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Abstract. The goal of this paper is to accurately describe the metastable dynamics of
the solutions to the hyperbolic relaxation of the Cahn–Hilliard equation in a bounded
interval of the real line, subject to homogeneous Neumann boundary conditions. We
prove the existence of an approximately invariant manifold M0 for such boundary value
problem, that is we construct a narrow channel containing M0 and satisfying the fol-
lowing property: a solution starting from the channel evolves very slowly and leaves the
channel only after an exponentially long time. Moreover, in the channel the solution has
a transition layer structure and we derive a system of ODEs, which accurately describes
the slow dynamics of the layers. A comparison with the layer dynamics of the classic
Cahn–Hilliard equation is also performed.

1. Introduction

The celebrated Cahn–Hilliard equation,

ut = ∆
(
−ε2∆u+ F ′(u)

)
,

where ε is a positive constant and F : R → R is a double well potential with wells

of equal depth, was originally proposed in [8] to model phase separation in a binary

system at a fixed temperature, with constant total density and where u stands for the

concentration of one of the two components. Among the phase transformations involved

in phase separation, a peculiar one is named “spinodal decomposition”, which indicates the

stage during which the mixture quickly becomes inhomogeneous, forming a fine-grained

structure (cfr. [7, 22, 27]). In order to model the early stages of spinodal decomposition

in certain glasses, some physicists [20, 21, 26] proposed the following hyperbolic relaxation

of the Cahn–Hilliard equation

τutt + ut = ∆
(
−ε2∆u+ F ′(u)

)
, (1.1)

where τ is a positive constant. In particular, the hyperbolic version (1.1) has been firstly

proposed by Galenko in [20], following the classical Maxwell–Cattaneo modification of the

Fick’s diffusion law [12]. Many papers have been devoted to the study of the dynamics

of the solutions to (1.1). Without claiming to be complete, we list the following papers:
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for the long-time behavior of the solutions and the limiting behavior as τ → 0 in the one-

dimensional case see [13, 31, 32, 4] and references therein; for the multidimensional-case

among others, we mention [24, 25].

In this paper, we are interested in studying the metastable dynamics of the solutions

to the one-dimensional version of (1.1)

τutt + ut =
(
−ε2uxx + F ′(u)

)
xx
, x ∈ (0, 1), t > 0, (1.2)

subject to homogeneous Neumann boundary conditions

ux(0, t) = ux(1, t) = uxxx(0, t) = uxxx(1, t) = 0, ∀ t ≥ 0, (1.3)

and initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, 1]. (1.4)

Precisely, we are interested in describing the behavior of the solutions to the initial bound-

ary value problem (1.2)-(1.3)-(1.4) when the parameter ε is very small and the function

F ∈ C4(R) satisfies

F (±1) = F ′(±1) = 0, F ′′(±1) > 0 and F (u) > 0, for u 6= ±1. (1.5)

The simplest example of function satisfying (1.5) is F (u) = 1
4(u2 − 1)2.

The existence and persistence for an exponentially large time of metastable states with

N transitions between −1 and +1 for the IBVP (1.2)-(1.4) has been proved in [18] by

using an energy approach firstly introduced in [6] to study the Allen–Cahn equation

ut = ε2uxx − F ′(u), (1.6)

and subsequently used in [5] to prove existence of metastable states for the classic Cahn–

Hilliard equation

ut =
(
−ε2uxx + F ′(u)

)
xx
, x ∈ (0, 1), t > 0. (1.7)

Here, we investigate the metastable properties of the solutions to (1.2) by using a different

approach, the dynamical approach proposed by Carr and Pego in [10] and Fusco and Hale

[19] to study the Allen–Cahn equation (1.6) and used for the Cahn–Hilliard equation (1.7)

in [1] and [2, 3]. The dynamical approach gives a more precise description of the dynamics

of the solution to the IBVP (1.2)-(1.4) and allows us to derive a system of ODEs which

describes the evolution of such solution.

Before presenting our results, let us briefly describe the dynamics of the solutions to

the classic Cahn–Hilliard equation (1.7) with homogeneous Neumann boundary conditions

(1.3) and recall some previous results on the metastable behavior of the solutions. First of

all, notice that any constant function is a equilibrium solution to (1.7)-(1.3) and that, by

integrating the equation (1.7) and using the boundary conditions (1.3) one finds out that

the total mass

∫ b

a
u(x, t) dx is conserved. A linear analysis of the equation (1.7) about
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a constant solution shows that spatially homogeneous equilibria in the spinodal region

(where F ′′ < 0) are unstable [22]. Moreover, it is sufficient to take an initial datum which

is a small perturbation of a fixed constant in the spinodal region and the corresponding

solution exhibits the phenomenon of spinodal decomposition: after a relatively short time,

the solution to (1.7)-(1.3) is approximately close to +1 or −1 (the positions of the global

minimum of F ) except near a finite number N of transition layers. The first mathematical

treatment and rigorous verification of such phenomenon is performed in [22]. After the

spinodal decomposition, the solution, which has a N -transition layers structure, evolves

so slow that the profile appears to be stable. On the other hand, it is well-known that the

Cahn–Hilliard equation (1.7) possesses the Lyapunov functional

Eε[u] =

∫ b

a

[
ε2

2
u2
x + F (u)

]
dx, (1.8)

and the solutions converge as t → +∞ to a stationary solution [30]. The problem to

minimize the energy functional (1.8) among all the functions satisfying

∫ b

a
u dx = M (the

total mass being conserved), has been investigated in [9] for the one-dimensional case and

in [28] for the multi-dimensional case. In particular, in [9] it has been proved that if ε is

small enough and M ∈ (−1, 1), then all the minimizers are strictly monotone functions.

Therefore, the solution to (1.7)-(1.3) converges to a limit with a single transition and, as

a consequence, we have an example of metastable dynamics: the solution maintains the

(unstable) N -transitions layer structure for a very long time Tε and then converges to the

asymptotic limit with a single transition. Precisely, the evolution of the solutions depends

only from the interactions between the layers, which move with an exponentially small

velocity as ε→ 0; it follows that the lifetime Tε of a metastable state with N transitions

is exponentially large as ε → 0, namely Tε = O
(
eC/ε

)
where C > 0 depends only on F

and on the distance between the layers.

As it was previously mentioned, there are at least two different approaches to study the

metastable dynamics of the solutions, which have been proposed in the study of the Allen–

Cahn equation (1.6). The energy approach of [6] is based on Γ-convergence properties of

the functional (1.8) and it has been applied to the Cahn–Hilliard equation (1.7) in [5]; it

permits to handle both Neumann (1.3) and Dirichlet boundary conditions of the type

u(0, t) = ±1, u(1, t) = ±1 and uxx(0, t) = uxx(1, t) = 0, ∀ t ≥ 0. (1.9)

On the other hand, the dynamical approach of [10, 19] is performed in [1], where the

authors consider the case of an initial datum with a 2-transition layer structure and in

[2, 3], where the general case of N+1 layers (N ≥ 1) is considered. This approach permits

to describe in details the movement of the layers. In the two layer case, for the conservation

of the mass, we have that the layers move in an almost rigid way (they move in the same
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direction at approximately the same exponentially small velocity); when the layers are

more than 2 the situation is more complicated and we will describe their dynamics in

Section 4.

Each of the previous approaches has its advantages and drawbacks. The dynamical

approach gives more precise results: it gives the exact order of the speed of the slow

motion, and allows us to accurately describe the movement of the layers, but permits to

study only the case of homogeneous boundary conditions and the proofs are complicated

and lengthy. The energy approach is fairly simple, it provides a rather clear and intuitive

explanation for the slow motion and permits to handle both Neumann (1.3) and Dirichlet

(1.9) boundary conditions, but it gives only an upper bound for the velocity of the layers.

We also recall that the energy approach permits to study the vector-valued version of (1.7),

that is when u takes value in Rm and the potential F vanishes only in a finite number of

points (for details, see [23]). Finally, we mention that both the dynamical and the energy

approach can be applied to study the metastability for the following hyperbolic variations

of the Allen–Cahn equation

τutt + g(u)ut = ε2uxx − F ′(u), (1.10)

for any positive function g ∈ C1(R) (cfr. [14, 15, 16, 17]).

In this paper, we apply the dynamical approach to the IBVP (1.2)-(1.3)-(1.4). The

well-posedness and the asymptotic behavior as t→ +∞ of the solutions to such IBVP are

investigated in [13]. A fundamental difference with respect to the classic Cahn–Hilliard

equation (1.7) is that the homogeneous Neumann boundary conditions (1.3) do not imply

conservation of the mass; as we will see in Section 2 the solution to the IBVP (1.2)-(1.3)-

(1.4) conserves the mass if and only if the initial velocity u1 is of zero mean. Therefore, to

apply the dynamical approach we need a further assumption on u1; however, by using the

energy approach, it is possible to prove the metastable dynamics of the solutions without

the assumption of zero-mean for u1 (for details see [18, Remark 2.7]).

The main idea of the dynamical approach introduced by Carr and Pego in [10] is to

construct a family of functions uh, which approximates a metastable states with N + 1

transitions located at h = (h1, h2, . . . , hN+1), consider the decomposition

u(x, t) = uh(t)(x) + w(x, t), (1.11)

for the solution u and study the evolution of the remainder function w and of the transition

points h1, h2, . . . , hN+1. By inserting the decomposition (1.11) in the equation (1.6) and

imposing an orthogonality condition on w, it is possible to derive an ODE-PDE coupled

system for (h, w) and prove that the solution u is well-approximated by uh as ε → 0

and evolves very slowly until either two transition points are close enough or a transition

point is close enough to the boundary points of the interval (0, 1). In other words, with
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the dynamical approach it is possible to prove the existence of an approximately invariant

manifold M, consisting of functions with N + 1 transitions between −1 and +1: if the

initial datum u0 is in a particular tubular neighborhood of M, then the transition points

move with an exponentially small velocity and the solution remains in such neighborhood

for an exponentially long time. Then, since the remainder w is very small as ε → 0, by

using the approximation w ≈ 0 in (1.11) one can derive a system of ODEs for h, which

accurately describes the movement of the layers, and so the evolution of the solution u,

until the transition points are well-separated and far away from 0 and 1.

This strategy has been applied to the integrated version of (1.2)-(1.3) in [2, 3] and gives

a precise description of the metastable dynamics of the solutions. In the following, we

will show how to adapt this strategy to the hyperbolic version (1.2) and we will analyze

the differences with respect to (1.7). In particular, we will prove the existence of an ap-

proximately invariant manifoldM0 contained in a narrow channel for the initial boundary

problem (1.2)-(1.3)-(1.4): if the initial datum (1.4) is in the channel, then the solution

u remains in the channel for an exponentially long time. Moreover, in the channel the

following estimates hold:

‖u− uh‖
L∞ ≤ Cε

−5/2 exp

(
−Al

h

ε

)
, |h′|∞ ≤ Cε−2τ−1/2 exp

(
−Al

h

ε

)
, (1.12)

where A :=
√

min{F ′′(−1), F ′′(+1)}, `h := min{hj−hj−1} and |·|∞ denotes the maximum

norm in RN . Furthermore, we will derive the following system of ODEs

τh′′ + h′ + τQ(h,h′) = P(h), (1.13)

which describes the movement of the transition layers and has to be compared with the

system h′ = P(h), which describes the dynamics of the solutions to the classic Cahn-

Hilliard equation; for the formulas of P and Q see Section 4.

The rest of the paper is organized as follows. In Section 2 we give all the definitions,

the preliminaries and we construct the approximate invariant manifold M0 following the

ideas of [10], [2]. Section 3 contains the main result of the paper, Theorem 3.3, where we

prove that the manifold M0 is approximately invariant for (1.2)-(1.3), by constructing a

slow channel which contains M0 and where the solutions stay for an exponentially long

time and satisfy (1.12). Finally, Section 4 is devoted to the description of the movement

of the layers. We will derive the system of ODEs (1.13) and we will analyze the differences

between the classic Cahn–Hilliard equation (1.7) and its hyperbolic relaxation (1.2).

