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A B S T R A C T   

Critical bone defects and fractures are typically treated using autologous bone grafts, which are limited by 
volume of bone that can be harvested, or allogeneic or synthetic bone grafts that lack osteoinductive properties. 
Human bone extracellular matrix (hbECM) is widely available and offers the potential to be used as a native 
material to synthesize functional injectable hydrogel systems. However, hbECM lacks the mechanical stability 
required for injectability and bone growth. We have explored the use of Laponite® (LAP) nanoclay and sodium 
polyacrylate to augment the mechanical and biological properties of hbECM gel. We demonstrated that the in-
clusion of LAP into ECM improved the physicochemical properties of hbECM and consequently promoted cell 
responses confirming that the nanoclay platelet-to-platelet interaction is key to sustain hbECM functionality. This 
novel hbECM detailed offers significant clinical promise for bone repair.   

1. Introduction 

Musculoskeletal disorders are currently the most common cause of 
disability worldwide [1]. Fractures alone cost the European economy 
€17 billion and the US economy $20 billion annually [2,3]. Autologous 
bone grafts are clinically applied for the treatment of large bone defects. 
However, current issues on graft remodelling and the lack of sufficient 
autologous material preclude universal application. While allogeneic 
bone holds potential risks of cell-mediated immune responses and 
contamination, clinical alternatives such as synthetic scaffolds lack the 
desired osteoinductivity to facilitate bone regeneration [4]. Tissue en-
gineering and regenerative medicine (TERM) have sought to address the 
need for bone augmentation using synthetic or biological, biocompatible 
and biodegradable materials capable of guiding tissue regeneration. 
Gel-based materials can be engineered to provide injectable constructs 
with the potential for minimally-invasive delivery of cellular and ther-
apeutic components [5,6]. However, the inert nature of popular 

materials (e.g., alginate), the inability to support functional tissue 
regeneration and the lack of control over the gelation properties 
following injection have, to date, limited the clinical translation of a 
number of injectable materials. Nevertheless, injectable systems can be 
engineered to mimic extracellular matrix (ECM) features and properties, 
facilitating integration and preventing a foreign body response. With the 
optimal formulation of extracellular proteins and polymers (e.g., 
collagen, laminin, fibronectin), ECM offers functional sites for cell 
attachment and proliferation, while encapsulating growth factors 
capable of modulating cell fate [7,8]. 

Biomaterials derived and prepared from native tissues are attractive 
given their capacity to mimic elements of the natural biochemical/ 
physical environment [9]. Indeed, demineralised bone matrix (DBM) 
has been shown for more than 60 years to hold osteoinductive potential 
when devitalised and decalcified [10]. However, unlike DBM, new 
immune-privileged materials have come to the fore providing new 
acellular platforms for tissue regeneration. ECM-based materials have 
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been previously proposed for tissue regeneration, with modest success 
using xenogeneic-sourced materials such as the porcine small intestinal 
submucosal ECM for soft-tissue repair [11,12]. ECM from bone tissue 
has proved challenging to isolate and the limited availability of human 
tissue has led to a focus on animal-based ECM gels, although there are 
clear species differences therein. Moreover, the resultant lack of studies 
on human bone ECM has made evident the need for studies on the 
regenerative potential for skeletal tissue following decellularization and 
demineralization. Nevertheless, the poor rheological and mechanical 
stability have negatively impacted the pre-clinical use of ECM-based 
injectable materials. Nanofillers have been used to rapidly modify the 
injectability of a number of polymers. Particularly, Laponite® (LAP) 
nanoclay are an excellent candidate for conferring shear thinning 
properties to blended polymers [13,14]. Injectability of nanocomposites 
can be modified by altering surface charge interaction with sodium 
polyacrylate (ASAP) as previously demonstrated [15,16]. However, the 
physicochemical modification of ECM-based materials with LAP and 
ASAP has never been reported and yet remain to be studied. 

We report an innovative injectable nanocomposite ECM-based gel 
capable of driving osteogenic regeneration supporting rapid delivery in 
situ, gelation under physiological conditions and mineralization 
depending on the nanoclay and surfactant concentration. 

