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1. Introduction

The extension of statistical mechanics to the study of systems with quenched disorder is
of paramount importance. Much effort has been devoted to this task in recent decades,
and much important information has been established. Here, universality is the key. For
pure systems, critical exponents take a few values that only depend on crucial features
of the system, such as its dimensionality, the nature of its fields and the symmetries
of the Hamiltonian. How this idea extends to the system where the Hamiltonian is
characterized by quenched disorder has been discussed at length and is still, at least
partially, an open problem.
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The diluted ferromagnetic Ising model (denoted as DIM hereafter) is one of the
crucial prototypes on which the entrance of quenched disorder in statistical mechanics
is analyzed. Here, even an infinitesimal amount of dilution (that can be a site or a link
dilution, leading to models showing basically the same physical behavior) in a pure
model, with a positive specific heat critical exponent, will change the universality class
and the critical exponents [1, 2].

Here, in order to further clarify crucial properties of the DIM, we consider the beha-
vior of correlation functions and of susceptibilities. At a second order phase transition,
the correlation length ξ diverges at the critical point Tc when the volume V of the system
diverges. When the position of the critical point is known, we can analyze correlation
functions C there, where they are expected to scale as a power law of the distance,
with an exponent, say, τ . A usual scaling law would suggest that the qth moment of the
correlation function C (r) would scale with an exponent τ(q) equal to qτ(1) (see later
for details and precise definitions).

We find here that in a 3D, D =3 diluted Ising model, this is not true, and we get what
is called multi-fractal behavior [3, 4]. We determine with high accuracy the values of
these exponents, and show numerically that they do not obey the relation τ(q) = qτ(1).

The multiscaling behavior of the correlation functions has been thoroughly studied
in the context of 2D ferromagnetic spin models with quenched disorder (Potts models
with more than two states and site or link dilution) using conformal field techniques
and numerical simulations [5–11]. In another context, we can also quote the multiscaling
behavior that appears in the strong-amplitude fluctuations of the wave functions in the
Anderson localization [12].

To achieve such a result in a 3D ‘simple’ disordered system (simple as opposed to
spin glasses, where the same fact has been recently established numerically for all values
of the temperature in the broken phase [13]) is in some sense unexpected. However,
indeed some important theoretical results achieved by Davis and Cardy, many years
ago, have clarified the plausibility of this fact [14, 15]. Conformal invariance allows
crucial developments in critical scaling, starting from 2D systems [5]. By applying to
this context the renormalization group and an ε expansion, Davis and Cardy were able
to show that in the DIM one expects multifractality in 2+ ϵ dimensions [15].

Our numerical findings, which we support with theoretical arguments, are consistent
with Davis and Cardy’s computation [15] (see also A.3). As many results in the field
explain, there are indeed many factors that have to be considered. Logarithmic correc-
tions also appear in these kinds of contexts, and we have been able to use numerics to
clearly show that in this case we are observing a real, bona fide multifractality. We will
discuss this in detail in the following.

The structure of the paper is as follows. We first define our model (section 2.1),
describe the numerical approach we follow (section 2.2), define the observable quant-
ities that we compute (section 2.3) and then explain how we compute these quantities
(section 2.4). Next, we show our numerical results in section 3. Finally, we discuss our
results and draw some conclusions in section 4. The paper is complemented with an
appendix, where we remind the reader of relevant theoretical results.
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2. Model, simulations and observables

2.1. The model

We have considered the D =3 diluted Ising model defined on a cubic lattice with periodic
boundary conditions, linear size L and volume V = LD. The Hamiltonian of the model,
in zero magnetic field, has the form,

H=−
∑
⟨x,y⟩

ϵxϵysxsy , (1)

where sx are Ising variables and ϵx are statistically independent quenched random
variables, which take the value 1 with probability p and the value 0 with probability
1− p. A set of {ϵx} defines a sample. The sum in equation (1) runs over all pairs of
lattice nearest-neighbors. As usual, we denote with ⟨(· · ·)⟩ the thermal average for the
{sx}, which is computed for a fixed set of disorder variables {ϵx}. The average over the

samples, (· · ·), is only taken after thermal mean values have been computed for each
sample.

