MAPS ID: LMST02030163), 

because: (i) it is the compound with the lowest Ecalc among the “best-E3” hits 

of VS against coordinate file 5HK1 comprising a steroid nucleus; (ii) it is a 

human endogenous compound; and (iii) it has a very short chain substituent at 

position 17. The molecular model of the complex between the Hsσ1-R in co-

ordinate file 5HK1 and 16,17-didehydroprogesterone is shown in Figure 2.6. 

Examination of the σ1-R residues at a distance ≤ 4.0 Å from the ligand reveals 

that the carbonyl oxygen in position 3 of 16,17-didehydroprogesterone may 

establish a polar interaction with the side-chain carboxylic group of E172, in 

the protonated state, thus replacing the basic amino group shared by classic 

pharmacophoric models. The non-polar remaining regions of 16,17-didehy-

droprogesterone establish hydrophobic interactions with hydrophobic residues 

lining the ligand binding site (i.e., V84, W89, M93, Y103, L105, F107, W164, 

I178, L182, A185 and Y206), most of which are the same residues that interact 

with ligands present in experimentally determined structures. Additionally, the 

carbonyl oxygen in position 20 of 16,17-didehydroprogesterone may establish 

a polar interaction with the side-chain hydroxylic group of T181. 



 

 

 

49 

 

 

Figure 2.6 Molecular model of the complex between Hsσ1-R and 16,17-

didehydroprogesterone built by VINA. The protein is shown as ribbon and coloured green. 

The ligand and the side-chains of residues at a distance ≤ 4.0 Å from the ligand are shown as 

sticks and coloured by atom-type: N, O and S atoms are blue, red and yellow, respectively; C 

is green for the protein and white for the ligand. The only exception is V84, which was removed 

from the picture for clarity. 

 

Thanks to the fact that two of the tryptophan residues (i.e., Trp89 and Trp164) 

are part of the previously identified Hsσ1-R binding site, we were able to per-

form fluorescence titration to measure the affinity of selected molecules for 

this receptor. To validate the method, we performed fluorescence titration us-

ing pridopidine and iloperidone in addition to 16,17-didehydroprogesterone 

(Figure 2.7), since both molecules have been previously demonstrated to bind 

Hsσ1-R with high affinity using different techniques (Sahlholm et al. 2013). 

Pridopidine was initially shown, by 3H](+)-pentazocine displacement experi-

ments (Sahlholm et al. 2013), to have a Ki value for Hsσ1-R in the nanomolar 
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range (81.7 nM). Subsequently, we reported that both pridopidine and iloperi-

done have KD values towards Hsσ1-R in the micromolar range, as measured 

by surface plasmon resonance (SPR) experiments. 

 

Figure 2.7. Titration of Hsσ1-R with pridopidine (left panel), iloperidone (central panel) and 

16,17-didehydroprogesterone (right panel).  

 

 

Data analysis suggested that Hsσ1-R has two binding sites for the examined 

ligands, i.e., one high-affinity site and one low-affinity site. The KD values of 

pridopidine and iloperidone for the Hsσ1-R high-affinity site are 254 and 19 

nM, and therefore they are both higher than those previously measured by SPR 

(i.e., 15 and 5 µM, respectively), although in both cases iloperidone resulted to 

have a higher affinity for Hsσ1-R (Battista et al. 2021). The KD value of 16,17-

didehydroprogesterone for the high affinity site was 10 nM, very similar to that 

of iloperidone and 25-fold better than that of pridopidine, indicating that 16,17-

didehydroprogesterone is a very high affinity ligand for Hsσ1-R. 

 

Table 2.8. Dissociation constant (KD) values determined by fluorescence titration. 
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The dynamics of the apo form of the trimeric Hsσ1-R, embedded into a bilayer 

resembling the membrane composition of the ER, as shown in Figure 2.8, was 

investigated by means of all-atoms MD simulations for 1.5 µs. Along the 

simulated trajectory, the RMSD of the backbone atoms of the trimer calculated 

with respect to the initial atomic positions increased to about 0.6 nm, while the 

RMSD of the single monomers in the last 500 ns fluctuated between 0.3 and 

0.5 nm (data not shown). Overall, the secondary structures of the three 

monomers were found to remain rather stable along the simulation time, as 

confirmed by the time evolution of the number of H-bonds calculated within 

the single monomers (data not shown). Notably, the root mean square 

fluctuation of protein residues averaged over the last 500 ns of simulation 

showed different values for the three monomers, with the average fluctuations 

of monomer B larger than monomer C, and fluctuations of monomer C larger 

than monomer A (data not shown). Apart from the different fluctuations 

involving cytosolic protein loops, possibly due to a limited sampling time, 

significant differences between monomer B and the other monomers were 

found for residues 115–128 (in strands 4 and 5), and residues 172–188 (in 

strand 10 and helix 4). Looking at the simulated structures, we found that these 

two regions underwent a significant conformational change in monomer B. In 

Figure 2, the distance between the 4-helix (residues 180–188) and the coil 

between strands 4 and 5 (residues 118–121, shown in yellow and grey in panels 

B–C, respectively), both of which rest on the lipid bilayer, was monitored 

along the simulated trajectory, and a significant spacing between these two 

regions was observed in the last 150 ns of simulation. This conformational 

change also involved the 5-strand (residues 123–125, partially unfolded at the 

end of the simulation) and the 10-strand (residues 172–175), resulting into the 
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opening of the substrate cavity (Figure 2.9). Intriguingly, we found a possible 

correlation between such a conformational change and the breaking/formation 

of salt bridges between three residues, namely R175, E102 and E123, located 

in strand 10, 3 and 5, respectively (Figure 2.10). By monitoring the distances 

between R175 and the two residues E102 and E123 (Figure 2.10), we found 

three different behaviours for the three monomers. In monomer A, R175 

formed an almost permanent salt bridge with E123. The same occurred in 

monomer B up to 1 µs of simulation; subsequently, the salt bridge between 

R175 and E123 was lost and a new salt bridge between R175 and E102 was 

formed. In monomer C, for the first 600 ns the behaviour was similar to the 

behaviour found in monomer A, and then both the R175/E123 and R175/E102 

salt bridges were lost. The breakage of the salt bridge between R175 and R123 

occurring in monomer B after 1 µs is likely to affect the subsequent spacing 

between the 5 and 10 strands, to which E123 and R175 belong, with the 

consequent opening of the cavity. In this context, E102 in the 3 strand may 

play a crucial role in triggering the opening of the substrate cavity, by forming 

a salt bridge with Arg175 and, therefore, inducing the breaking of the salt 

bridge between R175 and E123. 
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Figure 2.8. Structure of Hsσ1-R protein. (A) A single monomer is shown as ribbon. The 

position of the monomer with respect to the membrane region of the protein is highlighted. (B) 

The homotrimer is shown as ribbon. The three monomers (MA, MB and MC) are coloured 

blue, red and green, respectively. 

 

 

Figure 2.9. Conformational changes occurring in the Hsσ1-R protein along the simulated 

trajectory. (A) The distances between the mass centres of the backbone atoms of residues 118–

121 and 180–188 for the three monomers (namely, MA, MB and MC) are reported as a 

function of time. (B, C) Cartoon representation of the Hsσ1-R protein viewed from the 

membrane side at 0 ns (B) and 1500 ns (C) of the MD simulation. The three monomers are 

coloured blue (M1), red (M2) and green (M3). The surface of residues 118–121 and 180–188 

of the three monomers is also shown and coloured grey and yellow, respectively. (D, E) 

Cartoon representation of the Hsσ1-R protein C-terminal domains, external to the membrane, 

at 0 ns (D) and 1500 ns (E) of the MD simulation. The surface of residues 122–126 and 171–

176 of M2 (red) is also shown and coloured grey and yellow, respectively, highlighting the 

opening of the Hsσ1-R binding site that occurs along the simulated trajectory. 
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Figure 2.10. Time evolution of salt bridges between residues R175, E102 and E123 along the 

MD simulation. In the left panel, the minimum distances calculated between R175 and E102 

(black) and between R175 and E123 (orange) are reported as a function of the simulated time 

for the three monomers, namely M1 (top panel), M2 (middle panel) and M3 (bottom panel). 

Right panel: cartoon representation of M2 in the starting conformation of the MD simulation, 

which is virtually identical to the crystallographic conformation. Zoomed-in inset: residues 

R175, E102 and E123 are shown as sticks and coloured by atom type: C, cyan; N, blue; O, 

red; H, white. 

 

 

2.5 Conclusions. 

 

The ER-resident σ1-R is being intensively studied because of its involvement 

in several CNS disorders and because of the neuroprotective activity of its 

agonists. Many experimental and computational studies have provided 

valuable information on putative entrance and exit pathways to and from the 

ligand binding site, and on a number of compounds able to bind σ1-R and elicit 

or inhibit specific activities. However, two essential receptor features, such as 

the route of ligand access to the binding site and the nature of the physiological 
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ligand(s), have not yet been unequivocally determined. On the other hand, both 

pieces of information would be required to both understand the physio-

pathological role of σ1-R and to design novel, higher affinity and higher 

specificity ligands endowed with specific agonistic or antagonistic activities. 

Among these uncertainties, σ1-R is drawing attention as a therapeutic target 

because its agonists have been shown to be able to counteract 

neurodegenerative disease processes. As an example, one of these agonists, 

pridopidine, is safe (Squitieri et al. 2013; Reilmann et al. 2019) and has 

beneficial effects on functional capacity (McGarry et al. 2020) and brain 

connectivity (Sánchez-Castañeda et al. 2017) of HD patients, as well as 

beneficial effects for HD cell and mouse models (Geva et al. 2016; Ryskamp 

et al. 2017; Eddings et al. 2019; Squitieri et al. 2015). 

For these reasons, in these two works, we focalised our attention on three 

objectives: I) Try to identify an already known drug able to act on σ1-R; II) 

According to data present in literature, speculate on the possible physiological 

ligand and III) suggest a way in which the ligand could enter in the binding 

site. 

To achieve the first goal, we performed a virtual screening (VS) of a library 

comprising all FDA-approved drugs available on Zinc15 database. The 

selected top20, coming from the first VS, were redocked and analysed with a 

combination of own and known tools. Finally, we visually inspected these 20 

compounds and selected six drugs FDA-approved: iloperidone, paliperidone, 

flibanserin, linagliptin, vilazodone and nilotinib. In vitro SPR experiments 

demonstrated that the computational strategy was successful, since each of the 

selected compounds was proved to be able to bind σ1R at concentrations in the 

micromolar range. Importantly, the value of ligand σ1R complexes KD is in 
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the same range as that measured for pridopidine, and even lower for three of 

these compounds (flibanserin, iloperidone, linagliptin). Importantly, 

experiments performed on HD fibroblasts showed that the six selected 

compounds were able to increase the growth of HD patient fibroblasts, albeit 

to a different extent from one another, indicating that, like pridopidine, they 

also exert agonistic activity upon σ1R binding. Among the six tested drugs, 

iloperidone appears to have the most favourable effects. It had 3-fold higher 

affinity than pridopidine for σ1R in vitro and significantly improved HD 

fibroblast growth. Iloperidone activity was specific for HD cells, since it did 

not affect healthy cell growth to a significant extent. Iloperidone is an anti-

psychotic drug used for schizophrenia treatment, which is able to bind several 

dopamine and serotonin receptor isotypes (Mauri et al. 2014). In particular, it 

binds dopamine D2 and serotonin 5-HT2A receptors in the caudate nucleus 

and putamen of the brain (Kongsamut et al. 1996). The second and the third 

goals were more theoretical, but they gave us some interesting data to speculate 

on. With the VS on Hσ1R and its homologous ERG2, we were able to try to 

understand the possibly nature of the endogenous ligand of Hσ1R. We 

performed a VS on a large dataset comprising approved drugs (FDA and from 

other World agency), human metabolites (endogenous or imported with the 

diet), known ligands of Hσ1R and Hσ2R and a large amount of lipids (such as 

sterols, steroids) according to the role of the only known homologous (fungal 

ERG2). VS results were sorted based on their predicted interaction energy 

(Ecalc) with Hsσ1-R. Since individual Ecalc values are expected to have a 2–3 

kcal/mol standard deviation from the actual protein–ligand interaction energy, 

we focused our analysis of the results of each VS on the set of hits whose Ecalc 

value was within one standard deviation from that of the best hit (“best-E3” 
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subsets). The VS results shown that, for all the three structures tested, 

statistically the percentage of lipidic compounds present in the best-E3 subsets 

were higher than other type of molecules. Especially if we consider the 

metabolites which were, in total, an order of magnitude higher than the lipid 

compounds themselves. These data suggest that the physiological agonist(s) 

could be a sterol/steroid. Next, to get additional clues about putative 

physiological σ1-R ligands, we took advantage of the two recently determined 

apo structures of Xlσ1-R that showed an electron density peak in the ligand 

binding site. We performed a VS against both structures using a library of 

ligands comprising all yeast metabolites with MW ≤400 Da, because the Xlσ1-

R protein used for X-ray studies was expressed in and purified from yeast, and 

because inspection of the electron density map indicated that the yeast 

metabolite giving rise to the unfitted electron density was not larger than a 

cholesterol molecule. Visual inspection of the 88 compounds that resulted in 

the “best-E3” subsets obtained from VS against both structures led us to select 

five structurally diverse molecules that were likely to best fit the 

experimentally determined electron density on the basis of both their size and 

shape. According to both visual inspection and measurement of average B-

factor values, and in agreement with these selection criteria, all five molecules 

were shown to fit well in the electron density map, within the ligand binding 

site of both the closed and the open-like form of apo Xlσ1-R, ergosterol being 

the best fitting compound. Since both VS against Hsσ1-R structures and fitting 

into the electron density map of Xlσ1-R structures indicated steroid-based 

molecules as preferred σ1-R ligands, we decided to measure experimentally 

the affinity of one steroid-based compound against human Hsσ1R. We selected 

16,17-didehydroprogesterone because it is a human endogenous compound, it 
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does not contain long substituents that may affect σ1-R binding and it is within 

the group of hits predicted by VS procedures to bind Hsσ1-R with highest 

affinity. To this end, we implemented a fluorescence titration procedure and 

used both pridopidine and iloperidone as positive controls. The experimental 

data denote that 16,17-didehydroprogesterone is an even better Hsσ1-R ligand 

than iloperidone and pridopidine, the KD1 value for the high-affinity site being 

10 nM, which is two orders of magnitude lower than that of pridopidine for the 

same site in the same assay. Analysis of the complex between Hsσ1-R and 

16,17-didehydroprogesterone built by the VINA program indicates that the 

interaction mode of the ligand with the receptor was very similar to that 

observed for the ligands present in experimentally determined structures of 

complexes with Hsσ1-R, and to the shared features of pharmacophoric models. 