2. Preliminaries

In this section we collect some results of [10], [2, 3] we will use later and we introduce

the extended base manifold M0, which is, as we shall prove in Section 3, approximately

invariant for the boundary value problem (1.2)-(1.3).
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2.1. Approximate metastable states. The aim of this subsection is to construct a

family of functions with N + 1 transitions between −1 and +1, approximating metastable

states for (1.2). Such construction was firstly introduced by Carr and Pego [10] to describe

the metastable dynamics of the solutions to the Allen–Cahn equation (1.6), and then

it has also been used to study the metastability for the Cahn–Hilliard equation [2, 3]

and for hyperbolic variants of the Allen–Cahn equation [17]. Here, we briefly recall the

construction of the family and some useful properties we will use later, for details see [10].

For fixed ρ > 0, we introduce the set

Ωρ :=
{
h ∈ RN+1 : 0 < h1 < · · · < hN+1 < 1, hj − hj−1 > ε/ρ for j = 1, . . . , N + 2

}
,

where we define h0 := −h1 and hN+2 := 2−hN+1, because of the homogeneous Neumann

boundary conditions (1.3). In what follows, we fix a minimal distance δ ∈ (0, 1/(N + 1))

and we consider the parameters ε and ρ such that

0 < ε < ε0 and δ <
ε

ρ
<

1

N + 1
, (2.1)

for some ε0 > 0 to be chosen appropriately small.

We associate to any h ∈ Ωρ a function uh = uh(x) which approximates a metastable

state with N + 1 transition points located at h1, . . . , hN+1. To do this, we make use of

the solutions to the following boundary value problem: given ` > 0, let φ(·, `,+1) be the

solution to

LAC(φ) := −ε2φxx + F ′(φ) = 0, φ
(
−1

2`
)

= φ
(

1
2`
)

= 0, (2.2)

with φ > 0 in (−1
2`,

1
2`), and φ(·, `,−1) the solution to (2.2) with φ < 0 in (−1

2`,
1
2`). The

functions φ(·, `,±1) are well-defined if `/ε is sufficiently large, and they depend on ε and

` only through the ratio ε/`. Moreover, we have

max
x
|φ(·, `,±1)| = |φ(0, `,±1)| = M±(`/ε) and max

x
|φx(·, `,±1)| ≤ Cε−1,

where C > 0 is a constant depending only on the function F . In particular, M± tends to

+1 as ε/`→ 0 (more details in Proposition 2.1).

The family of the approximate metastable states is constructed by matching together

the functions φ(·, `,±1), using smooth cut-off functions: given χ : R→ [0, 1] a C∞-function

with χ(x) = 0 for x ≤ −1 and χ(x) = 1 for x ≥ 1, set

χj(x) := χ

(
x− hj
ε

)
and φj(x) := φ

(
x− hj−1/2, hj − hj−1, (−1)j

)
,

where

hj+1/2 := 1
2(hj + hj+1) j = 0, . . . , N + 1,

(note that h1/2 = 0, hN+3/2 = 1). Then, we define the function uh as

uh :=
(
1− χj

)
φj + χjφj+1 in Ij := [hj−1/2, hj+1/2], (2.3)
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for j = 1, . . . , N + 1, and the manifold

MAC := {uh : h ∈ Ωρ}.

In [10], the authors show that the manifoldMAC is approximately invariant for the Allen–

Cahn equation (1.6). On the other hand, the extended manifold

MAC
0

:=MAC × {0} = {(uh, 0) : uh ∈MAC}

is approximately invariant for the hyperbolic variant (1.10), see [17].

To get an idea of the structure of the function uh defined in (2.3), we recall that, if

ρ > 0 is sufficiently small and h ∈ Ωρ, then uh ≈ ±1 away from hj for j = 1, . . . , N + 1,

and uh(x) ≈ Φ
(
(x− hj)(−1)j−1

)
for x near hj , where Φ is the unique solution to the

problem

LAC(Φ) := −ε2Φxx + F ′(Φ) = 0, lim
x→±∞

Φ(x) = ±∞, Φ(0) = 0.

For instance, in the case F (u) = 1
4(u2 − 1)2, the unique solution is Φ(x) = tanh(x/

√
2ε).

In conclusion, we say that uh is a smooth function of h and x, which is approximately

±1 except near N + 1 transition points located at h1, · · · , hN+1; moreover, LAC(uh) = 0

except in an ε–neighborhood of the transition points hj . Precisely, we have

uh(0) = φ(0, 2h1,−1) < 0, uh(hj+1/2) = φ
(
0, hj+1 − hj , (−1)j+1

)
,

uh(hj) = 0, LAC(uh(x)) = 0 for |x− hj | ≥ ε,
(2.4)

for any j = 1, . . . , N + 1.

Central to the study of the metastable dynamics of the solutions to both the Allen–

Cahn and the Cahn–Hilliard equation is an accurate characterization of the quantities

uh(hj+1/2) = φ
(
0, hj+1 − hj , (−1)j+1

)
and F

(
uh(hj+1/2)

)
, because the motion of the

transition points h1, . . . , hN+1 depend essentially on these quantities. Since φ(0, `,±1)

depends only on the ratio r = ε/`, we can define

α±(r) := F (φ(0, `,±1)), β±(r) := 1∓ φ(0, `,±1).

By definition, φ(0, `,±1) is close to +1 or −1 and so, α±(r), β±(r) are close to 0. The

next result characterizes the leading terms in α± and β± as r → 0.

Proposition 2.1 (Carr–Pego [10]). Let F be such that (1.5) holds and set

A2
± := F ′′(±1), K± = 2 exp

{∫ 1

0

(
A±

(2F (±t))1/2
− 1

1− t

)
dt

}
.

There exists r0 > 0 such that if 0 < r < r0, then

α±(r) = 1
2K

2
±A

2
± exp(−A±/r

){
1 +O

(
r−1 exp(−A±/2r)

)}
,

β±(r) = K± exp
(
−A±/2r

){
1 +O

(
r−1 exp(−A±/2r)

)}
,

with corresponding asymptotic formulae for the derivatives of α± and β±.
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For j = 1, . . . , N + 1, we set

lj := hj+1 − hj , rj :=
ε

lj
,

and

αj :=

{
α+(rj) j odd,

α−(rj) j even,
βj :=

{
β+(rj) j odd,

β−(rj) j even.

Remark 2.2. Let h ∈ Ωρ with ε, ρ satisfying (2.1) and let lh := min{hj−hj−1}. Then, the

quantities αj and βj are exponentially small in ε, namely there exists C > 0 (independent

of ε) such that

0 < αj ≤ C exp

(
−Alj

ε

)
≤ C exp

(
−Al

h

ε

)
, (2.5)

0 < βj ≤ C exp

(
−Alj

2ε

)
≤ C exp

(
−Al

h

2ε

)
, (2.6)

where A :=
√

min{F ′′(−1), F ′′(+1)}. Moreover, assuming that F is an even function and

so that α+ ≡ α−, from Proposition 2.1 we get

αj

αi
≤ C exp

(
−A
ε

(lj − li)
)
,

for some C > 0. Hence, if lj − li ≥ κ for some κ > 0, we deduce

αj ≤ C exp

(
−Aκ

ε

)
αi. (2.7)

Therefore, if lj > li then αj < αi, and for ε/κ� 1, αj is exponentially small with respect

to αi.

Now, let us introduce the barrier function

Ψ(h) :=
N+1∑
j=1

〈LAC
(
uh
)
, khj 〉

2
=

N+1∑
j=1

(
αj+1 − αj

)2
, (2.8)

where LAC is the Allen–Cahn differential operator introduced above and the functions khj
are defined by

khj (x) := −γj(x)uhx (x), with γj(x) := χ

(
x− hj − ε

ε

)[
1− χ

(
x− hj+1 + ε

ε

)]
.

By construction, khj are smooth functions of x and h and are such that

khj (x) = 0 for x /∈ [hj−1/2, hj+1/2],

khj (x) = −uhx (x) for x ∈ [hj−1/2 + 2ε, hj+1/2 − 2ε].

Such functions are fundamental in the study of the metastability for the Allen–Cahn

equation (1.6) and for the hyperbolic Allen–Cahn equation (1.10) (see [10] and [17], re-

spectively), and play a crucial role in the study of the metastability for the hyperbolic
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Cahn–Hilliard equation (1.2). We recall that there exists C > 0 independent of ε such

that

‖khj ‖+ ε‖khij‖ ≤ Cε−1/2, where khji := ∂hik
h
j . (2.9)

For the proof of (2.9) see [10, Proposition 2.3].

In conclusion, we collect some useful properties of the derivative of uh with respect to

hj we will use later; we will use the notation

uhj :=
∂uh

∂hj
, uhji :=

∂2uh

∂hj∂hi
.

Lemma 2.3. The interval [hj−1 − ε, hj+1 + ε] contains the support of uhj and

uhj (x) =


O
(
ε−1βj−1

)
, x ∈ [hj−1 + ε, hj−1/2],

−uhx (x) +O
(
ε−1 max(βj−1, βj)

)
, x ∈ Ij ,

O
(
ε−1βj

)
, x ∈ [hj+1/2, hj+1 + ε],

0, otherwise,

for j = 1, . . . , N + 1. Moreover, there exists C > 0 such that

ε‖uhj ‖L∞ + ε1/2‖uhj ‖ ≤ C, j = 1, . . . , N + 1. (2.10)

For the precise formula for uhj and the proof of Lemma 2.3 see [10, Sections 7-8].

Thanks to Lemma 2.3, we can state that if we neglect the exponentially small terms,

then uhj is equal to −uhx in Ij and it is zero for x /∈ Ij . We will use such approximation in

Section 4 to derive the ODE describing the motion of the transition layers h1, . . . , hN+1.

2.2. Base Manifold. In this subsection we define the base manifold for the hyper-

bolic Cahn–Hilliard equation (1.2). Integrating the equation (1.2) in [0, 1] and using

the homogeneous Neumann boundary conditions (1.3), we obtain that the total mass

m(t) :=

∫ 1

0
u(y, t) dy satisfies the ODE

τm′′(t) +m′(t) = 0, m(0) =

∫ 1

0
u0(y) dy, m′(0) =

∫ 1

0
u1(y) dy.

Then, as a trivial consequence, m(t) = m(0) + τm′(0)(1− e−t/τ ) and the total mass m is

conserved if and only if ∫ 1

0
u1(y) dy = 0. (2.11)

From now on, we will assume that the initial velocity satisfies (2.11) in order to have

conservation of the mass, and we also assume that the initial profile u0 has mass equal to

M , for some M ∈ (−1, 1). It follows that

m(t) =

∫ 1

0
u0(y) dy = M ∈ (−1, 1), for any t ≥ 0. (2.12)
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Since the total mass is conserved, we introduce the manifold

MCH :=

{
uh ∈MAC :

∫ 1

0
uh(x) dx = M

}
.

In [2, 3], the authors study the dynamics of the solutions to the Cahn–Hilliard equation

(1.7) in a neighborhood of MCH and show that such manifold is approximately invariant

for (1.7). In this paper, we will show that the extended base manifold

MCH
0

:=MCH × {0} =
{

(uh, 0) : uh ∈MCH
}

is approximately invariant for the hyperbolic Cahn–Hilliard equation (1.2). From now on,

we drop the superscript CH and we use the notation MCH =M and MCH
0

=M0 .

The following lemma of [2] is crucial in the study of the metastable dynamics of (1.2)

in a neighborhood of M0 . For reader’s convenience, we report here below its proof.

Lemma 2.4. Let M(h) :=

∫ 1

0
uh(x) dx, for h ∈ Ωρ. Then, M(h) is a smooth function

of h and

∂M

∂hj
= 2(−1)j +O

(
ε−1 max(βj−1, βj)

)
.

