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Abstract— In this paper, on the basis of a recently proposed
discrete-time port-Hamiltonian representation of sampled-data
dynamics, we propose a new time-varying digital feedback for
steering mobile robots. The quality of the proposed passivity-
based control is validated and compared through simulations
with the existing literature and the continuous-time implemen-
tation using the unicycle as a case study.

Index Terms— Sampled-data control, Nonholonomic systems,
Autonomous vehicles.

I. INTRODUCTION

The well-known Brockett’s condition [1] revealed the
obstacle in stabilizing nonholonomic systems using smooth
continuous control laws. As a matter of fact, this issue
extends to larger classes of control problems involving
nonholomic systems such as position steering, tracking or
formation control in a multi-agent perspective. With this in
mind, several works have been carried out with the aim of
proposing design approaches for this class of systems using
different tools as, for instance, time-varying [2], discontin-
uous [3] (both of these in a continuous-time framework) or
digital multi-rate control [4] schemes. In all those works,
the emphasis is on the unicycle, a benchmark example for
the class of systems under investigation [5], [6]. In case of
non-stationary modeling the angular velocity is described
by a time-varying parameter. Thus, the overall design is
performed over the obtained linear time-varying system and a
proportional control is designed in order to ensure steering at
a desired configuration provided that the angular component
is sufficiently exciting [2]. Beside being simple and robust,
this approach allows straightforward extensions to more
general control problems such as position steering, tracking,
rendez-vous or formation control [7]–[10].

On the other side, the digital control framework has
been shown in [4], [11] to provide a natural setting for
the control of nonholonomic systems, in view of the fact
that these systems belong to the class of dynamics that
admit, under preliminary continuous-time feedback, a finitely
computable sampled-data model. In addition, when consid-
ering the unicycle, the sampled model has been proved
to be fully invertible under multi-rate control (of suitable
order) thereby allowing the design of digital feedback laws
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ensuring dead-beat (i.e., in one sampling instant) steering
or tracking. However, some difficulties remain. The overall
controller is piecewise continuous and consists in a fun-
damental continuous-time feedback component, responsible
for ensuring finite discretizability. The closed loop suffers
from robustness issues with respect to model uncertainties
and sample-and-hold implementation due to the preliminary
continuous-time loop component. Finite-time convergence in
one step comes with a generally significant control effort that
makes the implementation difficult in practice. Some of those
issues have been partially solved in [12] embedding a Model
Predictive Control (MPC) scheme. Other solutions involving
sampled-data control basically rely upon emulation of the
continuous-time (time-varying) control laws; i.e., through
a direct implementation of the continuous-time control via
sampled and hold devices without any further design [13],
[14]. An exception is represented by [15] where a new
sampled-data controller is designed with stability guarantees
provided that the sampling period is small enough with
respect to the control parameters. However, only stabilization
at the origin is there considered and with the corresponding
performances naturally limited by the amplitude of the
sampling period.

This work is contextualized in this framework with the aim
of designing a new and fully digital control law ensuring,
at first, position-stabilization of a unicycle for all sampling
periods and overcoming the aforementioned pathology. The
contributions of the paper are detailed below. First, we prove
that the sampled-data equivalent model of the kinematics
admits the discrete-time port-Hamiltonian (pH) form recently
proposed in [16], [17]. Thanks to this, a time-varying digital
feedback on the linear velocity is defined via damping injec-
tion from the passivating output. In this way, stabilization at
the desired position is guaranteed provided that the angular
velocity component is set to a sufficiently exciting periodic
signal. For the case under investigation, the sampled-data
model that is exploited for the discrete-time design can be
exactly and explicitly computed, guaranteeing that perfor-
mances are enforced for all values of the sampling period. As
a consequence, the effect of sampling is compensated exactly
with no need of multi-rate and preliminary continuous-time
feedback (that require more accurate and powerful actuation
devices) while still guaranteeing good performances. In addi-
tion and contrarily to the aforementioned cases, the controller
gets a simple structure as it is defined as the solution to a
linear equality, so that it is easy to implement as well.