The main difference is in the replacement of the basic amino group shared by 

those ligands and pharmacophoric models with the carbonyl oxygen at position 

3 of 16,17-didehydroprogesterone in the polar interaction with the conserved 

E172. In this model, the carbonyl oxygen of the ligand is expected to act as the 

electron donor and the side-chain carboxylic group of E172 is expected to be 

protonated and act as an electron acceptor. Given the results of this work and 

the well-known ability of steroid-based molecules to act as σ1-R agonists or 

antagonists, we suggest that pharmacophoric models for Hsσ1-R ligands 

should be expanded to include an oxygen-atom-containing group, with the aim 

to establish a polar interaction with E172, as an alternative to a basic nitrogen. 

Finally, we used molecular dynamics (MD) to evaluate how physiological 

ligand could enter or exit in the binding site. First, we chose the trimeric 

structure of Hsσ1-R, as opposed to the monomer used in previous simulations, 

because the trimer is the minimal quaternary assembly that is present in all 
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Hsσ1-R and Xlσ1-R structures. In our system, while the overall secondary 

structures of the three monomers were substantially stable during the 

simulation time, significant conformational changes occurred in two regions 

of monomer B flanking the ligand binding site, and led to the opening of a 

cavity between the ligand binding site and the lipid bilayer. The first of these 

regions comprises residues 115–128, including part of the β4 and β5 strands 

and the loop comprised between them, and the second region comprises 

residues 172–188, including part of the β10 strand and the  

4 helix. These results are in partial agreement with the results of previous MD 

simulations performed on Hsσ1-R, which highlighted structure alterations 

affecting residues E123 (β5) and R175 (β10) (Schmidt et al. 2018) each of 

which is comprised in one of the regions that unfolds in our studies. However, 

our results indicate that ligand entrance and exit occur via the protein side 

leaning on the membrane (pathway 2), whereas both previous MD studies 

point to an opening towards the aqueous medium (pathway 1) (Figure 6.11) 

(Schmidt et al. 2018; Rossino et al. 2020).  
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Figure 2.11. Ligand access pathways to the binding pocket. The presumed ligand-accessible 

pathways are illustrated using yellow arrows. Hsσ1-R bound to PD144418 is represented. 

Hsσ1-R is shown in a cartoon representation and coloured by secondary structure. PD144418 

is displayed as spheres coloured by atom type: carbon in yellow, oxygen in red, and nitrogen 

in blue. Lipid head groups and tails are shown as grey spheres and white sticks, respectively. 

Water molecules are represented by a blue transparent surface. Na+ and Cl− ions are shown in 

light yellow and green spheres, respectively. Figure adapted from Rossino et al. 2020. 
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3. Computational study of the mode of COX binding of 

thiocanthal and thiocanthol, two novel biologically active 

compounds that can be obtained from extra virgin olive oil 

by eco-sustainable procedures. 

 

 

3.1 Background. 

 

Extra virgin olive oil (EVOO) is a good source of antioxidants and bioactive 

compounds, and its content of phenolic compounds plays a central role in the 

beneficial effects of the Mediterranean diet (Servili et al. 2014). The two most 

abundant phenols found in EVOO are the secoiridoids oleocanthal and 

oleacein, which are derivatives of the simple phenols tyrosol and 

hydroxytyrosol, respectively (Figure 3.1) (Lozano-Castellón et al. 2020).  

 

 

Figure 3.1. Simple phenols (tyrosol and hydroxytyrosol) and secoiridoids (oleocanthal 1 and 

oleacein 2) found in EVOO. The asterisk indicates the position of the chiral center (3S carbon).  
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Oleocanthal and oleacein are synthesized, as 3S enantiomers, by the 

combination of two processes, the first occurring in Olea europaea and the 

second during EVOO production by olive crushing and malaxation. Both 

oleocanthal and oleacein are endowed with several important biological 

properties and pharmacological activities, including anticancer, antioxidant, 

anti-inflammatory, and neuro- and cardiovascular protective effects. Notably, 

the anti-inflammatory effects have been ascribed to the inhibition of 

cyclooxygenase (COX) activity, both at translational and post-translational 

levels (Parkinson & Keast 2014). Because of these activities, in the last decade 

oleocanthal and oleacein have been proposed to be both ideal lead compounds 

and multifunctional drugs themselves. 

Given the lability of the aldehyde functional groups of oleocanthal and 

oleacein, and the presence of these compounds at highly variable 

concentrations in olive oil only, the strategies developed to obtain them by 

extraction and purification from EVOO or chemical synthesis until now are 

time-consuming and expensive, and yield very low product amounts. For these 

reasons, oleocanthal and oleacein are unsuitable for large scale production 

(Francioso et al. 2020; Grewal et al. 2020). 

As mentioned above, the presence of highly reactive aldehydic functions 

makes oleocanthal and oleacein susceptible to oxidative/degradative processes 

and, therefore, it is an obstacle for the obtainment of these compounds from 

EVOO. However, the chemical reactivity of aldehydic groups can also be 

exploited to transform oleocanthal and oleacein into more hydrophilic 

molecules. To this end, we introduced a sulfonate group in the iridoid skeleton 

of the oil-soluble oleocanthal and oleacein via metabisulfite reduction. The 

novel hydro-soluble derivatives thus obtained, which we named thiocanthal 
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and thiocanthol (Figure 3.2), were subsequently isolated using a two-step and 

eco-sustainable strategy. Due to the introduction of another chiral carbon, both 

of them are present as a mixture of diastereomers: 3S,8R-thiocanthol and 

3S,8S-thiocanthol; and 3S,8R-thiocanthal and 3S,8S-thiocanthal.  

 

 
Figure 3.2. Reaction mechanism of regioselective sulfonate attack to oleocanthal (R= H) or 

oleacein (R= OH) and generation of thiocanthal (3) and thiocanthol (4). 

 

 

After the purification, the sulfur-containing derivatives were characterized, 

and their biological activity as COX inhibitors was tested and compared with 

that of the respective oleocanthal and oleacein precursors. We found that the 

COX-inhibitory activity of the sulfonate derivatives is substantially unaltered 

compared to their precursors, indicating that thiocanthal and thiocanthol may 
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be exploited as more convenient lead compounds for drug development than 

the respective oleocanthal and oleacein precursors. 

 

 

3.2 Aim of the work. 

 

The overall aim of this work was to try to find a “green” method to extract 

olecanthal or oleacein, two compounds endowed with anti-inflammatory 

activity, from olive oil. 

Our collaborators developed an environmentally compatible procedure to 

extract and purify two chemical derivatives of these compounds, named 

thiocanthal and thiocanthol, and determined their biological activity as COX 

inhibitors. 

Our aim in this work was to investigate putative modes of COX-binding by 

compounds thiocanthal, thiocanthol, oleocanthal and oleacein, and compare 

them with those of ibuprofen and other well-known COX ligands. To this end, 

we have employed computational techniques (VS) to calculate the predicted 

binding energy of the interaction between the ligands under investigation and 

the COX-2 and COX-1 enzymes, and build and analyse models of the ligand-

receptor complexes. 

 

 

3.3 Methods. 

 

Receptor preparation. The atomic co-ordinates of human COX-1 and COX-2 

3D structures that had been experimentally determined by X-ray 
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crystallography and are publicly available through the PDB 

(https://www.rcsb.org/) (Berman et al. 2000) were downloaded. Structures in 

co-ordinate files with PDB IDs 6Y3C (Resolution = 3.36 Å) (Miciaccia et al. 

2021) and 5F19 (Resolution = 2.06 Å) (Lucido et al. 2016), which have been 

determined with best resolution among those available for human COX-1 and 

COX-2, respectively, were selected for computational VS. Each of these 

structures comprises two chains, one for each of the monomers that takes part 

in the biologically active homodimer. For both structures, chain A was 

selected. Crystallographic waters and ligand molecules were removed using 

Chimera. AutoDock Tools (ADT) (Morris et al. 2009) v.1.5.6 was used to add 

hydrogen atoms, merge non-polar hydrogen atoms and automatically assign 

Gasteiger charges.  

Ligand preparation. The small molecule compound dataset used for 

computational VS comprised: 

I) The four compounds analysed in this work, namely oleocanthal, oleacein, 

thiocanthal and thiocanthol, whose structures were manually drawn using 

MarvinSketch 19.12 (https://chemaxon.com). 

II) All ligands in complex with human COX-1 and COX-2 in the 

experimentally determined structures available from the PDB. 

III) Ibuprofen, a known COX-binding drug, whose co-ordinates were 

downloaded from the PDB. 

IV) Etoricoxib, celecoxib, indomethacin and aspirin, which are known to be 

selective COX-2 inhibitors, whose co-ordinates were downloaded from the 

ZINC database (http://zinc15.docking.org/) (Sterling & Irwin 2015). 

All compounds present in these datasets were converted, first, from the .smi to 

the PDB format, using an ad hoc developed bash script that includes the 

https://www.rcsb.org/
http://zinc15.docking.org/
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“molconvert” command from MarvinSketch 19.12; then, from the PDB to the 

pdbqt format, using a script from AutoDock Tools 1.5.6 (ADT) (Morris et al. 

2009) where the following parameters were added: “-A ‘hydrogen_bonds’” to 

both add hydrogens and build bonds among non-bonded atoms; and “-U 

'nphs_lps'” to merge both non-polar hydrogens and lone pairs.  

Virtual Screening. Computational VS was performed using the following 

space searching parameters: For 5F19: spacing value at 0.375 Å; center on 

coordinates 15, 43 and 63; and 16X16X16 grid points; For 6Y3C: spacing 

value at 0.375 Å; center on coordinates -33, -44.4; and 16X16X16 grid points. 

These parameters were chosen following visual inspection of COX-1 and 

COX-2 binding pockets, after optimal superposition of the two structures, 

using the Autodock Vina tool included in the USCF Chimera suite. VS was 

performed using the program VINA (Trott & Olson 2009) with the following 

parameters: “—num_modes 100”, which represents the maximum number of 

binding modes to generate, and “--energy_range 9”, to maximize the energy 

difference between the best binding mode and the worst one. Additionally, all 

conformations (poses) were kept, rather than only those with a VINA score 

better than a given threshold. All other parameters had default values. The 

ordered list of the VS results was extracted with “vina_screen_get_top.py” 

script from Autodock Vina tools (Trott & Olson 2009). 

Results analysis. Python scripts were developed to parse Vina output files and 

perform a preliminary analysis of COX-ligand complexes. In particular, the 

pose energy of each ligand was extracted from the Vina pdbqt file; features of 

protein-ligand interactions, such as hydrogen bonds, number of contacts and 

number of unfavourable interactions (clashes), were calculated using the 

structure visualization and analysis program Chimera (Pettersen et al. 2004), 
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following re-building of receptor-ligand complexes. Structure visualization 

and analysis were performed using the programs CHIMERA, InsightII 

(Accelrys Inc.) and Swiss-PDBViewer (Guex & Peitsch 1997). Protein 

residues are defined to be in contact with the ligand if they have at least one 

atom at a distance 4.0 from a ligand atom. 

 

 

3.4 Results. 

 

The numerical results of our VS are shown in Table 3.1. Taking into account 

that the values of Ecalc produced by the program used for VS have been reported 

to have a standard deviation of 2–3 Kcal/mol (Huey et al. 2007), examination 

of this table indicates that both stereoisomers of thiocanthal and thiocanthol 

are predicted to bind to COX-2 with affinity not statistically different from that 

of oleocanthal, oleacein and ibuprofen, and of the compounds with the highest 

(celecoxib) and lowest (salicylic acid) COX-2 binding Ecalc.  

 

Table 3.1. Results of VS towards COX-2 (top) and COX-1 (bottom). Only representative 

compounds are shown, namely, the four compounds discussed in this work (i.e., oleocanthal, 

oleacein, thiocanthal, thiocanthol); well-known anti-inflammatory drugs (e.g., ibuprofen, 

indomethacin, aspirin); selective COX-2 inhibitors; and other compounds whose structure has 

been determined in complex with COX proteins available from the PDB. Source: Compounds 

were downloaded from the PDB, whenever available, or ZINC database; t.w.: compounds 

studied in this work. ID (PDB name): identifier of the ZINC database, PDB file, or number 

assigned in this work. In the case of PDB files, the PDB three-letter code used to indicate 

compound co-ordinates is reported in parenthesis. Common Name: Name of compound in the 

ZINC "molecule name" or PDB "synonyms" fields or used in the text. Ecalc (kcal/mol): Energy 

of compound-COX interaction calculated by VINA. #Hb, #CO and #CL: total number of 

hydrogen bonds, contacts, and unfavourable interactions (clashes) between compound and 

COX calculated by Chimera, respectively. Activity: Compound activity from DrugBank (i.e., 
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NSAID: nonsteroidal anti-inflammatory drug; SC2I: selective COX-2 inhibitor), PDB file (i.e., 

Cofactor) or this work (i.e., C.I.: COX inhibitor). 

