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A B S T R A C T

A parametric nonlinear model of cable-driven parallel manipulators endowed with a three-dimensional end-
effector is formulated and discussed in this paper. The proposed model considers the distributed stiffness,
inertia, and damping of time-varying length cables and allows to study and characterize the dynamic response
of manipulators equipped with a generic number 𝑛 of cables. The equations of motion of each of the 𝑛 cables
are first derived via a total lagrangian formulation together with the compatibility equations prescribing the
connectivity between the cables and the end-effector mass, while the dynamics of the end-effector are described
by enforcing the balance of its linear and angular momentum. A discretization procedure, based on admissible
trial functions, is used to reduce the nonlinear partial differential equations of motion of the cables to a set
of ordinary differential equations. The resulting equations are coupled with those describing the motion of
the end-effector and the approximate solution is calculated via numerical time integration. Direct and inverse
dynamic problems are then formulated and solved for selected case-study manipulators; finally, the role on
the dynamic response of the system of the main mechanical parameters and of the degree of over-actuation is
discussed.
. Introduction

Parallel robots are designed by multiple rigid links arranged in
parallel topology; these robots usually allow the end-effector (EE)

o move in a three-dimensional (3D) space showing good dynamic
erformances and load capacity. Cable-Driven Parallel Manipulators
CDPMs) can be defined as parallel robots in which legs are replaced
ith extensible cables that allow to cover larger workspaces (WS) if

ompared to classical parallel robots. Cables are wound in actuated
rums (i.e., the winches) that can be placed at a fixed frame, and the EE
an be operated by controlling the cable lengths [1]. Several relevant
orks on CDPMs were initially based on the determination of the WS by

eferring to the so-called wrench-feasible workspace [2], that is, a set
f mobile platform poses for which the cables can balance any wrench
f a given set of wrenches, so that the tension in each cable remains
ithin a prescribed range [3]. Therefore, the limits of the workspace is

mposed by the highest load capacity for the upper bound, and by the
ables slackness avoidance, for the lower bounds, initially considering
s ideal cables with no mass and deformability.

In the analysis and design of CDPMs, an aspect of great importance
o be considered is related to the number of active cables and their ar-
angement. For this reason, CDPMs were classified into two main cate-
ories, namely, over-constrained and under-constrained robots, respec-
ively. In particular, over-constrained CDPMs were defined as robots
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having a number of actuated cables higher than the degrees of freedom
(DOFs) of the EE, while under-constrained CDPMs are such that the
cables cannot control all the DOFs of the robot. The latter category,
includes cable suspended robots, defined as CDPMs for which all active
cables are attached to the top of the suspended EE, while the bottom
of the robot is free from cables. Since CDPMs have shown inherent
advantages over conventional parallel robots, many applications were
developed in the past and their use is continuously increasing. Works
related to the low inertia for high-speed, pick-and-place, manipulators
are reported in [4,5], while interesting examples of applications of
CDPMs in large 3D workspaces are given by the NIST Robocrane [6]
and by the skycam [7]. Further uses of parallel manipulators driven by
cables include: material handling over large areas, positioning of heavy
objects, rescue operations, mobility in urban environments [8], assis-
tance, rehabilitation, entertainment [9], and also applications in huge
telescopes, as the Five hundred meter Aperture Spherical Telescope
(FAST) [10].

Cables are the main components of CDPMs; therefore, a deep un-
derstanding of their static and dynamic behaviors is fundamental to
properly design these devices. However, the mechanical modeling of
cables can be very challenging if considering both their distributed
mass, elasticity, and damping properties [11–14]. Within this context,
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richest dynamical models of elastic cables, including the bending and
the torsional stiffness, were proposed in [15–17] and the identification
of the axial and bending stiffness in stay cables was also performed
in [18], while the effects of the temperature in the elastic response
of cable were investigated in [19]. Those models have found suitable
applications in the study and the characterization of the static and the
dynamic behavior of CDPMs. In particular, the Irvine cable model [11]
was adopted, as first, to formulate and solve the kinetostatic problem
of CDPMs for studying the effect of the cables sag [20,21], while
more sophisticated nonlinear models, including the three-dimensional
description of the finite kinematics and the large deformation of elastic
cables, were proposed in [22–24] to solve the direct and the inverse
kinematic problems of CDPMs working in a 3D space.

For what concerns the dynamics of CDPMs, in early studies, the
distributed inertia and stiffness of cables were typically neglected since
those were modeled via massless, rigid, links able at moving the EE
in space [25]. In [26,27] elastic cables were modeled, first, as springs
and, then, as taut strings, for studying the effect of the cables dis-
tributed elasticity and its influence in the dynamic response of moving
platforms. In [28], the kinematics and the dynamics of the IPAnema3
cable robot were studied by modeling each cable as a spring–damper
rheological element with variable stiffness and damping given by the
change in the effective cable length. Nevertheless, this assumption may
not be accurate, especially for CDPMs with heavy and/or very long
cables. Within this context, geometric curvature, i.e., the cable sag,
plays an important role in the mechanical response of the cables and of
the whole CDPM, this is because it represents a source of non-negligible
stiffness, also known as geometric stiffness, which may influence the
static and dynamic behavior even more than the elastic axial stiffness
itself [29,30].

Most of the works available in the literature consider both, the
cable elastic and geometric stiffness, and the distributed mass, to
study the free-vibrations of two-dimensional CDPMs characterized by
inclined cables [29,31]. The vibrations of the moving platform of
CDPMs with large workspaces were studied in [32,33], where cables
were modeled by including their distributed mass and axial stiffness
and the equations of motion were solved by using different numer-
ical techniques, e.g., converting to ordinary differential equations by
using finite element method [32] and by means of the assumed-mode
method [33,34], respectively. Within this context, the correct modeling
of the cable stiffness and inertia plays a fundamental role and has
significant effects both in the static and in the dynamic response of
CDPMs, such as in the correct kinematic description of the motion,
the EE positioning accuracy, the forces distribution in the cables, and
in the vibration and the control of the robot. In [35] an adaptive
control of robot manipulators with kinematic uncertainties is pro-
posed for parallel robots based on the representation of the Jacobian
matrix in regressor form with asymptotic trajectory tracking, while
in [36] a vision-based method is presented for cable-driven robots to
simultaneously measure the manipulator configuration and the target
pose. In [28] static and dynamic stiffness analyses of CDPMs were
performed by including a static sagging cable model, which considers
the cable mass and elasticity, and describes the static cable profile
by a set of nonlinear equations. The proposed model is based on the
Dynamic Stiffness Matrix (DSM) method. A further suitable approach
for modeling the effect of the mass of the cables is to consider those
as chains having lumped masses connected by elastic links instead
of modeling them as one-dimensional elastic continua. To this end,
planar models were developed in [37,38] where it was assumed that
the cable mass was lumped at selected locations (called the nodes)
along its configuration. The axial stiffness and the damping properties
of a segment falling in between a pair of nodes were modeled as an
equivalent spring–damper element, in place of the physical segment.
A similar model, accounting for the spatial motions of the cables, was
used in [39] for controlling the receiver of a radio telescope supported
by an aerostat, and in [8], where a large CDPM was modeled to
2