The remainder of the paper is organized as follows. In
Section II, preliminaries on existing results for modeling
and steering control of unicycle in continuous time are given
and the problem stated. In Section III, a new sampled-data



model for the unicycle is provided based on a discrete pH
representation. Then, such a model is exploited for control
design involving steering in Section IV with simulations in
Section V. Section VI concludes the paper.

Notations. The sets R and N denote the set of real and
natural numbers including 0 respectively. The symbols � and
≺ (� and �) positive and negative (semi-)definite matrices.
In denotes the identity matrix of dimension n ≥ 1 whereas 0
is the zero-matrix of suitable dimensions. Given B ∈ Rn×m
with n > m, B⊥ be denotes the orthogonal complement
verifying B⊥B = 0. Given m column vectors gj ∈ Rn with
j = 1, . . . ,m we denote by diag{g1, . . . , gm} ∈ Rmn×m
the block-diagonal matrix with gj in the main diagonal
whereas col{g1, . . . , gm} = (g>1 . . . g>m)> ∈ Rnm. Given
two matrices A ∈ Rn1×n2 and B ∈ Rm1×m2 , the Kronecker
product is denoted by A⊗B ∈ Rn1m1×n2m2 . Given a real-
valued differentiable function V : Rn → R, ∇V represents
the gradient column-vector with ∇ = col{ ∂

∂xi
}i=1,...,n and

∇2V (·) denotes its Hessian. For v, w ∈ Rn, the discrete gra-
dient is a vector-valued function of two variables, ∇̄V (v)|wv :
Rn × Rn → Rn, defined as

∇̄V (v)|wv =

∫ 1

0

∇V (v + s(w − v))ds

satisfying V (w) − V (v) = (w − v)>∇̄V (v)|wv with
∇̄V (v)|vv = ∇V (v). When V (v) = 1

2ν
>Pv with P = P>,

one gets ∇̄V (v)|wv = 1
2P (v + w).

II. PROBLEM STATEMENT AND RECALLS

A. Problem statement and the continuous-time solution

Consider the unicycle kinematics given by (1) as

ż =vr (1a)

θ̇ =ω (1b)

with z := (x y)> ∈ R2 the planar coordinates of the robot,
θ ∈ R the angle described by the chassis with respect to the
horizontal axis and

r =

(
cos θ
sin θ

)
, s = r⊥ =

(
− sin θ
cos θ

)
.

Assuming the input signals piecewise constant over time
intervals of length δ > 0 (the sampling period), the problem
we address consists in designing a suitable digital control
law driving the trajectories to a constant desired position in
the Cartesian space. More in detail, it is formalized below.

Problem 1 (Steering under digital control): Consider the
unicycle kinematics (1) under piecewise constant inputs over
the sampling period δ > 0, that is

ω(t) = ωk, v(t) = vk for t ∈ [kδ, (k + 1)δ[. (2)

and zd ∈ R2 a desired plane position. Assuming tthe robot
can sense its own orientation θ ∈ R and the corresponding
relative position with respect to the target point, that is

ez = R(θ)(z − zd) (3)

with

R(θ) =

(
r>

s>

)
=

(
cos θ sin θ
− sin θ cos θ

)
. (4)

The objective relies upon designing a sampled-data feedback
vk = vδ(k, zk, θk) and ωk = ωδ(k, zk, θk) ensuring zk =
z(kδ) → zd as k → ∞ for all initial conditions θ0 ∈ Rn
and z0 ∈ Rn. �

Remark 2.1: In the following convergence (i.e., zk → zd
as k → ∞) is enforced by making zd uniformly globally
asymptotically stable (UGAS) for (1a).

In the continuous-time case, steering is ensured by the
time-varying control

v = −κr>(z − zd), κ > 0 (5)

making (1a) UGAS at zd provided that ω(t) is persistently
exciting; e.g., fixing [10]

ω(t) = cosω0t, ω0 > 0. (6)

Thus, the closed-loop dynamics

ż = −κM(t)(z − zd), M(t) = rr> (7)

is UGAS at zd ∈ R2 because M(t) is bounded and the signal
r(t) = r(θ(t)) is persistently exciting.