2.2. Our numerical simulations

We have investigated the model defined in equation (1) through equilibrium numer-
ical simulations. Specifically, we have brought our samples to thermal equilibrium by
combining Wolff’s single-cluster algorithm [16], with a local Metropolis method. The
remarkable effectiveness of this combination of simulation algorithms in DIM simula-
tions was demonstrated long ago [17, 18]. Specifically, our elementary Monte Carlo steps
consisted on L single-cluster updates, followed by a sequential full-lattice Metropolis
update.

In particular, we have fixed the (average) spin density to p=0.8, because for this
value the scaling corrections are very small, even negligible, given our statistical errors.
The model is almost governed by a perfect action [18, 19]. Furthermore, we have per-
formed all our simulations at the infinite volume critical inverse temperature [19]:

β
(p=0.8)
c = 0.2857429(4). For future use, we note that the anomalous dimension of the

field is η = 0.036(1) [19]. Further details of our simulations can be found in table 1.

2.3. Definition of main observables

In the next three paragraphs we describe the different observables used to analyze the
multiscaling properties of our model (1).

2.3.1. Correlations. The relevant correlation functions are,

Cq (r) =
1

pV

∑
x

⟨ϵxsxϵx+rsx+r⟩q . (2)

As usual, we assume that rotational invariance is recovered in the scaling limit ξ ≫ 1,
and we indicate only the dependence of Cq(r) on the length r of the displacement
vector r .
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In order to study multiscaling behavior, we introduce the ζ(q) and τ(q) exponents
through the following relations:

Cq (r)∼
1

rτ(q)
∼ [C1 (r)]

ζ(q) . (3)

It follows that τ(q) and ζ(q) are connected by the relation,

τ (q) = (D− 2+ η)ζ (q) , (4)

because,

C1 (r)∼
1

rD−2+η
. (5)

By definition, ζ(1) = 1 and τ(1) =D− 2+ η. In the absence of multiscaling behavior
one would have τ(q) = (D− 2+ η)q or, equivalently, ζ(q) = q (see A.1 for more details).
Instead, we find that ζ(q)< q whenever q > 1.

Finally, in order to compute the ζ exponent, minimizing the scaling corrections, we
analyze the ratio:

Cq

Cq
1

∼ [C1]
ζ(q)−q . (6)

2.3.2. Global susceptibilities. We define the χq susceptibilities as,

χq =
1

pV

∑
xy

⟨ϵxsxϵysy⟩q , (7)

which scale with L as,

χq ∼
ˆ L

dDx Cq (r)∼ LD−τ(q) , (8)

provided that D > τ(q). The above relation allows us to compute τ(q) and, from it,
ζ(q). If D < τ(q), we have that,

χq ∼ L0 . (9)

Equations (8) and (9) provide a very direct test for multiscaling. Indeed, given that
τ(1) = 1.036(1) in 3D, one notes that qτ(1)>D whenever q ⩾ 3. Hence, finding (as we
do below) that χq=3 scales with a positive power of L gives a direct confirmation of the
multiscaling behavior.
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2.3.3. Local susceptibilities. Another strategy is based on computing a different ‘local
susceptibility’ χ̃q defined as,

χ̃q =
1

pV

∑
x

χq
x , (10)

with,

χx =
∑
y

⟨ϵxsxϵysy⟩ . (11)

The scaling of this observable, see A.1, is such that,

R(1)
q ≡ χ̃q

χ̃q
1

∼ L(D−2+η)(q−ζ(q))/2 . (12)

Note that χ̃1 = χ1.
We are able to compute numerically the first two derivatives of ζ(q) by computing