 

 
 

 

Additionally, the Ecalc values of thiocanthol, thiocanthal, oleocanthal, oleacein 

and ibuprofen towards COX-2 are lower than those towards COX-1 and, in the 
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case of both 3S,8S-thiocanthol and 3S,8S-thiocanthal the difference in Ecalc 

values is higher than 3 Kcal/mol, as in the case of the selective COX-2 

inhibitors celecoxib and etoricoxib. 

Structure analysis of COX-2 complexes produced by VS and those 

downloaded from the PDB, indicates that most COX-2 residues predicted to 

be involved in interactions with thiocanthal, thiocanthol, oleocanthal and 

oleacein are also involved in ligand binding in experimentally determined 3D 

structures. A model of the COX-2 complexes with 3S,8R-thiocanthal and 

3S,8R-thiocanthol built by VINA is shown in Figure 3.3 (COX-2 complexes 

with the 3S,8S-thiocanthal and 3S,8S-thiocanthol diastereoisomers are very 

similar, suggesting that the different configuration at the level of carbon atom 

(does not significantly affect ligand binding). 

 

   
Figure 3.3. Model of human COX-2 in complex with 3S,8R-thiocanthal (left panel) and 3S,8R-

thiocanthol (right panel) built by the VINA program. COX-2 Cα atoms are shown as a green-

coloured ribbon. Cα atoms and side-chains of residues interacting with the ligand are shown 

as sticks and coloured by atom-type: N, blue; O, red; S, yellow; C, green. Ligands are shown 

as sticks and coloured by atom-type: N, blue; O, red; S, yellow; C, white. Hydrogen bonds are 

shown as dashed lines. 

 

 

For comparison purposes, models of COX-2 complexes with oleocanthal, 

oleacein and ibuprofen are shown in Figure 3.4 and the model of COX-2 
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complex with celecoxib and the experimental structures of COX-2 complexes 

with rofecoxib and salicylic acid are shown in Figure 3.5. 

 

 
Figure 3.4. Models of human COX-2 in complex with oleocanthal 1 (A), oleacein 2 (B) and 

ibuprofen (C) built by the VINA program. COX-2 Cα atoms are shown as green-coloured 

ribbon. Cα atoms and side-chains of residues interacting with the ligand are shown as sticks 

and coloured by atom-type: N, blue; O, red; S, yellow; C, green. Ligands are shown as sticks 

and coloured by atom-type: N, blue; O, red; S, yellow; C, white. Hydrogen bonds are shown 

as dashed lines. 

 

 

 
Figure 3.5. Models of human COX-2 in complex with celecoxib (A) built by the VINA program 

and experimental structures of human COX-2 in complex with rofecoxib (B) and salicylic acid 

(C) downloaded from the PDB. COX-2 Cα atoms are shown as green-coloured ribbon. Cα 

atoms and side-chains of residues interacting with the ligand are shown as sticks and coloured 

by atom-type: N, blue; O, red; S, yellow; C, green. Ligands are shown as sticks and coloured 

by atom-type: N, blue; O, red; S, yellow; C, white. Hydrogen bonds are shown as dashed lines. 
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3.5 Conclusions. 

 

EVOO is a good source of antioxidants and bioactive compounds. Tyrosol, 

hydroxytyrosol, oleacein and oleocanthal show important roles in antioxidant 

and anti-inflammatory processes and as cardio- and neuroprotective agents. 

However, oleacein and oleocanthal purification is an expensive and 

cumbersome procedure, with low yields and involving large consumption of 

organic solvents and chemicals. In this work a new green procedure to obtain 

two purified derivatives of oleacein and oleocanthal from EVOO was 

developed. The reactivity of the aldehydic moieties of these compounds was 

exploited to introduce a sulfonate group via metabisulfite reduction of the 

iridoid skeleton. The novel water-soluble derivatives were isolated using a 

two-step non-organic chromatographic strategy taking the advantage of the 

newly introduced ionizable group and the pre-existing phenolic and catecholic 

moieties. The novel purified sulfur-containing derivatives, named thiocanthal 

and thiocanthol, showed anti-inflammatory properties in vitro, since they 

inhibit the COX activity to a similar extent to their bioactive precursors 

oleacein and oleocanthal. The results of our in-silico analysis support and 

strengthen these results, since thiocanthal and thiocanthol are predicted to bind 

to COX-2 with affinity in the same range as well-known COX-2 binders and 

higher than their binding affinity towards COX-1. Additionally, analysis of the 

models of COX-2 and COX-1 complexes with the compounds studied in this 

work (i.e., thiocanthol and thiocanthal), their precursors (i.e., oleacein and 

oleocanthal) and other well-known COX inhibitors, obtained by VS indicate 

that COX residues involved in the interaction with our new compounds and 

with known COX inhibitors are largely the same (table 3.2). 
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Table 3.2. Interactions between COX2 and known ligands observed in PDB, Protein Data 

Bank, structures (left) or predicted by VS, Virtual Screening, (right). Residue names are 

coloured red, blue, and black if the atoms involved in the interaction with the ligand are 

negative or partially negative, positive or partially positive, and hydrophobic, respectively. 

The label ".BB" indicates that the interactions occur with the backbone. TLF, Tolfenamic acid. 

SAL, Salicylic acid. RCX, Rofecoxib. JMS, Meclofenamic acid. IDB, Iodipamide. FLF, 

Flufenamic acid. BOG, Beta-Octylglucoside. Oleac, oleacein. Oleoc, oleocanthal. Thiol, 

thiocanthol. 

 

 

 

In conclusion, this work presents a novel water-compatible synthesis and a 

rapid and eco-friendly purification method to produce the two novel COX 
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inhibitors thiocanthal and thiocanthol from EVOO. These compounds are 

attractive candidates for future in vivo studies and applications as potential 

selective COX-2 inhibitors. 
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4. Identification of the molecular basis of the 

antiproliferative activity of Arabidopsis thaliana sirtuins. 

 

 

4.1 Background. 

 

The sirtuin family comprises highly conserved NAD-dependent enzymes with 

broad cellular functions, including life span regulation, DNA repair, 

metabolism, stress resistance, proliferation, and energy production (Chang & 

Guarente 2014; Carafa et al. 2016). These functions result from sirtuin ability 

to remove a large array of acyl modifications from cell proteins. Most sirtuins 

act as deacetylases of histone and non-histone proteins, and some of them show 

additional enzymatic activities (Bheda et al. 2016). Since these enzymes are 

regulated by NAD availability, and hence by the nutritional state of the cell, 

they play important roles in growth and development as well. Protein 

substrates have been identified for many sirtuins, especially those involved in 

energy metabolism or stress defence.  

Seven members of the sirtuin family have been found in mammals. All of them 

share a conserved NAD+ binding catalytic domain but differ in subcellular 

localization, enzymatic activity, and function. SIRT1, SIRT6 and SIRT7 are 

predominantly located in the nucleus; SIRT2 is both in the nucleus and in the 

cytoplasm; SIRT3, SIRT4 and SIRT5 are primarily present in mitochondria 

(Carafa et al. 2016). Sirtuins have been identified also in plants and shown to 

have different enzymatic activities and localization, but the actual function has 

been demonstrated for some plant sirtuins only (Zheng 2020). Plant sirtuins 
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have been studied mainly in Arabidopsis thaliana and Oryza sativa, in both of 

which only two genes have been detected. Based on the analysis of conserved 

domain regions, AtSRT1 and AtSRT2 gene products have been reported to 

belong to class II and class IV within the sirtuin family, and to have highest 

sequence similarity with human SIRT6 (HsSIRT6) and SIRT4 (HsSIRT4), 

respectively (Pandey et al. 2002). AtSRT1 and AtSRT2 exert deacetylase 

activity (Hollender & Liu 2008) but no other enzymatic activity has been 

described so far. Deacetylase activity has been detected for OsSRT1 and 

OsSRT2 (Huang et al. 2007; Zhong et al. 2013) as well. Moreover, histone 

decrotonylation activity has been reported for OsSRT1 (Lu et al. 2018). In both 

Arabidopsis and rice, AtSRT1 and OsSRT1 are mainly localized in the nucleus 

(Huang et al. 2007; Liu et al. 2017), and AtSRT2 and OsSRT2 in mitochondria 

(König et al. 2014), although nuclear localization of AtSRT2 has also been 

reported (Wang et al. 2010). The functions of plant sirtuins are far from being 

completely clarified. AtSRT1 deacetylates and represses several genes 

involved in plant stress response (Liu et al. 2017). Further, AtSRT1 regulates 

primary metabolism by modulating the transcriptional factor AtMBP-1 by 

direct lysine-deacetylation of the protein (Liu et al. 2017). AtSRT2 is likely to 

play a role in energy metabolism, since it directly deacetylates mitochondrial 

proteins such as ATP synthase and ADP/ATP carriers (König et al. 2014). 

Moreover, a negative role in plant basal defence has been proposed, since 

AtSRT2 expression is downregulated in response to infection with the tomato 

pathogen, Pseudomonas syringae pv. tomato DC3000 (Wang et al. 2010). The 

two plant sirtuins are usually involved in different and independent processes, 

but in at least one study they have been reported to work together in the same 

metabolic pathway, by interacting with the ENAP1 factor and mediating 
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ethylene-induced transcriptional repression by H3K9 deacetylation (Zhang et 

al. 2018). Therefore, data available so far only suggest that plant sirtuins, like 

animal homologs, play a role in metabolic pathways related to energy 

production.  

Based on sequence similarity between AtSRT1 and SIRT6, and between 

AtSRT2 and SIRT4, we hypothesized that Arabidopsis sirtuins play a role 

similar to that of the human enzymes, which are engaged in proliferation 

control. To evaluate this hypothesis, srt1 and srt2 mutants of Arabidopsis 

where produced, which lack the SRT1 and SRT2 gene, respectively, and 

evaluated, in comparison with wild-type (WT) plants, for several parameters 

related to cell proliferation including plant weight, root length and variation in 

DNA synthesis and GDH activity, which we hypothesized to mediate sirtuin 

engagement in cell proliferation control, as previously reported for mammalian 

SIRT4 (Jeong et al., 2013). Our role in this work was to perform bioinformatics 

analyses to identify the molecular determinants of AtSRT1 and AtSRT2 

biological activity. 

 

 

4.2 Aim of the work. 

 

Our aim in this work was to identify the sequence and structure determinants 

underlying the antiproliferative activity of Arabidopsis SRT1 and SRT2 

demonstrated by our experimental collaborators. To this end, we obtained the 

molecular models of Arabidopsis SRT1 and SRT2 and human SIRT4 and 

compared them with one another and with the experimentally determined 
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structures of human SIRT6, both at the global and at the substrate binding site 

level. 

 

 

4.3 Methods. 

 

The amino acid sequences of AtSRT1 and AtSRT2 proteins and of their human 

homologs HsSIRT6 and HsSIRT4 were downloaded from the UniProt web site 

(https://www.uniprot.org/). The BLAST program (Altschul et al. 1997) was 

used for pair-wise sequence comparisons, and to search NCBI sequence 

databases for sequences homologous to those given as input. ClustalO (Sievers 

et al. 2011) was used to generate multiple sequence alignments (Table 4.1). 

The experimentally determined 3D structures of HsSIRT6 were downloaded 

from the Protein Data Bank (PDB; rcsb.org) (Berman et al. 2000). The 3D 

atomic models of AtSRT1, AtSRT2, HsSIRT4 and HsSIRT6 were downloaded 

from the AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk/)  

(Jumper et al. 2021). Structure visualization, superposition and analysis were 

carried out using the Chimera program (Pettersen et al. 2004). Structure 

comparisons were performed with Chimera and structural searches in the PDB 

were performed using the Protein structure comparison service PDBe-Fold at 

the European Bioinformatics Institute (http://www.ebi.ac.uk/msd-srv/ssm). 

Structurally conserved regions were defined as the largest regions comprising 

residue pairs whose Cα-Cα distance is ≤ 2.5 Å. Two residues are defined to be 

in contact if they comprise at least one atom at a distance ≤4.0 Å from one of 

the atoms of the other residue. 

 

https://alphafold.ebi.ac.uk/
http://www.ebi.ac.uk/msd-srv/ssm
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4.4 Results. 

 

AtSRT1 (UniProt ID: Q9FE17) and AtSRT2 (UniProt ID: Q94AQ6) protein 

sequences comprise 473 and 376 amino acids (a.a.), respectively. Pairwise 

BLAST alignment of the two sequences encompasses 293 residues with 28% 

sequence identity and 20% insertions or deletions (Table 4.1), suggesting that 

they are distantly related to each other, in agreement with (Pandey et al. 2002). 

The closest human homologs of AtSRT1 and AtSRT2, namely HsSIRT6 

(UniProt ID: Q8N6T7) and HsSIRT4 (UniProt ID: Q9Y6E7), respectively, 

comprise 355 a.a. and 314 a.a., respectively.  

 

Table 4.1. Results of BLAST pairwise sequence comparisons among AtSRT1, AtSRT2, HsSirt6 

and HsSirt4. The E-values associated with each alignment, the percentage of sequence identity 

and, in parenthesis, the number of identical residues vs. the number of aligned residues are 

reported 

 
 

 

In the ClustalO generated multiple sequence alignment of the four proteins, 

about 250 residues are aligned (Figure 4.1). Most of the aligned residues are 

located within the catalytic domain region, and 109 residues (i.e., 43% of these 

regions) are identical in all four proteins. In addition to the aligned regions, 

AtSRT2 contains a longer N-terminal sequence, and AtSRT1 and HsSirt6 have 

longer C-terminal tails, respectively. 
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Figure 2. Multiple sequence alignment among AtSRT1, AtSRT2, HsSirt6 and HsSirt4 protein 

sequences generated by Clustal O (1.2.4). Identical, highly similar and similar residues 

according to Clustal O default parameters are indicated by “*”, “:”and “.” Symbols, 

respectively. 