B. Hamiltonian systems in discrete time

Consider now a discrete-time dynamics

xk+1 = xk + F (xk, uk) (8)

where, for simplicity, we denote by (xk, uk) ∈ Rn×Rm, the
pair of state and control variables at a generic time instant
k ≥ 0. A novel state space representation for discrete-time
pH structures has been proposed in [16] through an implicit
description of the drift dynamics in terms of the discrete
gradient function. More precisely, denoting the free state
evolution by x+ := x + F (x, 0) in the dynamics (8), a
discrete-time pH system is described by

x+(u) =x+ (Jd(x)−Rd(x))∇̄H|x
+

x + g(x, u)u (9a)

h(x, u) =g>(x, u)∇̄H|x
+(u)
x+ (9b)

when setting, for simplicity, xk+1 = x+k (uk) = x+(u),
x = xk, u = uk, x+ = x + F (x, 0). In particular, Jd(x) =
−Jd>(x), Rd(x) = Rd

>(x) � 0 are the interconnection
and damping matrices respectively, while H : Rn → R is
the Hamiltonian function. As in the continuous-time case,
discrete pH forms (9) verify by construction the one-step
energy-balance equality so implying passivity; namely, set-
ting ∆H(x) = H(x+(u))−H(x), one has

∆H(x) = −∇̄>H|x
+

x Rd(x)∇̄H|x
+

x+︸ ︷︷ ︸
≤ 0, one-step dissipated energy

+ h>(x, u)u︸ ︷︷ ︸
one-step supplied energy

.

It is instrumental to note that, making reference to the
explicit form (8), the implicit pH representation (9) verifies
the following variation equalities

F (x, 0) = x+ − x = (Jd(x)−Rd(x))∇̄H|x
+

x

F (x, u)− F (x, 0) = x+(u)− x+ = g(x, u)u.



III. THE UNICYCLE MODEL UNDER SAMPLING

The evolutions of (1) under (2) at all sampling instants are
described by the exact sampled equivalent model given by

zk+1 =zk −
vk
ωk

∆s (10a)

θk+1 =θk + δωk (10b)

with

∆s := sk+1 − sk =

(
− sin θk+1 + sin θk
cos θk+1 − cos θk

)
.

Considering the extended state-space ζ = col{z, r, s} ∈ R6

and noticing that

ṙ = ωs, ṡ = −ωr

the sampled-data dynamics (10) is equivalently described by

ζk+1 = (Aδ0(ωk)⊗ I2)ζk + gδ(ζk, ωk)vk (11)

with

Aδ0(ω)=

(
1 0
0 Sδ(ω)

)
, Sδ(ω)=

(
cos δω sin δω
− sin δω cos δω

)
gδ(ζ, ω) =

1

ω

(
−
(
∆s
)>

0
)>

.

(12)

The extended sampled-data model above admits a discrete
pH structure as proved in the result below.

Theorem 3.1: The sampled-data model (11) of the unicy-
cle kinematics (1) admits the time-varying pH form

ζ+(v) =ζ +
1

2

(
J̄δ(ω)⊗ I2

)(
ζ+ + ζ

)
+ gδ(ζ, ω)v (13)

with ζ = ζk, v = vk, ω = ωk, ζ+(v) = ζ+(vk) = ζk+1,
ζ+ = (Aδ0(ω)⊗ I2)ζ and interconnection matrix

J̄δ(ω)=

(
0 0
0 Jδ(ω)

)
, Jδ(ω)=

(
0 sinωδ

− sinωδ 0

)
1 + cos δω

. (14)

The sampled-data dynamics (13) is passive with the output

h(ζ, ω, v) =
1

δ

(
gδ(ζ, ω)

)>(
ζ+ +

1

2
gδ(ζ, ω)v

)
(15)

and, since 1
2 (r>r + s>s) = 1, quadratic storage function

H(ζ) =
1

2
ζ>ζ =

1

2
z>z + 1. (16)