position a cabin in space. A spatial model of CDPM, proposed in [40],
incorporated the mass and the elasticity of the cable in the longitudinal,
transverse, and lateral directions, respectively, to investigate the role
of such parameters in the 3D dynamic response of the mechanical
system. In [41], the static and dynamic stiffness of CDPMs were char-
acterized and studied in a 3D space. To this end, by starting from the
inclined cables configuration at the equilibrium, the forced vibrations
of the inclined cables were studied by combining static and dynamic
equilibrium configurations. One of the issues related to the use of
discrete models is that, in order to provide a good approximation of
the mechanical continuum, a sufficiently large number of elements
is required. However, when the number of elements increase, then
the degrees-of-freedom of the system increase proportionally, leading
to computational challenges. Considering the elasticity along different
directions, the cables were modeled as Reissner beams in [42], and used
for the simulation and the control of the CoGiRo robot with the help
of XDE and MATLAB/Simulink [43]; the experimental validation of the
above-mentioned numerical simulations was then presented in [44]. A
more sophisticated cable model, based on the Cosserat theory of rods,
was adopted in [34] to calculate the natural frequencies of a planar 4–4
CDPM with time-varying cable lengths, while, in [45] was presented an
Arbitrary Lagrange Euler (ALE) method for the dynamic modeling and
simulation of cable-driven mechanisms considering stick–slip frictions.
Similar to the discrete models of the cables, the accuracy of continuum-
based models is limited by the number of finite elements that can
be practically used, as mentioned in [42,43], or equivalently, of the
degrees of the Bernstein polynomials used in [34] for approximating the
solution of the partial differential equations describing the dynamics
of the system. Indeed, the numerical simulation of the CDPM dynam-
ics implies the analysis of systems having large number of DOF and
multiple closed-loops. Typically, the formulations adopted to overcome
the computational drawbacks are based on the recursive Newton–
Euler formulation (NEF) and on the constrained lagrangian formulation
(CLF), or hybrid NEF/CLF formulations, which allow to account for the
coupling between the dynamics of the cables and the motion of the EE.
An improved forward dynamic algorithm, known as the sub-system-
level lagrangian multiplier (SSLM) approach, was proposed in [46], and
it was specifically developed for systems having multiple closed-loops.
The same theoretical framework was adopted in [47] to be applied to
FAST and CoGiRo robots; moreover, the model was improved to reduce
the overall computational costs arising from the use of a recursive
algorithm for the optimal computation of the Lagrange multipliers.

In the present paper, a parametric nonlinear dynamic model of
CDPMs undergoing three-dimensional motions is presented and dis-
cussed, and the solution of both, the direct and the inverse dynamic
problems, is provided my means of a discretization procedure based on
admissible trial functions. The novelties of this work can be summa-
rized as follows: i. the formulation of an analytical procedure to model
and solve the dynamic problem of CDPMs endowed with a 3D end-
effector and including the effects of the distributed stiffness, inertia, and
damping of the cables; ii. providing a solution strategy based on an ad
hoc nondimensionalization of the system parameters and equations able
at overcoming the analytical and numerical drawbacks related to the
time-varying length of the cables; iii. providing and discussing solution
strategies for both, direct and inverse, dynamic problems in the case of
minimally-actuated and over-actuated systems.

2. Nonlinear parametric modeling

Hereinafter, a nonlinear dynamic model of cable-driven parallel
manipulator (CDPM) including the elasticity of the cables and their
distributed mass is presented and discussed. The CDPM model is for-
mulated by considering a generic number 𝑛 of cables whose length
s varied in time to move and to change the orientation of an end-
ffector (EE) mass in a three-dimensional (3D) space by means of
rescribed trajectories. In particular, the EE is first described as an
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Fig. 1. (𝑎) Schematic representation of the CDPM: target configuration (gray) vs configuration calculated via Direct approach (blue). (𝑏) Finite rotations and equilibrium of the
forces acting on the end-effector mass. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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orientable 3D rigid body having a generic shape and, then, the case of
a point-mass end-effector is further derived and discussed in the work.
An exact geometric formulation of the cable dynamics is derived by
accounting for finite displacements and rotations of the end-effector,
and the strong form of the system’s equations of motion is then derived
via a Lagrangian formulation. The nonlinear differential equations of
motion of the cables, coupled with the balance equations of the linear
and angular momentum of the EE, are then solved by seeking an
approximate numerical solution using admissible trial functions.

The notation used for the mathematical formulation adopted in this
work considers vectors and matrices as elements of the real coordinate
3D space R3; moreover, vector-valued functions are denoted by lower-
case, bold-face symbols, while matrices are represented by capital-case,
boldface symbols, and scalar functions are denoted by lower-case, italic
symbols. Furthermore, the cross product of vectors is denoted by the
symbol × and the transpose operator by the superscript ⊤. Finally, the
Leibniz’s notation 𝑑

𝑑𝑥 (⋅) is used for derivatives in terms of a generic
dimensional variable 𝑥, while the Lagrange’s notation (⋅)′ and the
Newton’s notation ̇(⋅) are adopted for derivatives with respect to the
nondimensional space and time variables, respectively.

2.1. Kinematic formulation

The analytical model of the 𝑖th elastic cable with distributed mass is
parametrized in time by means of the variable 𝑡 and in space by adopt-
ing the cable arclength 𝑠𝑖 ∈ [0, 𝐿𝑖(𝑡)] (𝑖 = 1,… , 𝑛) of the unstretched
configuration, where 𝐿𝑖(𝑡) is the time-varying total unstretched length
of the 𝑖th cable. Moreover, at time 𝑡, the minimum distance between the
boundaries of the 𝑖th cable is given by 𝑙𝑖(𝑡). As shown in Fig. 1(𝑎), the
geometry and the kinematics of the system are described by considering
𝑛 fixed Cartesian frames having origin positioned at the boundary 𝑠𝑖 = 0
of the corresponding cable. The origins of the 𝑛 frames are positioned
in the frame

(

𝐞𝑥, 𝐞𝑦, 𝐞𝑧
)

, being 𝐞𝑧 the gravity direction, and centered in
the point 𝑂1 of the first cable (i.e., at 𝑠1 = 0), by the 3-by-1 position
vector 𝐱𝑖 =

[

𝑥𝑖 𝑦𝑖 𝑧𝑖
]⊤ (𝑖 = 1,… , 𝑛); therefore, it turns out that 𝐱1 ≡ 𝟎,

here 𝟎 is the null vector.
At time 𝑡, the vector describing, in the fixed frame

(

𝐞𝑥, 𝐞𝑦, 𝐞𝑧
)

