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Abstract: FLT3 mutations are the most frequently identified genetic alterations in acute myeloid
leukemia (AML) and are associated with poor clinical outcome, relapse and chemotherapeutic
resistance. Elucidating the molecular mechanisms underlying FLT3-dependent pathogenesis and
drug resistance is a crucial goal of biomedical research. Given the complexity and intricacy of protein
signaling networks, deciphering the molecular basis of FLT3-driven drug resistance requires a systems
approach. Here we discuss how the recent advances in mass spectrometry (MS)-based (phospho)
proteomics and multiparametric analysis accompanied by emerging computational approaches offer
a platform to obtain and systematically analyze cell-specific signaling networks and to identify new
potential therapeutic targets.
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1. Introduction

Over the last decades, molecular biology has witnessed tremendous technological and
scientific breakthroughs. This progress has advanced our understanding of cell molecular
functioning. We are now aware that signals sensed by a cell do not necessarily propagate
in linearly. Signaling networks are rather assemblies of intricate highly connected modules
controlling key biological processes in a context-dependent manner. It has also become clear
that diseases are often due to perturbation of molecular networks, rather than consequences
of single or few gene dysfunctions. In this context, the analysis of networks rewiring in
healthy and diseased conditions is critical to understand the properties of the system and
to identify new therapeutic strategies. However, because of their complexity and size, the
dynamic characterization of signaling networks in health and during disease onset and
progression often turns out to be a daunting task [1–3].

Different computational strategies have been developed to model signaling networks
and predict their behavior upon environmental or genetic external or internal (that is,
genetic) perturbations. Most of these approaches take advantage of high throughput
proteomic or transcriptomic data. Although both data-types are necessary to build mod-
els faithfully mimicking a system behavior, mass spectrometry (MS)-based proteomics
is unique for this scope as it enables to measure both the concentrations and the ac-
tivation levels of thousands of proteins in different conditions [4]. Over recent years,
MS-based proteomics has undergone dramatic advances in sample preparation, instru-
mentation and computational methods. Thanks to these developments, it is now possible
to quantify global changes in proteins and in post-translational modifications between
different cellular states at great depth, enabling to address a biological complex [5,6]. Very
recently, a robust workflow combining advances at multiple levels, including sample
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preparation, liquid chromatography and mass spectrometer, enabled to accurately and
robustly quantify proteomes and their changes in single, FACS-isolated cells [7]. Altogether
these observations show that mass spectrometry-based proteomics is ready for new chal-
lenges, addressing health-relevant questions. Here we describe how the combination of
MS-based (phospho)proteomics with literature-derived signaling networks may help to
identify new therapeutic targets to revert the chemoresistance of FLT3-dependent acute
myeloid leukemia.

Acute myeloid leukemia (AML) is characterized by a dysfunction of the hematopoietic
process resulting in the perturbation of the balance between stem cell proliferation and
differentiation. In the last decade, genomic studies identified many different genetic
alterations in AML patients, revealing the complexity and heterogeneity of this cancer
type [8,9]. Thanks to these studies, we have now an almost comprehensive catalogue of
AML mutated genes. Progress is however hampered as the functional role of these genes
in nonpathological conditions is often poorly understood. The prognostic and predictive
value of some genetic alterations has recently been reported, revealing the importance of
gene mutations in predicting patient clinical parameters, including response to therapy
and overall survival [10]. Here we describe the genetic alterations on one of the most
frequently mutated gene in AML patients, the “Fms-like tyrosine kinase 3”, FLT3 gene.
Different mutations have been identified in this gene and have been associated to a different
sensitivity to standard chemotherapy and to FLT3 inhibitor treatments [11,12]. In this
review, we summarize our current understanding of the role of different FLT3 mutations
in causing drug resistance. We focus on internal tandem duplications (ITDs) occurring in
different domains of the FLT3 gene and we describe how the distinct location along the
cytoplasmic domain of this transmembrane receptor influences cancer cell sensitivity to
drugs. Importantly, the different locations of the ITDs also affect patient prognosis. Thus,
the elucidation of the mechanisms underlying FLT3-dependent drug resistance represents
a crucial goal with important translational impact on AML patient treatment. In the second
part of this report, we describe how mass spectrometry (MS)-based (phospho) proteomics
combined with prior knowledge causal networks enable to obtain cell-specific signaling
networks and to identify new potential therapeutic targets.