Proof: Exploiting the representation (11), the proof
consists in showing that (11) is equivalent to a discrete
conservative pH dynamics (9) detailed as

ζ+(v) = ζ + J̃δ(ω)∇̄H|ζ
+

ζ + gδ(ζ, ω)v

for a suitable skew-symmetric matrix J̃δ(ω) ∈ R6×6 and
with the quadratic Hamiltonian (16). Because ∇̄H|ζ

+

ζ =
1
2 (ζ + ζ+), this corresponds to solve the implicit equation

ζ +
1

2
J̃δ(ω)(ζ+ + ζ) = ζ+.

Substituting ζ+ = ζ+(0) = (Aδ0(ω) ⊗ I2)ζ from (11) into
the equality above, one gets

ζ +
1

2
J̃δ(ω)

(
(Aδ0(ω)⊗ I2) + I6

)
ζ = (Aδ0(ω)⊗ I2)ζ.

that is solved for all ζ ∈ R6 by

1

2
J̃δ(ω) =

(
Aδ0(ω)⊗ I2 − I6

)(
Aδ0(ω)⊗ I2 + I6

)−1
=

1

2

(
J̄δ(ω)⊗ I2

)
.

Passivity follows from the pH structure.

Remark 3.1: In the result above, we have modelled the
sampled-data kinematics as a linear time-varying pH struc-
ture (13) deduced from (11) when considering ω ∈ R a
time-varying parameter and v ∈ R the control input.

Remark 3.2: Because
(
∆s
)>

∆s = 2(1 − cos δω), the
passive output gets the explicit form

h(ζ, ω, v) =− 1

δω

(
∆s
)>
z +

1− cos δω

δω2
v. (17)

Remark 3.3: For stabilization purposes, one can directly
shift the storage function setting V (z) = H(ζ) − 1 with
V (0) = 0 and no impact on the pH representation (13).

Remark 3.4: The result in Theorem 3.1 provides an exact
discrete-time Hamiltonian form to the sampled-data model
(11) associated to the unicycle kinematics (1). This is fun-
damental for allowing to settle (and solve) Problem 1 in the
discrete-time IDA-PBC framework [16].

IV. A NEW SAMPLED-DATA STEERING

For the sake of clarity, before providing the general solu-
tion to Problem 1, we first address the case of zd = (0 0)>.

Theorem 4.1: For all δ > 0, consider the unicycle kine-
matics (1) with sampled-data equivalent model of the form
(10). Then, Problem 1 with zd = 0 is solved by the sampled-
data time-varying control

v =
κ

δω + κ
ω (1− cos δω)

(
∆s
)>
z, κ > 0 (18a)

ω =
1

δω0

(
sin
(
(k + 1)ω0δ

)
− sin

(
kω0δ

))
(18b)

provided that ω0 > 0 is chosen so to satisfy, for a fixed
sampling period δ > 0 and N ∈ N,

Tδ := Nδ =
2π

ω0
, N > 2. (19)

The corresponding closed-loop sampled system is given by

zk+1 =(I2 − κ̄(ω)Mk)zk (20a)

θk+1 =θk +
1

ω0

(
sin
(
(k + 1)ω0δ

)
− sin

(
kω0δ

))
(20b)

with

Mk =
1

δω2
∆s
(
∆s
)>
, κ̄(ω) =

κδω

δω + κ
ω (1− cos δω)

. (21)

Proof: First, we note that (18a) is the damping control
associated to the passive output (17) yielding

∆V (z) = ∆H(ζ) =vh(ζ, ω, v)

=−
κz>∆s

(
∆s
)>
z

(δω + κ
ω (1− cos δω))2

≤ 0



as, under feedback, the output reads

h(ζ, ω, v) = − 1

δω + κ
ω (1− cos δω)

(
∆s
)>
z.