, the
osition of the point belonging to the end-effector and connected to
he 𝑖th cable is 𝐫𝑖(𝑡) = Θ(𝑡) 𝐫0𝑖 , where 𝐫0𝑖 is the position vector in the
ass-fixed local frame

(

𝐛1(𝑡),𝐛2(𝑡),𝐛3(𝑡)
)

centered in the EE center of
mass 𝑂M. The operator Θ(𝑡) is the 3-by-3 time-dependent orthogonal
matrix obtained by considering the Tait–Bryan angles 𝜃 (𝑡) (𝑘 = 1, 2, 3)
𝑘 o

3

and assuming the following sequence of finite rotations (see Fig. 1(𝑏)):
1(𝑡), about the axis 𝐛01 ≡ 𝐞𝑥, 𝜃2(𝑡), about the axis 𝐛∗2, and 𝜃3(𝑡), about
he axis 𝐛̂3 ≡ 𝐛3(𝑡). Hence, the finite rotations matrix can be written as

(𝑡) =
⎡

⎢

⎢

⎣

𝑐2𝑐3 −𝑐2𝑠3 𝑠2
𝑐1𝑠3 + 𝑠1𝑠2𝑐3 𝑐1𝑐3 − 𝑠1𝑠2𝑠3 −𝑠1𝑐2
𝑠1𝑠3 − 𝑐1𝑠2𝑐3 𝑠1𝑐3 + 𝑐1𝑠2𝑠3 𝑐1𝑐2

⎤

⎥

⎥

⎦

, (1)

here 𝑠𝑘 and 𝑐𝑘 indicate sin 𝜃𝑘(𝑡) and cos 𝜃𝑘(𝑡), respectively, for 𝑘 =
, 2, 3.

To describe the position of the material point on the 𝑖th cable
s adopted the vector 𝐩𝑖(𝑠𝑖, 𝑡) =

[

𝑝𝑥,𝑖(𝑠𝑖, 𝑡) 𝑝𝑦,𝑖(𝑠𝑖, 𝑡) 𝑝𝑧,𝑖(𝑠𝑖, 𝑡)
]⊤ whose

omponents are defined in the 𝑖th fixed frame and where 𝑠𝑖 represents
he unstretched arclength of the 𝑖th cable (see Fig. 1). The strain state of
he 𝑖th cable can be described by introducing the stretch vector 𝝂𝑖(𝑠𝑖, 𝑡)
alculated as 𝝂𝑖(𝑠𝑖, 𝑡) =

𝑑
𝑑𝑠𝑖

𝐩𝑖(𝑠𝑖, 𝑡), and whose norm has the following
xpression in terms of the components of the position vector 𝐩𝑖(𝑠𝑖, 𝑡):

𝑖(𝑠𝑖, 𝑡) =

√

(𝑑𝑝𝑥,𝑖
𝑑𝑠𝑖

)2
+
(𝑑𝑝𝑦,𝑖

𝑑𝑠𝑖

)2

+
(𝑑𝑝𝑧,𝑖

𝑑𝑠𝑖

)2
. (2)

Therefore, the unit vector 𝐚𝑖, providing the axial direction tangent to
he dynamic configuration of the 𝑖th cable, can be straightforwardly
alculated as 𝐚𝑖(𝑠𝑖, 𝑡) = 𝝂𝑖(𝑠𝑖, 𝑡)∕𝜈𝑖(𝑠𝑖, 𝑡).

.2. Equations of motion

To derive the strong form of the equations of motion of the CDPM
t is first necessary to introduce the expression of the vector of the
nternal forces of the 𝑖th cable at position 𝑠𝑖 and time 𝑡. By considering
urely extensible cables, this vector collects only the axial force and
t has the following expression: 𝐧𝑖(𝑠𝑖, 𝑡) = 𝑁𝑖(𝑠𝑖, 𝑡)𝐚𝑖(𝑠𝑖, 𝑡), where the
ension 𝑁𝑖(𝑠𝑖, 𝑡) can be calculated as 𝑁𝑖(𝑠𝑖, 𝑡) = 𝐸𝐴𝑖

(

𝜈𝑖(𝑠𝑖, 𝑡) − 1
)

, being
𝐴𝑖 the axial stiffness of the 𝑖th cable. It is worth mentioning that,

n the here considered mechanical model, the constitutive behavior of
he extensible cables is assumed to be linearly elastic; therefore, only
eometric nonlinearities govern the dynamic response of the system.

The equation of motion of the 𝑖th cable can be derived according
o the first Euler law of motion by enforcing the balance of linear
omentum and can be written, in vector-valued form, as
𝑑
𝑑𝑠𝑖

𝐧𝑖(𝑠𝑖, 𝑡) + 𝐟𝑖(𝑠𝑖, 𝑡) = 𝜌𝐴𝑖
𝑑2

𝑑𝑡2
𝐩𝑖(𝑠𝑖, 𝑡) + 𝑐𝑖

𝑑
𝑑𝑡

𝐩𝑖(𝑠𝑖, 𝑡) (𝑖 = 1,… , 𝑛), (3)

here 𝐟𝑖(𝑠𝑖, 𝑡) is the vector collecting the forces per unit length acting
n the cable, while 𝜌𝐴 is the mass per unit length of the 𝑖th cable,
𝑖
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respectively. Moreover, the Rayleigh dissipation function is considered
to model the damping and the damping coefficient 𝑐𝑖 is here assumed
to be 𝑐𝑖 = 2 𝜁

√

𝐸𝐴𝑖 𝜌𝐴𝑖∕𝑙20,1, where 𝜁 is a damping factor. Eq. (3)
is a second-order, in space and in time, differential equation whose
unknown is the vector-valued function 𝐩𝑖(𝑠𝑖, 𝑡) which must satisfy the
following kinematic boundary conditions at 𝑠𝑖 = 0:

𝐩𝑖(0, 𝑡) = 𝟎 (𝑖 = 1,… , 𝑛), (4)

for assigned initial conditions.
The overall dynamics of the CDPM, consisting of 𝑛 cables connected

to the end-effector, are described by 𝑛 vector-valued functions 𝐩𝑖(𝑠𝑖, 𝑡)
(𝑖 = 1,… , 𝑛) which are solution of the corresponding equation of

otion of the type given by Eq. (3); the 𝑖th kinematic unknown must
hen satisfy the following relationship:

𝑖 + 𝐩𝑖(𝐿𝑖, 𝑡) − 𝐫𝑖(𝑡) = 𝐩1(𝐿1, 𝑡) − 𝐫1(𝑡) (𝑖 = 2,… , 𝑛), (5)

which provides, at time 𝑡, the compatibility condition ensuring that the
material point at 𝑠𝑖 = 𝐿𝑖(𝑡) of each cable is connected to the end-
effector at the position 𝐫𝑖(𝑡) from the center of mass 𝑂M. Finally, to
ensure the balance of the linear momentum of the end-effector mass
𝑀 , the following vector-valued equation holds:

−
𝑛
∑

𝑖=1
𝐧𝑖(𝐿𝑖, 𝑡) −𝑀𝑔 𝐞𝑧 = 𝐟M(𝑡), (6)

where 𝐟M(𝑡) = 𝑀
[

𝑑2

𝑑𝑡2
(

𝐩1(𝐿1, 𝑡) − 𝐫1(𝑡)
)

]

(𝑠1=𝐿1 ,𝑡)
is the time rate of

change of the end-effector linear momentum, and the difference vector
𝐩1(𝐿1, 𝑡) − 𝐫1(𝑡) provides the position of the end-effector center of mass
𝑂M in the fixed frame

(

𝐞𝑥, 𝐞𝑦, 𝐞𝑧
)

. On the other hand, the balance of the
angular momentum of the EE is given by

−
𝑛
∑

𝑖=1
𝐫𝑖(𝑡) × 𝐧𝑖(𝐿𝑖, 𝑡) = 𝐦M(𝑡), (7)

where 𝐦M(𝑡) = Θ(𝑡)
(

𝐉M
𝑑
𝑑𝑡𝝎(𝑡)

)

is the time rate of change of the
nd-effector angular momentum, and 𝐉M is the diagonal matrix of the

principal mass moment of inertia with respect to the end-effector mass-
fixed local frame

(

𝐛1(𝑡),𝐛2(𝑡),𝐛3(𝑡)
)

, while the components of the 3-by-1
vector 𝝎(𝑡) = [𝜔1(𝑡) 𝜔2(𝑡) 𝜔3(𝑡)]⊤, which collects the angular velocities
about the axes of the local frame, are the non-trivial components of the
skew-symmetric matrix Ω(𝑡) = Θ(𝑡)⊤

(

𝑑Θ(𝑡)∕𝑑𝑡
)

and have the following
expressions:

𝜔1(𝑡) =
𝑑𝜃1
𝑑𝑡

cos 𝜃2 cos 𝜃3 +
𝑑𝜃2
𝑑𝑡

sin 𝜃3,

2(𝑡) =
𝑑𝜃2
𝑑𝑡

cos 𝜃3 −
𝑑𝜃1
𝑑𝑡

cos 𝜃2 sin 𝜃3,

3(𝑡) =
𝑑𝜃3
𝑑𝑡

+
𝑑𝜃1
𝑑𝑡

sin 𝜃2.

(8)

2.3. End-effector trajectory

The trajectory of the end-effector, including its orientation, can be
described through the position of the center of mass, given by the vector
𝐩M(𝑡), and the rotation of the local frame

(

𝐛1(𝑡),𝐛2(𝑡),𝐛3(𝑡)
)

given by the
matrix Θ(𝑡). Therefore, the position of each connected point of the end-
effector is provided, in the fixed frame

(

𝐞𝑥, 𝐞𝑦, 𝐞𝑧
)

, by the vector 𝐩M,𝑖(𝑡)
whose expression can be calculated as:

𝐩M,𝑖(𝑡) = 𝐩M(𝑡) +Θ(𝑡) 𝐫0𝑖 − 𝐱𝑖 (𝑖 = 1,… , 𝑛). (9)

Hence, at time 𝑡, the distance between the boundary points of the 𝑖th
cable can be calculated as:

𝑙𝑖(𝑡) =
√

𝐩M,𝑖(𝑡)⊤𝐩M,𝑖(𝑡) (𝑖 = 1,… , 𝑛). (10)

It is necessary to highlight that feasible initial positions and orienta-
tions of the EE mass must be provided within the so-called workspace
of the CDPM. This mainly depends on the geometry of the CDPM and its
characterization can be done via static analyses; further details on the
definition of suitable 3D workspaces of CDPMs can be found in [24,48].
 o

4

3. Nondimensional form

The solution of the equations of motion of the 𝑛 cables and that of
the balance equations of the EE linear and angular momentum turns
out to be an arduous task to be achieved due to the time varying
space domains (i.e., 𝑠𝑖 ∈ [0, 𝐿𝑖(𝑡)]) characterizing the mechanical sys-
em. Nevertheless, a suitable nondimensionalization of the differential
quations and of the system geometrical and mechanical parameters
an provide a valid stratagem to overcome this issue. To this end, the
istance 𝑙0,1 = 𝑙1(0), at time 𝑡 = 0, between the boundary points of the

first cable (i.e., 𝑖 = 1) is adopted as characteristic length to rescale, in
space, the mechanical problem, while the characteristic frequency 𝜔𝑐 =
√

𝐸𝐴1∕
(

𝜌𝐴1 𝑙20,1
)

is adopted to nondimensionalize the time, where 𝐸𝐴1

and 𝜌𝐴1 are the axial stiffness and the mass per unit length of the first
cable, respectively. Therefore, the following scalar and vector-valued
nondimensional parameters can be introduced:

𝜆0,𝑖 =
𝑙0,𝑖
𝑙0,1

, 𝐱̄𝑖 =
𝐱𝑖
𝑙0,1

, 𝐫̄0𝑖 =
𝐫0𝑖
𝑙0,1

, 𝐫̄𝑖 =
𝐫𝑖
𝑙0,1

,

𝐩̄M =
𝐩M

𝑙0,1
, 𝐩̄𝑖 =

𝐩𝑖
𝑙0,1

, 𝐧̄𝑖 =
𝐧𝑖

𝜌𝐴1 𝜔2
𝑐 𝑙

2
0,1

, (𝑖 = 1… 𝑛),
(11)

being 𝜌𝐴1 𝜔2
𝑐 𝑙

2
0,1 ≡ 𝐸𝐴1 a characteristic force and 𝜆0,1 ≡ 1; on the other

hand, the nondimensional time 𝜏 can be calculated as 𝜏 = 𝜔𝑐 𝑡. Finally,
the following nondimensional time-varying parameters are defined:

𝜆𝑖(𝜏) =
𝑙𝑖(𝜏)
𝑙0,𝑖

, 𝛬𝑖(𝜏) =
𝐿𝑖(𝜏)
𝑙𝑖(𝜏)

, (12)

here 𝜆𝑖(𝜏) is the ratio between the boundary points of the 𝑖th cable at
ime 𝜏 and the corresponding length at 𝜏 = 0, while 𝛬𝑖(𝜏) is the time-
arying aspect ratio of the 𝑖th cable. Note that, at time 𝜏 = 0, 𝜆𝑖(0) = 1
or all 𝑖, which, for 𝑖 > 1, does not necessary correspond to the value
f 𝜆0,𝑖.