Proof. By differentiating the function M(h) with respect to hj , and by using Lemma 2.3,

we infer

∂M

∂hj
=

∫ 1

0
uhj (x) dx = −

∫
Ij

uhx (x) dx+O
(
ε−1 max(βj−1, βj)

)
= uh(hj−1/2)− uh(hj+1/2) +O

(
ε−1 max(βj−1, βj)

)
.

for j = 1, . . . , N + 1. From (2.4) and the definition of βj , it follows that

uh(hj+1/2) = (−1)j+1 + (−1)jβj , j = 0, . . . , N + 1. (2.13)

Therefore, we can conclude that

∂M

∂hj
= 2(−1)j +O

(
ε−1 max(βj−1, βj)

)
,

and the proof is complete. �

The previous lemma shows that the manifold M can be parameterized by the first N

components (h1, . . . , hN ) of h. Indeed, if uh ∈ M, applying Lemma 2.4 and the implicit

function theorem, we can think hN+1 as a function of (h1, . . . , hN ), namely there exists

g : RN → R such that

hN+1 = g(h1, . . . , hN ),
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and we have

∂hN+1

∂hj
= − ∂M/∂hj

∂M/∂hN+1
= −

2(−1)j +O
(
ε−1 max(βj−1, βj)

)
2(−1)N+1 +O (ε−1 max(βN , βN+1))

= (−1)N−j +O
(
ε−1 exp

(
−Al

h

ε

))
,

(2.14)

where we used (2.6). Hence, we introduce the new variable ξ, consisting of the first

N components of h, and we will denote uh ∈ M by uξ. Moreover, we denote by G :

RN → RN+1 the function G(ξ) = (ξ1, . . . , ξN , g(ξ1, . . . , ξN )), and in the following we will

interchangeably use ξ and h, meaning h = G(ξ). Finally, we have that

uξj :=
∂uξ

∂ξj
=
∂uh

∂hj
+

∂uh

∂hN+1

∂hN+1

∂hj
,

for j = 1, . . . , N , and using (2.10) we get

ε‖uξj‖L∞ + ε1/2‖uξj‖ ≤ C, j = 1, . . . , N. (2.15)

Following the previous works [1, 2, 3] on the metastability for the classic Cahn–Hilliard

equation (1.7), we will consider an integrated version of (1.2). If u is a solution to (1.2)

with homogeneous Neumann boundary conditions (1.3) and initial data (1.4), with u1

satisfying (2.11), then ũ(x, t) :=

∫ x

0
u(y, t) dy satisfies the integrated hyperbolic Cahn–

Hilliard equation

τ ũtt + ũt = −ε2ũxxxx + F ′(ũx)x, x ∈ (0, 1), t > 0, (2.16)

with initial data

ũ(x, 0) = ũ0(x), ũt(x, 0) = ũ1(x), x ∈ [0, 1],

and Dirichlet boundary conditions

ũ(0, t) = 0, ũ(1, t) = M, ũxx(0, t) = ũxx(1, t) = 0, ∀ t ≥ 0, (2.17)

where M ∈ (−1, 1) is the total mass of the solution. Here and in all the paper we use

the following notation: given a function u : [0, 1] → R, we denote by ũ : [0, 1] → R the

function

ũ(x) :=

∫ x

0
u(y) dy.

Rewrite (2.16) as the system {
ũt = ṽ,

τ ṽt = L(ũ)− ṽ,
(2.18)

where we introduced the integrated Cahn–Hilliard differential operator

L(ũ) := −ε2ũxxxx +
(
F ′(ũx)

)
x
.
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Observe that

L(ũ) = − d

dx
LAC(u), (2.19)

where LAC(u) := ε2uxx − F ′(u) is the Allen–Cahn differential operator introduced in the

previous subsection. Since LAC(uh) = 0 except in an ε–neighborhood of the transition

points hj (see (2.4)), we have that the same property holds for L(ũξ), namely

L(ũξ(x)) = 0, for |x− hj | > ε, j = 1, . . . , N + 1.

More precisely, one can prove that (see [2, Lemma 5.1])

‖L(ũξ)‖ ≤ Cε−1
N+1∑
j=1

|αj+1 − αj | ≤ Cε−1 exp

(
−Al

h

ε

)
, (2.20)

for some positive constant C. Hence, the L2–norm of L(ũξ) is exponentially small in ε.

We will study the dynamics of the solutions to (1.2)-(1.3) in a neighborhood of M0 by

considering the integrated version (2.18) and using the decomposition ũ = ũξ + w̃, where

uξ ∈MCH is defined in (2.3) and w̃ ∈ H for

H :=
{
w̃ ∈ H4(0, 1) : w̃ = w̃xx = 0 at x = 0, 1 and 〈w̃, Eξj 〉 = 0, for j = 1, . . . , N

}
,

(2.21)

where Eξj are linear functions of ũhj and ũhj+1 to be determined later. By using the formula

of Lemma 2.3, Proposition 2.1 and Remark 2.2, we obtain

ũhj (x) :=

∫ x

0
uhj (y) dy =


0, x ≤ hj−3/2,

O(e−c/ε), x ∈ Ij−1,

−uh(x) + uh(hj−1/2) +O(e−c/ε), x ∈ Ij ,
−uh(hj+1/2) + uh(hj−1/2) +O(e−c/ε), x ≥ hj+1/2,

for j = 1, . . . , N , and

ũhN+1(x) :=

∫ x

0
uhN+1(y) dy =


0, x ≤ hN−1/2,

O(e−c/ε), x ∈ IN ,
−uh(x) + uh(hN+1/2) +O(e−c/ε), x ∈ IN+1.

Here and in what follows c is a generic positive constant independent on ε. Using (2.13),

we deduce

ũhj (x) =


0, x ≤ hj−3/2,

O(e−c/ε), x ∈ Ij−1,

−uh(x) + (−1)j +O(e−c/ε), x ∈ Ij ,
2(−1)j +O(e−c/ε), x ≥ hj+1/2,

(2.22)

for j = 1, . . . , N , and

ũhN+1(x) =


0, x ≤ hN−1/2,

O(e−c/ε), x ∈ IN ,
−uh(x) + (−1)N+1 +O(e−c/ε), x ∈ IN+1.

(2.23)
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Since ũξj = ũhj + ũhN+1
∂hN+1

∂hj
, for (2.14), (2.22) and (2.23), we get

ũξj (x) =



0, x ≤ hj−3/2,

O(e−c/ε), x ∈ Ij−1,

−uξ(x) + (−1)j +O(e−c/ε), x ∈ Ij ,
2(−1)j +O(e−c/ε), x ∈ [hj+1/2, hN+1/2],

−uξ(x)(−1)N−j + (−1)j +O(e−c/ε), x ∈ IN+1,

(2.24)

for j = 1, . . . , N . Let ωj := ũhj + ũhj+1, j = 1, . . . , N ; one has

ωj(x) =


0, x ≤ hj−3/2,

O(e−c/ε), x ∈ Ij−1,

−uξ(x) + (−1)j +O(e−c/ε), x ∈ Ij ∪ Ij+1,

O(e−c/ε), x ≥ hj+3/2.

(2.25)

Then, the functions ωj are either zero or exponentially small outside of Ij ∪ Ij+1. Now,

we can define the functions Eξj introduced above:

Eξj (x) := ωj(x)−Qj(x), (2.26)

where

Qj(x) :=
(
−1

6x
3 + 1

2x
2 − 1

3x
)
ω′′j (0) + 1

6(x3 − x)ω′′j (1) + xωj(1).

As it was shown in [2, Section 3, formula (54)], the terms ω′′j (0), ω′′j (1) and ωj(1) are

exponentially small as ε→ 0+. Hence, Qj are exponentially small functions introduced so

that Eξj satisfies

Eξj (x) = Eξjxx(x) = 0, for x = 0, 1, j = 1, . . . , N.

The functions Eξj are good approximations of the first N eigenfunctions of the eigenvalue

problem

Lξu :=− ε2uxxxx +
(
F ′′(uξ)ux

)
x

= λu, in (0, 1),

u(x) = u′′(x) = 0, for x = 0, 1,

where Lξ is the linearized operator of L about ũξ. Indeed, in [2] it is proved that Lξ has

N exponentially small eigenvalues and that all the others are bounded away from zero

uniformly in ε (see [2, Theorem A]). From (2.25) and the fact that Qj are exponentially

small functions, we obtain

Eξj (x) =

{
−uξ(x) + (−1)j +O(e−c/ε), x ∈ Ij ∪ Ij+1,

O(e−c/ε), otherwise,
(2.27)

for i = j, . . . , N .

We conclude this section recalling that the existence of the coordinate system ũ = ũξ+w̃

with w̃ ∈ H in a neighborhood ofM has been proved in [3, Theorem A.7]. For Lemma 2.4

and the subsequent comments, in the following result we can use ξ and h interchangeably.
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Theorem 2.5. There exists ρ0 > 0 such that if ρ ∈ (0, ρ0) and ũ satisfies

ũ(0) = ũxx(0) = ũxx(1) = 0, ũ(1) = M, and ‖ũ− ũk‖
L∞ ≤ ε

2

for some k ∈ Ωρ, then there is a unique h̄ ∈ Ωρ such that

ũ = ũh̄ + w̃, with 〈w̃, Eξj 〉 = 0, j = 1, . . . , N.

Moreover, if ‖ũ − ũh∗‖
L∞ = inf{‖ũ − ũk‖

L∞ : k ∈ Ωρ} for some h∗ ∈ Ωρ, then there

exists a positive constant C such that

|h̄− h∗| ≤ C‖ũ− ũh∗‖
L∞ , and ‖ũ− ũh̄‖

L∞ ≤ C‖ũ− ũ
h∗‖

L∞ .

3. Slow dynamics in a neighborhood of the base manifold

The aim of this section is to study the dynamics of the solutions to (1.2)-(1.3) in a

neighborhood of the manifold M0 and to prove that M0 is approximately invariant for

(1.2)-(1.3). To do this, we will consider the integrated version (2.16)-(2.17). Since

‖ũ‖
L∞ ≤ ‖u‖L∞ , (3.1)

if ‖u − uh‖
L∞ is sufficiently small for some h ∈ Ωρ, we can use Theorem 2.5 and the

decomposition ũ = ũh + w̃ introduced in Section 2.

3.1. Equations of motion and slow channel. Let (ũ, ṽ) be a solution to (2.18) with

ũ = ũξ+ w̃ and w̃ ∈ H, where H is the space defined in (2.21); it follows that the variables

(w̃, ṽ) satisfy 
w̃t = ṽ −

N∑
j=1

ũξj ξ
′
j ,

τ ṽt = L(ũξ + w̃)− ṽ.
Expanding we get

L(uξ + w̃) = L(ũξ) + Lξw̃ + (f2w̃
2
x)x, where f2 :=

∫ 1

0
(1− s)F ′′′(ũξx + sw̃x) ds,

and Lξ is the linearized operator of L about ũξ, that is Lξw̃ := −ε2w̃xxxx +
(
F ′′(uξ)w̃x

)
x
.

Hence, we obtain the following system for (w̃, ṽ):
w̃t = ṽ −

N∑
j=1

ũξj ξ
′
j ,

τ ṽt = L(ũξ) + Lξw̃ + (f2w̃
2
x)x − ṽ.

(3.2)

In order to obtain the equation for ξ = ξ(t), we make use of the orthogonality condition

〈w̃, Eξj 〉 = 0, for j = 1, . . . , N, (3.3)
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where the functions Eξj are defined in Section 2 and satisfy (2.27). By differentiating with

respect to t the conditions (3.3) and by using the first equation of (3.2), we infer

〈ṽ, Eξj 〉 −
N∑
i=1

〈ũξi , E
ξ
j 〉ξ
′
i +

N∑
i=1

〈w̃, Eξji〉ξ
′
i = 0, j = 1, . . . , N, (3.4)

where we introduced the notation Eξji := ∂iE
ξ
j . Rewrite (3.4) in the compact form

D(ξ, w̃)ξ′ = Y (ξ, ṽ), (3.5)

where

Dji(ξ, w̃) := 〈ũξi , E
ξ
j 〉 − 〈w̃, E

ξ
ji〉, and Yj(ξ, ṽ) := 〈ṽ, Eξj 〉.

Therefore, combining (3.2) and (3.5) we obtain the ODE-PDE coupled system
w̃t = ṽ −

N∑
j=1

ũξj ξ
′
j ,

τ ṽt = L(ũξ) + Lξw̃ + (f2w̃
2
x)x − ṽ,

D(ξ, w̃)ξ′ = Y (ξ, ṽ).