(q ⩾ 2):

R(2)
q ≡ χ̃q

χ̃q−1
∼ L(D−2+η)(ζ(q−1)−ζ(q))/2 (13)

and (for the discrete proxy of the second derivative),

R(3)
q ≡ χ̃qχ̃q−2

χ̃2
q−1

∼ L(D−2+η)(2ζ(q−1)−ζ(q)−ζ(q−2))/2 . (14)

2.4. Details of the computation of the observables

Since the computation of the correlation function Cq(r) technically differs from the
computation of the global susceptibility χq (that, on its side, is also very different to
the computation of the local susceptibility χ̃q), we have chosen to discuss these points
in separate sections.

For the computation of χq and χ̃q we shall be employing real replicas for each
sample. Real replicas are statistically independent system copies that evolve under the
same quenched disorder {ϵx}.

Furthermore, our computation of the two susceptibilities uses the enhanced cluster
estimator [20]:

⟨ϵxsxϵysy⟩= ⟨γy,x⟩ , (15)

where γy,x = 1 if, and only if,

• ϵx = ϵy = 1,

https://doi.org/10.1088/1742-5468/ad13fe 6
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• When the lattice is decomposed on Fortuin–Kasteleyn clusters, both sites x and y
happen to belong to the same cluster.

Otherwise, γy,x = 0.

2.4.1. The computation of χq. Our computation of the global susceptibilities χq uses

12 real replicas. Let γ
(a)
y,x be the enhanced estimator for correlation functions obtained

from replica a, (a= 1,2, . . . ,12).
Our estimator of χq is obtained in the following way. We start by randomly choosing

a starting site x and trace the cluster to which x belongs in all 12 replicas. Next, we
select a set of q distinct replicas a1,a2, . . . ,aq, and compute,

M (q)
x =

∑
y

 q∏
j=1

γ
(aj)
y,x

 . (16)

Defining the number of spins as,

Nspins =
∑
x

ϵx , (17)

one easily finds that,

1

Nspins

∑
x

⟨M (q)
x ⟩= 1

Nspins

∑
xy

⟨ϵxsxϵysy⟩q . (18)

Of course, in order to improve the statistical accuracy, one can average over different
choices of a subset of q distinct replica indices. Note that in practice we choose just one
starting site x in equation (18). The starting site is chosen with uniform probability
1/Nspins.

Now, given that,

Nspins = pV , (19)

and that the fluctuations of Nspins do not play any relevant role4, we may approximate,

χq ≈ ⟨M (q)
x ⟩ . (20)

A final note of warning is in order. In the update of the spin configuration, we cannot
employ the same Fortuin–Kasteleyn clusters that we employ in the computation of the

4 More quantitatively, trading 1/pV with 1/Nspins only induces additional corrections to scaling, of size L−a with a =D− 1
ν
⩾

D/2. This estimate can be obtained by combining the following three observations: (i) (Nspins − pV )⟨O⟩ = p(1− p)
∂⟨O⟩
∂p

[21], (ii)

(Nspins − pV )∼ V 1/2, which justifies the Taylor expansion 1
Nspins

= 1
pV+(Nspins−pV )

= 1
pV

(
1− Nspins−pV

pV
+ . . .

)
and (iii) the finite-size

scaling relation ⟨O⟩ = LxO/νFO(L1/ν(p− 0.8)) holds when one works precisely at the critical temperature for p=0.8 (xO is the
scaling dimension for O).
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susceptibilities. Indeed, our 12 real replicas are to remain statistically independent at
all times. Hence, we cannot start a single-cluster update from the same site x in all
replicas. Here, we separate our simulations into two different phases:

(i) During the update phase, we choose independently the starting site x for the single-
cluster update of each replica. The spin-configuration is updated after the cluster is
traced.

(ii) During the measuring phase, instead, the starting point for the cluster tracing is
the same for all replicas. However, the spin configurations of the replicas are not

modified after the M
(q)
x estimators are computed.