Differently from what it was done for the system position vectors,
o rescale the space coordinate 𝑠𝑖 it is convenient to adopt a different
ondimensionalization criterion and to introduce the nondimensional
rclength 𝜎 = 𝑠𝑖∕𝐿𝑖(𝑡), which varies into the nondimensional domain
0, 1] at any time 𝜏. Based on the expressions introduced in Eq. (12),
t turns out that 𝐿𝑖(𝜏) = 𝛬𝑖(𝜏)𝜆𝑖(𝜏)𝑙0,𝑖; therefore, the derivative with
espect to the 𝑖th dimensional arclength 𝑠𝑖 can be calculated in terms
f the nondimensional arclength 𝜎 as
𝑑
𝑑𝑠𝑖

(

⋅
)

= 1
𝛬𝑖(𝜏)𝜆𝑖(𝜏)𝑙0,𝑖

(

⋅
)′, (13)

while the time derivative can be calculated in terms of the nondi-
mensional time 𝜏 as 𝑑

𝑑𝑡 (⋅) = 𝜔𝑐 ̇(⋅), being (⋅)′ ∶= 𝑑
𝑑𝜎 (⋅) and ̇(⋅) ∶=

𝑑
𝑑𝜏 (⋅), respectively. Hence, in terms of the nondimensional parameters
nd variables, the stretch vector can be then calculated as 𝝂𝑖(𝜎, 𝜏) =
̄ ′𝑖(𝜎, 𝜏)∕

(

𝛬𝑖(𝜏)𝜆𝑖(𝜏)𝜆0,𝑖
)

, and the corresponding norm as 𝜈𝑖(𝜎, 𝜏) =
(

𝑝̄′𝑥,𝑖
)2

+
(

𝑝̄′𝑦,𝑖
)2

+
(

𝑝̄′𝑧,𝑖
)2

∕
(

𝛬𝑖(𝜏)𝜆𝑖(𝜏)𝜆0,𝑖
)

(𝑖 = 1,… , 𝑛).
Due to the definition of 𝜔𝑐 , it turns out that the 𝑖th axial force

is given in nondimensional form as 𝑁̄𝑖(𝜎, 𝜏) = 𝜅𝑖
(

𝜈𝑖(𝜎, 𝜏) − 1
)

, where
𝜅𝑖 =

(

𝐸𝐴𝑖∕𝐸𝐴1
)

is the nondimensional axial stiffness of the 𝑖th cable,
defined as the ratio between the stiffness of the 𝑖th cable and that of the
first cable; therefore, the corresponding vector of the nondimensional
axial force can be written as

𝐧̄𝑖(𝜎, 𝜏) =
𝜅𝑖

𝛬𝑖(𝜏)𝜆𝑖(𝜏)𝜆0,𝑖

(

𝜈𝑖(𝜎, 𝜏) − 1
)

𝜈𝑖(𝜎, 𝜏)
𝐩̄′𝑖(𝜎, 𝜏). (14)

Finally, the equation of motion of the 𝑖th cable in nondimensional,
ector-valued form reads
𝐧̄′𝑖(𝜎, 𝜏)

𝛬𝑖(𝜏)𝜆𝑖(𝜏)𝜆0,𝑖
+ 𝐟𝑖(𝜎, 𝜏) = 𝜚𝑖 ̈̄𝐩𝑖(𝜎, 𝜏) + 𝑐𝑖 ̇̄𝐩𝑖(𝜎, 𝜏) (𝑖 = 1,… , 𝑛), (15)

here 𝜚𝑖 = 𝜌𝐴𝑖∕𝜌𝐴1 is the ratio between the mass per unit length
f the 𝑖th and that of the first cable, and 𝑐 = 𝑐 ∕

(

𝜌𝐴 𝜔
)

is the
𝑖 𝑖 1 𝑐
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nondimensional damping coefficient. The nondimensional distributed
load, calculated as 𝐟𝑖 = 𝐟𝑖∕

(

𝜌𝐴1𝜔2
𝑐 𝑙0,1

)

, is here considered to be only the
able self-weight, i.e., 𝐟𝑖 = −𝜌𝐴𝑖 𝑔 𝐞𝑧, where 𝑔 = 9.81 m∕s2 is the gravity

acceleration; therefore, in Eq. (15), 𝐟𝑖 = −𝜚𝑖 𝛾 𝐞𝑧, where 𝛾 = 𝑔∕
(

𝜔2
𝑐 𝑙0,1

)

.
Finally, Eqs. (4) and (5) can be rewritten in nondimensional form as

𝐩̄𝑖(0, 𝜏) = 𝟎 (𝑖 = 1,… , 𝑛), (16)

𝐱̄𝑖 + 𝐩̄𝑖(1, 𝜏) − 𝐫̄𝑖(𝜏) = 𝐩̄1(1, 𝜏) − 𝐫̄1(𝜏) (𝑖 = 2,… , 𝑛), (17)

respectively, while the nondimensional form of the vector-valued bal-
ance equations of the end-effector linear and angular momentum can
be written as

−
𝑛
∑

𝑖=1
𝐧̄𝑖(1, 𝜏) − 𝜇 𝛾 𝐞𝑧 = 𝜇

(

̈̄𝐩1(1, 𝜏) − ̈̄𝐫1(𝜏)
)

, (18)

−
𝑛
∑

𝑖=1

(

𝐫̄𝑖(𝜏) × 𝐧̄𝑖(1, 𝜏)
)

= Θ(𝜏)
(

𝐉̄𝜇 𝝎̇(𝜏)
)

, (19)

respectively, where 𝜇 = 𝑀∕
(

𝜌𝐴1 𝑙0,1
)

represents the nondimensional EE
mass and 𝐉̄𝜇 = 𝐉M

[

1∕
(

𝜌𝐴1 𝑙30,1
)]

= 𝜇 diag
(

𝐼𝑃1, 𝐼𝑃2, 𝐼𝑃3
)

, where diag (⋅)
represents a diagonal matrix and 𝐼𝑃1, 𝐼𝑃2, 𝐼𝑃 3, are the nondimensional
polar moments of inertia of the end-effector with respect to the axes
𝐛1(𝑡), 𝐛2(𝑡), and 𝐛3(𝑡), respectively. In the present work, the inertial and
the elastic parameters (i.e., 𝜌𝐴𝑖 and 𝐸𝐴𝑖, respectively) are assumed to
be the same for all 𝑛 cables, therefore 𝜅𝑖 = 1 and 𝜚𝑖 = 1 (𝑖 = 1,… , 𝑛).

It is worth noting that, differently from Eq. (3), Eq. (15) is a vector-
valued partial differential equation having time-varying coefficients.
Nevertheless, although the nondimensionalization entailed a more elab-
orated writing of the equations of motion, the use of nondimensional
variables will provide indisputable advantages in the numerical treat-
ment and in the calculation of the solution of Eq. (15), as discussed in
the next.