2. Materials and methods 

2.1. Nanoclay-based material preparation 

Nanoclay gels were prepared dispersing 1.4 % w/v UV sterile 
LAPONITE® XLG (LAP, BYK Ltd, UK) in deionised water followed by a 
constant stirring for 3 h. A series of concentrations (0, 0.06 and 0.12 %) 
of sodium polyacrylate (ASAP, MW:15,000, 35 wt %, Sigma-Aldrich, 
UK) were added to LAP suspension following stir at room temperature 
for 3 h. 

2.2. Human bone extracellular matrix 

Human bone extracellular matrix (hbECM) hydrogel was synthesised 
following as previously described [17,18]. Briefly, trabecular bone was 
isolated from adult femoral heads collected from haematologically 
normal patients undergoing routine elective hip replacement surgery. 
Only tissue samples that would have been discarded were used following 
informed consent from the patients in accordance with approval from 
Southampton & Southwest Hampshire Local Research Ethics Committee 
(Ref: 194/99/w). Bone tissue was ground and separated collecting 
fragments which were demineralised under agitation with 0.5 N HCl for 
24 h. Any remaining lipid was removed with a 1:1 mixture of HCl and 
methanol and washed repeatedly. The bone fragments were then frozen 
and lyophilised overnight. decellularization was carried out under 
agitation in a 0.05 % Trypsin/0.02 % EDTA mixture at 37◦C for 24 h. 
The solution was then dried through vacuum filter and washed repeat-
edly with PBS before further lyophilization. The material was further 
digested in pepsin solution (1 mg/ml in 0.01 N HCl) for 7 days. The 
digested solution was then centrifuged at 2000 rpm for 15 min and su-
pernatant collected, neutralised using the combination of NaOH and PBS 
and incubated overnight to collect the final ECM hydrogel (hbECM) at a 
concentration of 20 mg ml− 1. 

2.3. Nanocomposite preparation 

LAP suspensions (2.8 %) treated with various concentrations of ASAP 
were blended with hbECM supernatant (20 mg ml− 1) at 1:1 ratio (in 
brief, ECM-based Laponite® suspension (ELAP)), neutralising the solu-
tion following vortex agitation for 10 s. To allow complete setting, 
nanocomposite blends (Table 1) with 0 % (ELAP0), 0.06 % (ELAP6) and 
0.12 % (ELAP12), respectively, were incubated at 37◦C overnight. 
hbECM (10 mg ml− 1) and LAP (1.4 %) gels on their own were used as 

controls. 

2.4. Scanning electron microscope (SEM) 

Morphology images were acquired using a Zeiss 300 FE scanning 
electron microscope (SEM) (Carl Zeiss, Oberkochen, Germany) at 4 kV 
EHT. ImageJ software (version 1.53 t) was applied to analyse 
micrographs. 

2.5. Fourier transform infrared spectroscopy (FTIR) 

Measurements have been performed in vacuum with a Fourier 
transform infrared (FTIR) spectrometer (Vertex 66 by Bruker) equipped 
with a single-reflection diamond crystal attenuated total reflectance 
(ATR) accessory (by Pike Technologies), a DTGS detector and a KBr 
beam-splitter. A pressure clamp with a flat tip was used to accommodate 
and press the samples on the diamond crystal. The ATR-FTIR absorption 
spectra have been obtained from the transmission spectrum T as -log(T) 
and no ATR correction has been done on the spectra. 

2.6. Rheological measurements 

Amplitude sweeps with an increasing shear strain (0.01–100 %) at a 
constant angular frequency of 10 s− 1 at 37◦C was carried out on gels 
loaded on a cone plate rheometer (MCR92, Anton Parr). A constant 
strain measurement was performed following setting protocol per-
formed with 3 ml of fetal bovine serum (FBS) to surround the gel 
following 2 min of measurement. 

2.7. Gel degradation 

To evaluate the degradation of nanocomposite gels, 50 μL of pre-set 
nanocomposite and control (hbECM and Nanoclay) gels were incubated 
in PBS for 24 hours, and then further incubated in collagenase-PBS 
(100 µg ml− 1) for 24 hours. The supernatants were collected at each 
time point (1, 2, 6, 24, 25, 26, 30, and 48 h) and kept in − 20 ◦C until use. 
The proteins in supernatants were quantified with Fluoroprofile Protein 
Quantification Kit (Sigma FP0010). The pH in PBS and collagenase-PBS 
was measured by Mettler Toledo pH meter (Bioclass, Italy) and the 
weight loss of composites during the 48-hour incubation was calculated 
based on the initial weight of the dried composite gels. 