2. FLT3

FLT3 belongs to the class III receptor tyrosine kinase (RTKs) group of receptors,
characterized by an N-terminal extracellular region consisting of five immunoglobulin-
like domains, a juxtamembrane domain (JMD) followed by two tyrosine kinase domains
(TKDs). In physiological conditions, FLT3 is mainly expressed in hematopoietic stem cells
(HSC) and B-cell progenitors. Its expression decreases during hematopoietic differentiation,
with the exception of a subpopulation of monocytes that maintain high levels of FLT3
expression after differentiation [13]. In the absence of ligand, FLT3 is kept inactive by the
interaction between the autoinhibitory JM domain and the kinase domain, which blocks
the ATP binding site. Activation is mediated by the binding with FL the receptor ligand,
which leads to rapid changes in the intracellular domain and to its homodimerization. This
conformational change causes the release of the autoinhibitory juxtamembrane domain
from the kinase domain and renders the ATP binding site accessible [14]. Activation results
in the autophosphorylation of several tyrosine residues (Y589, Y591, Y599). In its active
form, FLT3 triggers different signaling pathways, including PI3K/AKT, STAT and MAPK
cascades [15], resulting in enhanced proliferation.

2.1. FLT3 Mutations in AML

Over the past years, several systems of classification of AML patients have been
proposed. The European Leukemia Net (ELN) risk stratification guidelines recommended
to stratify patients into three groups with different inferred clinical outcome: favorable,
intermediate and adverse. This classification system is based on cytogenetic and molecular
criteria [10,16,17]. Alongside the detection of cytogenetic abnormalities at diagnosis, the



Proteomes 2021, 9, 19 3 of 17

current World Health Organization (WHO) classification recommends also the assessment
of FLT3 mutational status for patients with AML [11] as constitutive activation of the FLT3
kinase is one of the factors associated to poor prognosis of AML patients. FLT3 mutations
frequently co-occur with additional genetic alterations. In a recent study, Papaemmanuil
et al. sequenced 111 cancer drivers in a cohort of 1540 AML patients enrolled in three
independent clinical trials. In Table 1, we report the more frequent genetic alterations
co-occurring with FLT3 mutations in this AML patient cohort. Worth to mention, mutation
pairs or triplets in most of these patients recapitulate the “two-hit model” proposed by
Gilliland and Griffith in 2002. According to this model, AML is the consequence of at least
two mutations, each belonging to a different class. Class I mutations confer a proliferative
advantage, while class II mutations impair hematopoietic differentiation [8]. As shown in
Table 1, FLT3 mutations, which belong to class I, often co-occur with class II mutations,
in the DNMT3A, TET2, WT1 and IDH1/2 genes. However, it is also possible to identify
genetic associations of FLT3 mutations with other class I genes, such as NRAS, MYC and
PTPN11, stressing once more the complexity and heterogeneity of AML.

Among the 1540 AML patients, about 500 carry FLT3 mutations. Indeed, it has been
estimated that about 30% of AML patients have their FLT3 gene mutated at diagnosis [11].
FLT3 mutations can be divided into two groups: internal tandem duplications (ITDs) and
point mutations (Figure 1). Both these genetic alterations are gain of function mutations,
leading to constitutive FLT3 activation and, consequently, aberrant cell proliferation. ITD
mutations represent the most common type of FLT3 mutations with a percentage of about
25% of all AML cases [11], while point mutations are identified in 2% to 10% of all AML
patients and are localized in the JMD or in the TKDs domains [18–20]. Among the different
point mutations, the Asp 835 residue in the activation loop is the predominant FLT3 genetic
alteration. Interestingly, Kuriyan and colleagues constructed a FLT3 homology model
using as a template the structure of c-Kit, which shares 65% sequence identity with the
FLT3 kinase domain. Interestingly, they observed that Asp 835, in the model of the active
receptor conformation, is located close to a hydrophobic patch. It was suggested that
the Asp 835 mutation to a more hydrophobic residue may promote new interactions and
stabilize the activation loop in the active conformation [21].

ITDs are characterized by in-frame duplications 3 to 1236 bp in length, mostly in
exons 14 and 15, which correspond to the juxtamembrane domain (JMD). The crystal
structure of autoinhibited FLT3 leads to direct evidence of how the JMD region may exert
its autoinhibitory effect on the catalytic activity of FLT3. More specifically, the insertion of
ITD sequences disrupts the autoinhibitory interaction between the juxtamembrane domain
and the kinase domain, allowing FLT3 to switch from the inactive to the catalytically active
conformation in absence of the FLT3 ligand [14,22]. Such conformational rearrangements
cause constitutive autophosphorylation of FLT3 and the consequent phosphorylation of its
downstream targets. Interestingly, in 2006 Stirewalt et al., followed in 2009 by Kayser et al.,
revealed that ITD insertions can also be localized in the TK domain [23,24]. Specifically, in
28.7% of 753 FLT3-ITD-positive AML patients, Breitenbuecher et al. identified an in-frame
duplication in the tyrosine kinase domain (TKD) of the FLT3 receptor. ITD insertions were
observed in:

1. the TKD1 beta-sheet1 (amino acids 610 to 615) in 24.6% of FLT3-ITD positive AML patients
2. in the nucleotide binding loop (NBL) (amino acids 616 to 623) in 2% of FLT3-ITD

positive AML patients
3. in the TKD2 beta-sheet2 (amino acids 624 to 630) in 1.3 % of FLT3-ITD positive

AML patients.