Accordingly, (20) is obtained substituting (18) into the
sampled equivalent model (10). The closed-loop θ-dynamics
(20b) is periodic with period (19). Thus, Uniform Global
Exponential Stability (UGES) of the closed loop fol-
lows by Lemma 1.1 (in Appendix) setting Φk =√

k

ω
√
δ(1+ κ

δω (1−cos δω))
∆s that is persistently exciting as ∆s

is such under (19).
Remark 4.1: The period (19) of the sinusoidal signals in

(18a) must be large enough with respect to the sampling
period for exciting (20a) at all sampling instants. In other
words, the sampling period and the period of the signals must
be chosen in such a way that the corresponding samples,
exciting the sampled-data dynamics (20a), are sufficiently
rich and different.

It is worth to note that (18a) is a discrete IDA-PBC
feedback [18]. As a matter of fact, it gets the form of a
discrete-time damping injection over the average passivating
output (17); i.e., it is the solution to the damping equality

v = −κ
δ

(
gδ(ζ, ω)

)>∇̄H(ζ)|ζ
+(v)
ζ+

ζ+ =
(
Aδ0(ω)⊗ I2

)
ζ, ∇̄H(ζ)|ζ

+(v)
ζ+ =

1

2
(ζ+(v) + ζ+).

The closed-loop system (20) gets the discrete pH form

ζ+(v) = ζ +
1

2

(
J̄δ(ω)−Rδ(ω)

)
(ζ+(v) + ζ)

over ζ = col{z, r, s}, with damping matrix

Rδ(ω)=diag{κ(ω)Mk(I2−
κ(ω)

2
Mk)−1, 0, 0}�0. (22)

Remark 4.2: Contrarily to [15] the controller in Theorem
4.1 guarantees steering for all δ, κ > 0. The gain is inde-
pendent on the sampling period (and viceversa) and can be
arbitrarily tuned to enforce the required performances.

At this point, to generally solve Problem 1, let us compute
first the sampled-data error dynamics associated to (3) as

ezk+1
=R(θk+1)(zk+1 − zd)

=R(θk+1)R>(θk)ezk −
vk
ωk

(
−r>k+1sk

1− s>k+1sk

)
=Sδ(ωk)ezk +Bδ(ωk)vk

with Sδ(ω) as in (12) and

Bδ(ω) =
1

ω

(
r>k+1sk

s>k+1sk − 1

)
=

1

ω

(
sin δω

cos δω − 1

)
.

It can be easily shown that the error dynamics above admits,
once again, the conservative Hamiltonian structure

e+(v) = e+
1

2

(
I2 ⊗ Jδ(ω)

)
(e+ e+) +Bδ(ω)v (23)

with e = col{ez, r, s} and interconnection matrix in (14).
Passivity follows with respect to the output

h(ez, ω, v) =
1

δ

(
Bδ(ω)

)>(
Sδ(ω)ez +

1

2
Bδ(ω)v

)
.

Accordingly, the following result can be established.
Corollary 4.1: For all fixed δ > 0, consider the unicycle

kinematics (1) and the sampled-data equivalent model (10).
Then, Problem 1 is solved by the time-varying control

v=− κ

δω + κ
ω (1− cosωδ)

(
sin δω cos δω−1

)
ez (24a)

ω =
1

δω0

(
sin
(
(k + 1)ω0δ

)
− sin

(
kω0δ

))
(24b)

provided ω0 > 0 satisfies (19) for constant δ > 0 and N ∈ N.
Proof: First, we apply the coordinates transformation

ēz = R>(θ)ez = z − zd

so getting the dynamics

ēzk+1
= ēzk −

vk
ωk

∆sk.

In the new coordinates, the feedback (24a) reads

v =
κ

δω + κ
ω (1− cos δω)

(
∆s
)>
ēz

with corresponding closed-loop dynamics

ēzk+1
= (I2 − κ̄(ω)Mk)ēzk

with Mk as in (21). Then, the proof follows along the lines
of Theorem 4.1.

Remark 4.3: As δ → 0 the sampled-data controllers (24)
naturally recover the continuous-time counterparts (5)-(6). In
particular, by virtue of (3) and (4), one gets for (24a),

v → −κ
(
1 0
)
ez = −κ

(
1 0
)
R(θ)(z − zd) = −κr>(z − zd).