In both phases, the starting site for cluster tracing is chosen to be occupied (namely,
ϵx = 1).

2.4.2. The computation of χ̃q. Our computation of the local susceptibilities χ̃q employs
16 real replicas. The separation between the update phase and the measuring phase,
which we have discussed above also applies to this case.

During the measuring phase, we compute for each replica:

N (a)
x =

∑
y

γ(a)
y,x . (21)

We proceed by selecting a subset of q distinct replica indices a1,a2, . . . ,aq, and compute
the estimator:

Yx,q =

q∏
j=1

N
(aj)
x , (22)

which has the thermal expectation value:

⟨Yx,q⟩= χq
x , (23)

where the local susceptibility χx is defined in equation (11). Of course, one may average
over different choices of a subset of q distinct replicas in order to increase the statistics.

As in the previous section, we choose just one starting point x during the measuring
phase, with uniform probability 1/Nspins. Hence,

χ̃q ≈ ⟨Yx,q⟩ . (24)

The above equation is not an equality due to the fluctuations on the number of spins
Nspins.

2.4.3. The computation of Cq(r). As opposed to the strategy we have followed in the
computation of the susceptibilities based on the simulation of a high number of replicas
(in the same realization of the disorder), in the computation of the correlation function
Cq we have chosen to simulate only one replica. This greatly simplifies the simulation
but induces strong bias in the statistical estimator of Cq. In particular, it is possible to

https://doi.org/10.1088/1742-5468/ad13fe 8
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Table 1. Details of our numerical simulations. We report the number of samples
(disorder realizations), NS, used in the different runs (χq susceptibilities, χ̃q local
susceptibilities and correlation functions). We also report the number of sweeps (as
defined in the text) used for thermalizing the different systems, Nsweeps. In the χq

susceptibility runs we have simulated 12 replicas per sample while for computing
the local susceptibilities we have simulated 16 replicas per sample. In the correlation
(Corr.) runs we have simulated only one replica per sample.

L NS (χq) NS (χ̃q) NS (Corr.) Nsweeps

8 110 592 16
12 98 304 108 902 32
16 98 304 109 666 32
24 98 304 109 428 64
32 81 920 796 367 5000 64
48 81 920 109 528 5030 128
64 81 920 84 774 9800 128
96 81 920 84 034 512
128 26 984 60 015 512

show [17] that this bias is proportional to 1/Nm (Nm being the number of measurements
on a given sample), and problems arise when the magnitude of this bias is similar to
the statistical error induced by the disorder (proportional to 1/

√
NS (NS is the number

of disorder realizations, samples).
To resolve this bias, we have followed the strategy introduced in [17]. Let us work

on a given sample (i.e. fixed disorder) and at equilibrium. Our strategy consists, first,
of computing the total average of a given observable O, denoted as O(1). Then, we use
two halves of the Monte Carlo simulation and compute the average value of O in these
two halves and compute their mean, denoted as O(2). Finally, we obtain the average of
O on each quarter of the Monte Carlo history and compute their mean, obtaining O(3).
Finally, the unbiased quadratic estimator is [17],

OQ =
8

3
O(1)− 2O(2)+

1

3
O(3) . (25)

In table 1, we report the number of samples used in the different runs.

3. Numerical results

In this section, we present our numerical results regarding multiscaling by analyzing
the behavior of the correlation functions and the global and local susceptibilities.

3.1. Correlation functions

To quantify the ζ(q) exponent we have analyzed the dependence of Cq on C 1. In figure 1,
we show the behavior of Cq as a function of C 1 for three different lattice sizes and three
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Figure 1. Cq(r) versus C1(r) for q =2, 5 and 10, and for L=32 (blue triangles),
L=48 (red circles) and L=64 (black squares). Size of the error bars is smaller than
those of the symbols.

values of q. The scaling of the data (for L=32, 64 and 128) is very good and the
power-law dependence of Cq on C 1 is very clear and accurate.