Interestingly, these observations are clinically relevant as the ITDs in the kinase domain
have been associated to unfavorable patient prognosis in terms of complete remission,
relapse-free survival and overall survival. It has been observed that the ITD size is also
extremely variable from patient to patient and that the ITDs in the JMD and TKD regions are
highly variables in length ranging from a few to hundreds of nucleotides [23–26]. However,
the relation, if any, between ITD size and patient prognosis is still poorly understood.
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Table 1. List of FLT3 associated genetic alterations identified in 1540 acute myeloid leukemia (AML)
patients, as reported by Papaemmanuil et al. [9].

Frequency of FLT3 Co-Occurrent Mutated
Genes (N = 512)

Frequency of FLT3 Co-Occurrent Mutated
Pairs (N = 512)

Gene n of Patients (%) Gene n of Patients (%)

NPM1 242 (47.3) NPM1:DNMT3A 130 (25.4)

DNMT3A 168 (32.8) TET2:NPM1 35 (6.8)

TET2 59 (11.5) NPM1:IDH1 24 (4.7)

NRAS 51 (9,9) NPM1:IDH2 24(4.7)

RUNX1 40 (7.8) NRAS:NPM1 21 (4.1)

WT1 37 (7.2) PTPN11:NPM1 21 (4.1)

CEBPA 36 (7.0) RAD21:NPM1 20 (3.9)

MLL 35 (6.8) TET2:DNMT3A 19 (3.7)

IDH1 34 (6.6) IDH1:DNMT3A 16 (3.1)

IDH2 33 (6.4) IDH2:DNMT3A 16 (3.1)

PTPN11 29 (5.7) MLL:DNMT3A 15 (2.9)

RAD21 29 (5.7) NRAS:DNMT3A 15 (2.9)

SFRS2 15 (2.9) RUNX1:DNMT3A 13 (2.5)

MYC 14 (2.7) WT1:NPM1 13 (2.5)

ASXL1 12 (2.3) DNMT3A:CEBPA 11 (2.1)

CBL 12 (2.3) RUNX1:MLL 11(2.1)

EZH2 12 (2.3) NPM1:MYC 8 (1.6)

KRAS 12 (2.3) SFRS2:RUNX1 8 (1.6)

PHF6 11 (2.1) STAG2:NPM1 8 (1.6)

KIT 10 (1.9) NPM1:KRAS 7 (1.4)

GATA2 9 (1.7) RAD21: DNMT3A 7 (1.4)

SF3B1 8 (1.6) TET2:RUNX1 7 (1.4)

MLL2 7 (1.4) KRAS:DNMT3A 6 (1.2)

TP53 7 (1.4) PHF6:NPM1 6 (1.2)

U2AF1 7 (1.4) RUNX1:NRAS 6 (1.2)

NF1 6 (1.2) TET2:MLL 6 (1.2)

ZRSR2 5 (1) TET2:PTPN11 6 (1.2)

NPM1:NF1 5 (0.9)

NRAS:KRAS 5 (0.9)

RUNX1:EZH2 5 (0.9)

STAG2:MLL 5 (0.9)

TET2:RAD21 5 (0.9)

TET2:STAG2 5 (0.9)

Given the importance of FLT3 mutations in AML onset and development, over the
past decade, therapeutic protocols based on FLT3 inhibitors have been tested in clinical
trials more or less specific kinase inhibitors have been tested either in monotherapy or
in combination with chemotherapy. Protocols based on first-generation inhibitors, in
monotherapy, are often clinically inefficient possibly because of low potency and selectivity.
Thus, these inhibitors are commonly used in combination with standard chemotherapy (e.g.,
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midostaurin plus cytarabine and anthracycline) [27,28]. In recent years, second generation
FLT3 inhibitors have been developed. Their enhanced potency and selectivity, as compared
to first generation inhibitors promise greater efficacy in specifically targeting the mutated
forms of the FLT3 receptor. In Table 2, we have summarized the target specificity of FLT3
inhibitors which are currently under evaluation in clinical trials.

Figure 1. Schematic representation of AML mutational landscape in the FLT3 gene. The FLT3 protein contains 5 functional
domains: an immunoglobulin-like extracellular domain, a transmembrane domain (TM), a juxtamembrane domain (JMD)
and the two tyrosine kinase domains (TKDs), TKD1 and TKD2. FLT3 point mutations are displayed according to their
domain localization (modified from [19,27]). Yellow dots indicate point mutations, whereas amino acid residues in red
indicate the residues wherein ITD mutations are frequently located.