As in the case of zd = 0, the steering feedback gets
the form of a damping injection controller over the passive
output; namely, of the form

v = −κ
δ

(
Bδ(ω)

)>
∇̄H(e)|e

+(v)
e+

∇̄H(e)|e
+(v)
e+ =

1

2
(e+ + e+(v)).

Setting for simplicity ē = col{R>(θ)ez, r, s}, the closed-
loop system gets the dissipative Hamiltonian form

ē+(v) = ē+
1

2

(
J̄δ(ω)−Rδ(ω)

)
(ē+ ē+(v)) (25)

with interconnection and damping matrices given in (14) and
(22) respectively.

V. SIMULATIONS

The aim of the simulations presented in the sequel is
twofold: validating the performances of the proposed con-
troller with behaviors that are close to the continuous-time
ones, for all sampling periods; comparing the proposed
feedback with MPC, typically used in applications, and the
one in [15] that is similar, in the aim, to the one we design1.
The results are reported in Figures 1-2, with δ = 0.1 and

1Further simulations have been performed including also the emulation-
based controller but omitted for the sake of space. They can be found at
https://youtu.be/Cq5WffifrCE.

https://youtu.be/Cq5WffifrCE


δ = 1.8 respectively with the continuous-time controller (5)-
(6) also depicted as reference. For a fair comparison, we
simulate stabilization at the origin (i.e., zd = (0 0)>) under
the initial condition z0 = (0 1)> and all the parameters as
in [15, Sec. IV.C]. As far as the controller we propose and
the continuous-time counterpart, we fix κ = 1 and ω0 = 1
to meet the requirements in Corollary 4.1. As far as MPC is
concerned, we fix the prediction and control horizon at np =
nc = 3 and unitary control and state-regulation weighting
matrices Q = I3, R = I2. In addition, for the sake of
comparison, we inject to the MPC the same angular velocity
persistently exciting signal component as the one in Theorem
4.1. Fig. 1 highlights that for a small sampling period (i.e.
δ = 0.1) the proposed controller achieves stabilization at
the origin with similar performances as the continuous-
time one. On the other side, the controller in [15] still
achieves stabilization but with a larger transient due to the
(inversely proportional) relationship among the values of the
parameters and the sampling period (see Remark 4.2). This
is even more evident when increasing the sampling period
as depicted in Fig. 2; when δ = 1.8, the controller in [15]
provides better performances than the ones discussed in Fig.
1 that are still, however, overcome by the new controller we
propose. Indeed, the closed-loop sampled-data system under
the controller in Corollary 4.1 is only slightly affected by the
increased value of the sampling period, providing behaviors
that remain better than [15]. Performances of the proposed
feedback are still better, yet comparable, to the ones under
MPC, even when the latter one is implemented in favored
conditions with respect to the typical ones (e.g., [19]).
Indeed, contrarily to the common implementations, we set
for the MPC np = nc = 3 and include a persistently exciting
reference on the orientation to guarantee boundedness of the
closed loop under single rate control with no further terminal
cost and constraints [12].

VI. CONCLUSIONS AND PERSPECTIVES

A new digital control law for steering a mobile robot has
been proposed. The design, based on a suitable Hamiltonian
representation of the dynamics, yields a damping feedback
over the linear velocity that ensures convergence to the
desired position provided that the angular velocity is suf-
ficiently persistently exciting. Current works are addressing
regulation to a desired orientation and tracking at large, and
extending those arguments to deal with formation control
of multi-robot systems under asynchronous and aperiodic
communication, measurement noise, and delay [20]–[23].
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[19] L. Grüne and J. Pannek, “Nonlinear model predictive control,” in
Nonlinear model predictive control. Springer, 2017, pp. 45–69.

[20] M. Mattioni, “On multiconsensus of multi-agent systems under ape-
riodic and asynchronous sampling,” IEEE Control Systems Letters,
vol. 4, no. 4, pp. 839–844, 2020.