In figure 2, we plot Cq/C
q
1 as a function of C 1 in order to assess the multiscaling

behavior. In all the simulated cases (q ⩽ 10) we have found diverging behavior as C1 → 0,
which marks the onset of multiscaling behavior in this model. Note again the good
scaling of the data from different lattice sizes (L=32, 48 and 64).

We estimate the ζ(q) exponent by fitting the correlation function data to
equation (6). We fit Cq(r) computed on a given lattice size against C1(r) computed
on the same lattice size. We have computed the error bars of ζ(q) using the jackknife
method over the number of samples, following the method of [22]. We perform inde-
pendent fits on all the jackknife blocks using the diagonal covariance matrix, and then,
the error bars in the parameters of the fit can be computed from the fluctuations among
all the jackknife blocks.

We report our results in table 2. The exponent ζ(q) is not proportional to q. This
clearly shows that the 3D diluted Ising model presents multiscaling behavior. Despite
the fact that we are using a quasi-perfect action, we observe a small dependence of ζ(q)
on the lattice size.

3.2. Global susceptibilities

Figure 3 shows the behavior of the χq susceptibilities as a function of the lattice size.
By fitting the susceptibilities presented in figure 3 we have estimated the τ(q) expo-

nents using equation (8). The numerical estimates for the τ(q) exponents (and con-
sequently those for the ζ(q) exponents) can be found in table 3.
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Figure 2. Cq(r)/C
q
1(r) versus C1(r) for q =2, 5 and 10, and for L=32 (blue tri-

angles), L=48 (red circles) and L=64 (black squares). Note the potential growth
in all the cases, which is a clear signal of the multiscaling behavior. All the curves
take the value 1 as C1 = 1 (the rightmost point of the plot). Error bars of the ratio
have been computed using the jackknife method. Size of the error bars is smaller
than those of the symbols.

Table 2. Exponent ζ(q) computed using the L=32, L=48 and L=64 correlation
functions. This exponent has been computed using the jackknife method to address
the high correlation of the data (different r in the correlations Cq(r)). We also report
the C 1 interval used in the fits, (Cm

1 ,C
M
1 ).

L=64 L=48 L=32

q (Cm
1 ,C

M
1 ) ζ(q) (Cm

1 ,C
M
1 ) ζ(q) (Cm

1 ,C
M
1 ) ζ(q)

2 (0,0.3) 1.8109(3) (0,0.3) 1.8094(7) (0,0.3) 1.808(1)
3 (0,0.17) 2.457(1) (0,0.3) 2.4525(19) (0,0.3) 2.447(3)
4 (0,0.1) 3.026(4) (0,0.16) 2.997(6) (0,0.3) 2.993(8)
5 (0,0.1) 3.486(7) (0,0.1) 3.474(13) (0,0.3) 3.432(12)
6 (0,0.1) 3.849(9) (0,0.1) 3.836(18) (0,0.3) 3.803(18)
7 (0,0.1) 4.192(13) (0,0.1) 4.17(2) (0,0.3) 4.23(3)
8 (0,0.1) 4.483(17) (0,0.1) 4.45(3) (0,0.3) 4.54(5)
9 (0,0.1) 4.75(2) (0,0.1) 4.72(4) (0,0.3) 4.83(6)
10 (0,0.1) 5.00(3) (0,0.1) 4.95(5) (0,0.3) 5.10(7)
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Figure 3. χq versus L for q =1, 2, 3 and 4 in double logarithmic scale. Straight
lines are fits to equation (8) using L⩾ 48 to avoid the small scaling corrections.
For q ⩾ 4, χq does not diverge, so τ(q)⩾D = 3. In order to compute ζ(q) we have
rescaled τ(q) using the numerical value for 1+ η = 1.036(1) (see equation (4)).
Thus, ζ(q) = τ(q)/(1+ η) = τ(q)/1.036(1).