 

Several 3D structures of HsSIRT6 fragments, determined by X-ray 

crystallography, are available from the PDB (data not shown). These fragments 

encompass 285-298 HsSIRT6 residues within the 1–298 region, out of 355 

total HsSIRT6 residues. Conversely, the 3D structures of HsSIRT4, AtSRT1, 

AtSRT2 and of the 57-residues in the C-terminal HsSIRT6 region have not 

been experimentally determined. To perform structure analyses, we used the 

atomic models of all the four proteins built by AlphaFold2 (Figure 4.2), which 
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has been recently demonstrated to largely outperform all other protein structure 

prediction methods and produce models of accuracy comparable to known 

structures in blind tests (Jumper et al. 2021). In the case of HsSIRT6 the 

AlphaFold2 model is essentially identical to the experimentally determined 

structures in the common regions. 
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Figure 4.1. A. Structure-based sequence alignment between AtSRT1, AtSRT2, HsSirt6 and 

HsSirt4. Amino acids are indicated by one-letter code, and sequence numbering is reported at 

the beginning and end of each sequence block. HsSirt6 residues are colour-coded based on 

the type of interaction that they establish with ADP-ribose, NCA and/or peptide substrate in 

one or more of the experimentally determined HsSirt6 structures, as follows: cyan and blue, 

polar interactions (i.e., salt-bridges or hydrogen bonds) involving side-chain and main-chain 

atoms, respectively; yellow, van der Waals interactions between hydrophobic atoms; light and 

dark green, both hydrophobic and polar interactions, involving side-chain and main-chain 

atoms, respectively; grey, van del Waals interactions between polar and hydrophobic atoms. 

HsSirt4, AtSRT1 and AtSRT2 residues are colour-coded like HsSirt6 if they are predicted to 

have conserved main-chain conformation and comprise chemical groups able to establish 

polar or van der Waals interactions with ADP-ribose, NCA and/or peptide ligands. 

Additionally, in all sequences, zinc-binding cysteine residues are coloured magenta; residues 

belonging to AtSRT1 unique Ig-like domain are dark red; unstructured regions external to the 

structurally conserved ones, namely, N-terminal regions of AtSRT2 and HsSirt4 and C-

terminal regions of AtSRT1 and HsSirt6, are grey. In the “Domain” rows, “C” and “Z” upper-

case letters indicate residues belonging to the catalytic and Zn-binding domain, respectively. 

In the “Str-Ali” (i.e., Structurally Aligned) rows, the “●” symbol and cyan, yellow and purple 
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background indicate regions that are structurally conserved among all four proteins, between 

AtSRT1 and HsSirt6, between AtSRT2 and HsSirt4, both between AtSRT1 and HsSirt6 and 

between AtSRT2 and HsSirt4 (but not between any member of the first pair and any member 

of the second pair), respectively; green indicates residues are not structurally conserved but 

are comprised between conserved regions. In the “Ligand” rows, “N”, “P” and “B” upper-

case letters below the horizontal bars indicate residues involved in interactions with ligands 

deriving from NAD hydrolysis (i.e., ADP-ribose and NCA), peptide substrates or both, 

respectively. B. Molecular models built for AtSRT1, AtSRT2, HsSirt6 and HsSirt4. The Cα 

carbon atoms are shown as ribbons and coloured white, cyan, yellow, green and grey 

according to structural conservation, as in the horizontal bars above the sequence alignment 

in the top panel; additionally, residues belonging to the AtSRT1 unique Ig-like domain are 

orange, and the unstructured AtSRT2 and HsSirt4 N-terminal regions and AtSRT1 and HsSirt6 

C-terminal regions are grey. N-terminal and C-terminal residues are blue and red, 

respectively. The side-chains of zinc-binding cysteine residues are shown as sticks and the zinc 

atoms as a magenta-coloured sphere. The ADP-ribose and NCA moieties deriving from the 

hydrolysis of the NAD cofactor are shown as stick and coloured by atom-type: C, green; O, 

red; N, blue; P, orange. 

 

 

Structural analysis of these models (Figure 4.1) revealed that the conformation 

of the catalytic domain, which is involved in both NAD cofactor and peptide 

substrate binding, is largely conserved in all four proteins. Indeed, 169 out of 

226 residues (i.e., 75%, indicated by “●” symbol in Figure 4.2A, assume 

similar conformations in all four proteins. This is highlighted by the root-mean 

square deviation (RMSD) values calculated after optimal superposition of Cα 

atoms of the 169 structurally aligned residues and the percentage of sequence 

identity in the same regions (Table 4.2). At variance with the catalytic domain, 

the zinc-binding domain assumes two different conformations in the four 

proteins: one of the two conformations is shared by AtSRT1 and HsSIRT6, 

and the other conformation is shared by AtSRT2 and HsSIRT4 (see the 

“Domain” row in Figure 4.1A).  
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Table 4.2. Pairwise comparisons of AtSRT1, AtSRT2, HsSirt6 and HsSirt4 3D models and 

sequences over the 169 residues that are structurally conserved in all four proteins. The RMSD 

values (in Å) calculated after optimal pair-wise superpositions of Cα atoms, the percentage of 

sequence identity and number of identical residues, in parentheses, are reported. 

 
 

 

For this reason, the structurally conserved regions between AtSRT1 and 

HsSIRT6 (i.e., 269 structurally aligned residues) and between AtSRT2 and 

HsSIRT4 (i.e., 275 structurally aligned residues) are significantly more 

extended than the structurally conserved regions among all four proteins 

(Table 4.3).  

 

Table 4.3 Pairwise comparisons of AtSRT1, AtSRT2, HsSIRT6 and HsSIRT4 3D models and 

sequences over the longest structurally conserved regions in each pair of proteins. Root-mean 

square deviation (RMSD) values (in Å), calculated after optimal pairwise superpositions of 

Cα atoms, are followed by the length of the structurally conserved regions, in parenthesis. 

Percentages of sequence identity are followed by the number of identical residues vs. the 

number of structurally aligned residues, in parenthesis. 

 
 

In addition to the catalytic and zinc-binding domains, all four proteins 

comprise unique regions: i) AtSRT1 contains one additional immunoglobulin 

(Ig)-like domain (see below) between the catalytic domain and the ~40-residue 
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C-terminal tail, which is predicted to be unstructured; ii) AtSRT2 comprises a 

~65-residue N-terminal region predicted to form a three-strand β-sheet with 

the 10-residue C-terminal tail; iii) HsSIRT4 has a ~30 residues N-terminal 

region and HsSIRT6 has a ~75 residues C-terminal region, both of which are 

predicted to be unstructured. Interestingly, the values reported in Table 4.3 and 

Table 4.2 indicate that structure and sequence similarity between AtSRT1 and 

AtSRT2 is higher than that between HsSIRT6 and HsSIRT4, suggesting that 

the Arabidopsis proteins are more closely related to each other than their 

human counterparts. 

HsSIRT6 residues in contact with ADP-ribose and/or nicotinamide (NCA), 

which are the molecules deriving from the hydrolysis of the NAD cofactor, 

and/or with the peptide substrate, comprising either N(6)-acetyl-L-lysine or 

N(6)-tetradecanoyl-L-lysine, in the experimentally determined HsSIRT6 

structures analysed in this work, are highlighted in Fig. 4.1, together with the 

type of interaction (i.e., polar or non-polar) that they establish with the ligand. 

In the same Figure, AtSRT1, AtSRT2 and HsSirt4 residues occurring at 

structurally equivalent positions with respect to those involved in ligand 

binding in HsSirt6 structures, are coloured based on the type of interaction that 

they are predicted to establish with the same ligands. A summary of the 

expected conservation of interactions between each pair of proteins is reported 

in Table 4.4. In agreement with results of sequence and structure analysis, 

AtSRT1 has highest conservation of functional residues with HsSirt6, and 

AtSRT2 with HsSirt4. 

 

Table 4.4 Expected conservation of interactions with ligand molecules (i.e., ADP-ribose, NCA 

and peptide substrate) between each pair of proteins analysed in this work. Str-Ali, Ide, Sim, 
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Diff: Number of residues that are structurally aligned, identical, expected to establish similar 

interactions and expected to establish different interactions, respectively. 

 
 

As far as regions external to the conserved core of the catalytic domain are 

concerned, sequence database searches did not provide indications about their 

possible function. The unstructured C-terminal tails of either AtSRT1 or 

HsSirt6 (comprising a.a. 433–473 and 279–355, in the respective sequences) 

have BLAST-detectable sequence similarity only with sirtuin homologs from 

Brassicaceae and animal species, respectively. The unstructured N-terminal 

regions of AtSRT2 and HsSIRT4 (comprising a.a. 1–69 and 1–31, 

respectively) do not match any A. thaliana or human sequence with significant 

E-values (AtSRT2 matches two human proteins below threshold: oestrogen-

induced tag 6 and egl nine homolog 2 with 36% sequence identity over 47 

residues). Additionally, no experimentally determined 3D structure present in 

the PDB was detected by the PDBeFold server to have similar conformation 

to any of these N- or C-terminal sirtuin regions. Conversely, a structural search 

in the PDB archive performed by the PDBeFold server using the unique all-β 

Ig-like domain (a.a. 274–432) of AtSRT1 as query, revealed that this domain 

is structurally similar to human GAS41 (RMSD value: 1.84 Å over 107 

structurally aligned residues between AtSRT1 molecular model and GAS41 

3D structure in PDB entry: 5vna, chain D). GAS41 is a chromatin-associated 

protein belonging to the YEATS family, which is involved in the recognition 

of acetyl-lysine in histone proteins, with a preference for H3K18 and H3K27 

peptides (Cho et al. 2018). GAS41 has been suggested to be a reader of 
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diacetylated histones, since it contains a C-terminal coiled-coil domain that is 

responsible for protein dimerization and binds to diacetylated H3 peptides with 

higher affinity than monoacetylated peptides. 

In vitro and in vivo experiments, performed by our collaborators, demonstrated 

that AtSRT1 and AtSRT2 exert an inhibitory role on DNA replication control. 

Indeed, both srt1 and srt2 mutants of Arabidopsis, where the SRT1 and SRT2 

gene is not present, respectively, showed: i) at a biochemical level, an increase 

in both DNA synthesis and activity of GDH, the enzyme that catalyses the 

deamination of glutamate to α-ketoglutarate (αKG), which fuels the TCA 

cycle, thereby providing both energy and metabolites that are necessary for 

proliferation (Jeong et al., 2013); and ii) at the phenotypic level, an increase in 

plant weight and root length. 

 

 

4.5 Conclusions. 

 

In this work, both the Arabidopsis sirtuins were demonstrated, for the first 

time, to play a role in cell proliferation control, which is mediated by the 

inhibition of DNA duplication rate and GDH activity.  

To rationalize this activity of AtSRT1 and AtSRT2 on a molecular basis, we 

took advantage of their close evolutionary relationships with the two human 

sirtuins HsSIRT6 and HsSIRT4, whose function and, in the case of HsSIRT6, 

3D-structure, have been extensively characterized. Bioinformatics analyses 

indicated that the catalytic domain regions involved in interactions with NAD 

cofactor and peptide substrates are highly conserved in the four proteins, both 

in terms of main-chain conformation and of the chemical-physical properties 
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of functional residues, which are only slightly less conserved at positions 

involved in peptide binding with respect to those interacting with NAD. These 

results indicate that the four proteins are likely able to bind the same, or similar 

peptides, and catalyse the same de-acylation and ADP-ribosylation reactions 

demonstrated for HsSIRT6 and HsSIRT4, respectively.  

Moreover, we found an evolutionary relationship between the unique Ig-like 

domain comprised in AtSRT1 and the human GAS41 protein, which suggests 

that the function of this domain is to facilitate AtSRT1 interaction with specific 

substrates, possibly with similar features to those recognized by GAS41. Since 

protein domains that are fused in a single gene in a species are generally 

interaction and functional partners in species where they are encoded by 

different genes, the observation that the AtSRT1 sirtuin domain is fused to a 

GAS41-like domain in Arabidopsis indicates that HsSirt6 and GAS41, 

although encoded by different genes, may be interaction and functional 

partners in human as well.  

Interestingly, SRT1 and SRT2 have higher 3D structure conservation and 

sequence identity with each other than SIRT6 and SIRT4, respectively, both 

within the catalytic domain and over the whole sequences, suggesting that the 

two Arabidopsis proteins are closer relatives than their human counterparts. 
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5. Identification of the structural determinants underlying 

the substrate specificity of the Arabidopsis N-

acetyltransferase activity 2 protein. 

 

 

5.1 Background. 

 

Polyamine acetylation has an important regulatory role in several organisms, 

since it affects both polyamine function and homeostasis (Pegg 2008; 

Tavladoraki et al. 2012). Acetylation reduces the number of positive charges 

on polyamines, thus altering their capacity to interact with several 

macromolecules. In mammals, acetylated spermine (Spm) and spermidine 

(Spd) are substrates of peroxisomal polyamine oxidases (PAOs) and are 

readily secreted into the extracellular space, thus playing a key role in the 

control of intracellular polyamine levels and of cellular processes related to 

polyamine content (Pegg 2008). Acetylated polyamines have been also 

detected in several plant species, among which Nicotiana plumbaginifolia, 

Helianthus tuberosus and Arabidopsis (Del Duca et al. 1995; Mesnard et al. 