2.8. Turbidimetric assay 

Turbidity of 100 μL gels was measured at a wavelength of 450 nm 
using a microplate reader (Glomax, Promega) at 37◦C every 2 minutes 
for 1 hour. 

2.9. Cell differentiation 

Mouse myoblast (C2C12) cells were seeded (2×105 cells/well) onto 
10 μL dried gels (or empty control wells) and allowed to attach. Gels 
were loaded with increasing concentrations of bone morphogenetic 
protein-2 (BMP-2: 0, 100, 200, 400 ng ml− 1). Following a 72 h culture, 
cells were fixed and stained with Alkaline Phosphate (ALP) solution 
following standard protocols [19]. Samples were imaged at 10x 
magnification and photographed. Image analysis was performed using 
Cell Profiler quantifying the ALP intensity on n=5 image set for each 

Table 1 
Nanocomposite polymeric concentrations.  

Composites hbECM Nanoclay ASAP 

ELAP0 10 mg ml− 1 1.4 % 0 % 
ELAP6 10 mg ml− 1 1.4 % 0.06 % 
ELAP12 10 mg ml− 1 1.4 % 0.12 %  
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treatment group. 

2.10. Statistics 

All statistical analysis was performed on GraphPad Prism 9 (Graph-
Pad Software, LLC, version 9.0.1). Results are reported as mean ± SD. P 
value < 0.05 was considered as statistically significant between different 
experimental sets with one-way and two-way ANOVA. 

3. Results and discussion 

Following a published human bone ECM synthesis protocol [20] 
bone fragments were isolated and digested to decellularize and demin-
eralize the matrix (Fig. 1a). Nanoclay suspensions were subsequently 
blended with hbECM following selective inclusion of ASAP ranging from 
0 % (ELAP0), 6 % (ELAP6) up to 12 % (ELAP12) to obtain a homoge-
neous suspension (Fig. 1b). 

3.1. Clay addition facilitated the packing of a loose ECM network 

To investigate the morphological appearance and microscopical 
arrangement of clay combined with ASAP and hECM, SEM images were 
acquired (Supplementary Fig. 1). Clay materials (Supplementary 
Fig. 1a) appeared as lamellae, while hECM (Supplementary Fig. 1b) 
resembled the trabecular network of native bone at scale, with open 
pores and interconnectivity. However, when clay and hECM were 
combined with increasing concentrations of ASAP (Supplementary 
Figure 1c-e) the structured appeared more compact, with no visible 
differences at the microscopic level. 

The analysis of the microstructural arrangement of composites car-
ried out with a Fourier transform infrared (FTIR) spectrometer, revealed 
the spectra of main characteristic absorption peaks of Laponite and 
bECM materials, with assignment of the main bands reported in 

Supplementary Fig. 2a. 
Supplementary Fig. 2b demonstrate the ATR-FTIR absorption spec-

trum for the three composites with increasing ASAP content. The ELAP 
curves have been normalized at the maximum of the amide-I band 
falling around 1660 cm− 1. All three composite materials clearly show 
the typical absorption bands of both Laponite and bECM (insert on the 
right for a zoom in the 1200–1800 cm− 1) confirming the successful in-
clusion and presence of the two components in a tight network with 
ASAP. Moreover, it is evident from the analysis reported in Supple-
mentary Fig. 2c, that the relative intensity of the clay absorption peaks 
increases with the increase of the ASAP content. This is confirmed by the 
reported ratio between the intensity at 980 cm− 1 and that at 1660 cm− 1, 
demonstrating the rapid and effective shielding of the positive charges 
of the clay nanodiscs already saturated at 0.6 % ASAP. 