Table 3. τ(q) and ζ(q) exponents from the finite size scaling of the susceptibilities
χq . For χ4, we do not detect divergence with L. Thus, for q ⩾ 4, τ(q)⩾ 3 and θ(q)⩾
2.89(1). We have computed, as a test, the 1+ η exponent in the q =1 row, and it
compares very well with the most accurate available estimate 1+ η = 1.036(1) [19].

q τ(q) ζ(q)

1 1.039(2) 1 (by def.)
2 1.893(3) 1.833(5)
3 2.586(4) 2.503(6)
4 ⩾ 3 ⩾ 2.896(3)

3.3. Local susceptibilities

In figure 4, we show the behavior of R
(1)
q versus L for three different values of q, showing

the power-law divergence implied by equation (12).
In table 4, we present our final values for the ζ-exponents and the (discrete) first

and second derivatives obtained analyzing the observables R
(1)
q , R

(2)
q and R

(3)
q , computing

their error bars with the bootstrap method, and using only the lattice sizes with L⩾ 48
(as for the global susceptibility analysis) to avoid small scaling corrections5. We plot our

5 An analysis using all the sizes and assuming the leading scaling correction term gives essentially the same exponents.
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Figure 4. R
(1)
q versus L for q =2, 4 and 7 in double logarithmic scale. Straight

lines are fits to equation (12) considering scaling corrections. Error bars of all three

ratios R
(i)
q have been computed using the bootstrap method.

Table 4. ζ(q) exponents and the (discrete) first and second derivatives from the

finite size scaling of the ratios R
(1)
q , R

(2
q and R

(3)
q of the local susceptibilities χ̃q.

Note that ζ(1) = 1.

q ζ(q) ζ(q)− ζ(q− 1) ζ(q)+ ζ(q− 2)− 2ζ(q− 1)

2 1.830(2) 0.830(2)
3 2.517(5) 0.688(3) −0.143(2)
4 3.09(1) 0.573(6) −0.115(3)
5 3.57(2) 0.481(9) −0.092(4)
6 3.98(3) 0.40(1) −0.077(6)
7 4.31(5) 0.33(2) −0.07(1)
8 4.56(8) 0.25(4) −0.08(2)
9 4.7(1) 0.16(6) −0.09(2)
10 4.7(2) 0.05(9) −0.10(3)

results for ζ(q) in figure 5 where the strong departure from the linear regime is clear,
providing strong indications of multifractal behavior.

Furthermore, the results reported in table 4 show that the function ζ(q) is a non-
decreasing function for the simulated values of q. In addition, it is a concave function
of q, in agreement with the results from Ludwig [5] (see also A.2).
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Figure 5. Exponent ζ(q) versus q (see results of table 4). By definition ζ(1) = 1.
We have also plotted the line ζ = q to show the appearance of the multifractal
behavior in the model (ζ(q) ̸= q).

4. Discussion and conclusion

Over the years, many disordered ferromagnetic systems in 2D have been shown to
exhibit multiscaling behavior (see e.g. [5]), with the surprising exception of the DIM.
This is, however, marginal behavior. The DIM is the Q =2 instance of the diluted Potts
model with Q states (which does display multiscaling for Q > 2). Furthermore, it suf-
fices to consider long-range interactions to find multiscaling in the 2D DIM (see [23] and
references therein). The behavior of the DIM (with short-range interactions) in D =2
is marginal in a different way, as well. Although there is no multiscaling in D =2, in a
pioneering work, Davis and Cardy [15] found multifractality in the DIM in space dimen-
sions D = 2+ ϵ. Here, we have extended Davis and Cardy’s [15] result to D =3 through
extensive numerical simulations for the site-diluted Ising model, which is studied under
equilibrium conditions.