(3.6)

Now, let us define the slow channel where we will study the dynamics of (3.6). Let ξ such

that h = G(ξ) ∈ Ωρ and w̃ ∈ C2(0, 1) with w̃ = 0 at x = 0, 1; define

Aξ(w̃) := −〈Lξw̃, w̃〉 =

∫ 1

0

[
ε2w̃2

xx + F ′′(uξ)w̃2
x

]
dx,

B(w̃) :=

∫ 1

0

[
ε2w̃2

xx + w̃2
x

]
dx.

We recall the following lemma of [2].

Lemma 3.1. For any w̃ ∈ C2(0, 1) with w̃ = 0 at x = 0, 1, we have

‖w̃‖2
L∞
≤ B(w̃), (3.7)

ε‖w̃x‖2L∞ ≤ (1 + ε)B(w̃). (3.8)

Moreover, assume that F satisfies (1.5). There exists ρ0 > 0 such that if ρ ∈ (0, ρ0) and

h = G(ξ) ∈ Ωρ, then for any w̃ as above and satisfying the orthogonality condition (3.3),

we have

CAξ(w̃) ≥ ε2B(w̃), (3.9)

for some positive constant C independent of ε and w̃.

For the proof of this lemma see [2, Lemmas 4.1 and 4.2]. Let us define the energy

functional

Eξ[w̃, ṽ] :=
1

2
Aξ(w̃) +

τ

2
‖ṽ‖2 + εθτ〈w̃, ṽ〉, for θ > 0,
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and the slow channel

ZΓ,ρ :=

{
(ũ, ṽ) : ũ = ũξ + w̃, (w̃, ṽ) ∈ H ×H2(0, 1), ξ is such that h = G(ξ) ∈ Ωρ,

and Eξ[w̃, ṽ] ≤ Γε−2Ψ(h)

}
,

for Γ, ρ > 0, where the space H and the barrier function Ψ are defined in (2.21) and (2.8),

respectively. Studying the dynamics of the solutions to (2.18) in the slow channel ZΓ,ρ is

equivalent to study the dynamics of the solutions to (3.6) in the set

ẐΓ,ρ :=

{
(w̃, ṽ, ξ) : (w̃, ṽ) ∈ H ×H2(0, 1), ξ is such that h = G(ξ) ∈ Ωρ,

and Eξ[w̃, ṽ] ≤ Γε−2Ψ(h)

}
.

Hence, we will study the dynamics of (3.6) in the set ẐΓ,ρ . The first step is the following

proposition, which gives estimates for solutions (w̃, ṽ, ξ) ∈ ẐΓ,ρ to (3.6).

Proposition 3.2. Let us assume that F ∈ C4(R) satisfies conditions (1.5). Given N ∈ N
and δ ∈ (0, 1/(N + 1)), there exists ε0 > 0 such that if ε, ρ satisfy (2.1), θ > 1, and

(w̃, ṽ, ξ) ∈ ẐΓ,ρ, then

Aξ(w̃) ≤ CEξ[w̃, ṽ] ≤ CΓε−2 exp

(
−2Alh

ε

)
, (3.10)

ε2‖w̃‖2
L∞

+ τ‖ṽ‖2
L2
≤ CEξ[w̃, ṽ] ≤ CΓε−2 exp

(
−2Alh

ε

)
, (3.11)

for some positive constant C > 0 (independent of ε, τ and θ).

Moreover, if (w̃, ṽ, ξ) ∈ ẐΓ,ρ is a solution to (3.6) for t ∈ [0, T ], then

|ξ′|∞ ≤ Cε−2τ−1/2 exp

(
−Al

h

ε

)
. (3.12)

Proof. Let us prove (3.10). Using Young inequality, we infer

2εθ|〈w̃, ṽ〉| ≤ ε2θ‖w̃‖2
L∞

+ ‖ṽ‖2,

and so, for the definitions of Aξ and Eξ, we have

Aξ(w̃) = 2Eξ[w̃, ṽ]− τ‖ṽ‖2 − 2εθτ〈w̃, ṽ〉 ≤ 2Eξ[w̃, ṽ] + ε2θτ‖w̃‖2
L∞
.

Using (3.7) and (3.9), we deduce

‖w̃‖2
L∞
≤ B(w̃) ≤ Cε−2Aξ(w̃),

and then

Aξ(w̃) ≤ 2Eξ[w̃, ṽ] + Cε2(θ−1)τAξ(w̃).
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Since θ > 1, we can choose ε0 so small that Cε2(θ−1)τ ≤ ν < 1 for ε ∈ (0, ε0), and conclude

that

Aξ(w̃) ≤ CEξ[w̃, ṽ].

The second inequality of (3.10) follows from the facts that Eξ[w̃, ṽ] ≤ Γε−2Ψ(h) in ẐΓ,ρ

and that the definition of the barrier function Ψ (2.8) and (2.5) imply that

Ψ(h) ≤ C exp

(
−2Alh

ε

)
, (3.13)

for some C > 0 independent of ε. The proof of (3.11) is similar. From (3.9) and Young

inequality, one has

Eξ[w̃, ṽ] ≥ Cε2B(w̃) +
τ

2
‖ṽ‖2 − ε2θτ‖w̃‖2 − τ

4
‖ṽ‖2.

Hence, for (3.7) we get

Eξ[w̃, ṽ] ≥ Cε2‖w̃‖2
L∞

+
τ

4
‖ṽ‖2 − ε2θτ‖w̃‖2

L∞
≥
(
C − ε2(θ−1)τ

)
ε2‖w̃‖2

L∞
+
τ

4
‖ṽ‖2,

and we obtain (3.11) choosing ε sufficiently small (again since θ > 1) and using (3.13).

It remains to prove (3.12). Let us consider the equation for ξ in (3.6) and the matrix

D(ξ, w̃) of elements Dij(ξ, w̃) := 〈ũξj , E
ξ
i 〉 − 〈w̃, E

ξ
ij〉. These elements have been already

studied in [2, 3] and one has

aij := 〈ũξj , Ei〉 =

{
(−1)i+j4lj+1 +O(ε), i ≥ j,
O(ε), i ≤ j,

(3.14)

where lj := hj − hj−1 is the distance between the layers (see formulas (4.27) in [3]), and

‖Eξij‖ ≤ Cε−1/2. These results can be obtained by using the formulas (2.24) and (2.27)

for ũξj and Eξj . In particular, the bound for ‖Eξij‖ can be easily obtained by differentiating

with respect to ξj the formula (2.27) without the exponentially small terms and by using

(2.15). From (3.11), it follows that

|〈w̃, Eξji〉| ≤ ‖w̃‖‖E
ξ
ji‖ ≤ Cε

−5/2 exp

(
−Al

h

ε

)
.

Hence, for ε sufficiently small, we have

D(ξ, w̃) :=


4l2 0 0 . . . 0
−4l3 4l3 0 . . . 0
4l4 −4l4 4l4 . . . 0
. . . . . . . . . . . . . . .

(−1)N−14lN+1 (−1)N−24lN+1 (−1)N−34lN+1 . . . 4lN+1

+O(ε),
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and its inverse

D−1(ξ, w̃) =



1

4l2
0 0 . . . 0 0

1

4l2

1

4l3
0 . . . 0 0

0
1

4l3

1

4l4
. . . 0 0

. . . . . . . . . . . . . . .

0 0 0 . . .
1

4lN

1

4lN+1


+O(ε).

Let us rewrite the equation for ξ in (3.6) as

ξ′ = D−1(ξ, w̃)Y (ξ, ṽ).

Since

|Yj(ξ, ṽ)| = |〈ṽ, Eξj 〉| ≤ ‖ṽ‖‖E
ξ
j ‖ ≤ C‖ṽ‖,

where in the last passage we used the formula (2.27) for Eξj , we deduce

|ξ′|∞ ≤ C‖D−1(ξ, w̃)‖∞‖ṽ‖,

where ‖ · ‖∞ denotes the matrix norm induced by the vector norm | · |∞ . To estimate such

matrix norm, we use the assumption h ∈ Ωρ, which implies lj > ε/ρ for any j. Therefore,

we can conclude that

|ξ′|∞ ≤ Cε−1‖ṽ‖, (3.15)

and the proof of (3.12) follows from (3.11). �

3.2. Main result. Thanks to the estimates (3.10), (3.11) and (3.12), we can state that

if (w̃, ṽ, ξ) ∈ ẐΓ,ρ is a solution to (3.6) in [0, T ], then the L∞–norm of w̃, the L2–norm

of ṽ and the velocity of ξ are exponentially small in ε. This implies that if u = uh + w

is a solution to (1.2) such that (ũ, ũt) ∈ ZΓ,ρ for t ∈ [0, T ], then the L∞–norm of w and

the velocity of the transition points (h1, . . . , hN+1) are exponentially small. Indeed, to

estimate the norm of w, we use (3.8), (3.9) and (3.10) and we get

‖w(·, t)‖
L∞ = ‖w̃x(·, t)‖

L∞ ≤ Cε
−1/2B(w̃)1/2 ≤ Cε−3/2Aξ(w̃)1/2 ≤ Cε−5/2 exp

(
−Al

h

ε

)
,

for some C > 0 independent of ε. On the other hand, the velocity of the transition points

(h1, . . . , hN ) is exponentially small for (3.12) and the fact that hi = ξi for i = 1, . . . , N ; to

estimate the velocity of hN+1, we use (2.14) and the relation

h′N+1 =
N∑
j=1

∂hN+1

∂hj
h′j =

N∑
j=1

[
(−1)N−j +O

(
ε−1 exp

(
−Al

h

ε

))]
h′j . (3.16)

From (3.16) and (3.12) it follows that

|h′N+1(t)| ≤ Cε−2τ−1/2 exp

(
−Al

h

ε

)
.
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Therefore, we can state that if u = uh + w is a solution to (1.2) such that (ũ, ũt) ∈ ZΓ,ρ

for t ∈ [0, T ], then

‖u− uh‖
L∞ ≤ Cε

−5/2 exp

(
−Al

h

ε

)
, |h′|∞ ≤ Cε−2τ−1/2 exp

(
−Al

h

ε

)
,

for t ∈ [0, T ]. In other words, there exists a neighborhood of the manifold M0 where the

solution u to (1.2)-(1.3) is well approximated by uh; thus, u is a function with N + 1

transitions between −1 and +1, and the velocity of the transition points is exponentially

small. Let us focus the attention on a lower bound of the time Tε taken for the solution

to leave such neighborhood of M0 . To this aim, we observe that a solution can leave the

slow channel ZΓ,ρ either if h = G(ξ) ∈ ∂Ωρ, meaning that two transition points are close

enough, namely hj − hj−1 = ε/ρ for some j, or if the energy functional is large enough,

precisely Eξ[w̃, ṽ] = Γε−2Ψ(h). We will prove that solutions leave the slow channel only

if two transition points are close enough; then, since the transition points move with

exponentially small velocity, the time taken for the solution to leave the slow channel is

exponentially large. Precisely, we will prove the following result.

Theorem 3.3. Let us assume that F ∈ C4(R) satisfies conditions (1.5) and consider the

IBVP (1.2)-(1.3)-(1.4) with u1 satisfying (2.11). Given N ∈ N and δ ∈ (0, 1/(N + 1)),

there exist ε0, θ0 > 0 and Γ2 > Γ1 > 0 such that if ε, ρ satisfy (2.1), θ > θ0, Γ ∈ [Γ1,Γ2],

and the initial datum (u0, u1) is such that

(ũ0, ũ1) ∈
◦
ZΓ,ρ=

{
(ũ, ṽ) ∈ ZΓ,ρ : h = G(ξ) ∈ Ωρ and Eξ[w, v] < Γε−2Ψ(h)

}
,

then the solution (u, ut) is such that (ũ, ũt) remains in ZΓ,ρ for a time Tε > 0, and for any

t ∈ [0, Tε] one has

‖u− uh‖
L∞ ≤ Cε

−5/2 exp

(
−Al

h

ε

)
, |h′|∞ ≤ Cε−2τ−1/2 exp

(
−Al

h

ε

)
, (3.17)

where A :=
√

min{F ′′(−1), F ′′(+1)}, `h := min{hj−hj−1} and |·|∞ denotes the maximum

norm in RN . Moreover, there exists C > 0 such that

Tε ≥ Cε2τ1/2(`h(0) − ε/ρ) exp(Aδ/ε).