Other than the efforts to develop targeted therapies to block or attenuate the activity
of the FLT3 receptor, increasing evidence have shown that cancer cells treated with tyrosine
kinase inhibitors (TKIs) tend to acquire additional genetic alterations to escape inhibition.
Although some patients obtain great benefit from the addition of FLT3 inhibitors (e.g., mi-
dostaurin) to standard chemotherapy [29], a significant percentage of patients experienced
leukemia relapse within months after the initial remission [12]. In most cases, relapse is
associated to the development of drug resistance. Several distinct mechanisms can lead
to drug resistance, including protection of AML cells by the bone marrow environment,
evolution and/or expansion of resistant clones and the development of intrinsic, adaptive
cellular mechanisms [30]. Interestingly, it has been shown that bone marrow stromal cells
can interact with AML cells and determine a different drug response by a FGF receptor
dependent mechanism [31]. Our review focuses on cell-autonomous FLT3-driven resistance
mechanisms, which can be further classified in primary and secondary resistance. Primary
resistance occurs at the onset of the disease, while secondary resistance arises after the
early phase of treatment. Among the most frequent innate resistance mechanisms, the
co-expression of the wild-type form of FLT3 with the mutant has been associated to a
decreased efficacy of combined chemotherapy inhibitor treatment. Indeed, the reduced sen-
sitivity of wild-type FLT3 to TKI treatment accompanied by the chemotherapy-dependent
increase of FLT3 ligand promotes downstream proliferative pathways and AML progres-
sion. The upregulation and/or increased activity of cytochrome P450 enzymes (CYP3A4)
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has been shown to increase the drug turnover in FLT3-positive AML as well as in other
cancer types [32,33].

Table 2. FLT3 inhibitors in clinical trial for AML.

1◦ Generation

Inhibitor Sorafenib Midostaurin Sunitinib Lestaurtinib Tandutinib

Target

FLT3; c-KIT;
VEGFR;
PDGFR;
RAF1

FLT3; c-KIT;
PDGFRB;
VEGFR

FLT3; c-KIT;
KDR; PDGFR

FLT3; JAK2;
TRK A

FLT3;
PDGFR;

c-KIT

Trial phase II/III III II III I

FDA
approved No Yes No No No

2◦ Generation

Inhibitor Quizartinib Gilteritinib Crenolanib Ponatinib

Target FLT3; c-KIT;
PDGFRa FLT3; AXL FLT3; PDGFR FLT3; BCR-ABL; c-KIT;

FGFR1; PDGFRa

Trial phase III III III I/II

FDA
approved No Yes No No

FDA: Food and Drug Administration.

2.2. Chemotherapeutic Resistance Mechanisms in FLT3-Dependent AML

Mutations in the FLT3 receptor have been associated with the development of innate
or acquired resistance. For example, Linardopoulos’s team generated resistant cells by long-
term exposure of FLT3-mutant human cell lines with selective inhibitors (e.g., tandutinib
and quizartinib). The resulting resistant cells harbored an additional mutation (D835Y)
in the tyrosine kinase domain on the gene with the FLT3-ITD (+) allele. Consistently,
the acquired FLT3 D835Y mutation has been recently identified in relapsed FLT3-ITD
positive AML patients [34]. These observations indicate that multiple FLT3 mutations can
be present in the same patient and can play a role in the modulation of the sensitivity to
chemotherapeutic treatments.

Worth to mention, as in other types of leukemia, AML cells harboring pre-existing
resistance-mediating mutations can be selected by chemotherapeutic or TKIs treatment. In-
terestingly, FLT3-ITD mutation has been recognized as a relapse-related genetic marker [30].
Here we focus on the non-canonical ITD mutations characterized by an insertion within the
TK domain of FLT3, occurring in about 30% of FLT3-ITD positive AML patients. As already
mentioned, these TKD1-ITD FLT3-positive AML patients have a worse prognosis for over-
all survival and relapse free-survival as compared to AML patients carrying the canonical
JMD-ITD mutation [23,24]. We and other demonstrated that, although in cells harboring
the two mutations FLT3 activity is turned off upon FLT3 inhibitor treatment, the percentage
of TKD1-ITD cells undergoing apoptosis is significantly lower in comparison with cells
harboring the canonical ITD mutation in the JM domain (JMD-ITD cells) (Figure 2a). These
experiments have been performed by treating patient-derived leukemic cells as well as in
stably transfected cell lines with different first and second generation FLT3 inhibitors (e.g.,
quizartinib and midostaurin) [23,24]. These experiments demonstrated that the different
sensitivity of the two ITD mutants cannot be explained by FLT3 inhibitor off-target effects,
but it is due to the different location of the ITD in FLT3. In a recent study, the Fischer’s and
Heidel’s group(s) aimed at characterizing the impact of FLT3-ITD insertion sites on TKI-
therapy in vitro and in vivo. As expected, the retroviral injection of primary murine bone
marrow cells harboring either ITD led to lethal myeloproliferation, as previously reported.
Their findings show how FLT3 ITD location alone is responsible for a different response to
TKI treatment even in AML patients with a complex genetic background [26]. Interestingly,
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competitive transplantation of JMD- and TKD1-ITDs cells revealed competitive advantage
for JMD-ITDs over TKD1-ITDs. This different proliferative capacity does not correlate
with drug resistance. As previously reported, cells harboring ITDs within the TKD1 have
a significantly decreased sensitivity to TKI treatment in vitro as compared to JMD-ITD
cells. This reduced sensitivity of TKD-ITD cells to TKI treatment has been investigated by a
genome-wide unbiased analysis of the transcriptome profile. This analysis was performed
in 32D-cells infected with viruses expressing different ITD-mutations (three JMD-ITDs and
two TKD1-ITDs) as well as in primary patient cells expressing FLT3 JMD and TKD-ITDs
(33 FLT3 JMD-ITD patient samples and 16 FLT3 TKD-ITD patient samples). Genes involved
in the DNA repair process were found to be differentially modulated in the two ITDs
expressing cells. This observation is consistent with the reduced accumulation of γH2AX
foci after γ-radiation in TKD1-ITD cells as compared to JMD-ITD cells. Efficient DNA repair
in TKD-ITD cells may promote cell survival by protecting cells from cytotoxic treatment.