We have computed the exponents τ(q) for integer values q = 1,2, . . . ,10. The qth
power of the correlation function, equation (2), decays at long distances as 1/rτ(q) (3).
We have found very clear numerical evidence for τ(q)< qτ(1) for q > 1, which is the
hallmark of multifractality.

Let us emphasize that multiscaling in no way contradicts the general
Renormalization Group expectation of a universal large-L limit for relative cumulants
of the order-parameter [24]. Specifically, for the very same model studied here, it was
shown long ago that the relative variance of the squared order-parameter,

g2 =
⟨M2⟩2 − ⟨M2⟩

2

⟨M2⟩
2 with M=

∑
x

ϵxsx , (26)
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reaches its expected universal limit [18] (this behavior is sometimes called no self-
averaging [24]). One might think that having a finite large-L limit for g2 somehow
contradicts multiscaling. The correct conclusion is indeed different, as we now explain
starting from the results discussed in appendix A.1. Consider the second moment, q =2,
which is one relevant in the computation of g2. The key point regards the spatial sites
one integrates over:

• If one integrates ϵxϵy⟨SxSy⟩2 over y the global susceptibility χq=2 is obtained and the
full multifractal signal is recovered.

• If one integrates instead ϵxϵy1
ϵy2

⟨SxSy1
⟩⟨SxSy2

⟩ over y1 and y2 the resulting quantity
is the local susceptibility χ̃q=2, which has only half the multifractal signal6.

• Yet, the required quantity in the computation of g2 is ⟨M2⟩2. Hence, we are able

to integrate ϵx1ϵx2ϵy1
ϵy2

⟨Sx1Sy1
⟩⟨Sx1Sy2

⟩ over x 1, x 2, y1 and y2. However, integrals
over x 2, y1 and y2 already suffice to completely suppress multifractal scaling. In fact,

neglecting scaling corrections, ⟨M2⟩2 scales with L in the same way that ⟨M2⟩
2
does.

In summary, the extreme self-averaging violations evinced by the multiscaling analysis
can only be identified when studying correlations at the local level. Carrying out too
many spatial integrations erases the multifractal signal. To unearth multiscaling, we
have pursued here the same local approach that has been used in [13] in the context of
the out-of-equilibrium dynamics of spin-glasses7.
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Appendix. Some theoretical results

A.1. Scaling dimensions

In the replicated theory the Cq correlation functions can be written as,

⟨(ϕa1 (x) · · ·ϕaq (x)) (ϕa1 (y) · · ·ϕaq (y))⟩ , (A.1)

with 1⩽ ai < aj ⩽ n for i < j, where ϕa(x) are the replicated fields with scaling dimen-
sion [(D− 2+ η)/2] and n is the number of replicas (n→ 0).

As discussed in [5], the composite operator (ϕa1(x) · · ·ϕaq(x)) transforms following a
reducible representation of the symmetric group (Sn) and, therefore, it is not a scaling
operator at the random critical point. However, it can be expressed as a linear com-
bination of scaling fields Φµ,α

q (x), and they each transform following the µ-irreducible
representation (irrep) of Sn (α labels the multiplicity of the µ-irrep) [5], with scaling
dimension Xµ,α

q . Its asymptotic behavior is,

⟨Φµ,α
q (x)Φµ,α

q (0)⟩ ∼ 1

|x|2Xµ,α
q

. (A.2)

Therefore, the behavior of Cq will be the sum (over the irreducible representations) of

decays with powers 1/|x|2X
µ,α
q , and the smallest scaling dimension Xµ,α

q will determine
its large scale behavior.

It is possible to show that for the spin operator (which is our case), all the dif-
ferent representations become degenerate as opposed to the energy operator [5, 15].
Therefore, [(D− 2+ η)/2]ζ(q) is the scaling dimension of the full composite operator
(ϕa1(x) · · ·ϕaq(x)), which defines ζ(q) in such a way that ζ(1) = 1.