[21] F. Ferrante and A. Seuret, “Observer design for linear aperiodic
sampled-data systems: A hybrid systems approach,” IEEE Control
Systems Letters, vol. 6, pp. 470–475, 2021.

[22] M. Di Ferdinando, P. Pepe, and S. Di Gennaro, “On semi–global
exponential stability under sampling for locally lipschitz time–delay
systems,” IEEE Transactions on Automatic Control, 2022.

[23] F. Cacace, M. d’Angelo, and L. Ricciardi Celsi, “Stochastic predictor-
based leader-following control with input and communication delays,”
International Journal of Control, no. just-accepted, p. 1, 2022.

[24] A. Lorıa and E. Panteley, “Uniform exponential stability of linear time-
varying systems: revisited,” Systems & Control Letters, vol. 47, no. 1,
pp. 13–24, 2002.

APPENDIX

Lemma 1.1: Consider the linear time-varying system

zk+1 =(In − ΦkΦ>k )zk (26)

with z ∈ Rn, Φ : N → Rn and ‖Φk‖ ≤ φM for all k ∈ N.
The origin of (26) is UGES if Φ is persistently exciting; i.e.,
there exist positive µ ∈ R>0 and K ∈ N such that

k+K−1∑
j=k

ΦjΦ
>
j � µIn, for all k ∈ N. (27)

Proof: The proof follows the lines of [24, Lemma 5]
with the Lyapunov H(z) = 1

2‖z‖
2 verifying ∆H =

− 1
2‖Φ

>
k zk‖2 ≤ 0. For hk := H(zk) and all k ≥ k0, we

get hk ≤ hk0 = 1
2‖zk0‖

2

∆Kh :=hk+K − hk = −1

2

k+K−1∑
j=k

‖Φ>j zj‖2 (28)

zj =zk −
j−1∑
i=k

ΦiΦ
>
i zi, j > k. (29)

Substituting (29) into (28) and exploiting ‖a − b‖2 ≥
ρ
ρ+1‖a‖

2 − ρ‖b‖2 for all ρ > 0, one gets

∆Kh ≤− ρ

2(ρ+ 1)

k+K−1∑
j=k

‖Φ>j zk‖2

+
ρ

2

k+K−1∑
j=k

‖Φ>j
j−1∑
i=k

ΦiΦ
>
i zi‖2

≤− ρµ

2(ρ+ 1)

k+K−1∑
j=k

‖zk‖2

+
ρ

2

k+K−1∑
j=k

‖Φ>j
j−1∑
i=k

ΦiΦ
>
i zi‖2

(30)

by (27). At this point, because Φ is bounded and using both
the triangle and Cauchy-Schwartz inequalities, one obtains

k+K−1∑
j=k

‖Φ>j
j−1∑
i=k

ΦiΦ
>
i zi‖2 ≤ φ4M

k+K−1∑
j=k

j−1∑
i=k

‖Φ>i zi‖2.

Taking into account (30), the bound above and the fact that
k+K−1∑
j=k

j−1∑
i=k

‖Φ>i zi‖2 =
k+K−1∑
i=k+1

k+K−1∑
j=i

‖Φ>i zi‖2

=

k+K−1∑
i=k+1

(k +K − i)‖Φ>i zi‖2 ≤ K
k+K−1∑
i=k

‖Φ>i zi‖2 = 2∆Kh

one gets

∆Kh ≤ − ρµ

2(ρ+ 1)

k+K−1∑
j=k

‖zk‖2 + ρφ4MK∆Kh

=⇒
(
1 + ρφ4MK

)
∆Kh ≤ − ρµ

2(ρ+ 1)
‖zk‖2.

Exploiting now that 1
2‖zk‖

2 = hk ≤ hk0 , one deduces that

hk+K ≤ (1− σ)hk, σ =
ρ

ρ+ 1

µ

1 + ρφ4MK

where ρ > 0 can be chosen to make |1− σ| < 1. From the
inequality above one gets the result as

hk ≤ (1− σ)
k−k0
K hk0 =⇒ ‖zk‖2 ≤ (1− σ)

k−k0
K ‖zk0‖2.
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