2000; Tassoni et al. 2000; Lie Fliniaux et al. 2004; Hennion et al. 2012; Toumi 

et al. 2019), but only limited information exists on their physiological roles. 

However, a role of acetylated polyamines in plant development and responses 

to environmental and biotic stress has been suggested (Tassoni et al. 2000; 

Hennion et al. 2006; Adio et al. 2011; Jammes et al. 2014)(Neuwald & 

Landsman 1997). Spermidine/Spermine N1-acetyltransferases (SSATs) are 

GCN5-related N-acetyltransferases that catalyse the transfer of acetyl groups 
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to the aminopropyl end(s) of Spd and Spm, using acetyl-coenzyme A (acetyl-

CoA) as a cofactor. Human SSAT1 (HsSSAT1) is a highly regulated enzyme 

with broad substrate specificity, being able to acetylate substrates with the 

general structure H2N(CH2)3NHR, including N1-acetylSpm, sym-norspermine, 

and sym-norspermidine, but not putrescine (Put), N1-acetylSpd, and sym-

homospermidine, which have terminal aminobutyl groups (Della Ragione & 

Pegg 1983; Hegde et al. 2007; Pegg 2008). In contrast to HsSSAT1, E. coli 

Spd acetyltransferase (SAT), encoded by the speG gene, transfers the acetyl 

group from acetyl-CoA to either end of Spd (aminopropyl or aminobutyl end) 

(Fukuchi et al. 1994; Sugiyama et al. 2016). Interestingly, the acetyltransferase 

encoded by the human gene locus BC011751, annotated as HsSSAT2 

(Coleman et al. 2004; Han et al. 2006) because of its sequence similarity with 

HsSSAT1, does not acetylate Spm or Spd, but rather thialysine, a structural 

analogue of L-lysine, which is considered to be a source of metabolites with 

antioxidant properties and can act as an antimetabolite by competing with L-

lysine (Jun et al. 2003; Coleman et al. 2004; Proietti et al. 2020). 

In Arabidopsis genome, two SSAT-like genes have been identified in adjacent 

positions: AtNATA1 (N-acetyltransferase activity 1; At2g39030) and 

AtNATA2 (At2g39020). AtNATA1 is highly regulated (Adio et al. 2011; 

Jammes et al. 2014) whereas AtNATA2 is constitutively expressed (Adio et 

al. 2011; Lou et al. 2016). The AtNATA1 gene was shown to encode for a 

protein with N-acetyltransferase activity, though discrepancy exists among 

published data regarding AtNATA1 substrate specificity. Some data indicate 

that 1,3-diaminopropane (Dap) is the best substrate, followed by thialysine 

(Jammes et al. 2014), while other data indicate that ornithine (Orn) (Adio et al. 

2011) or Put (Lou et al. 2016) are best substrates. Furthermore, it was 



 

 

 

90 

 

suggested that AtNATA1, together with arginine decarboxylase 1, which was 

shown to have also Nδ-acetylOrn decarboxylase activity, provides a pathway 

for the synthesis of acetylated Put from Nδ-acetylOrn (Lou et al. 2020). 

Conversely, no information on AtNATA2 substrate specificity is available so 

far. 

 

 

5.2 Aim of the work. 

 

The overall aim of this work was to try and identify the physiological function 

and substrate specificity of AtNATA2.  

To this end, our collaborators expressed AtNATA2 in a heterologous bacterial 

system and determined the catalytic properties of the recombinant protein 

towards several substrates (including Spm, Nor-Spm, Spd, N-monoacetyl-Put, 

Orn, Dap, and thialysine). 

In parallel, we built molecular models of AtNATA1 and AtNATA2, and 

performed a comparative analysis of these models and of the experimentally 

determined structures of the HsSSAT1 and HsSSAT2 human homologues to 

identify the structural determinants of substrate specificity of each of these 

enzymes. 

 

 

5.3 Methods. 

 

The sequences of AtNATA1 and AtNATA2 were used to search the NCBI 

database for homologous proteins of known 3D structure using the BLASTp 
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algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi)(Altschul et al. 1997). This 

search retrieved the proteins listed in Table 5.1, the coordinate files of which 

were downloaded from the Protein Data Bank (PDB; 

http://www.rcsb.org/)(Berman et al. 2000). Based on the E-values calculated 

by BLASTp, both AtNATA1 and AtNATA2 match most closely Pseudomonas 

aeruginosa probable N-acetyltransferase (E-values 1e−24 and 4e−21, 

respectively), then HsSSAT2 (E-values 3e−17 and 2e−15, respectively), followed 

by mouse SSAT1 (MmSSAT1; E-values 2e−16 and 3e−12, respectively) and 

HsSSAT1 (E-values 2e−15 and 4e−11, respectively).  

 

Table 5.1. Proteins of known 3D structure homologous to AtNATA1 and AtNATA2 analysed 

in this work. Ligand: PDB ID of the bound ligand, namely: ACO, acetyl-co-enzyme A; CoA, 

coenzyme A; NHQ, N1-spermine-acetyl-coenzyme A bi-substrate analogue; SPM, spermine.

 
 

Considering that AtNATA1 and AtNATA2 E-values and percentage sequence 

identity with the bacterial enzyme were only marginally better than those with 

HsSSAT2, HsSSAT2 was chosen as a template for AtNATA1 and AtNATA2 

model building, because the alignments with both Arabidopsis proteins 

presented a lower number of inserted residues that were grouped in a smaller 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.rcsb.org/
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number of regions, which is the most commonly observed situation in protein 

evolution. Additionally, the structure determination of the P. aeruginosa 

protein is not associated with a peer-reviewed publication describing the 

details of the structure.  

The 3D models of AtNATA1 and AtNATA2 were built using Swiss-Model 

(https://swissmodel.expasy.org/) (Guex & Peitsch 1997). The UCSF Chimera 

package (Pettersen et al. 2004) was used for 3D structure visualization, 

analysis, and comparisons, including pairwise structure superimpositions. To 

model AtNATA1 and AtNATA2 complexes with acetyl-CoA and substrates, 

each 3D model was optimally superimposed to the HsSSAT1 structure, and 

the co-ordinates of the CoA cofactor covalently bound to Spm were imported 

into each model. The Spm moiety was computationally modified to obtain Put, 

Orn and other ligands.  

The structure-based multiple sequence alignment (MSA) shown in Fig. 5.1 was 

obtained as follows: 

▪ ClustalO (https://www.ebi.ac.uk/Tools/msa/clustalo) (Sievers et al. 

2011)was used to produce an initial MSA comprising AtNATA1, 

AtNATA2, their homologues of known structure listed in Table 5.1, and 

additional homologues from other species, namely HsSSAT2-like from 

Mus musculus (MmSSAT2), and SSAT from L. major (LmSSAT), C. 

elegans (CeSSAT) and S. pombe (SpSSAT); 

▪ Structure superimpositions between each pair of structures present in the 

initial MSA were obtained as follows: An initial structure alignment was 

generated automatically by Chimera. A structural superimposition was 

then performed including only structurally aligned residues the Cα atoms 

of which were at a distance not higher than 2.2 Å
ͮ
. This procedure was 

https://swissmodel.expasy.org/
https://www.ebi.ac.uk/Tools/msa/clustalo
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repeated until all and only residue pairs satisfying this distance threshold 

were superimposed. 

▪ The initial MSA produced by ClustalO was thus manually adjusted based 

on the structure superposition between HsSSAT2, HsSSAT1 and the 3D 

models built for AtNATA1 and AtNATA2 (see below) to produce the 

structure based MSA shown in Fig. 5.1. Of the two monomers present in 

the functional homodimer, HsSSAT2 chain B (comprising residues 2–59 

and 70–170) was used in all comparisons, because it is more complete than 

chain A (comprising residues 3–30, 35–60 and 68–170). Chain B was also 

chosen as a reference for AtNATA2 and AtNATA1 models since they were 

built using HsSSAT2 as a template. Chain A of HsSSAT1 was selected 

because it provides the best structure superposition with HsSSAT2 chain 

B, whereas chain C of MmSSAT1 was chosen because it is the only one in 

complex with Spm. Throughout the text, residues belonging to the 

monomer chosen as reference are indicated by their one-letter code name 

and number along the sequence, and residues from the other monomer by 

the one-letter code, number, and chain name. As an example, in HsSSAT1, 

E92 is from the reference monomer (chain A) and W154.B from the other 

one (chain B). 

 

 

5.4 Results. 

 

AtNATA1 and AtNATA2 genes, and their protein products, AtNATA1 and 

AtNATA2, are closely related to each other. In fact, they have similar gene 

structure (being both intron-less), 76% nucleotide sequence identity and 79% 
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amino acid sequence identity. AtNATA1 and AtNATA2 also have 31–32% 

identical amino acids with the thialysine-specific HsSSAT2 over 152 aligned 

residues and 27–28% identical amino acids with the Spm/Spd-specific 

HsSSAT1 over 119 aligned residues (Fig. 5.1). With respect to the human 

SSATs, AtNATA1 and AtNATA2 have an additional N-terminal region of 22 

and 29 amino acids, respectively (Fig. 5.1). Moreover, these N-terminal 

regions are predicted to comprise a potential PEST motif (AtNATA1 with high 

probability, and AtNATA2 with low probability) and are found upstream of a 

methionine residue which is well aligned to the first methionine residue of 

HsSSAT1 and HsSSAT2, and thus may have a regulatory role at a post-

transcriptional level. AtNATA1 and AtNATA2 also present a long insertion 

(amino acid regions 45–105 and 75–135, respectively) with respect to 

homologous proteins of known structure (Fig. 5.1), which bears a putative 

PEST motive. BLASTp searches indicated that these insertions are only 

present in plant AtNATA-like sequences, and that neither of them is 

homologous to proteins of known structure.  
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Figure 5.1. Structure-based multiple sequence alignment comprising AtNATA1, AtNATA2 and 

homologous proteins from different species. Insertions and N-terminal extensions in AtNATA1 

and AtNATA2 are underlined. “■”, “□” and “●” symbols indicate the 115, 37 and 4 residues, 

respectively, which are structurally conserved in: i) AtNATA1 and AtNATA2 models, and 

HsSSAT2 and HsSSAT1 structures (HsSSAT2 residues: 3–26, 33–48, 50–59, 70–81, 83, 85, 

87, 89–122, 124–129, 145–149, 153–157); ii) AtNATA1 and AtNATA2 models, and HsSSAT2 

structure, but not HsSSAT1 (HsSSAT2 residues: 27–32, 82, 84, 88, 123, 130–144, 158–169); 

iii) HsSSAT2 and HsSSAT1 structures, but not AtNATA1 and AtNATA2 models (HsSSAT2 

residues: 2, 49, 86, 152), respectively. Residues that are structurally aligned to each other are 

uppercase. Residues not observed in the 3D structure of HsSSAT2 chain B and residues that 

are not present in AtNATA1 or AtNATA2 models are shown in italic. Conserved structural 

domains in GCN5-related N-acetyl transferases (Neuwald and Landsman, 1997) are indicated 

by labelled horizontal bars (A, B, C, D). Positions involved in acetyl-CoA or polyamine 

binding are labelled with letters ‘a’ or ‘p’, respectively. Residues the identity of which is 

conserved with respect to AtNATA2, are black-shaded if they are found at positions labelled 

with ‘a’ or ‘p’ and grey-shaded otherwise. Numbers in parentheses indicate the percentage of 

amino acid sequence identity to AtNATA2. At, Arabidopsis thaliana; Hs, Homo sapiens; Mm, 

Mus musculus; Lm, Leishmania major; Sp, Schizosaccharomyces pombe. Ce, Caenorhabditis 

elegans. 

 

 

To elucidate the structural determinants of substrate specificity, 3D models of 

AtNATA1 and AtNATA2 homodimers have been obtained (Figure 5.2). 

Inspection of these models and of structure-based sequence alignments (Figure 

5.1) shows that the long insertions are located on the external sides of both 

proteins and are, therefore, not expected to affect the rest of the fold (Figure 

5.2). 
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Figure 5.2. 3D atomic models of AtNATA1 and AtNATA2 homodimers in complex with acetyl-

CoA. In the models, main-chain atoms are represented as ribbon and colour-coded as follows: 

Blue, residues that are structurally conserved with respect to both HsSSAT2 and HsSSAT1 

structures (indicated by “■” in Fig. 5.1); Cyan, residues that are structurally conserved with 

respect to HsSSAT2 structure, but not HsSSAT1 (indicated by “□” in Fig. 5.1); Yellow, 

residues that are structurally conserved between HsSSAT2 and HsSSAT1 structures, but not 

in AtNATA1 and AtNATA2 models (indicated by “●” in Fig. 5.1); Magenta, residues that are 

not structurally conserved in either of the aforementioned groups of structures. Acetyl-CoA 

(ACO) is shown as sticks and coloured by atom type (C, green; N, blue; O, red; P, orange). 

 

 

The core of the fold is predicted to be conserved with respect to HsSSAT2, to 

which both AtNATA1 and AtNATA2 monomers are aligned for 152 out of 

170 total HsSSAT2 residues. Indeed, residues involved in acetyl-CoA binding 

are structurally conserved in AtNATA1 and AtNATA2 with respect to 

HsSSAT2, most of them being either identical or substituted by residues with 

similar physical-chemical properties (Figure 5.1). However, differences in 
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residue size are observed at a few positions, namely HsSSAT2 residues G102, 

Q103, I105, L127 and L139, which in AtNATA1 and AtNATA2 are replaced 

by the bulkier R, K, F, W and F, respectively. With respect to HsSSAT1, 

AtNATA1 and AtNATA2 conserve the GCN5-related N-acetyltransferase fold 

in the A and C regions, but they are expected to diverge from HsSSAT1 in the 

B and D regions. Indeed, among HsSSAT1 residues involved in acetyl-CoA 

binding (Lu et al. 1996; Bewley et al. 2006; Zhu et al. 2006), residues Y100, 

R101, G104 and G106 are conserved in AtNATA1 and AtNATA2, and 

residues Y27 and L91 are conservatively substituted by F and I residues, 

respectively (Figure 5.1). On the other hand, the short C terminal MATEE 

sequence, which was shown to be important in HsSSAT1 rapid in vitro 

degradation and for the stabilizing effect of polyamine analogues on HsSSAT1 

(Colemant & Pegg 1997), is not present in the two Arabidopsis proteins or in 

HsSSAT2 (Figure 5.1). 