Hence, the scaling behavior of Cq will be twice that of the composite operator
(ϕ1(x) · · ·ϕq(x)), namely [(D− 2+ η)/2]ζ(q)× 2.

In the case of the local susceptibilities χ̃q we need to compute,

1

V

∑
x

∑
y1

· · ·
∑
yq

⟨SxSy1
⟩ · · · ⟨SxSyq

⟩ , (A.3)

so that in terms of the replicated theory, the associated correlation function can be
written as,

⟨(ϕa1 (x) · · ·ϕaq (x)) ϕa1 (y1) · · ·ϕaq
(
yq

)
⟩ , (A.4)

and the scaling dimension of the only composite operator (ϕa1(x) · · ·ϕaq(x)), is again
[(D− 2+ η)/2]ζ(q) and each of the q-factors ϕa(ya) have (D− 2+ η)/2 as their scaling
dimension.
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Note that a field ϕ with dim(ϕ) as the scaling dimension transforms following the
rule ϕ(bx) = b−dim(ϕ)ϕ(x).

Equation (A.3) can be written in the continuum as,

χ̃q ∼
1

LD

ˆ
dDx

ˆ
dDy1 · · ·

ˆ
dDyq ⟨(ϕa1 (x) · · ·ϕaq (x)) ϕa1 (y1) · · ·ϕaq

(
yq

)
⟩ ,

where the q +1 integrals run in the volume [a,L]D (a is the lattice spacing). After the
change of variables x̃= x/L and ỹi = yi/L (i = 1, . . . ,q) we can write:

χ̃q ∼
1

LD
L(q+1)D 1

L((D−2+η)/2)ζ(q)

1

L((D−2+η)/2)q

×
ˆ

dDx̃

ˆ
dDỹ1 · · ·

ˆ
dDỹq (ϕa1(x̃) · · ·ϕaq(x̃)) ϕa1(ỹ1) · · ·ϕaq(ỹq)⟩

∼ L(qD−[(D−2+η)/2](ζ(q)+q) ,

since the q +1 integrals in the tilde variables provided a constant in the large L-limit.
Their integration limits are constrained to the volume [a/L,1]D, which is [0,1]D for
large L.

Taking into account this result, it is easy to obtain the behavior given in
equations (12)–(14).

A.2. Concavity of the scaling exponents

Ludwig showed that Xµ,α
q is a concave function8 of q [5]. The argument is simple, so

we reproduce here for ζ(q). Note that if, for a given r, the correlation function for a
given sample can take only values in the compact interval [0,1], then its probability
density function (over the samples) is determined by its (qth) positive moments, which
we have denoted as Cq. Moreover, these moments are smooth functions of q. Therefore,

the ζ(q) exponents can also be defined for real q. In addition, C
1/q
q is a non-decreasing

function of q, which implies that ζ(q) is a concave functions since ζ(q1)/q1 ⩽ ζ(q2)/q2 as
0< q2 < q1.

A.3. Davis–Cardy’s result

In [15], Davis and Cardy computed the scaling exponents Xµ,α
q for the DIM in 2+ ϵ

dimensions. In the notation used in this paper, their result can be written as,

q− ζ (q) =

(
q (q− 1)

2

)
y+O

(
y2
)
, (A.5)

where y is the RG eigenvalue of the disorder strength, which is, at this order, y =
α=O(ϵ) (α is the specific heat exponent of the pure model and ϵ=D− 2). These
results clearly show that the DIM in 2+ ϵ is expected to undergo multiscaling behavior.

8 To fix the notation, a concave function in an interval [a,b] satisfies f(λx1 + (1− λ)x2) ⩾ λf(x1) + (1− λ)f(x2) for λ ∈ (0,1) and
for any two points x 1 and x 2 in the interval [a,b].
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However, in order to have an accurate analytical estimate of the difference q− ζ(q) for
the 3D model one would need to extend this computation to higher orders of y [2].
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