The proof of Theorem 3.3 is based on the following proposition, which gives an estimate

on the time derivative of Eξ[w̃, ṽ] along the solutions to the system (3.6).

Proposition 3.4. Let us assume that F ∈ C4(R) satisfies conditions (1.5). Given N ∈ N
and δ ∈ (0, 1/(N + 1)), there exist ε0, θ0 > 0 and Γ2 > Γ1 > 0 such that if ε, ρ satisfy

(2.1), θ > θ0, Γ ∈ [Γ1,Γ2], and (w̃, ṽ, ξ) ∈ ẐΓ,ρ is a solution to (3.6) for t ∈ [0, T ], then

for some η ∈ (0, 1) and µ > 0, we have

d

dt

{
Eξ[w̃, ṽ]− Γε−2Ψ(h)

}
≤ −ηεµ

{
Eξ[w̃, ṽ]− Γε−2Ψ(h)

}
, for t ∈ [0, T ]. (3.18)
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Proof. In all the proof, symbols C, c, η denote generic positive constants, independent on

ε, and with η ∈ (0, 1). Let us differentiate with respect to t the three terms of the energy

functional Eξ. For the first term, direct differentiation and the first equation of (3.6) give

d

dt

{
1

2
Aξ(w̃)

}
= − d

dt

{
1

2
〈Lξw̃, w̃〉

}
= −〈Lξw̃, w̃t〉+

1

2
〈(F ′′(uξ))t, w̃

2
x〉

= −〈Lξw̃, ṽ〉+

N∑
j=1

ξ′j〈Lξw̃, ũ
ξ
j 〉+

1

2

N∑
j=1

ξ′j〈F ′′′(uξ)ũ
ξ
j , w̃

2
x〉.

Using the self-adjointness of the operator Lξ and inequality (3.15), we infer

N∑
j=1

|ξ′j〈Lξw̃, ũ
ξ
j 〉| =

N∑
j=1

|ξ′j〈w̃, Lξũ
ξ
j 〉| ≤ Cε

−1‖ṽ‖‖w̃‖max
j
‖Lξũξj‖.

For the last term of the latter inequality, we have that

Lξũξj = Lξũhj +
∂hN+1

∂hj
LξũhN+1 =

∂

∂hj
L(ũh) +

∂hN+1

∂hj

∂

∂hN+1
L(ũh)

= − ∂

∂hj

∂

∂x
LAC(uh)− ∂hN+1

∂hj

∂

∂hN+1

∂

∂x
LAC(uh),

and from [2, Lemma 5.2], it follows that

‖Lξũξj‖ ≤ Cε
−4 exp

(
−Al

h

2ε

)
≤ Cε−4 exp

(
−Aδ

2ε

)
,

where we used (2.1). On the other hand, the formula (2.24) and the inequalities (3.8),

(3.9) and (3.15) yield∣∣∣∣∣∣
N∑
j=1

ξ′j〈F ′′′(uξ)ũ
ξ
j , w̃

2
x〉

∣∣∣∣∣∣ ≤ C|ξ|∞‖w̃x‖L∞‖w̃x‖2 max
j
‖ũξj‖ ≤ Cε

−2B(w̃)‖ṽ‖

≤ Cε−4Aξ(w̃)‖ṽ‖.

Therefore, for the first term of the energy we conclude

d

dt

{
1

2
Aξ(w̃)

}
≤ −〈Lξw̃, ṽ〉+ Cε−5 exp(−c/ε)‖ṽ‖‖w̃‖+ Cε−4Aξ(w̃)‖ṽ‖. (3.19)

For what concerns the second term in the energy Eξ, the second equation of (3.6) gives

d

dt

{τ
2
‖ṽ‖2

}
= 〈τvt, v〉 = 〈L(ũξ) + Lξw̃ + (f2w̃

2
x)x − ṽ, ṽ〉

≤ 〈Lξw̃, ṽ〉+ ‖L(ũξ)‖‖v‖+ 〈(f2w̃
2
x)x, ṽ〉 − ‖ṽ‖

2

≤ 〈Lξw̃, ṽ〉 − 1

2
‖ṽ‖2 + C‖L(ũξ)‖2 + 〈(f2w̃

2
x)x, ṽ〉.
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By expanding

(f2w̃
2
x)x = (f2)xw̃

2
x + 2f2w̃xw̃xx

= w̃2
x

∫ 1

0
(1− s)F ′′′′(ũξx + sw̃x)(ũξxx + sw̃xx) ds+ 2f2w̃xw̃xx,

we deduce the estimate

|〈(f2w̃
2
x)x, ṽ〉| ≤ ‖(f2w̃

2
x)x‖‖ṽ‖ ≤ C

(
‖w̃x‖2L∞‖ũ

ξ
xx + w̃xx‖+ ‖w̃x‖L∞‖w̃xx‖

)
‖ṽ‖

≤ C
{
ε−1B(w̃)

(
ε−1 + ε−1B(w̃)1/2

)
+ ε−3/2B(w̃)

}
‖ṽ‖,

≤ C
{
ε−4 + ε−5Aξ(w̃)1/2

}
‖ṽ‖Aξ(w̃),

(3.20)

where the estimates (3.8), (3.9),

‖ũξxx‖ = ‖uξx‖ ≤ Cε−1, and ‖w̃xx‖2 ≤ ε−2B(w̃).

have been used. Hence, we obtain

d

dt

{τ
2
‖ṽ‖2

}
≤ 〈Lξw̃, ṽ〉 − 1

2
‖ṽ‖2 + C‖L(ũξ)‖2 + C

{
1 + ε−1Aξ(w̃)1/2

}
ε−4‖ṽ‖Aξ(w̃).

(3.21)

Finally, the time derivative of the scalar product 〈w, τv〉 can be bounded by

d

dt
〈w̃, τ ṽ〉 = τ‖ṽ‖2 − τ

N∑
j=1

ξ′j〈ũ
ξ
j , ṽ〉+ 〈w̃,L(ũξ) + Lξw̃ + (f2w̃

2
x)x − ṽ〉

≤ τ‖ṽ‖2 + τ |ξ′|∞‖ũ
ξ
j‖‖ṽ‖+ ‖w̃‖‖L(ũξ)‖ −Aξ(w̃)− 〈w̃, ṽ〉+ 〈w̃, (f2w̃

2
x)x〉.

where we used that Aξ(w̃) = −〈w̃, Lξw̃〉. By using (2.24), (3.15) and estimating as in

(3.20), we infer

εθ
d

dt
〈w̃, τ ṽ〉 ≤ −εθAξ(w̃) + εθτ(1 + Cε−1)‖ṽ‖2 − εθ

τ
〈w̃, τ ṽ〉+ εθ‖w̃‖‖L(ũξ)‖

+ C
{

1 + ε−1Aξ(w̃)1/2
}
εθ−4‖w̃‖Aξ(w̃).

For Young inequality, we have

εθ‖w̃‖‖L(ũξ)‖ ≤ Cε2θ‖w̃‖2 + C‖L(ũξ)‖2 ≤ Cε2(θ−1)Aξ(w̃) + C‖L(ũξ)‖2,

and we can estimate the third term of Eξ as

εθ
d

dt
〈w̃, τ ṽ〉 ≤ − εθAξ(w̃)− εθ

τ
〈w̃, τ ṽ〉+ εθτ(1 + Cε−1)‖ṽ‖2 + C‖L(ũξ)‖2

+ Cε2(θ−1)Aξ(w̃) + C
{

1 + ε−1Aξ(w̃)1/2
}
εθ−4‖w̃‖Aξ(w̃).

(3.22)

Collecting (3.19), (3.21) and (3.22), we deduce

d

dt
Eξ[w̃, ṽ] ≤− εθAξ(w̃)−

(
1

2
− εθτ(1 + Cε−1)

)
‖ṽ‖2 − εθ

τ
〈w̃, τ ṽ〉+ C‖L(ũξ)‖2

+ Cε2(θ−1)Aξ(w̃) +Rξ[w̃, ṽ],
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where

Rξ[w̃, ṽ] := Cε−5 exp(−c/ε)‖ṽ‖‖w̃‖+ Cε−4Aξ(w̃)‖ṽ‖

+ Cε−4
{

1 + ε−1Aξ(w̃)1/2
}{
‖ṽ‖+ εθ‖w̃‖

}
Aξ(w̃).

Choosing θ > 2 and ε0 so small that

Cεθ−1τ ≤ 1

2
− η, (3.23)

for any ε ∈ (0, ε0), we obtain

d

dt
Eξ[w̃, ṽ] ≤ −ηεθAξ(w̃)− η‖ṽ‖2 − εθ

τ
〈w̃, τ ṽ〉+ C‖L(ũξ)‖2 +Rξ[w̃, ṽ].

Therefore, we conclude that there exists µ > 0 (independent on ε) such that

d

dt
Eξ[w̃, ṽ] ≤ −ηεµEξ[w̃, ṽ]− η‖ṽ‖2 + C‖L(ũξ)‖2 +Rξ[w̃, ṽ],

for some η ∈ (0, 1). Indeed, the condition (3.23) implies εθ/τ > Cε2θ−1 and, since θ > 2,

we can choose µ ≥ 2θ − 1.

Now, let us use that (w̃, ṽ, ξ) ∈ ẐΓ,ρ for t ∈ [0, T ]; from Proposition 3.2 it follows that

there exists ε0 (dependent on Γ and τ) such that

Rξ[w̃, ṽ] ≤ C exp(−c/ε)Γε−2Ψ(h),

for any ε ∈ (0, ε0). Since, for (2.8) and (2.20) one has

‖L(ũξ)‖2 ≤ Cε−2Ψ(h),

we infer
d

dt
Eξ[w̃, ṽ] ≤ −ηεµEξ[w̃, ṽ]− η‖ṽ‖2 + Cε−2Ψ(h). (3.24)

Now, let us compute the time derivative of the barrier function Ψ. Direct differentiation

gives

dΨ

dt
= 2

N+1∑
i,j=1

〈LAC(uh), khj 〉
{
〈LAC(uh), khji〉+ 〈LACuhi , khj 〉

}
h′i,

where LAC is the linearization of LAC(u) about uh, i.e.

LACw := ε2wxx − F ′′(uh)w.

Using the estimates provided by inequalities (2.9) and (3.15), we deduce∣∣〈LAC(uh), khji〉h′i
∣∣ ≤ |h′|∞‖LAC(uh)‖‖khji‖ ≤ Cε−5/2‖LAC(uh)‖‖v‖,∣∣〈LACuhi , khj 〉h′i∣∣ ≤ |h′|∞‖khj ‖‖LACuhi ‖ ≤ C exp(−c/ε)‖v‖,

where in the last passage the inequality ‖LACuhi ‖ ≤ Cε−1/2 exp(−Alh/ε) has been used

(see [11, Proposition 7.2]). Thus, since

|〈LAC(uh), khj 〉| ≤ Cε−1/2‖LAC(uh)‖,
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we deduce the bound∣∣∣∣dΨ

dt

∣∣∣∣ ≤ Cε−1/2
{
ε−2‖LAC(uh)‖+ exp(−c/ε)

}
‖LAC(uh)‖‖v‖.

It is well known (see [10, Proposition 3.5]) that

‖LAC(uh)‖2 ≤ Cε
N+1∑
j=1

|αj+1 − αj |2 ≤ CεΨ(h), (3.25)

where we used the definition of Ψ (2.8). Therefore, we obtain∣∣∣∣ΓdΨ

dt

∣∣∣∣ ≤ C Γ
{
ε−3/2Ψ1/2 + exp(−c/ε)

}
‖v‖Ψ1/2

≤ η‖v‖2 + C Γ2
{
ε−3/2Ψ1/2 + exp(−c/ε)

}2
Ψ.