Comparative analysis of the ligand binding pockets of AtNATA2 and 

AtNATA1 with those of HsSSAT2, HsSSAT1 and MmSSAT1 revealed that 

they present significant differences in shape, dimension, and chemical-

physical nature of surrounding residues (Figure 5.1, 5.3 and 5.4). These 

differences result from the fact that only a small fraction of HsSSAT1 acidic, 

hydrophobic, and aromatic residues lining the Spm binding site are conserved 

in terms of both main-chain position and identity in AtNATA2, AtNATA1 and 

HsSSAT2 (Figure 5.1; Figure 5.3). These are: i) D93 and E92, which are within 

salt-bridge distance from the first (N1) and second (N2) Spm amino groups 

and participate in HsSSAT1 catalytic mechanism (Hegde et al. 2007; Bewley 

et al. 2006); and ii) W154 from the monomer not taken as reference (W154.B; 

see Methods), which makes hydrophobic contacts with the methylene groups 
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between the second (N2) and third (N3) Spm amino group. Furthermore, L128 

residue of HsSSAT1 catalytic site is conserved in main chain position, but its 

side chain is replaced by different aliphatic side chains, such as those of 

isoleucine in AtNATA1 (I187), valine in AtNATA2 (V195) and alanine in 

HsSSAT2 (A128). 

 

 

Figure 5.3. Comparison among substrate binding-site residues of human SSAT structures and 

Arabidopsis NATA models. Ribbon representation of the 3D structures of HsSSAT2 and 

HsSSAT1 homodimers, which have been experimentally determined by Xray crystallography 

(Han et al. 2006; Hegde et al. 2007), and of the atomic models of AtNATA2 and AtNATA1 

homodimers, built in this work. Colour-coding is as follows: Blue, regions that are structurally 

conserved among HsSSAT2, HsSSAT1, AtNATA2 and AtNATA1 (indicated by “■” in Fig. 5.1); 

Cyan, regions that are structurally conserved among HsSSAT2, AtNATA2 and AtNATA1, but 

not HsSSAT1 (indicated by “□” in Fig. 5.1); Green, regions that are structurally conserved 

among HsSSAT1, AtNATA2 and AtNATA1, but not HsSSAT2; Magenta, other regions. Protein 

ligands, i.e., acetyl-CoA (ACO; HsSSAT2) and N1-Spm-acetyl-coenzyme A bi-substrate 
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analogue (NHQ) comprising covalently linked acetyl-CoA and Spm (HsSSAT1, AtNATA2 and 

AtNATA2) are shown as sticks and coloured by atom type: N, O, C, S and P atoms are blue, 

red, white, yellow, and orange, respectively. Residues interacting with Spm in HsSSAT1, and 

structurally equivalent residues in HsSSAT2, AtNATA2 and AtNATA1, are shown as sticks and 

coloured by atom type: N, O and S atoms are blue, red and yellow, respectively; C atoms are 

blue, cyan, green or magenta depending on the colouring of the ribbon. 

 

 

All of the other HsSSAT1 residues involved in interactions with Spm present 

significant differences in HsSSAT2 and the Arabidopsis homologues: i) 

HsSSAT1 E28, which interacts with the third (N3) and fourth (N4) Spm amino 

groups, is conserved in type in the other three enzymes (E28 in HsSSAT2, E49 

in AtNATA1 and E56 in AtNATA2), but its main-chain and side-chain are 

placed in a different position with respect to the other ligand-binding site 

residues; ii) E32, which interacts with Spm N4 , is replaced by histidine in 

AtNATA2 (H60) and AtNATA1 (H53), and conservatively substituted by 

aspartate in HsSSAT2 (D32); iii) D2.B, which is salt-bridged to Spm N3 , is 

replaced by the hydrophobic proline in AtNATA1 (P140.A) and by the polar 

serine in AtNATA2 (S148.A) and HsSSAT2 (S82.A); iv) W84.B, which packs 

with the Spm methylene groups between N3 and N4 , is conserved in HsSSAT2 

(W84) and replaced by phenylalanine in AtNATA2 (F150.A) and AtNATA1 

(F142.A). As shown in Fig. 5.4, W84.B of HsSSAT1 packs with the methylene 

groups of Spm comprised between N3 and N4, whereas in HsSSAT2 structure 

the loop comprising W84.B assumes a different conformation that places the 

side-chain of HsSSAT2 in a position that would clash with Spm distal region. 

In the 3D models of AtNATA2 and AtNATA1, the homologous loops are 

predicted to assume a conformation similar to that of HsSSAT2, and the side 

chains of F150.A and F142.A are predicted to assume a position similar to that 



 

 

 

101 

 

of W84.A in HsSSAT2 and, therefore, overlap with the Spm region comprised 

between N3 and N4 as well (Fig. 5.4).  

 

 

Figure 5.4. Comparison among the substrate binding-site pockets of human SSAT structures 

and Arabidopsis NATA models. The loop regions comprising residue W84.B of HsSSAT1 and 

HsSSAT2, F150.A of AtNATA2 and F142.A of AtNATA1 are shown as ribbon and coloured 

white, yellow, orange and red, respectively. The side chains of these residues and the Spm 

ligand of HsSSAT1 are shown as sticks and coloured by atom type (N, blue; O, red; C, white, 

yellow, orange, red and green in HsSSAT1, HsSSAT2, AtNATA2, AtNATA1 and Spm, 

respectively). 

 

 

Our collaborators expressed recombinant AtNATA2 in E. coli, purified it by 

affinity chromatography to electrophoretic homogeneity, and analysed its 

catalytic properties by an in vitro assay based on the quantification of CoA-SH 

released during the reaction (Bode et al. 1993; Coleman et al. 2004; Lin et al. 

2010; Jammes et al. 2014). The results of these analyses indicate that 



 

 

 

102 

 

recombinant AtNATA2 is significantly more active towards Dap and 

thialysine than other substrates (Figure 5.5 and Table 5.2).  

 

 

Figure 5.5. Time course of acetyltransferase activity of recombinant AtNATA2 in vitro with 

different acetyl acceptors. Catalytic activity is reported as percentage relative to the maximum 

activity. Each point represents the mean value from three independent experiments. Bars 

indicate standard error (SE). Dap: 1,3-diaminopropane; Nor-Spm: norspermine; Orn: 

ornithine; Put: putrescine; Spd: spermidine; Spm: spermine. 
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Table 5.2 Catalytic parameters of recombinant AtNATA2 with the indicated substrates. Values 

indicate means of three replicates ± standard deviation (SD). Acetyl-CoA: acetyl-coenzyme A; 

Dap: 1,3-diaminopropane; Nor-Spm: norspermine; Orn: ornithine; Put: putrescine; Spd: 

spermidine; Spm: spermine. 

 

 

 

AtNATA2 catalytic activity towards Dap was further shown to be higher at 

30◦C than 23◦C, and at basic than acidic pH, reaching a maximum at pH 8.5 

(Figure 5.6). Furthermore, AtNATA2 was shown to be catalytically active 

towards N-monoacetyl-Put, though with a 7-fold lower kcat value than towards 

Put (Table 5.2). In addition, stoichiometric analysis evidenced a molar ratio of 

around 2 between the released CoA-SH and consumed Dap or Put, indicating 

that Dap and Put are di-acetylated during the AtNATA2 catalysed reaction. 
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Figure 5.6. Catalytic activity of recombinant AtNATA2 as a function of pH (A) and 

temperature (B). Catalytic activity was measured using Dap as a substrate. Data are expressed 

as percent of maximum activity. Each point represents the mean value from three independent 

experiments and bars indicate SE. 

 

 

Our structure analyses indicate that the preference of AtNATA2, AtNATA1 

and HsSSAT2 for short substrates, comprising only two amino groups (such 

as Dap, Put and Orn), over substrates comprising three or four amino groups, 

is likely contributed by the fact that although HsSSAT1 residues interacting 

with Spm regions proximal to the acetyl-CoA cofactor (from N1 to N2) are 

mostly conserved in both Arabidopsis protein and HsSSAT2, residues 

interacting with Spm distal regions (from N3 to N4) assume different 

conformation (like E28 and W84.B) and/or are replaced by residues differing 

in size (like W84.B), chemical nature (e. g., E32 replacement by histidine in 

AtNATA2 and AtNATA1) or both (D82.B replacement by serine and proline). 

Based on these observations, the lack of activity of HsSSAT1 towards short 

diamines, like Put and Dap, may be ascribed to the interaction of HsSSAT1 

acidic residues, such as E28, E32 and D82.B, which are in contact with Spm 

N3 or N4 in the crystal structure, with one of the external amino groups of the 

diamines. This would result in the positioning of the other amino group in a 

location too distant from the acetyl-CoA cofactor for a reaction to occur. 

 

 

5.5 Conclusions. 

 

In the present study, the activity of recombinant AtNATA2 were studied by in 

vitro measurements of catalytic activity, and bioinformatics analyses of both 
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AtNATA2 and its AtNATA1, HsSSAT1 and HsSSAT2 homologues were 

performed to provide a structural explanation for the observed catalytic 

behaviour.  

The best polyamine substrate of AtNATA2 resulted to be Dap, whereas the 

catalytic efficiency towards Put, Spd and Spm and Orn is low. These data are 

consistent with data previously obtained for the closely related AtNATA1, 

which was reported to have high catalytic activity with Dap, and low with Spd 

and Spm (Jammes et al. 2014). However, differently from AtNATA1, which 

has 2.5-fold lower activity with thialysine (a metabolite which has not been 

detected in plants yet) than with Dap, recombinant AtNATA2 has high 

catalytic activity with thialysine as well (65% of the catalytic activity towards 

Dap). This difference between AtNATA1 and AtNATA2 suggests that small 

differences in the amino acid sequence of SSATs can influence substrate 

specificity. This was also observed for HsSSAT1 and HsSSAT2 that, despite 

high sequence identity (46%), exhibit different substrate specificity, HsSSAT1 

being Spm- and Spd-specific, and HsSSAT2 thialysine-specific (Coleman et 

al. 2004). Data presented herein appear to be in contrast with previous data 

showing that recombinant AtNATA1 is mainly active with Put and Orn, the 

acetylated forms of which have been associated with defense responses (Adio 

et al. 2011; Lou et al. 2016). These contradictory data regarding recombinant 

AtNATA1 and AtNATA2 proteins may be reconciled by the possibility that 

the native enzymes acetylate all three metabolites under conditions in which 

intracellular Put or Orn levels exceed Dap levels, as was shown for Arabidopsis 

plants (Sánchez-López et al. 2009). Previous structural and biochemical 

studies suggested that HsSSAT1 and MmSSAT1 catalyse the acetyl transfer 

reaction through an acid/base-based catalytic mechanism, during which a 
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catalytic base deprotonates the N1-amine of the polyamine, and a catalytic acid 

protonates the sulphur of acetyl-CoA (Hegde et al. 2007; Montemayor & 

Hoffman 2008). Indeed, Y140 and E92 residues are positioned well inside the 

catalytic site to fulfil the role of a catalytic acid and base, respectively (Hegde 

et al. 2007; Montemayor & Hoffman 2008). The present structural studies 

showed that these amino acids are conserved in AtNATA1 and AtNATA2, 

suggesting that the general catalytic mechanism is conserved in these plant 

enzymes. The structural analyses performed in this work also suggested that 

the preference of AtNATA1, AtNATA2 and HsSSAT2 for short amine 

substrates can be ascribed to the different shape and chemical-physical nature 

of their ligand binding pockets with respect to those of HsSSAT1 and 

MmSSAT1, in particular in the regions interacting with Spm distal portions 

with respect to the acetyl-CoA cofactor. Overall, this study gives an insight 

into polyamine acetylation in plants and contributes to understanding 

polyamine metabolism and physiological roles. Moreover, it provides a 

comparison among the structural determinants of substrate specificity of 

different plant and human SSAT homologues. 
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6. Structural alignment programmes evaluation and 

creation of a pipeline to compare them. 

 

6.1 Background. 

 

Protein folding is a hierarchical process constituted by four subsequential 

stages that start with the amino acid sequence of the protein (primary 

structure). The folding process starting from the amino acid sequence organises 

the protein in ever more complex structures. The first level of rearrangement 

is constituted by motifs such as secondary structures (i.e., α helices and β 

sheets) and loops, which are combined into increasingly complex 

arrangements in the tertiary (3D) structure. This type of organisation in general 

represents the minimum functional unit of a protein, but often is associated 

with either identical or different 3D structures to create the final level of protein 

organisation (quaternary structure).  

The three-dimensional protein structures are determined with different types 

of experiments such as X-ray crystallography, Nuclear Magnetic Resonance 

(NMR) spectroscopy and electron microscopy. All the experimentally 

determined structures of biological macromolecules are stored in the Protein 

Data Bank (PDB: https://www.rcsb.org/) (Berman et al. 2000), which is the 

central repository of protein structures. Typically, there are two ways to 

compare proteins, i.e., based on protein sequences or protein structures. The 

3D structures of homologous proteins are more conserved than their respective 

sequences, which may diverge to the extent that sequence comparison methods 

fail to recognize their evolutionary relationships. For this reason, structure 

https://www.rcsb.org/
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alignments provide more accurate comparisons of proteins than sequence 

alignments. 