3.1. Approximate solution of the equations of motion

The discretization technique based on the use of admissible trial
functions is adopted to reduce the space-dependence of the equations
of motion of the cables so as to reduce them into a set of ordinary
differential equations, in the nondimensional time variable 𝜏, coupled
with the boundary equations of the balance of the end-effector linear
and angular momentum. To this end, 𝑚+1 trial functions are chosen to
satisfy the kinematic boundary conditions (16) and (17); therefore, the
approximate solution of Eq. (15) is given by the 3-by-1 vector 𝐩̃𝑖(𝜎, 𝜏)
(𝑖 = 1,… , 𝑛) expressed as the linear combination of the 𝑚 + 1 trial
functions as

𝐩̃𝑖(𝜎, 𝜏) = 𝐪𝑖,0(𝜏) 𝜎 +
𝑚
∑

𝑗=1
𝝓𝑖,𝑗 (𝜎)𝐪𝑖,𝑗 (𝜏), (20)

where 𝝓𝑖,𝑗 (𝜎) = diag
(

𝜑(𝑥)
𝑖,𝑗 (𝜎), 𝜑

(𝑦)
𝑖,𝑗 (𝜎), 𝜑

(𝑧)
𝑖,𝑗 (𝜎)

)

is the 𝑖𝑗th 3-by-3 diag-
onal matrix collecting the 𝑗th trial functions used to discretize the
components of the 𝑖th solution vector along the directions 𝐞𝑥, 𝐞𝑦, and
𝐞𝑧, respectively. In particular, it is assumed that 𝜑(𝑥)

𝑖,𝑗 (𝜎) = 𝜑(𝑦)
𝑖,𝑗 (𝜎) =

𝜑(𝑧)
𝑖,𝑗 (𝜎) = sin(𝑗 𝜋 𝜎), thus adopting the trigonometric function sin(𝑗 𝜋 𝜎)

as the 𝑗th trial function to approximate all components of the 𝑛 solution
vectors. Finally, 𝐪𝑖,0 =

[

𝑞(𝑥)𝑖,0 𝑞(𝑦)𝑖,0 𝑞(𝑧)𝑖,0

]⊤
and 𝐪𝑖,𝑗 =

[

𝑞(𝑥)𝑖,𝑗 𝑞(𝑦)𝑖,𝑗 𝑞(𝑧)𝑖,𝑗

]⊤
are the

vectors collecting the unknown generalized coordinates.
It is evident that, due to the trial functions considered in the

discretization, Eq. (20) satisfies Eq. (16) since 𝐩̃𝑖(0, 𝜏) = 𝟎, whereas, to
satisfy the compatibility equation Eq. (17), the following relationship
must hold:

𝐪𝑖,0(𝜏) = 𝐪1,0(𝜏) − 𝐫̄1 + 𝐫̄𝑖 − 𝐱̄𝑖 (𝑖 = 2,… , 𝑛), (21)

since sin(𝑗 𝜋 𝜎) = 0 at 𝜎 = 1 for all 𝑗. Therefore, only one out of 𝑛
vectors 𝐪𝑖,0(𝜏) is an independent set of unknown coordinates, and those
are given by the vector 𝐪 (𝜏).
1,0

5

By now substituting the approximate solution (20) into the equation
of motion (15), the following vector of the unbalanced residual of the
𝑖th equation of motion can be calculated:

𝜼̃𝑖(𝜎, 𝜏) =
𝜅𝑖

𝛬2
𝑖 𝜆

2
𝑖 𝜆

2
0,𝑖

[
(

𝜈̃𝑖 − 1
)

𝜈̃𝑖
𝐩̃′𝑖

]′

+ 𝐟𝑖 − 𝜚𝑖 ̈̃𝐩𝑖 − 𝑐𝑖 ̇̃𝐩𝑖 (𝑖 = 1,… , 𝑛), (22)

here 𝜈̃𝑖 is the stretch of the 𝑖th cable evaluated in terms of the approx-
mate solution and the nondimensional space and time dependence of
he expressions in the right-hand side of Eq. (22) was dropped for the
ake of notation. It is a matter of fact that, when 𝑚 ≠ ∞, the residual
f the 𝑖th equation of motion is non-null, i.e., 𝜼̃𝑖(𝜎, 𝜏) ≠ 𝟎 (𝑖 = 1,… , 𝑛);
herefore, to minimize the 𝑛 vectors of the unbalanced residuals given
y Eq. (22), the former are first weighted by means of the trial functions
dopted to approximate the solution and, then, their integral in the
ondimensional space domain is set to zero. To this end, by collecting
he 𝑛 vectors of the unbalanced residuals into the 3𝑛-by-3𝑛 diagonal
atrix 𝐇̃(𝜎, 𝜏) = diag

(

𝜂̃(𝑥)1 , 𝜂̃(𝑦)1 , 𝜂̃(𝑧)1 ,… , 𝜂̃(𝑥)𝑛 , 𝜂̃(𝑦)𝑛 , 𝜂̃(𝑧)𝑛
)

, and by introducing
he following 3𝑛-by-𝑚 matrix Φ(𝜎) collecting the 3 𝑛𝑚 trial functions

(𝜎) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜑(𝑥)
1,1(𝜎) … 𝜑(𝑥)

1,𝑚(𝜎)

𝜑(𝑦)
1,1(𝜎) … 𝜑(𝑦)

1,𝑚(𝜎)

𝜑(𝑧)
1,1(𝜎) … 𝜑(𝑧)

1,𝑚(𝜎)
⋮ ⋱ ⋮

𝜑(𝑥)
𝑛,1(𝜎) … 𝜑(𝑥)

𝑛,𝑚(𝜎)

𝜑(𝑦)
𝑛,1(𝜎) … 𝜑(𝑦)

𝑛,𝑚(𝜎)

𝜑(𝑧)
𝑛,1(𝜎) … 𝜑(𝑧)

𝑛,𝑚(𝜎)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (23)

the matrix 𝐇̃(𝜎, 𝜏) of the unbalanced residuals can be minimized by
ensuring that it is orthogonal, in the nondimensional domain [0, 1], to
the trial functions adopted in the discretization, that is:

∫

1

0
Φ(𝜎)⊤𝐇̃(𝜎, 𝜏) 𝑑𝜎 = 𝐎, (24)

where 𝐎 is a 𝑚-by-3𝑛 zero matrix. Finally, the approximate form of the
vector-valued balance equations of the end-effector can be written as
𝑛
∑

𝑖=1
𝐧̃𝑖(1, 𝜏) + 𝜇 𝛾 𝐞𝑧 + 𝜇

(

̈̃𝐩1(1, 𝜏) − ̈̄𝐫1(𝜏)
)

= 𝟎, (25)

𝑛
∑

𝑖=1

(

𝐫̄𝑖(𝜏) × 𝐧̃𝑖(1, 𝜏)
)

+Θ(𝜏)
(

𝐉̄𝜇 𝝎̇(𝜏)
)

= 𝟎, (26)

where 𝐧̃𝑖(1, 𝜏) is the approximate axial force vector calculated at 𝜎 = 1.