3.2. Clay nanoparticles improved rheological properties of hbECM 

To test the utility of LAP to enhance the rheological properties of 
hbECM, the nanoclay was blended at a fixed ratio to hbECM with the 
goal of improving the mechanical stability (Fig. 2a, Table 1). The 
combination of the two materials was found to induce rapid gelation 
which prevented homogeneous mixing. Following Wang and co-workers 
[21], the inclusion of ASAP improved the dispersion efficiency of LAP, 
thus we assessed whether ASAP would cause similar improvements upon 
mixing with the novel hbECM. The selective inclusion of ASAP signifi-
cantly increased the transparency of the nanocomposite gel (Fig. 2b), as 
demonstrated by the micrographs and the reduction in absorbance to a 
level comparable with the hbECM transparent gel. However, while this 
created clearer gels, the inclusion of ASAP hindered rather than 
enhanced nanoclay interactions with proteins within the hbECM. 

Thus, the overall effect of ASAP was to reduce the storage moduli of 
the gels. Indeed, a similar trend was found for the storage moduli of the 
nanocomposites with varying ASAP concentration (Fig. 2c), 

Fig. 1. Preparation process of hECM, nanoclay (Laponite) and composite hydrogels. a) Human bone ECM gel was created from trabecular bone collected from 
femoral heads, grounded, and demineralized under agitation with organic solvents and filtered. Decellularization was carried out in a step-wise manner to completely 
remove cellular material. Nanoclay gels (b) were engineered by suspending Laponite® powder in ultrapure water and sheared while adding ASAP solution. 
Nanocomposite gels were prepared by mixing the Nanoclay suspensions with ECM digest supernatant prior neutralization. 
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demonstrating the ability of ASAP to control the ultimate clay-protein 
assembly. With a reduced layer-to-layer interaction between the clay 
particles, the composites were mechanically weaker, resulting in gels 
with reduced mechanical competency. The ECM gel alone was observed 
to be poorly stable, however, the inclusion of nanoclay augmented the 
stability and storage modulus of the gel. Indeed, as previously reported 
[22], the long-chained ASAP can coat the positively charged outer rim of 
LAP, and with a dose-dependent effect prevent the stacking of the 
nanoparticles while improving dispersion (Fig. 3a). To investigate the 
effects of exogenous addition of blood serum on rheological properties of 
the nanocomposite gel, FBS was placed in contact with a varying con-
centration of hbECM-clay gels with an increasing amount of ASAP. In 
accordance with published articles [23], results (Fig. 3b) demonstrated a 
significant increase of storage modulus following exposure to FBS. This 
responsive gelation to physiological fluids seen with ASAP, suggests 
interesting potential for use as a minimally invasive injectable scaffold 

for bone regeneration. 
The composites including ASAP demonstrated low initial viscosity, 

allowing injection using a needle. Moreover, when exposed to physio-
logical fluids in the body, the nanocomposite gel was observed to stiffen 
and set into a solid state (Fig. 3b), that retained its shape and displayed 
mechanical stability. Limited inclusion of ASAP (ELAP0 and ELAP6) 
supported a non-significant change in storage modulus. 

In contrast, the inclusion of a greater concentration of ASAP 
(ELAP12) showed a substantial increase in storage modulus after the 
addition of FBS, while demonstrating a lower overall modulus at regime, 
suggesting a dose dependent reaction. The inclusion of protein-rich ECM 
combined with the attraction-repulsion nature of the composite (Fig. 3c) 
demonstrates the tuning ability of the nanocomposite to adapt to protein 
retention depending on the presence of ASAP. This property offers a 
novel injectable gel, applicable in a minim ally-invasive approach, with 
the potential to reduce surgery time and size of incisions as well as the 

Fig. 2. The effects of combining Laponite and the human bone extracellular matrix hydrogel on the physical properties of the gels (a). A turbidimetric assay (b) of 
ECM gels and composites absorbance to light exposure, demonstrating transparency. Storage moduli (c) of ECM only and composite gels measured in the linear 
viscoelastic region of the gels during an amplitude sweep. 

Fig. 3. Investigation of the rheological modification of blood serum to nanocomposite (a) gels. Constant strain of composite gels (b) with FBS added after 2 minutes, 
displayed a stiffening effect of the gels in response to physiological fluids. Overall mechanisms of LAP-ASAP-hbECM interaction illustrated in (c). Statistical sig-
nificance assessed by one-way ANOVA. Mean ± S.D. n=3, ** p<0.01, **** p<0.001, *** p<0.0001. 
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potential to reduce infection rates as observed with current bone graft 
techniques [24]. 