As a result, many programs have been developed to compare 3D structures that 

differ in multiple aspects, including: sets of atoms that are used in the 

comparison (i.e., alpha carbons, backbone atoms, all atoms), type of scoring 

RMSD, GDT, etc.), working environment (server or local), and output types 

(score, structure-based sequence alignment, superposed coordinates, etc.). 

Despite their usefulness, current protein structure alignment programs 

(PSAPs) have several limitations. First of all, most of them provide reliable 

structural alignments in the case of highly conserved structures, but commit 

errors with divergent structures, the entity of the error increasing with the 

extent of structural divergence. Additionally, it is not generally known which 

programs provide the best results for specific protein families or in general. 

 

 

6.2 Aim of the work. 

 

The long-term aim of this work is to perform an assessment of the ability of 

currently available PSAPs to produce correct protein structural alignments 

(PSA). As first step to reach this goal, we performed the following tasks:  

I) We performed and extensive search of the available PSAPs and catalogued 

them.  

II) We identified a dataset of protein pairs (PPs) such that: i) The structural 

similarity between the two proteins of each PP is high enough to make it 

possible to structurally align them using a PSAP. ii) The coordinate files of the 

protein structures among all different PPs are diverse enough (in terms of 



 

 

 

109 

 

structure divergence, structure completeness, presence of alternate residue 

conformations and other peculiarities that might be present in PDB files) to 

make a pipeline able to process them all reasonably robust. 

III) We developed a pipeline that compares the pairwise PSAs provided by the 

different PSAPs, and identifies consensus regions, i.e., regions of the two input 

proteins that are aligned in the same way by the different PSAPs. 

The following step will be:  

IV) The implementation in the pipeline of the PSAs produced by PSAPs that 

are available only as servers. 

V) The search in the literature for highly reliable PSAs and the production of 

novel manually curated PSAs starting from the consensus regions identified by 

our procedure, to obtain a set PSAs representative of different protein folds. 

VI) The evaluation of the accuracy of each PSAP by comparing the PSAs 

produced by them with manually curated PSAs.  

 

 

6.3 Methods. 

 

An extensive research for the available PSAPs was performed using both 

commonly used search-engines, with either general (such as Google 

https://www.google.com) or research specific (e.g., PubMed 

https://pubmed.ncbi.nlm.nih.gov; Google scholar https://scholar.google.com) 

scope, and information aggregators such as Wikipedia 

(https://en.wikipedia.org).  

The dataset of PPs chosen to test the method was the ensemble of Target-

Template pairs investigated in the 14th edition of the Critical Assessment of 

https://www.google.com/
https://pubmed.ncbi.nlm.nih.gov/
https://scholar.google.com/
https://en.wikipedia.org/
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Structure Prediction (CASP) website (https://predictioncenter.org/casp14). 

CASP is an international experiment to assess the accuracy of protein structure 

prediction methods, which is run every two years since 1994 (Moult et al. 

1995). The proteins of unknown structure that have to be predicted are called 

Targets, whereas proteins present in the PDB that have high structure similarity 

with the Targets and often used a starting point to build the models are called 

Templates. This dataset was chosen to test our method because it comprises a 

relatively high number of PPs such that: i) the two proteins of each PP have 

detectable structure similarity with each other; and ii) the proteins in all PPs 

have variable degree of structure similarity. As far as point i) is concerned, in 

CASP the extent of structure similarity and divergence of each PPs is 

qualitatively assigned. The “TBM-Easy” and “TBM-Hard” categories indicate 

Targets-Template PPs that have high and low structure similarity with each 

other, respectively; conversely, the “FM” category indicates Targets that have 

little to no significant similarity with other structures present in the PDB. 

Additionally, the chosen dataset can be easily extended to incorporate the sets 

of Target-Template PPs investigated in previous or subsequent CASP editions. 

All the scripts incorporated in the pipeline to compare the PSAs coming from 

the collected PSAPs and identify consensus regions were written in python, 

version 3 (Van Rossum & Drake 2009). 

 

 

6.4 Results. 

 

By utilising the search-engines cited in the Methods section, 115 programmes 

performing protein structural alignments (PSA) were identified (Appendix B). 

https://predictioncenter.org/casp14
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However, only 80 of these are currently available. These 80 software were 

divided into two categories: server-based only or downloadable. As a first step, 

we focussed on this second category, which comprises 59 PSASs. These 

programs were downloaded and installation was attempted. This step was 

successful for 30 programmes only, due to problems such as missing libraries 

or incompatibility of old versions of programming languages with current 

operating systems. The 30 PSAPs that could be installed software were tested 

to investigate the type of output. This consisted in: i) overall similarity 

measures, expressed most commonly by RMSD or GDT values; ii) structure-

based sequence alignments; iii) coordinates of the superimposed structures or 

rotation-translation matrices from which the coordinates of the superimposed 

structures could be obtained; iv) any combination of the above. For our 

comparison purposes, we selected all the methods whose output was either 

directly a structure-based sequence alignment (SBSA) or was such that a SBSA 

could be derived from it (e.g., coordinates of the superimposed structures). The 

15 programmes that satisfy this last requirement are listed in Table 6.1. 

 

Table 6.1. List of PSAPs that provide an output from which a SBSA can be obtained, selected 

to setup the pipeline. 

NAME Last Update Language Author 

CAB-Align 20-03-2015 C++ (Terashi & Takeda-Shitaka 2015) 

DeepAlign 15-08-2018 C++ (Wang et al. 2011) 

Fr-TM-align 11-01-2009 Fortran (Pandit & Skolnick 2008) 

Kpax 27-04-2019 NA (Ritchie et al. 2012) 

LGA 02-09-2019 C (Zemla 2003) 

LOVOALIGN 16-11-2018 Fortran (Martínez et al. 2007) 

MAMMOTH 14-08-2006 Fortran (Ortiz et al. 2009) 

Mapsci 14-08-2009 C++ (Ilinkin et al. 2010) 
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Matt 12-02-2208 C (Menke et al. 2008) 

mTM-align 16-09-2018 C++ (Dong et al. 2018) 

Mustang 04-01-2017 C++ (Konagurthu et al. 2006) 

parMATT 14-04-2019 C (Shegay et al. 2019) 

SHEBA 09-05-2007 C (Jung & Lee 2000) 

SPalign 18-07-2012 C++ (Yang et al. 2012) 

TM-align 22-08-2019 NA (Zhang & Skolnick 2005) 

 

 

The pipeline used to compare the output of all the programmes was written in 

python and comprises different scripts, whose tasks are schematized in the 

flowchart in Figure 6.1. 

5) The first script, “PSAP-launcher”, runs each of the 15 selected PSAPs 

on a given pair of input structures and collects their output, i.e., 15 

different PSAs, written in a different format for each PSAP.  

ii) The second script, “PSA-parser” translates the specific output of each PSAP 

into a new format that we called Fasta2Excel. This is a variant of the Fasta 

format where each amino acid-encoding letter is separated from the other 

amino acid-encoding letters by a space and, therefore, ready to be imported in 

the Microsoft Excel software for visual examination (Figure 6.1).  
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Figure 6.1. An example of the schematisation of the process produced by the scripts.  
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An example of output of this script after uploading to Excel is shown in Figure 

6.2. In spite of the fact that the two structures given as input to the different 

PSAPs, i.e., PDB files 6FRH and 6TMM, are quite similar to each other (the 

6FRH target was assigned to the TBM-easy CASP category) it can be observed 

that the PSAs produced by the different PSAPs differ in several regions. 

 

 
Figure 6.2. Output of the “PSAP-parser” script run on the Target-Template pair 6FRH-6TMM 

imported in Excel. 
 

 

iii) The third script, “PSA-align”, aligns the 15 PSAs produced by the 15 

PSAPs to each other, to facilitate their comparison. To illustrate how the script 

works, we will refer to the two proteins present in each PSA as “Protein_A” 

and “Protein_B”. To obtain an alignment of the different PSAs, the script 

aligns the Protein_A sequences of all PSAs to each other by inserting gaps at 

appropriate positions both in the Protein_A sequences and in the Protein_B 

sequences, in such a way that Protein_A-Protein_B alignment present in each 

PSA is maintained. Operatively, the script works as follows. First, it selects as 
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a reference the PSA produces by LGA (Zemla 2003), which is the PSAP used 

by CASP14 organizers. Then it compares the Protein_A sequences of each of 

the 14 PSAs produced by the other PSAPs (Protein_A-PSAP) to the Target 

sequence of the PSA produced by LGA (Protein_A-LGA). At positions where 

Protein_A-LGA and the Protein_A-PSAP differ, a gap is introduced either in 

the protein_A-LGA or in the Protein_A-PSAP sequence, until these sequences 

are aligned. Importantly, every time a gap is inserted into any Protein_A 

sequence, a gap is also inserted at the corresponding position into the 

Protein_B sequence of the same PSA, so that the alignment between Protein_A 

and Protein_B sequence of each PSA is preserved.  

iv) The fourth script, “PSA-entropy”, calculates the variability at each position 

of the PSA alignment produced by the previous script by using Shannon’s 

entropy. This script assigns a value of “0” to all positions where the PSAs 

produced by the 15 PSAPs are identical and positive values to all positions 

where the PSAs produced by the 15 PSAPs differ, which are proportional to 

the extent of variation, until 3.67 which is the value if all the 15 PSAPs differ 

from each other. 

The final output of the pipeline incorporating these scripts is a file in the 

Fasta2Excel format that comprises: all the 15 PSAs aligned to one another; the 

numbering of the Protein_A and Protein_B sequences; and the position-

specific score based on Shannon’s entropy that measures the variation between 

the different PSAs at each position. Figure 6.3 shown an example of the 

pipeline output imported in the Microsoft Excel software.  
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Figure 6.3. Structure alignment between the two proteins in coordinate files 6TMM and 6FRH 

produced by the 15 different PSAPs analysed in this work. The sequences and sequence 

numbering of both proteins are reported for each PSAP. The bottom line of the alignment 

indicates the values of Shannon’s entropy. There are 207 consensus positions that are 

structurally aligned in the output of all the PSAPs. This regions have score “0” and are 

highlighted by a cyan background. Shannon’s entropy is 3.37 over 217 alignment positions 

(1.6%). 
 

Analysis of the results of the pipeline described above for different CASP14 

Target-Template pairs shows that, in the case of Targets assigned to the TBM-

easy category, the regions that are structurally aligned in the output of all the 

15 programmes are relatively large, as shown in the example in Figure 6.3. 

Visual examination and calculation of RMSD values after optimal least-square 

superposition of these structurally aligned regions indicates that they actually 

comprise highly conserved structures (Figure 6.4). 
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Figure 6.4. Regions of the 6TMM-6FRH Target-Template pair that are structurally aligned in 

the output of all 15 examined PSAP, and that are highlighted by a cyan background in Figure 

6.3. The RMSD value calculated after optimal least-square fit superimposition of these regions 

is 0.83Å. 

 

 

Conversely, in the case of Targets assigned to the “TBM-hard” category, the 

consensus structurally aligned regions are significantly reduced, as shown in 

the example in Figure 6.5. 
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Figure 6.5. Structure alignment between the two proteins in coordinate files 4V4M and 6S44 

produced by the 15 different PSAPs analysed in this work. The sequences and sequence 

numbering of both proteins are reported for each PSAP. The bottom line of the alignment 

indicates the values of Shannon’s entropy. There are 8 consensus positions that are 

structurally aligned in the output of all the PSAPs. These regions have score “0” in the 

bottom line and are highlighted by a cyan background. Shannon’s entropy is 219.73 over 

314 alignment positions (70%). 
 

A statistical analysis of the results of the pipeline in terms of extent of 

consensus structurally aligned regions, and RMSD values of these regions after 

optimal least-square fit superposition, as a function of % age sequence identity 

both within the consensus structurally aligned regions and between the whole 

sequences of each protein pair is currently ongoing. 

 

 

6.5 Conclusions. 

 

We developed an automated pipeline, comprising four main Python scripts, 

that takes two protein structures as input, launches the 15 PSAPs that are 

currently available for download, still working and able to provide a PSA for 

the two proteins, and generates an alignment of the 15 PSAs provided by the 

PSAPs, where the consensus regions that are structurally aligned by all the 15 

PSAPs are aligned and a score for the other regions is provided, based on the 
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degree of variability among the PSAs provided by the 15 PSAPs measured by 

Shannon’s entropy. 

This pipeline is useful for both inexperienced users and researchers that 

routinely compare protein structures, since programmes described in the 

literature or reported in databases to perform protein structure alignments are 

large in number and highly heterogeneous in terms of output, regions that they 

take into account for the alignment and, most important, accuracy. 

Additionally, many of them are not working anymore. The pipeline provides 

users with the results of the 15 currently available, still working and 

downloadable PSAPs, and with information on the degree of consensus among 

the different methods by entering a single command, without the need to 

search, download and install any of the PSAPs. Starting from the regions with 

the lowest values of Shannon’s entropy, which indicate the highest consensus 

among the PSAs generated by the 15 PSAPs and, therefore, are expected to be 

the regions where the PSA is most accurate, the user can decide whether to 

extend the PSA to other regions with increasing values of Shannon’s entropy, 

based on visual examination of the PSA obtained including these regions and 

calculation of parameters like RMSD or GDT.  

In the future, we are going to: 

i) Run the pipeline on a larger dataset, including Target-Template pairs from 

all other CASP experiments, to test the pipeline robustness on a much larger 

number of protein coordinate files. 

ii) Make the pipeline available to the scientific community through the 

development of a web-based server. 
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ii) Implement the pipeline by incorporating also the results of server-only 

PSAPs, some which are popularly used, to have the complete set of PSAs 

produced by all currently available and working PSAPs.  