Figure 2. (a) Overview of the apoptotic analysis of juxtamembrane domain-internal tandem duplication (JMD-ITD) cells
(sensitive cells) and TKD-ITD cells (resistant cells) treated with FLT3 inhibitor (TKI). The graph shows the percentage of
Annexin V positive cells (unpublished data). (b) Schematic representation of the TKI-response mechanisms in FLT3-ITD
positive AML cells.
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The reduced sensitivity of TKD-ITD cells is still poorly understood. It is clear, however
that the molecular mechanisms underlying the different sensitivity cannot be simply
explained by the hyperactivation of the usual culprits, such as AKT, STAT5 and ERK1/2
(Figure 2b). The TKI treatment efficiently blocks FLT3 activation and decreases AKT, STAT5
and ERK1/2 activity in both JMD and TKD-ITD cells [35]. Thus, a simple model whereby
constitutive kinase activation results in a linear cascade of signaling events leading to
uncontrolled proliferation cannot explain the divergent response to inhibitors observed
in AML cells harboring the two ITD mutations. Given the crosstalk and complexity
within the cell signaling pathways, it is necessary to consider a scenario where the two
FLT3 ITD mutations cause distinct remodeling of the signaling network, which, in turn,
mediates a different response to chemotherapy. How are signaling pathways rewired
in AML cells harboring the different ITD mutations? To address this question, in the
following paragraphs we describe a network-based strategy based on the combination of
mass spectrometry-based phosphoproteomics with literature-derived causal networks.

3. A Network-Based Strategy to Revert Chemotherapeutic Resistance in AML
3.1. MS-Based Phosphoproteomics

Systematic analysis of signaling network rewiring is essential to decipher the molecu-
lar basis of complex biological phenomena, as the different sensitivity of FLT3-ITD positive
AML cells. Among the 200 different post-translational modifications, phosphorylation
is the most common regulatory mechanisms controlling protein function to transduce
signals in cells. In a recent study, it has been estimated that three-fourth of the detected
proteome can be phosphorylated [36]. Several high-throughput technologies have been
developed to systematically monitor changes in protein phosphorylation. These include
reverse phase protein arrays, phospho-specific flow cytometry, mass cytometry and mass
spectrometry (MS)-based phosphoproteomics [37]. Advances in sample preparation cou-
pled to developments in hardware [38] and software [39] has, however, given MS-based
phosphoproteomics a leading advantage, as this technology offers now the possibility to
identify and quantify phosphoproteins and phosphosites in an unbiased, manner with high
coverage and accuracy. Protein phosphorylation can be identified and mapped at single
amino acid resolution by the analysis of MS spectra because of the characteristic mass shift.
In a typical MS-based phosphoproteomic experiment, the procedure can be divided into
four steps: (i) sample preparation, including cell fractionation and protein digestion; (ii)
phosphopeptide enrichment; (iii) phosphopeptide separation by liquid chromatography
(LC) coupled with tandem MS; and (iv) bioinformatic analysis of MS spectra to identify
and quantify phosphosites. Historically, MS-based phosphoproteomics have faced many
challenges, including the requirement of large amount of starting material and the necessity
to fractionate the enriched phosphopeptides. Only a few years ago, the sample prepara-
tion workflow was a very complex procedure, technically demanding and applicable to a
limited number of experimental conditions [4]. Recently, all these challenges have been
addressed and overcome thanks the development of streamline approaches, including
the EasyPhos workflow [5]. This method requires a very low amount of starting material
and it is easily performed in a single tube in contrast to traditional phosphoproteomic
workflows (Figure 3). Briefly, 0.5 to 1 mg of lysate is alkylated and reduced; proteins are
digested with trypsin and LysC serine endoproteinase. At this stage it is possible to sample
an aliquot of the digested peptides for total proteome analysis. Next, phosphopeptides
are enriched by TiO2 beads affinity purification (Figure 3 panel 2), eluted, separated using
high-pressure liquid chromatography and sprayed in the MS instrument via electrospray.
In the mass spectrometer the peptides are first processed in a data-dependent acquisition
(DDA) mode, which allows to select the most abundant peptides for fragmentation and
identification [6]. The MS spectra are analyzed by different computational software pack-
ages. MaxQuant is one of the most frequently used platforms for MS-based proteomics data
analysis and enables to obtain information about peptide mass, intensity and presence of
specific post-translational modifications [40]. The Andromeda search engine implemented
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in the MaxQuant environment then allows to search each fragmented peptide and its
fragment ion pattern against databases for peptide identification and protein assembly.
This step is usually followed by statistical analysis of the resulting dataset and biological
interpretation. Proteomics data can be analyzed by the statistical module Perseus of the
MaxQuant environment. This software platform allows to analyze large datasets and
facilitate their biological and clinical interpretation [41].