Hence, observing that Ψ ≤ C exp
(
−c/ε

)
, we end up with∣∣∣∣ΓdΨ

dt

∣∣∣∣ ≤ η‖v‖2 + C Γ2 exp(−c/ε)Ψ. (3.26)

Combining (3.24) and (3.26), we obtain that if (ξ, w̃, ṽ) ∈ ẐΓ,ρ is a solution of (3.6), then

d

dt

{
Eξ[w̃, ṽ]− Γε−2Ψ(h)

}
≤ −ηεµEξ[w̃, ṽ] + C

(
ε−2 + Γ2 exp(−c/ε)

)
Ψ,

for some η ∈ (0, 1). Therefore the estimate (3.18) follows from

C exp(−c/ε)Γ2 − η εµ−2Γ + Cε−2 ≤ 0,

and the latter is verified for Γ ∈ [Γ1,Γ2], provided ε ∈ (0, ε0) with ε0 sufficiently small so

that η2ε2µ − 4C2ε2 exp(−c/ε) > 0. �

Remark 3.5. Regarding the role of the parameter τ and its possible dependence on ε, we

observe that Propositions 3.2 and 3.4 are valid if the condition (3.23) holds. Therefore,

the parameter τ can be chosen of the order O
(
ε−k
)

for some k > 0 and the results of this

section hold true by choosing θ > max{2, k+ 1}; in particular, the estimate (3.18) is valid

with µ = θ + k. On the other hand, if either τ is independent on ε or τ → 0+ as ε→ 0+,

we can choose any θ > 2 and the estimate (3.18) is valid with µ = θ.

In general, if τ = τ(ε) for some function τ : R+ → R+, then we can prove the results of

Propositions 3.2 and 3.4 by working with the energy

Eξ[w̃, ṽ] :=
1

2
Aξ(w̃) +

τ

2
‖ṽ‖2 + f(ε)τ〈w̃, ṽ〉,

where f : R+ → R+ is a function such that f(ε)τ(ε)/ε→ 0+ and f(ε)/ε2 → 0+ as ε→ 0+.

Now, we have all the tools to prove our main result.
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Proof of Theorem 3.3. Let (ũ0, ũ1) ∈
◦
ZΓ,ρ and let (ũ, ṽ) ∈ ZΓ,ρ for t ∈ [0, Tε] be the solution

to (2.18). Then, ũ = ũξ + w̃ and (w̃, ṽ, ξ) ∈ ẐΓ,ρ solves the system (3.6) for t ∈ [0, Tε]. We

have already seen that the property (3.17) holds. Assume that Tε is maximal and apply

Proposition 3.4; from (3.18), it follows that

d

dt

{
exp(ηεµt)(Eξ[w̃, ṽ]− Γε−2Ψ(h))

}
≤ 0, t ∈ [0, Tε]

and so,

exp(ηεµt)
{
Eξ[w̃, ṽ]− Γε−2Ψ(h)

}
(t) ≤

{
Eξ[w̃, ṽ]− Γε−2Ψ(h)

}
(0) < 0, t ∈ [0, Tε].

Therefore, (ũ, ṽ) remains in the channel ZΓ,ρ while h = G(ξ) ∈ ∂Ωρ ∈ Ωρ and if Tε < +∞
is maximal, then h(Tε) ∈ ∂Ωρ, that is

hj(Tε)− hj−1(Tε) = ε/ρ for some j. (3.27)

From (3.17) it follows that for all t ∈ [0, Tε], one has

|hj(t)− hj(0)| ≤ Cε−2τ−1/2 exp(−Alh(t)/ε)t for any j = 1, . . . , N + 1, (3.28)

where lh(t) is the minimum distance between layers at the time t. Combining (3.27) and

(3.28), we obtain

ε/ρ ≥ lh(0) − 2Cε−2τ−1/2 exp(−A/ρ)Tε.

Hence, using (2.1) we have

Tε ≥ C
(
`h(0) − ε/ρ

)
ε2τ1/2 exp(A/ρ) ≥ C

(
`h(0) − ε/ρ

)
ε2τ1/2 exp(Aδ/ε),

and the proof is complete. �

4. Layer dynamics

As we have seen in the previous section, there exist metastable states for the hyperbolic

Cahn–Hilliard equation (1.2), that are approximately equal to +1 or −1 except near N+1

transition points moving with exponentially small velocity. The aim of this section is to

derive and study a system of ODEs describing the movement of the transition layers.

Precisely, after deriving a system of ODEs from (3.5), we will compare such system with

the one obtained in the case of the classic Cahn–Hilliard equation (1.7) by studying, in

particular, the limit as τ → 0.

4.1. Equations of transition layers. In order to derive the system of ODEs, we use

the approximation (w̃, ṽ) ≈ (0,
∑N

j=1 ξ
′
j ũ
ξ
j); substituting w̃ = 0 in (3.4) we get

N∑
i=1

〈ũξi , E
ξ
j 〉ξ
′
i = 〈v,Eξj 〉, j = 1, . . . , N.
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In order to eliminate the variable v, let us differentiate and multiply by τ the latter

equation:

τ
N∑

i,l=1

(
〈ũξil, E

ξ
j 〉+ 〈ũξi , E

ξ
jl〉
)
ξ′lξ
′
i + τ

N∑
i=1

〈ũξi , E
ξ
j 〉ξ
′′
i

= −〈L(ũξ), Eξj 〉 − 〈v,E
ξ
j 〉+ τ

N∑
l=1

〈v,Eξjl〉ξ
′
l, j = 1, . . . , N.

Using the approximation ṽ ≈
∑N

j=1 ξ
′
j ũ
ξ
j , we obtain

τ
N∑
i=1

〈ũξi , E
ξ
j 〉ξ
′′
i +

N∑
i=1

〈ũξi , E
ξ
j 〉ξ
′
i + τ

N∑
i,l=1

〈ũξil, E
ξ
j 〉ξ
′
iξ
′
l = 〈L

(
ũξ
)
, Eξj 〉, (4.1)

for j = 1, . . . , N . In order to simplify (4.1), let us compute the terms aij = 〈ũξi , E
ξ
j 〉,

〈ũξil, E
ξ
j 〉 and 〈L

(
ũξ
)
, Eξj 〉. The formula for aij is given in (3.14) and implies that the

matrix (aij) ∈ RN×N has the form

(aij) =


4l2 0 0 . . . 0
−4l3 4l3 0 . . . 0
4l4 −4l4 4l4 . . . 0
. . . . . . . . . . . . . . .

(−1)N−14lN+1 (−1)N−24lN+1 (−1)N−34lN+1 . . . 4lN+1

+O(ε),

with inverse

(aij)
−1 :=



1

4l2
0 0 . . . 0 0

1

4l2

1

4l3
0 . . . 0 0

0
1

4l3

1

4l4
. . . 0 0

. . . . . . . . . . . . . . .

0 0 0 . . .
1

4lN

1

4lN+1


+O(ε).

Next, for Lemma 2.3, (2.19) and the definition Eξj (2.26), we have

〈L
(
ũξ
)
, Eξj 〉 = 〈LAC

(
uξ
)
, uhj + uhj+1 −Q′j〉 = 〈LAC

(
uξ
)
, uhj + uhj+1〉+O(e−c/ε)

=

∫
Ij∪Ij+1

(
ε2uhxx(x)− F ′(uh(x))

)
uhx (x) dx+O(e−c/ε)

= αj+2 − αj +O(e−c/ε),

(4.2)

for j = 1, . . . , N . Finally, let us compute the terms 〈ũξil, E
ξ
j 〉, by using the formulas

(2.22) and (2.27) for uhi and Eξj , respectively. In what follows, we omit the tedious, but

straightforward computation of the derivatives of the exponentially small terms, because
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one can prove (using the bounds in [2, 3, 10, 11]) that they remain exponentially small in

ε. Therefore, differentiating the identities

ũξi = ũhi + ũhN+1

∂hN+1

∂hi
, and

∂hN+1

∂hi
= (−1)N−i +O(e−c/ε),

we obtain

ũξil = ũhil + (−1)N−lũhi,N+1 + (−1)N−iũhN+1,l + (−1)i+lũhN+1,N+1 +O(e−c/ε).

From (2.22) and the formula for uhi of Lemma 2.3, it follows that

ũhii(x) =

{
uhx (x) +O(e−c/ε), x ∈ Ii,
O(e−c/ε), otherwise,

and ũhil(x) = e, i 6= l, for i = 1, . . . , N + 1. Hence, we have

ũξii(x) =

{
uhx (x) +O(e−c/ε), x ∈ Ii ∪ IN+1,

O(e−c/ε), otherwise,
for i = 1, . . . , N, (4.3)

ũξil(x) =

{
(−1)i+luhx (x) +O(e−c/ε), x ∈ IN+1,

O(e−c/ε), otherwise,
for i 6= l. (4.4)

Thanks to the formulas (2.27), (4.3) and (4.4), we can compute the quantities 〈ũξil, E
ξ
j 〉.

Let us start with the case i = l = j 6= N ; for (2.27) and (4.3), we deduce

〈ũξii, E
ξ
i 〉 =

∫ 1

0
ũξii(x)Eξi (x) dx =

∫ hi+1/2

hi−1/2

uhx (x)
[
(−1)i − uh(x)

]
dx+O(e−c/ε)

= −1

2

[
(−1)i − uh(x)

]2
∣∣∣∣hi+1/2

hi−1/2

+O(e−c/ε) = −2 +O(e−c/ε),

for i = 1, . . . , N − 1. In the case i = l = j = N , we have

〈ũξNN , E
ξ
N 〉 =

∫ 1

0
ũξNN (x)EξN (x) dx =

∫ 1

hN−1/2

uhx (x)
[
(−1)N − uh(x)

]
dx+O(e−c/ε)

= −1

2

[
(−1)N − uh(x)

]2
∣∣∣∣1
hN−1/2

+O(e−c/ε) = O(e−c/ε).

The latter equality together with the expression for (aij)
−1 and (4.2) gives the equation

for ξ in the case N = 1 (two layers): equation (4.1) in the case N = 1 becomes

τξ′′ + ξ′ =
1

4l2
(α3 − α1).



METASTABILITY FOR THE HYPERBOLIC CAHN–HILLIARD EQUATION 27

Consider now the case i = l = j+ 1, j 6= N with N > 1; for the formulas (2.27) and (4.3),

we infer

〈ũξj+1,j+1, E
ξ
j 〉 =

∫ 1

0
ũξj+1,j+1(x)Eξj (x) dx =

∫ hj+3/2

hj+1/2

uhx (x)
[
(−1)j − uh(x)

]
dx+O(e−c/ε)

= −1

2

[
(−1)j − uh(y)

]2
∣∣∣∣hj+3/2

hj+1/2

+O(e−c/ε) = 2 +O(e−c/ε),

If j 6= N and either i = l 6= j, j + 1 or i 6= l, then all the terms 〈ũξil, E
ξ
j 〉 are negligible for

(2.27) and (4.4). In conclusion, for j 6= N , we have

〈ũξil, E
ξ
j 〉 = O(e−c/ε) +


−2, i = l = j,

2, i = l = j + 1,

0, otherwise.

Hence, the first N − 1 equations of (4.1) become

N∑
i=1

(τξ′′i + ξ′i)aij + 2τ
[(
ξ′j+1

)2 − (ξ′j)2] = αj+2 − αj ,

for j = 1, . . . , N − 1. The last equation of (4.1) is more difficult because the functions ũξil
and EξN are not negligible in IN+1. We have already seen that 〈ũξNN , E

ξ
N 〉 = e, for the

other terms we have

〈ũξii, E
ξ
N 〉 =

∫ 1

0
ũξii(x)EξN (x) dx =

∫ 1

hN+1/2

uhx (x)
[
(−1)N − uh(x)

]
dx+O(e−c/ε)

= −1

2

[
(−1)N − uh(x)

]2
∣∣∣∣1
hN+1/2

+O(e−c/ε) = 2 +O(e−c/ε),

for i = 1, . . . , N − 1, and

〈ũξil, E
ξ
N 〉 =

∫ 1

0
ũξil(x)EξN (x) dx = (−1)i+l

∫ 1

hN+1/2

uhx (x)
[
(−1)N − uh(x)

]
dx+O(e−c/ε)

= −(−1)i+l

2

[
(−1)N − uh(x)

]2
∣∣∣∣1
hN+1/2

+O(e−c/ε) = 2(−1)i+l +O(e−c/ε),

for i 6= l. Therefore,

〈ũξil, E
ξ
N 〉 = O(e−c/ε) +


0, i = l = N,

2, i = l 6= N,

2(−1)i+l, otherwise.