A long-term goal is the assessment of the performance of the different PSAPs 

incorporated in the pipeline by comparison of the PSAs generated by them with 

manually curated and highly reliable PSAs reported in the literature or 

generated by ourselves, for protein pairs with diverse folds, level of structure 

similarity, length, and other relevant parameters. 
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7. General conclusions 

 

In conclusion, in this thesis we have applied well-established structural 

bioinformatics methods to address biotechnological and biomedical problems, 

and we have developed a method to identify the most similar regions among 

two protein structures based on the consensus among the results of different 

structure superposition programs. 

1) I have implemented a VS-based drug repositioning procedure that 

allowed six FDA-approved drugs to be proposed for a novel use in HD 

therapy, which are directly amenable to off-label clinical use. This 

procedure uses the σ1 receptor as a target and a library of FDA-

approved compounds as potential ligands, and the accurate visual 

inspection of the twenty VS-generated complexes with highest 

predicted binding affinity to critically evaluate the results and select six 

compounds for experimental testing. All the six selected compounds 

were demonstrated to directly bind Hsσ1R in vitro, in SPR 

experiments, and increase the growth of HD patient fibroblasts, 

indicating that they exert agonistic activity on Hsσ1R, like the 

prototypic Hsσ1R ligand pridopidine. The most active of these six 

compounds was the anti-psychotic drug iloperidone, which is also 

devoid of effects on the growth of normal fibroblasts (Chapter 2 and 

Battista et al., 2021). 

2) I have implemented an extensive VS procedure that allowed steroid-

based compounds to be proposed to be among the potential 

physiological ligands of the σ1 receptor. As a result of this procedure, 

the set of compounds with statistically significant highest affinity 
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towards the human σ1 receptor presented an enrichment in compounds 

comprising a steroidic/sterolic nucleus, as well as in known σ1R 

ligands, but not in known non-binders or in categories of compounds 

with diverse scaffolds, like human metabolites and approved drugs. 

The hypothesis of steroid-based ligands was supported by results 

produced by our collaborators: i) the good fitting of ergosterol in the 

electron density in the binding site of the σ1 receptor from Xenopus 

laevis, which was determined in the absence of ligands; ii) the ability 

of the endogenous steroid 16,17-didehydroprogesterone to bind human 

σ1 receptor with affinity comparable to that of iloperidone and higher 

than that of a prototypic σ1 receptor ligand in fluorescence titration 

assays; and iii) the results of molecular dynamics simulations that 

indicate that the ligands access the binding site from the membrane side 

of the σ1 receptor (Chapter 2 and Pascarella et al., 2023). 

3) The results of computational docking towards the structures of COX-2 

and COX-1 enzymes indicate that thiocanthal and thiocanthol, the new 

compounds obtained from olive oil through eco-sustainable 

procedures, interact with COX-2 involving the same residues that 

interact with other ligands in known structures, with predicted affinity 

in the same range as that of COX-2 inhibitors clinically used as anti-

inflammatory drugs, and higher for COX-2 than COX-1 (Chapter 3 and 

Di Risola et al, submitted for publication to Green Chemistry). 

4) To identify the sequence and structure determinants underlying the 

antiproliferative activity of Arabidopsis sirtuins demonstrated by our 

collaborators, I produced the molecular models of Arabidopsis SRT1 

and SRT2 and human SIRT4 and compared them with one another and 
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with the experimentally determined structures of human SIRT6, both 

at the global and at the substrate binding site level. Human SIRT6 and 

SIRT4 were chosen because they are the closest homologues of the 

Arabidopsis sirtuins and are functionally characterised. Sequence and 

structure comparisons highlighted that the residues responsible for the 

de-acylation and ADP-ribosylation reactions demonstrated for 

HsSIRT6 and HsSIRT4 are conserved. Additionally, we found an 

evolutionary relationship between the unique Ig-like domain 

comprised in AtSRT1 and the human GAS41 protein, which suggests 

that the function of this domain is to facilitate AtSRT1 interaction with 

specific substrates, possibly with similar features to those recognized 

by GAS41 (Chapter 4 and Bruscalupi et al, 2023).  

5) To explain the catalytic activity of the Arabidopsis thaliana AtNATA2 

protein towards several substrates, which had been determined by our 

experimental collaborators, I built a molecular model of the 

Arabidopsis thaliana AtNATA1 and AtNATA2 proteins and 

performed a comparative analysis of these models and of the 

experimentally determined structures of the human SSAT1 and SSAT2 

homologues. These analyses allowed me to identify specific features in 

the binding sites of the Arabidopsis proteins and of human SSAT2, in 

terms of both shape and identity of residues lining the binding site, that 

differ from the binding site of human SSAT1 and might explain their 

different substrate specificity, in particular the preference of the former 

three enzymes for shorter amines with respect to human SSAT1 

substrates (Chapter 5 and Mattioli et al, 2022). 
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6) I have implemented an automated pipeline to identify the consensus 

results among the 15 protein structure alignment programs that are 

available for download and are functional after installation. Indeed, 

many of these programs have developed since the first protein 

structures were determined and the necessity to compare them arose. 

However, these programs present several problems: many of them are 

not functional anymore; their ability to superimpose protein structures 

decreases with the decrease in structural similarity; and it is not clear 

which program performs better on specific protein structures or in 

general. To address these problems, we have performed an extensive 

recognition of the programs reported in the literature and/or in 

databases, have tested all of them to identify the programs that are still 

functional, and have developed a pipeline to compare the results of 

these programmes and identify the consensus regions in their output, 

based on an easily interpretable scoring function. Since consensus 

regions among the output of different programs are more likely to 

correspond to regions of actual structure similarity than be found by all 

programs by mistake, this pipeline represents a valuable aid to all users 

who need to perform structure comparisons as part of their research 

activity (Chapter 6 and Pascarella et al, in preparation). 
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8. Publications resulting from this thesis 
 

*: equal contribution 
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Virtual Screening Are Able to Bind Sigma-1 Receptor and Increase 

Growth of Huntington Disease Patient-Derived Cells’. International 

Journal of Molecular Sciences 22 (3).  
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MD Molecular dynamics 

NCBI National Center for Biotechnology Information 

ORN Ornitine 

PAO Polyamine oxidase 

PD Parkinson’s Disease 

PDB Protein Data Bank 

PUT Putrescine 
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RMSD Root-mean square deviation 

SAT Spd-acetyltransferase 

SBVS Structure-based Virtual Screening 

SPD Spermidine 

SPM Spermine 

SPR Surface Plasmon Resonance 

SSAT Spermidine/Spermine N1-acetyltransferases 

VS Virtual Screening 

YMDB Yeast metabolome database 
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Appendix A. 

 

GDT_TS (Global Distance Test Total Score). 

This parameter indicates the percentage of atoms of two structures whose 

distance is lower than a specified threshold.  

GDT_TS = (GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8)/4, where GDT_Pn 

denotes percent of residues under distance cutoff <= nÅ (CASP14 definition) 

 

RMSD (Root Mean Square Deviation)  

It is a parameter calculated using the following formula:  

 

 

Where di is the distance between a given atom and its counterpart in the 

reference structure. 

 

Shannon’s Entropy     

It is a parameter calculated using the following formula: 

𝐻(𝑋) = −∑𝑝(𝑥)𝑙𝑜𝑔2(𝑝(𝑥))

𝑥

 

Where H(X) is the entropy to a variable x which can assume n values and 

p(x) is the probability that a given event occurs. 
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Appendix B. 

 

Name 

Download  

Server Set Author 

CAB-Align D F Terashi et Takeda-Shitaka 

DeepAlign D F S. Wang and J. Xu 

Fr-TM-align D F S.B. Pandit and J. Skolnick 

Kpax D F D.W. Ritchie et. al. 

LGA D/S F A. Zemla 

LOVOALIGN D F Andreani et al. 

MAMMOTH D/S F CEM Strauss and AR Ortiz 

MAMMOTH-MULT D F D. Lupyan 

Mapsci D/S F Ilinkin et al 

mTM-align D/S F 

R. Dong, Z. Peng, Y. Zhang and J. 

Yang 

MUSTANG D F A.S. Konagurthu et al. 

parMATT D F Shegay et al. 

SHEBA D F J Jung and B Lee 

SPalign D/S F Y. Yang et.al. 

TM-align D/S F Y. Zhang and J. Skolnick 

FAST D FNW J. Zhu 

MIC/MICAN D FNW S.Minami et. al. 

BLOMAPS D NF W-M. Zheng and S. Wang 

Chimera D NF E. Meng et al. 

DaliLite D/S NF L. Holm 

GANGSTA+ D/S NF A. Guerler and E.W. Knapp 

MASS D/S NF O. Dror and H. Wolfson 

MatAlign D NF Z. Aung and K.L. Tan 

MMLigner D/S NF J. Collier et al. 

ProBiS D/S NF J. Konc and D. Janezic 

pyMCPSC D NF Sharma A, Manolakos ES 

PyMOL D NF W. L. DeLano 

SSAP D NF C. Orengo and W. Taylor 

STAMP D NF R. Russell and G. Barton 

THESEUS D NF D.L. Theobald and D.S. Wuttke 
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3D-Blast D/S NW Yang and Tung 

CBA D NW J. Ebert 

CLEPAPS D NW W-M. Zheng and S. Wang 

ComSubstruct D NW N. Morikawa 

CSR D/S NW M. Petitjean 

CTSS D NW T. Can 

EXPRESSO D/S NW C. Notredame et al. 

Fit3D D/S NW F. Kaiser et al. 

Flexsnap D NW Salem et al. 

FoldMiner D NW Shapiro and Brutlag 

LOCK 2 D NW J. Shapiro 

LSQRMS D NW Alexandrov and Gerstein 

Matt D/S NW M. Menke 

MSVNS for MaxCMO D NW D. Pelta et al. 

ProCKSI D NW D. Barthel et al. 

ProSMoS D/S NW S. Shi et al. 

QP Tableau Search D NW A.Stivala et al. 

RCSB PCT D/S NW A. Prlic et al. 

SA Tableau Search D NW A.Stivala et al. 

SARST D/S NW W-C. Lo et al. 

SAS-Pro D NW Shah and Sahinidis 

SCALI D/S NW X. Yuan and C. Bystroff 

Staccato D NW M. Shatsky and H. Wolfson 

Structal D/S NW Gerstein and Levitt 

TopMatch D/S NW M. Sippl and M. Wiederstein 

URMS D NW K. Kedem 

Vorolign D NW F. Birzele et al. 

YAKUSA D/S NW M. Carpentier et al. 

MOE D P Chemical Computing Group 

CLICK S - M. Nguyen 

CE S - I. Shindyalov 

Espript S - Robert et Gouet 

FATCAT S - Y. Ye and A. Godzik 

FlexProt S - M. Shatsky and H. Wolfson 

KENOBI/K2/K2SA S - Z. Weng 

MISTRAL S - C. Micheletti and H. Orland 
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msTALI S - P. Shealy and H. Valafar 

mulPBA S - A.P. Joseph et. al. 

MultiProt S - M. Shatsky and H. Wolfson 

POSA S - Y. Ye and A. Godzik 

PrISM S - B. Honig 

ProFit S - ACR. Martin 

Protein3Dfit S - D. Schomburg 

RAPIDO S - R. Mosca and T.R. Schneider 

SALIGN S - M.S. Madhusudhan et al. 

SSM (PDBeFOLD) S - E. Krissinel 

STRAP S - C. Gille 

SuperPose S - Malti et al. 

TOPS++FATCAT S - M. Veeramalai et al. 

VAST S - S. Bryant 

3D-Blast NA - L. Mavridis et. al. 

3DCOMB NA - S. Wang and J. Xu 

ALADYN NA - Potestio et al. 

CAALIGN NA - T.J. Oldfield 

C-BOP NA - E. Sandelin 

CE-MC NA - C. Guda 

CURVE NA - D. Zhi 

deconSTRUCT NA - ZH. Zhang et al. 

DEDAL NA - P. Daniluk and B. Lesyng 

DEJAVU NA - GJ. Kleywegt 

EpitopeMatch NA - S. Jakuschev 

FASE NA - J. Vesterstrom and W. R. Taylor 

FLASH NA - E.S.C. Shih and M-J Hwang 

GANGSTA NA - B. Kolbeck 

LOCK NA - AP. Singh 

MALECON NA - S. Wodak 

Matchprot NA - S. Bhattacharya et al. 

Matras NA - K. Nishikawa 

MAX-PAIRS NA - A. Poleksic 

MIRAGE-align NA - K. Hung et. al. 

MolCom NA - S.D. O'Hearn 

MolLoc NA - M.E. Bock et al. 
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PRIDE NA - S. Pongor 

SABERTOOTH NA - F. Teichert et al. 

SARF2 NA - N. Alexandrov 

Smolign NA - H. Sun 

SSGS NA - G. Wainreb et al. 

STON NA - C. Eslahchi et al. 

SWAPSC NA - Mario A. Fares 

TABLEAUSearch NA - A.S. Konagurthu et al. 

TALI F NA - X. Mioa 

TetraDA NA - J. Roach 

TOPOFIT NA - VA. Ilyin 

TOPS+ COMPARISON NA - M. Veeramalai and D. Gilbert 

TS-AMIR NA - J. Razmara et. al. 

 

Legend: D (download), S (Server-based), D/S (both download/server-based), F (produces 

Fasta output file, FNW (produces fasta file output but with problems in the output), NF 

(works but does not produce Fasta output file), NW (does not works – installation or other 

problems), NA (download or server links no more actives) 
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