Figure 3. Schematic representation of the experimental strategy applied for the (phospho) proteome analysis of FLT3
sensitive ad resistant cells after tyrosine kinase inhibitor (TKI) treatment.

This phosphoproteomic workflow can identify up to 10,000 to 20,000 class I phospho-
rylation sites, which are the ones identified with high confidence (localization probability
score > 0.75). The resulting high content phosphoproteomic datasets allow to obtain a
comprehensive overview of a cell phosphoprotein profile. Additionally, the described
workflow enables to simultaneously process multiple samples, allowing to characterize the
cell phosphoproteome in a time and space-resolved manner.

In principle, MS-based phosphoproteomics is the best possible technology to elu-
cidate how signaling pathways are rewired in AML cells harboring the different ITD
mutations [42–44]. However, it is important to consider that interpreting these large
datasets is often not straightforward and simple as one would image and cannot be done
manually one-by-one. A number of bioinformatic approaches have been developed to
help phosphoproteomic data interpretation [45]. The identification of biological processes
differently enriched in lists of modulated phosphosites is a common strategy [46,47]. This
analysis is usually accompanied by kinase substrate motifs enrichment analysis [48–50],
which allows to identify kinases whose activities are likely to be differently modulated in
different conditions. In the next paragraphs, we describe how network-based approaches
can be applied to extract signaling information from phosphoproteomics dataset, enabling
the identification of targets whose modulation is likely to revert the chemotherapeutic
resistance of FLT3-positive AML cells.
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3.2. Integrating Mass-Spectrometry Based Proteomics with Literature-Derived Signaling Networks

Different network-based approaches have been developed to obtain from phospho-
proteomic measurements information about signaling pathway modulation in disease.
It has emerged over the years that diseases are often caused by genetic alterations that
trigger a significant rewiring of the protein interaction network rather than by the simple
alteration of the activity of a single protein. Thus, the characterization of a disease state,
diagnosis and prognosis requires a proteome wide characterization of protein activities. As
phosphorylation is the main post translational mechanism modulating protein activity, MS
based phosphoproteomics plays a prominent role in the characterization of the modules of
the signaling network that are altered in a disease condition. Phosphoproteomics-based
network medicine applies high-throughput phosphorylation profiling in the classifica-
tion of cancers, therapy planning and prediction of drug response [51]. In a recent study,
multilayered proteomic analysis was used to assemble a wide BCR signalosome and new
signaling components were identified and validated in HeLa and primary B cells [52]
Hijazi et al. applied MS-based phosphoproteomics combined with computational analysis
of kinase-phosphosite relationship to decipher the topology of kinase-substrate network.
In this study more than 1500 kinase–kinase interactions were predicted and computa-
tional strategies were applied to reconstruct a kinase network from phosphoproteomic
dataset [53]. Phosphotyrosine enrichment-based phosphoproteomics of 16 AML cell lines
led to the characterization of modulated signaling cascades and to the identification of
hyperactive kinases as new putative drug targets for AML therapy [54]. Finally, we have
recently developed a workflow to overlay -omic data into literature-derived signaling net-
work. This strategy has been applied to elucidate how signaling networks are rewired in
different experimental conditions, including breast cancer cells upon metformin treatment,
glucose-stimulated pancreatic beta cells and type-2 diabetes islets [55–57].

Here we review this approach and discuss its application to elucidate signaling net-
works rewiring in drug resistant and sensitive FLT3-positive AML cells. The strategy takes
advantage of SIGNOR, a manually curated database capturing more than 26,000 causal
interactions. Every entry is SIGNOR is a binary, signed and directional interaction between
proteins or other biological entities (complexes, chemicals, phenotypes), supported by liter-
ature evidence. In addition, entries are linked to additional metadata such the molecular
mechanism involved in the regulation (phosphorylation, binding, etc.) and, when available,
the amino acid position of post-translational modifications (PTM). At the data of writing
SIGNOR stores approximately 9800 regulatory phosphorylation reactions and information
for 8800 phosphorylated sites [58,59]. The initial step in the workflow requires the assembly
of a human naïve interactome by using the information annotated in SIGNOR capturing
experimental evidence of causal interactions reported in the literature irrespective of the
cell system or biological context. The second step consists in overlaying onto the network
proteomic and phosphoproteomic data, thereby annotating each node with experimental
evidence of protein concentration and activity in the context of interest. The result is an
AML-specific network where each node is a protein that is expressed in AML cells. By
comparing the concentrations and activities of node proteins in different conditions (e.g.,
drug resistant and non-resistant cells) it is possible to identify subnetworks whose activity
is differentially regulated because of differences in protein abundance or activation.