It follows that the last equation of (4.1) becomes

N∑
i=1

(τξ′′i + ξ′i)aij + 2τ

N−1∑
i=1

(
ξ′i
)2

+
∑
i 6=l

(−1)i+lξ′iξ
′
l

 = αN+2 − αN .
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Since

N−1∑
i=1

(
ξ′i
)2

+
∑
i 6=l

(−1)i+lξ′iξ
′
l =

(
N−1∑
i=1

(−1)N−jξ′i

)2

+ 2ξ′N

N−1∑
i=1

(−1)N−jξ′i

=

(
N∑
i=1

(−1)N−iξ′i − ξ′N

)(
N∑
i=1

(−1)N−iξ′i + ξ′N

)
,

we can rewrite

N∑
i=1

(τξ′′i + ξ′i)aij + 2τ

( N∑
i=1

(−1)N−iξ′i

)2

−
(
ξ′N
)2 = αN+2 − αN .

By applying the inverse matrix (aij)
−1, we obtain the following equation for ξ:

τξ′′1 + ξ′1 +
τ

2l2
Q(ξ′2, ξ

′
1) = P1(h),

τξ′′i + ξ′i +
τ

2li
Q(ξ′i, ξ

′
i−1) +

τ

2li+1
Q(ξ′i+1, ξ

′
i) = Pi−1(h) + Pi(h),

i = 2, . . . , N − 1,

τξ′′N + ξ′N +
τ

2lN
Q(ξ′N , ξ

′
N−1) +

τ

2lN+1
Q

 N∑
j=1

(−1)N−jξ′j , ξ
′
N

 = PN−1(h) + PN (h),

where we introduced the functions

Q(x, y) := x2 − y2, and Pi(h) :=
1

4li+1
(αi+2 − αi), i = 1, . . . , N. (4.5)

Therefore, we derived the equation for ξ = (ξ1, . . . , ξN ); recall that the transition points

are located at h = (h1, . . . , hN , hN+1) and that ξi = hi for i = 1, . . . , N ; the position of the

last point hN+1 is determined by the other points (h1, . . . , hN ) for the conservation of the

mass. In order to write the equation for h = (h1, . . . , hN , hN+1), which is more natural,

symmetric and easy to handle, we use (3.16) by neglecting the exponentially smallest

terms; thus, we consider the approximations

h′N+1 ≈
N∑
j=1

(−1)N−jh′j , h′′N+1 ≈
N∑
j=1

(−1)N−jh′′j .

We can now write the equation for h = (h1, . . . , hN , hN+1). In the case N = 1 (two layers)

we have

τh′′1 + h′1 =
1

4l2
(α3 − α1),

τh′′2 + h′2 =
1

4l2
(α3 − α1).

(4.6)
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In general, for N ≥ 2 the equations are

τh′′1 + h′1 +
τ

2l2
Q(h′2, h

′
1) = P1(h),

τh′′i + h′i +
τ

2li
Q(h′i, h

′
i−1) +

τ

2li+1
Q(h′i+1, h

′
i) = Pi−1(h) + Pi(h), i = 2, . . . , N,

τh′′N+1 + h′N+1 +
τ

2lN+1
Q(h′N+1, h

′
N ) = PN (h).

(4.7)

Equations (4.6) and (4.7) imply the following equations for the interval length lj (remember

that l1 = h1 − h0 = 2h1 and lN+2 = hN+2 − hN+1 = 2(1− hN+1)). For N = 1 one has

τ l′′1 + l′1 =
1

2l2
(α3 − α1),

τ l′′2 + l′2 = 0,

τ l′′3 + l′3 = − 1

2l2
(α3 − α1).

(4.8)

For N = 2:

τ l′′1 + l′1 +
τ

l2

[(
h′2
)2 − (h′1)2] =

1

2l2
(α3 − α1),

τ l′′2 + l′2 +
τ

2l3

[(
h′3
)2 − (h′2)2] =

1

4l3
(α4 − α2),

τ l′′3 + l′3 −
τ

2l2

[(
h′2
)2 − (h′1)2] = − 1

4l2
(α3 − α1),

τ l′′4 + l′4 −
τ

l3

[(
h′3
)2 − (h′2)2] = − 1

2l3
(α4 − α2).

(4.9)

In general, for N ≥ 3:

τ l′′1 + l′1 +
τ

l2
Q(h′2, h

′
1) = 2P1(h),

τ l′′2 + l′2 +
τ

2l3
Q(h′3, h2) = P2(h),

τ l′′i + l′i +
τ

2li+1
Q(h′i+1, h

′
i)−

τ

2li−1
Q(h′i−1, h

′
i−2) = Pi(h)− Pi−2(h), i = 3, . . . , N,

τ l′′N+1 + l′N+1 −
τ

2lN
Q(h′N , h

′
N−1) = −PN−1(h),

τ l′′N+2 + l′N+2 −
τ

lN+1
Q(h′N+1, h

′
N ) = −2PN (h).

(4.10)

Observe that l1/2 and lN+2/2 are the distances of h1 and hN+1 from the boundary points

0 and 1, respectively. Let L− and L+ be the length of all the intervals where the solution
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is approximately −1 and +1, respectively; namely

L− : =
l1
2

+

N/2∑
i=1

l2i+1, L+ =

N/2∑
i=1

l2i +
lN+2

2
, if N is even,

L− : =
l1
2

+

(N−1)/2∑
i=1

l2i+1 +
lN+2

2
, L+ =

(N+1)/2∑
i=1

l2i, if N is odd.

It follows that these quantities satisfy

τL′′± + L′± = 0. (4.11)

4.2. Comparison with the classic Cahn–Hilliard equation. In this subsection, we

study the equations describing the movement of the transition points derived above, and

we analyze the differences with the corresponding equations valid for the classic Cahn–

Hilliard equation (1.7). Rewrite the equations (4.6) and (4.7) in a compact form: in the

case of two layers (N = 1), see equations (4.6), we get

τh′′ + h′ = P(h), (4.12)

where h = (h1, h2) and P : R2 → R2 is defined by

Pi(h1, h2) :=
α3 − α1

4(h2 − h1)
, i = 1, 2.

In the case of N + 1 layers with N ≥ 2, we rewrite (4.7) as

τh′′ + h′ + τQ(h,h′) = P(h), (4.13)

where h = (h1, . . . , hN+1) and P : RN+1 → RN+1 is defined by

P(h) :=



α3 − α1

4(h2 − h1)

α3 − α1

4(h2 − h1)
+

α4 − α2

4(h3 − h2)
...
...

αN+1 − αN−1

4(hN − hN−1)
+

αN+2 − αN

4(hN+1 − hN )

αN+2 − αN

4(hN+1 − hN )



, (4.14)



METASTABILITY FOR THE HYPERBOLIC CAHN–HILLIARD EQUATION 31

and Q : RN+1 × RN+1 → RN+1 is

Q(h,h′) :=



(h′2)2 − (h′1)2

2(h2 − h1)
,

(h′2)2 − (h′1)2

2(h2 − h1)
+

(h′3)2 − (h′2)2

2(h3 − h2)
...
...

(h′N )2 −
(
h′N−1

)2
2(hN − hN−1)

+

(
h′N+1

)2 − (h′N )2

2(hN+1 − hN )(
h′N+1

)2 − (h′N )2

2(hN+1 − hN )



. (4.15)

Both in the case (4.12) and in the case (4.13), taking formally the limit as τ → 0+ one

obtains the system describing the motion of the transition layers in the classic Cahn–

Hilliard equation (1.7) (see equations (4.36) in [3]). Indeed, in [3] the authors derived the

following system of ODEs to approximately describe the motion of the transition points

h1, h2, . . . , hN+1 when they are well separated:

h′1 =
1

4l2
(α3 − α1),

h′j =
1

4lj
(αj+1 − αj−1) +

1

4lj+1
(αj+2 − αj), j = 2, . . . , N

h′N+1 =
1

4lN+1
(αN+2 − αN ).

(4.16)

Let us briefly describe the behavior of the solutions to (4.16) when F is an even function

and hi, hi−1 are the closest transition points at time t = 0, namely assume that there

exists a unique i ∈ {1, . . . , N + 2} such that

li(0) < lj(0), j 6= i, j = 1, . . . , N + 2.

In this case, we can use Remark 2.2 and from the estimate (2.7) it follows that αi � αj

for all j 6= i, and the terms αj with j 6= i are exponentially small with respect to αi as

ε→ 0+. As a consequence, we can describe the motion of the transition layers in the case

of the Cahn–Hilliard equation (1.7) as follows. In the case N = 1, the two transition points

h1 and h2 move to the right (respectively left) if l3 = 2(1 − h2) < l1 = 2h1 (respectively

l3 > l1) and we have h′1 ≈ h′2; thus, the points move together in an almost rigid way, they

move in the same direction at approximately the same speed. In the case N = 2, we have

two transitions points moving in the same direction at approximately the same speed v,

while the speed of the third one is exponentially small with respect to v, and so, the third

point is essentially static. Finally, consider the case N ≥ 3 with i ∈ {3, . . . , N}; the term

αi appears in the equations for hi−2, hi−1, hi and hi+1, and so we have four points moving
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at approximately the same speed, while all the other layers remain essentially stationary

in time. Precisely, we have

h′i−2 > 0, h′i−1 > 0, h′i < 0, h′i+1 < 0, h′j = O
(
e−C/εh′i

)
for j /∈ {i− 2, i− 1, i, i+ 1}.

Roughly speaking, the system (4.16) shows that the shortest distance between layers

decreases: the closest layers move towards each other, each being followed by its nearest

transition point from “behind”, at approximately the same speed, until the points hi and

hi−1 are sufficiently close. Hence, the loss of the mass due to the annihilation of the

transitions at hi−1 and hi is compensated by the movement of the nearest neighbor hi−2

and hi+1. This property, due to the conservation of the mass, is a fundamental difference

with respect to the Allen–Cahn equation (1.6). For such equation, Carr and Pego [10]

derived the following equations for the transition points hj :

h′j = Cε
(
αj+1 − αj

)
, j = 1, . . . , N + 1,

where C is a constant depending only on F . Then, in the case of the Allen–Cahn equation,

the closest layers move towards each other at approximately the same speed satisfying

|h′i| ≈ ε|αi+1 − αi|, while all the other points remain essentially stationary in time.

As it was already mentioned, system (4.16) was derived in [3, Section 4] in order to ap-

proximately describe the movement of the transition layers for the Cahn–Hilliard equation

(1.7) until the points are well separated, with distance lj > ε/ρ. A detailed analysis of

the motion of the layers for (1.7) can be also found in [29], where the authors studied in

details layer collapse events and presented many numerical simulations confirming that the

layer dynamics is closely described by (4.16). However, system (4.16) provides an accurate

description of the motion of the points corresponding to the annihilating interval and its

two nearest neighbors, but it may be slightly inaccurate for other layers. For example, in

[29] it is showed that if (hi−1, hi) is the annihilating interval for some i ∈ {3, . . . , N}, all

the points hj with j /∈ {i − 2, i − 1, i, i + 1} move at an algebraic slower speed in ε than

hi. In contrast, we saw that for (4.16) the points hj move exponentially slower than the

collapsing layers. Apart from that, system (4.16) provides a good description of the layer

dynamics for the classic Cahn–Hilliard equation (1.7).

In the case of the hyperbolic Cahn–Hilliard equation (1.2), the movement of the layer is

approximately describe by equations (4.12) and (4.13), and so, we have to take in account

the inertial term τh′′ and the quadratic term τQ(h,h′) (when N ≥ 2). In the following,

we shall compute some numerical solutions in order to analyze the differences between

systems (4.7) and (4.16). To do this, we use Proposition 2.1 choosing A+ = A− =
√

2

and K+ = K− = 4, which corresponds to the choice F (u) = 1
4(u2 − 1)2; then, we use the
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approximation

αj ≈ 16 exp

(
−
√

2(hj − hj−1)

ε

)
.