To assess ECM stability in physiological solution (Fig. 4a), injectable 
nanocomposite and control gels were incubated for 24 h. Following an 
exposure to collagenase, a burst release of protein was observed for ECM 
only, indicating a rapid enzymatic degradation of ECM hydrogel 
(Fig. 4b). In contrast, ECM hydrogel containing Laponite® (ELAP0) 
displayed a slow release of proteins. The nanoclay was capable of 
crosslinking the proteins in hbECM gel, minimising the cleavage of ECM 
proteins by the collagenase enzymes, facilitating the maintenance of a 
stable structure following gelation. Thus, the composite gels were found 
to retain greater structural integrity with reduced degradation in phys-
iological conditions (Fig. 4b). During the incubation in PBS and colla-
genase, no difference in pH was observed, as well as no significant 
weight loss of composite gels (Supplementary Fig. 3). However, a sig-
nificant release of ECM proteins was detected from the composite gels 
during the incubation, particularly following collagenase treatment 
(Fig. 4b) suggesting that the released amount of ECM from the composite 
gels was insignificant to affect the weight change and pH in the solution. 

The ability to control the gel degradation process, enabled tuning 
and modulation of the rate at which the endogenous growth factors 
could be released from the ECM. The increased molecular interactions 
between the clay nanoparticles and the hbECM proteins resulted in 
stiffer gels, while contributing to reduced degradation rate of composite 
gels. Critically, the modulation of the interaction of nanoclay with 
hbECM, ensured the exposure of bone proteins could be regulated 
limiting enzyme degradation and thus tuning gel degradation and, ul-
timately, protein release. 

3.3. Composite gels support promyoblast C2c12 cell spreading and 
facilitate osteogenic differentiation with ALP release 

Classic studies of demineralised bone matrix highlight the potential 
of hbECM derived gels as a repository of bone inductive molecules and 
instructive extracellular matrix motifs [10] with the potential to induce 
osteoinduction. Hydrogel materials are versatile and capable of influ-
encing cellular morphology in vitro. As a direct effect of composite 
rheological 

To assess this potential in vitro, C2C12 myoblasts were seeded on 
hbECM gels with and without addition of LAP and/or ASAP (Fig. 5a, i- 
ii). Cell spreading was first assessed in LAP-hbECM composites 

containing various concentrations of ASAP. Interestingly, a modest 
improvement in cell spreading was apparent with addition of ASAP. This 
could be related to the increase in charge depletion by ASAP shielding 
the nanoclay rim, limiting the close interaction between nano-platelets, 
thus reducing the mechanical properties. C2C12 cells seeded on gels 
with increasing concentration of ASAP were found to express ALP 
following 3 days of culture in comparison to control and nanocomposite 
gels (Fig. 5b). 

An increasing concentration of BMP-2 was found to drive enhanced 
ALP expression in all treatment groups. In the absence of BMP-2, ALP 
expression was negligible, while in the presence of increasing BMP-2 
concentrations, the synergistic combination of hbECM and LAP was 
found to elicit a greater response compared to hbECM controls 
(p<0.0001), independently of the ASAP concentration (Fig. 5c). These 
results indicate the composite gels facilitate pro-myoblast C2C12 oste-
ogenic differentiation with a dose-dependent effect due to BMP-2 con-
centration. The hbECM-based nanocomposite offers new possibilities for 
the encapsulation and retention of BMP-2, resulting in an ASAP- 
mediated modulation of binding affinity and steric inclusion due to 
the attraction-repulsion mechanism previously reported (Fig. 5d). 

4. Conclusion 

We demonstrated that human bone ECM offers significant potential 
in bone regeneration applications and the addition of nanoclay confers 
useful advantages in bECM handling and physicochemical properties. 
However, while the further addition of ASAP improved nanoclay 
dispersion within hbECM and facilitated serum responsive gelation, it 
interfered with the interaction of nanoclay with bECM as well as BMP-2. 
This suggests that the hbECM-LAP composite without ASAP is an 
effective design for delivering BMP-2 molecules and enhancing 
osteoinductive properties. Future work will focus on investigating the 
closer interactions between the components using XRD analysis, while 
studying possible intracellular effects via TEM investigation, and lastly 
optimizing the hbECM-LAP composite to enhance its effects and deter-
mine its therapeutic efficacy in bone repair. 
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*p<0.05, **** p<0.0001. 
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