To reproduce the workflow, the following material is required:

(a) Network template: the file should contain a table with at least five columns listing
the source nodes, the target nodes, the causal effects (up- or downregulation) and the
information about the amino acid position of the phosphorylated site as well as the
amino acid sequence context of the phosphosite (sequence window). In our case, this
file is the complete list of causal interactions available from the SIGNOR database.

(b) Node experimental attributes: a table containing the protein expression levels in
specific experimental conditions, as revealed by MS-based proteomic experiments.
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(c) Edge attributes: a table listing the phosphorylation level of the regulatory phos-
phopeptides involved in each activation/inactivation reaction, as revealed by the
MS-based phosphoproteomic experiment.

(d) Cytoscape software installed. For the scope of this example, we used default options.
Alternatively, a plethora of adds on applications developed to visualize and analyze
networks and omics data are made available at the Cytoscape App store (Table 3).

These are the steps required to obtain a FLT3 specific-causal network.

i. Download the complete list of interactions from the Download all data section of
the SIGNOR database (https://signor.uniroma2.it/downloads.php accessed on 24
April 2021).

ii. Upload the complete dataset on the Cytoscape software by setting the columns as
follows: ENTITYA>Source Node; ENTITYB>Target Node; TYPEA/B, IDA/B>Source/
Target Attribute; EFFECT>Interaction Type; MECHANISM, SEQUENCE, RESIDUE,
DIRECT>Interaction Attribute (Figure 4a).

iii. Import proteomic data as node attributes.
iv. Use the “filter” tab in Cytoscape to select nodes identified in specific experimental

conditions as revealed by MS-based proteomic experiments (Figure 4b).
v. Create a subnetwork containing only the selected nodes to obtain a network of

proteins expressed in the reference system.
vi. Use the “filter” tab in Cytoscape to select nodes with degree (number of connections)

≥ 0 to remove unconnected nodes.
vii. Use the “style” tab to modify the layout of the network, e.g., the size of the nodes

to reflect protein expression level (Figure 4c).
viii. Import phosphoproteomic data as attribute of the edges, using the 15mer sequence

in SIGNOR as key (see field SEQUENCE).
ix. Use the “style” tab to modify the visual properties of the edges. Use arrow style to

show effect and directionality and modify color according to phosphoproteomic
data (Figure 4d).

The result of this pipeline is a signed directed graph that includes only proteins
(nodes) expressed in a specific context, as per proteomic data, and where edges represent
phosphorylation events at specific sites detected by phosphoproteomics.

The resulting network still lacks a crucial piece of information as the activation level of
each node is not annotated. Converting phosphorylation data into qualitative information
on protein activity is fundamental to interpret signaling network rewiring. Phosphorylation
of one or more residues in the activation loop is the most common mechanism to regulate
kinase activity. Thus, for many signaling proteins, it is possible to estimate activity from the
phosphorylation levels of its regulatory sites. However, there are also pitfalls to consider.
Although annotation of the relation between site phosphorylation and kinase activity is
annotated in databases such as SIGNOR and PhosphoSitePlus [58–60], in MS-based phos-
phoproteomic datasets only a small percentage (2–3%) of the annotated regulatory phos-
phosites are identified [55,61]. As a consequence, most of the phosphorylations detected in
a typical MS-phosphoproteomic experiment cannot be simply converted into a qualitative
estimate of protein activity. Additionally, phosphorylation of different phosphosite in a
protein could have opposite consequences on protein activity making the interpretation of
phosphorylation experiments even more challenging. Multiple computational strategies
have been developed to infer kinase activities from phosphoproteomic datasets [53,62–64].
We here discuss a method to address this challenge and obtain a cell specific logic-model
that combines the omics derived network with a multiparametric analysis.

https://signor.uniroma2.it/downloads.php
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Figure 4. Schematic representation of the pipeline to obtain an AML-specific network. (a) Naïve
signaling network extracted from SIGNOR database and represented in Cytoscape. All the nodes
are dark grey, the edges are red if the interaction is annotated as inhibitory, blue if activatory, light
grey if unknown. (b) Selection (red nodes) of those nodes associated to at least one quantified value
of protein expression, as revealed by MS-based proteomics. (c,d) AML specific network resulting
from the integration of (a) with proteomic (c) and phospho-proteomic (d) data: the size of the nodes
represents the level of the protein expression quantified in the proteome; the color of the nodes
represents the levels of phosphorylation detected in the phospho-proteome. (e) Graphical description
of the data training and optimization of the network.
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Table 3. Cytoscape apps for networks and omics data.