3.1.1. Initial equilibrium
In order to calculate the solution of the CDPM equations of motion,

initial conditions must be enforced for the unknown variables and
these can be calculated by solving the equilibrium of the system at
time 𝜏 = 0. To this end, the equilibrium equations can be derived
from Eqs. (24), (25), and (26), by setting to zero the inertia and the
dissipative terms, respectively; hence the vector-valued equilibrium
equations in terms of the generalized coordinates read:

∫

1

0
Φ(𝜎)⊤𝐇̃0(𝜎) 𝑑𝜎 = 𝐎,

𝑛
∑

𝑖=1
𝐧̃0𝑖 (1) + 𝜇 𝛾 𝐞𝑧 = 𝟎,

𝑛
∑

𝑖=1

(

𝐫̄𝑖(0) × 𝐧̃0𝑖 (1)
)

= 𝟎,

(27)

where 𝐧̃0𝑖 (1) is the approximate static axial force vector of the 𝑖th
cable calculated at 𝜎 = 1, while 𝐇̃0(𝜎) is the diagonal matrix of the
unbalanced residual of the equilibrium equations. In particular, the
vector of the 𝑖th unbalanced residual reads:

𝜼̃0𝑖 (𝜎) =
𝜅𝑖
2 4

[
(

𝜈̃0𝑖 − 1
)

0
𝐩̃0 ′𝑖

]′

+ 𝐟𝑖, (28)

𝛬0,𝑖𝜆0,𝑖 𝜈̃𝑖
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where 𝐩̃0𝑖 = 𝐪0𝑖,0 𝜎 +
∑𝑚

𝑗=1 𝝓𝑖,𝑗 (𝜎)𝐪0𝑖,𝑗 and the trial functions adopted to
calculate the approximate solution of the equilibrium problem are the
same adopted in the dynamic problem and reported in Eq. (23).

3.2. The case of point mass end-effector

The analytical model formulated in this work includes the most
general case of a rigid body end-effector, possessing an orientation
and moving in the 3D space. Nevertheless, a further interesting model
referring to the case of point mass end-effector can be straightforwardly
derived from the equations presented in the previous sections by simply
setting to zero the vectors describing the geometry of the end-effector
mass, that is 𝐫̄0𝑖 = 𝟎 (𝑖 = 1,… , 𝑛). Within this context, it is evident
that the rotation angles 𝜃𝑘(𝜏) (𝑘 = 1, 2, 3) of the local frame are no
longer necessary to describe the dynamic configuration of the CDPM
and so is the balance equation of the angular momentum, i.e., Eq. (26).
Therefore, the equations governing the dynamics of the CDPM with
point mass end-effector are the equation of motion (24) and the balance
Eq. (25) of the linear momentum of the EE, respectively; in particular,
the latter reduces to the form
𝑛
∑

𝑖=1
𝐧̃𝑖(1, 𝜏) + 𝜇 𝛾 𝐞𝑧 + 𝜇 ̈̃𝐩1(1, 𝜏) = 𝟎, (29)

while the trajectory of each point connected to the EE is given by the
vector 𝐩̄M,𝑖(𝜏) = 𝐩̄M(𝜏) − 𝐱̄𝑖 (𝑖 = 1,… , 𝑛).

3.3. The reduction to 2D dynamics

Indeed, the here proposed formulation can be easily adapted to
study the particular case of the dynamic response constrained in a two-
dimensional space. Within this context, all vectors are reduced to a
selected plane, for instance (but it is not limited to), the plane

(

𝐞𝑦, 𝐞𝑧
)

including the gravity direction, and the dynamics of the system are
described by the two-components of the position vector 𝐩̄𝑖(𝜎, 𝜏) along
the reference axes, i.e., 𝑝̄𝑦,𝑖(𝜎, 𝜏) and 𝑝̄𝑧,𝑖(𝜎, 𝜏), respectively, and by one
rotation angle, i.e., 𝜃1(𝜏).

4. Direct and inverse approaches to the dynamic problems

To discuss in detail the solution strategy adopted to solve the
equations of motion of the CDPM with respect to all considered configu-
rations, it is worth to refer to further parameters allowing to classify the
system. To this end, the number of system degrees of freedom (DOFs)
𝑑 is introduced, being 𝑑 = 𝑑𝑝 + 𝑑𝜃 , where 𝑑𝑝 and 𝑑𝜃 are the number of
translational and rotational DOFs of the end-effector mass, respectively.
In Table 1 are reported the number of DOFs for all case-study that
can be analyzed by the mechanical model formulated in this paper,
that is the 3D and the 2D dynamics of oriented mass and point mass
end-effector, respectively.

Table 1
Degrees of freedom of the end-effector in case of 3D and 2D dynamics
of oriented mass (OM) and point mass (PM), respectively.

3D-OM 2D-OM 3D-PM 2D-PM

𝑑𝑝 3 2 3 2
𝑑𝜃 3 1 0 0
𝑑 6 3 3 2

Therefore, the system dynamics are governed by 𝑑𝑝(𝑛𝑚 + 1) + 𝑑𝜃
nonlinear balance equations of linear and angular momentum given by
Eqs. (24), (25), and (26), respectively. On the other hand, the dynamic
unknowns of the system are the 𝑑𝑝(𝑛𝑚 + 1) generalized coordinates
collected in the 𝑑𝑝-by-1 vectors 𝐪1,0(𝜏) and 𝐪𝑖,𝑗 (𝜏) (𝑖 = 1,… , 𝑛, and
𝑗 = 1,… , 𝑚), and the 𝑑𝜃 rotations 𝜃𝑘(𝜏), 𝑘 = 1,… , 𝑑𝜃 , respectively.

Nevertheless, the system is characterized by further 𝑛 unknown
functions 𝛬𝑖(𝜏), providing the ratio, at time 𝜏, between the unstretched
length 𝐿 (𝜏) and the distance 𝑙 (𝜏) between the boundaries of the 𝑖th
𝑖 𝑖
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cable. These time-dependent parameters play a crucial role in the
calculation of the solution of the system equations of motion, and,
depending on the solution approach, those can be treated as known,
pre-assigned, system parameters or, conversely, unknown functions to
be calculated as part of the solution of the dynamic problem, in the
direct and in the inverse dynamic approach, respectively.

Moreover, due to the generic number of cables that can be consid-
ered in the CDPM model, the latter may result to be under-, over-, or
minimally-actuated, respectively. To classify the dynamic system, it is
therefore convenient to introduce an additional parameter, namely, the
degree of over-actuation 𝑜 of the CDPM, defined as 𝑜 = 𝑛 − 𝑑. In this
work the interest is not devoted to the study of the dynamics of under-
actuated CDPM; therefore, by neglecting any possible under-actuated
configuration, two scenarios of interest can be considered: namely, the
minimally-actuated case, when 𝑜 = 0, and the over-actuated case, when
𝑜 > 0, respectively.