The values of the initial data for the ODEs (4.7) depend on the choice of the initial

datum (u0, u1) for the PDE (1.2); precisely, we assume that u0 = uh
0

for some h0 ∈ Ωρ,

and so h(0) = h0 represents the positions of the transition points at time t = 0, while

the first N components of h′(0) satisfy the third equation of (3.6), and hN+1 is given by

(3.16) (for the conservation of the mass). Therefore, we have

h′1(0) =
1

4l2(0)
〈ũ1, E

ξ
1 〉+O(ε〈ũ1, E

ξ
1 〉),

h′j(0) =
1

4lj(0)
〈ũ1, E

ξ
j−1〉+

1

4lj+1(0)
〈ũ1, E

ξ
j 〉+O(ε〈ũ1, E

ξ
j 〉), j = 2, . . . , N

h′N+1(0) =
N∑
j=1

∂hN+1

∂hj
h′j(0) =

1

4lN+1(0)
〈ũ1, E

ξ
N 〉+O(ε‖ũ1‖).

(4.17)

As we have previously done for the ODEs (4.7), we consider equations (4.17) without

the smallest terms O(ε〈ũ1, E
ξ
j 〉). By reasoning as in the computation of (4.11), we get

L′±(0) = 0, and so L±(t) = 0 for all t and this is consistent with the mass conservation. In

particular, let us stress that in the 2 layers case (N = 1) we have h′1(0) = h′2(0). Finally,

notice that choosing ũ1 = L(ũ0) we deduce that h′j(0) satisfies (4.16).

We want to focus the attention on the role of the parameter τ and we consider the same

initial data for (4.7) and (4.16); in particular for (4.6)-(4.7), we choose h′j(0) satisfying

(4.16), meaning that h′j(0) satisfy (4.17) with ũ1 = L(ũ0). Let us start with the case

of 2 layers. Observe that l2 = h2 − h1 satisfies (4.8) and since h′1(0) = h′2(0), we have

l2(t) = l2(0) for any time t. In the first example, we choose ε = 0.07: in Table 1 we

show the numerical computation of the difference h1(t) − h1(0) for different times t and

for different values of τ (τ = 0 corresponds to system (4.16)); since l2 is constant in time,

we get h2(t) = s(t) + h2(0); in Figure 1 we show the graph of h1 for τ = 0 and τ = 50.

TIME t s(t), τ = 0 s(t), τ = 5 s(t), τ = 50
300 −0.0128 −0.0126 −0.0113
600 −0.0534 −0.0497 −0.0364
665 −0.1240 −0.0830 −0.0475

Table 1. The numerical computation of s(t) = h1(t)− h1(0) for ε = 0.07
and different values of τ . The initial positions of the layers are h1(0) = 0.31,
h2(0) = 0.66.
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Figure 1. The graph of h1(t) for ε = 0.07 in the case of systems (4.16)
(left) and (4.6) (right) with τ = 50.

We see that the greater τ is, the slower the movement of the layers is. In particular, in

Figure 1 we see that the behavior of h1 is the same, but the time taken for h1 to reach

the position 0.1 is greater in the case of system (4.6) with τ = 50.

Now, we consider an example with 6 layers. For ε = 0.008, in Tables 2 and 3 we

numerically compute the difference hi(t) − hi(0) for i = 1, . . . , 6 in the case τ = 0 and

τ = ε−1 = 125, respectively, and, in particular, we see that in the case τ = 125 the layers

move slower than in the case without inertial terms.

si(t) t = 102 t = 104 t = 105 t = 1.55 ∗ 105

s1(t) 2.99 ∗ 10−7 3.00 ∗ 10−5 3.13 ∗ 10−4 4.96 ∗ 10−4

s2(t) 2.13 ∗ 10−6 2.19 ∗ 10−4 3.27 ∗ 10−3 1.36 ∗ 10−2

s3(t) 1.54 ∗ 10−6 1.60 ∗ 10−4 2.64 ∗ 10−3 1.25 ∗ 10−2

s4(t) −2.03 ∗ 10−6 −2.09 ∗ 10−4 −3.09 ∗ 10−3 −1.26 ∗ 10−2

s5(t) −1.79 ∗ 10−6 −1.85 ∗ 10−4 −2.82 ∗ 10−3 −1.21 ∗ 10−2

s6(t) −4.76 ∗ 10−8 −4.75 ∗ 10−6 −4.62 ∗ 10−5 −6.99 ∗ 10−5

Table 2. The numerical computation of si(t) = hi(t) − hi(0) in the case
of system (4.16) for ε = 0.008. The initial positions of the layers are
0.18, 0.32, 0.45, 0.57, 0.71, 0.86.

In the previous computations we choose the same initial velocities for (4.16)-(4.7) and

the only difference is that in the case of system (4.7) the layers move slower than (4.16).

On the other hand, choosing different initial velocities, according to (4.17), we can ob-

serve different dynamics. For instance, in the case of system (4.7) the points can change

direction: in Table 4 we consider the same ε, τ and initial positions of the Table 3, but

with opposite initial velocities, namely, we choose ũ1 = −L(ũ0) in (4.17). We see that the

points change direction and after that we have the same behavior of Table 3.
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si(t) t = 102 t = 104 t = 105 t = 1.55 ∗ 105

s1(t) 2.99 ∗ 10−7 3.00 ∗ 10−5 3.13 ∗ 10−4 4.94 ∗ 10−4

s2(t) 2.13 ∗ 10−6 2.19 ∗ 10−4 3.26 ∗ 10−3 1.27 ∗ 10−2

s3(t) 1.54 ∗ 10−6 1.60 ∗ 10−4 2.63 ∗ 10−3 1.17 ∗ 10−2

s4(t) −2.03 ∗ 10−6 −2.09 ∗ 10−4 −3.08 ∗ 10−3 −1.18 ∗ 10−2

s5(t) −1.79 ∗ 10−6 −1.84 ∗ 10−4 −2.81 ∗ 10−3 −1.13 ∗ 10−2

s6(t) −4.76 ∗ 10−8 −4.75 ∗ 10−6 −4.62 ∗ 10−5 −7.09 ∗ 10−5

Table 3. The numerical computation of si(t) = hi(t) − hi(0) in the case
of system (4.7). The values of the parameters are ε = 0.008 and τ = 125;
the initial positions of the layers are 0.18, 0.32, 0.45, 0.57, 0.71, 0.86.

si(t) t = 102 t = 2 ∗ 102 t = 104 t = 105 t = 1.55 ∗ 105

s1(t) −0.11 ∗ 10−6 1.4 ∗ 10−9 2.93 ∗ 10−5 3.12 ∗ 10−4 4.94 ∗ 10−4

s2(t) −0.80 ∗ 10−6 9.7 ∗ 10−9 2.14 ∗ 10−4 3.25 ∗ 10−3 1.22 ∗ 10−2

s3(t) −0.58 ∗ 10−6 7 ∗ 10−9 1.56 ∗ 10−4 2.62 ∗ 10−3 1.12 ∗ 10−2

s4(t) 0.76 ∗ 10−6 −9.3 ∗ 10−9 −2.04 ∗ 10−4 −3.07 ∗ 10−3 −1.14 ∗ 10−2

s5(t) 0.67 ∗ 10−6 −8.2 ∗ 10−9 −1.80 ∗ 10−4 −2.80 ∗ 10−3 −1.09 ∗ 10−2

s6(t) 0.02 ∗ 10−6 −2.3 ∗ 10−10 −4.63 ∗ 10−6 −4.61 ∗ 10−5 −7.06 ∗ 10−5

Table 4. In this table we consider the same initial positions and the same
values of ε and τ of Table 3, but initial velocities with opposite sign respect
to Table 3.

We conclude this paper by comparing the solutions to systems (4.7) and (4.16) as

τ → 0+. Let us rewrite system (4.13) in the form{
h′ = η,

τη′ = P(h)− η − τQ(h,η),
(4.18)

and system (4.16) in the form {
h′ = η,

η = P(h),
(4.19)

where P and Q are defined in (4.14) and (4.15). Notice that the functions P and Q
are not well defined when hj = hj+1 for some j, but here we are interested in studying

the system (4.18) when lj(t) > δ for any t ∈ [0, T ] and any j for some positive δ and T ,

because system (4.18) describes the movement of the transition points when they are well

separated for the hyperbolic Cahn–Hilliard equation (1.2). Therefore, in the following we

consider system (4.18) for t ∈ [0, T ] where T is such that lj(t) > δ > 0 for any t ∈ [0, T ]

and any j ∈ {1, N + 2}. Denote by (h,η) the solutions to (4.18) and (hc,ηc) the solutions

of (4.19), and set

Eτ (t) := |h(t)− hc(t)|+ τ |η(t)− ηc(t)|.
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A general theorem of Tihonov on singular perturbations can be applied to systems (4.18)-

(4.19) to prove that if (h,η) is a bounded solution of (4.18) for t ∈ [0, T ] and Eτ (0) → 0

as τ → 0, then h→ hc uniformly in [0, T ] and η → ηc uniformly in [t1, T ] for any t1 > 0

as τ → 0+.

Proposition 4.1. Fix ε, ρ satisfying (2.1) with ε0 sufficiently small. Let (h,η) be a

solution of (4.18) and (hc,ηc) a solution of (4.19), with h(t),hc(t) ∈ Ωρ for any t ∈ [0, T ].

Then, there exists C > 0 (independent of τ) such that

Eτ (t) ≤ C(Eτ (0) + τ), for t ∈ [0, T ]. (4.20)

Moreover, ∫ T

0
|η(t)− ηc(t)|dt ≤ C(Eτ (0) + τ), (4.21)

|η(t)− ηc(t)| ≤ C(Eτ (0) + τ), for t ∈ [t1, T ], (4.22)

for all t1 ∈ (0, T ).

In particular, from (4.20), (4.21) and (4.22), it follows that, if Eτ (0) → 0 as τ → 0,

then

lim
τ→0

sup
t∈[0,T ]

|h(t)− hc(t)| = lim
τ→0

∫ T

0
|η(t)− ηc(t)|dt = lim

τ→0
sup

t∈[t1,T ]
|η(t)− ηc(t)| = 0,

for any t1 ∈ (0, T ).

Proof. For t ∈ [0, T ], define

δh(t) := h(t)− hc(t), δη(t) := η(t)− ηc(t).

Since h(t),hc(t) ∈ Ωρ for t ∈ [0, T ], by using Proposition 2.1 and using that lj > δ > 0,

we get

|P(hc)| ≤
C

δ
exp(−Aδ/ε), |JP(hc)| ≤

C

ε2δ2
exp(−Aδ/ε),

|P(hc + δh)− P(hc)| ≤
C

ε2δ2
exp(−Aδ/ε)|δh|, |Q(h,η)| ≤ C

δ
|η|2.

(4.23)

for all t ∈ [0, T ]. Here and in what follows, C is a positive constant independent of τ

whose value may change from line to line. We have

δ′h = η − ηc, τδ′η = P(hc + δc)− P(hc)− δη − τQ(h,η)− τJP(hc)P(hc).

Since
d

dt
|δ| =

δ′ · δ
|δ|

for any δ(t) ∈ RN+1, using estimates (4.23) and Cauchy–Schwarz

inequality, we obtain

d

dt
|δh| ≤ |δη|, τ

d

dt
|δη| ≤ C|δh| − |δη|+ Cτ.
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Summing, one has
d

dt
(|δh|+ τ |δη|) ≤ C|δh|+ Cτ,

and so,
d

dt
Eτ (t) ≤ C (Eτ (t) + τ) , for t ∈ [0, T ]. (4.24)

Integrating (4.24) and applying Grönwall’s Lemma, we obtain (4.20). In particular, from

(4.20), it follows that

|δh(t)| ≤ C(Eτ (0) + τ), for t ∈ [0, T ]. (4.25)

Substituting (4.25) into the equation for δη, we obtain

τ
d

dt
|δη| ≤ −|δη|+ C(Eτ (0) + τ),

and integrating the latter estimate we infer (4.21); moreover, we have

d

dt

(
τet/τ |δη(t)|

)
≤ C(Eτ (0) + τ)et/τ ,

and so

|δη(t)| ≤ C(Eτ (0) + τ) + Eτ (0)
e−t/τ

τ
,

for t ∈ [0, T ]. Therefore, for any fixed t1 ∈ (0, T ), we obtain (4.22). �
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