Name Description

Omnipath App

It allows access to the large collection of network
resources of the Omnipath web server. From the 61

web resources the user can import any combination of
networks and their respective annotations. The

purpose of the app is to link the access to this kind of
data to the Cytoscape functionalities [65].

Omics Visualizer

It is a data visualization app; it is ideal for omics data
in which each node of the network is associated to
multiple values. Indeed, the app allows the user to

import files with multiple rows of data for a single node
and offers different ways to visualize these data [66].

BiNGO

It is a Cytoscape plug-in of the Biological Networks
Gene Ontology resource. It analyzes GO term

enrichments and it maps them onto a given network, it
uses either the full GO ontologies annotation or the

GOSlim ontologies. The annotated graphs generated
by BiNGO are flexible and customizable by the

standard Cytoscape functionalities [67].

CytoCopteR

It is the graphical interface of CellNOptR. With this
App the user can combine literature-derived network

with experimental data to build and optimize cell
specific and predictive logic networks. It uses different

kind of logic formalisms (Boolean steady-state,
Boolean multiple steady-state, Boolean time courses

through synchronous update, steady-state constrained
fuzzy logic and continuous logic-based ODEs) and the
user can choose between them depending on the kind

and the amount of data to analyze [68].

3.3. Optimizing and Building Dynamic Network trough Cell Signaling Experimental Data

The resulting network offers a static snapshot of how the FLT3-ITD mutations impact
signaling network and determine a different sensitivity to chemotherapeutic treatments.
The goal is that of obtaining a predictive network which can be used as a framework to
infer potential therapeutic targets to revert drug resistance. Boolean approaches have
been widely applied to obtain context-specific predictive signaling network models [69].
Historically, the first application of logic modeling to signaling pathways dates back to 1969,
when Kaufmann used discrete logic to model gene regulation [70]. Next, Huang and Ingber
used dynamic Boolean networks to show that specific cell phenotypes (growth, quiescence,
differentiation, apoptosis, etc.) might correspond to steady states of the dynamic logic-
based model [71]. Over the past decades, logic-based models have been widely used to
understand the relationships between signaling network and cell state and to identify
promising therapeutic targets. Different computational tools are now available to obtain
cell-specific logic models. Here we describe the pipeline to obtain FLT3 ITD-specific logic
models by using the freely accessible Cell Network Optimizer (CNO) software, which is
also available as a Cytoscape app.

The CNO software takes as input a prior knowledge network (PKN) and a training
data set. The PKN could be either downloaded from the many pathway or model databases
or curated from causal databases as we have described for the FLT3-ITD specific signaling
networks (Figure 4e). The training dataset is a quantitative dataset where the activity of
multiple proteins is monitored under different perturbation conditions. First CNO simplify
the network through a compression step, including the elimination of non-observable
nodes. Next, the software creates a superstructure of Boolean models having all possible
logic gates compatible with the compressed graph. At this point, the topology of the
compressed network is trained to data through the optimization function [68,72]. At
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the end of the process the topology of the network is optimized with edges removed
or added to improve the ability of the model to reproduce the behavior observed in the
training dataset.

To obtain the training dataset, it is necessary to select a panel of proteins, often
dubbed “sentinel proteins”, whose activity can be monitored under different perturbation
conditions. System perturbations can be obtained by treating cells with small-molecule
inhibitors and/or cytokines, whereas the activity of the sentinel proteins is analyzed by
experimental approaches such as the Luminex xMAP sandwich assay, which permits
to measure multiple protein concentrations or modifications in up to 96 samples in a
single run.

In conclusion, this approach enables to obtain dynamic networks describing the
different response to perturbations in sensitive and resistant cells.

4. Conclusions

Only few studies addressed the impact of FLT3-ITD TKD mutations on patients’
survival and therapy resistance. These studies have contributed to raise new fundamental
and applied questions: (i) How do the TKD-ITD mutations alter the structure of the
FLT3 receptor? (ii) Can the size and the position of ITD trigger the activation of different
signalling pathways? (iii) Can the different ITD localization be considered as a patients’
stratification feature? (iv) Which is the role of co-mutations of AML patients in the TKD-
ITD resistance? We have described here a general strategy to address such questions.
Understanding the molecular changes occurring in a perturbed system provides the means
to build predictive models and to set a rational basis to formulate new hypothesis. This
approach can also have a translational impact as the optimized model may be used to
test new strategies to revert the drug resistance phenotype in AML ITD patients. AML
patients carry a complex mutational landscape which can be explored by taking advantage
of the recent technological advances in single-cell techniques. Over the last years, mass
cytometry has played a crucial role in the single cell characterization of AML patient-
specific signalling [73–76]. We believe that this is only the first leg of a long journey that in
the near future will lead to a comprehensive single-cell proteomic analysis of AML patients
and the identification of a personalized therapeutic approach.
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