4.1. Direct dynamics

The direct approach consists in assigning a priori the values of the 𝑛
functions 𝛬𝑖(𝜏) and solving the system balance equations in terms of the
𝑑𝑝(𝑛𝑚+1)+𝑑𝜃 unknown generalized coordinates and rotations. Unfortu-
nately, this solution approach cannot ensure that the effective motion
of the end-effector, together with its orientation, matches exactly the
expected trajectory. In fact, within the direct dynamic approach, only
the balance equations of linear and angular momentum are verified
and no kinematic relationship, providing the exact positioning in space
and time of the EE, is satisfied. In particular, the target trajectory of
the 𝑛 connected points of the end-effector given by Eq. (9), is sought
by assigning the 𝑛 functions 𝜆𝑖(𝜏) through the nondimensionalized
expression of Eq. (10) and solving Eqs. (24), (25), and (26), together
with the initial conditions 𝐪1,0(0) = 𝐪01,0, 𝐪𝑖,𝑗 (0) = 𝐪0𝑖,𝑗 , 𝜃𝑘(0) = 𝜃0𝑘, and,
𝐪̇1,0(0) = 𝟎, 𝐪̇𝑖,𝑗 (0) = 𝟎, 𝜃̇𝑘(0) = 0, which can be calculated by solving
Eq. (27).

When solving the equilibrium at the initial time step, the 𝑛 functions
𝜆0,𝑖 = 𝜆𝑖(0) (𝑖 = 1,… , 𝑛) can be calculated through Eq. (10) evaluated
at time 𝜏 = 0, while an appropriate strategy must be used to calculate
the ratios 𝛬0,𝑖 = 𝛬𝑖(0) (𝑖 = 1,… , 𝑛). To this end, 𝛬0,𝑖 can be determined
by assuming the cables as massless linear springs and so as to satisfy
the equilibrium equations of the end-effector mass as:
𝑛
∑

𝑖=1
𝐧𝑖 + 𝜇 𝛾 𝐞𝑧 = 𝟎,

𝑛
∑

𝑖=1

(

𝐫̄𝑖(0) × 𝐧𝑖
)

= 𝟎, (30)

where 𝐧𝑖 = 𝜅𝑖
(

1 − 𝛬0,𝑖
)

𝐚̂ is the vector of the axial force of the 𝑖th
massless spring directed as the unit vector 𝐚̂ = 𝐩̄M,𝑖(0)∕𝜆0,𝑖 tangent to the
distance between the boundary points of the 𝑖th cable at 𝜏 = 0. Thus, to
seek the solution of the direct dynamic problem, the 𝑛 functions 𝛬𝑖(𝜏)
can be assumed constant to the value attained at 𝜏 = 0, that is 𝛬𝑖(𝜏) =
𝛬0,𝑖. Although, it should be mentioned that Eq. (30) may provide values
of 𝛬0,𝑖 ≥ 1 which implies that the 𝑖th cable is either stress-free or pre-
compressed; such conditions are unrealistic and, in that case, values of
𝛬0,𝑖 < 1 must be assigned. Moreover, when the system is over-actuated
(that is, when 𝑜 > 0) the number of parameters 𝛬0,𝑖 is larger than the
number of DOF (i.e., 𝑛 > 𝑑); therefore, the solution of Eq. (30) depends
on 𝑜 parameters 𝛬0,𝑘 (𝑘 = 1,… , 𝑜) which can be assigned ranging in the
positive real number space R+ considering any value lower than 1.

Finally, it is worth noting that, within the assumptions made to
solve the direct problem, the parameters 𝛬𝑖(𝜏) (𝑖 = 1,… , 𝑛) do not
represent, anymore, the effective cables’ aspect ratios, since the 𝑖th
effective distance 𝑙𝑖(𝜏) does not coincide with that prescribed through
the 𝑖th ratio 𝜆𝑖(𝜏) and this is the consequence to the non-compatible

solution calculated via direct approach.
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4.2. Inverse dynamics

The aim of the solution strategy based on the inverse approach is to
provide, together with the balance of the linear and angular momentum
of the system, also the exact positioning and orientation of the end-
effector mass. Within this context, it is a matter of fact that further
dynamic compatibility equations must be introduced in the model;
therefore, the 𝑛 functions 𝛬𝑖(𝜏) play the role of further unknowns of the
system to be calculated as part of the solution of the direct dynamic
problem; moreover, within the inverse approach, the latter represent
the effective aspect ratios of the 𝑛 cables. For the sake of completeness
of the discussion, it is worth to point out that the inverse approach,
although fascinating from a modeling perspective, does not provide
any particular insight in the study of a feasible dynamic response of
CDPM. Nevertheless, it may play a fundamental role in the design of
model-based and feed-forward control laws since the inverse approach
allows to calculate the exact dynamic configurations of the cables
(i.e., the stretched and the unstretched lengths, here represented by
the parameter 𝛬𝑖(𝜏)), or, alternatively, the length-related forces to be
provided to each cable during time.

To prescribe the exact trajectory of the EE at time 𝜏, the components
of the vector 𝐪1,0(𝜏) can be assigned by the relationship

𝐪1,0(𝜏) = 𝐩̄M(𝜏) +Θ(𝜏) 𝐫̄01 , (31)

together with the angles 𝜃𝑘(𝜏) (𝑘 = 1,… , 𝑑𝜃) which, in turn, become
a data of the inverse problem. It is a matter of fact that, within the
inverse approach, the 𝑑 degrees of freedom of the EE mass, given by
the 𝑑𝑝 components of the vector 𝐪1,0(𝜏) and by the 𝑑𝜃 angles 𝜃𝑘(𝜏), are
constrained so as to ensure the exact trajectory of the EE. Therefore,
only the 𝑑𝑝𝑛𝑚 generalized coordinates 𝐪𝑖,𝑗 (𝜏) (𝑖 = 1,… , 𝑛, and 𝑗 =
1,… , 𝑚) and the 𝑛 functions 𝛬𝑖(𝜏) remain to be determined through
the 𝑑𝑝(𝑛𝑚 + 1) + 𝑑𝜃 equations of motion.

When the system is minimally actuated (that is, when 𝑛 = 𝑑 =
𝑑𝑝 + 𝑑𝜃) the number of equations 𝑑𝑝(𝑛𝑚 + 1) + 𝑑𝜃 turns out to be equal
to the number 𝑑𝑝𝑛𝑚+𝑛 of the system unknowns; therefore, the solution
of the inverse dynamic problem can be calculated. On the other hand,
when the system is over actuated (that is, when 𝑛 > 𝑑 = 𝑑𝑝 + 𝑑𝜃)
the number of equations 𝑑𝑝(𝑛𝑚 + 1) + 𝑑𝜃 is lower than the number
𝑑𝑝𝑛𝑚+𝑑𝑝+𝑑𝜃+𝑜 of unknowns; therefore, the system is over-determined
and further equations are needed to calculate a solution. In the latter
case, to determine the 𝑜 unknown parameters 𝛬𝑘(𝜏) (𝑘 = 1,… , 𝑜)
characterizing the over-actuated system, the following 𝑜 equations,
linearly independent from Eqs. (24), (25), and (26), respectively, are
considered:

𝛬(𝑑+𝑘)(𝜏) =
1
𝑑

𝑑
∑

ℎ=1
𝛬ℎ(𝜏) (𝑘 = 1,… , 𝑜), (32)

which prescribe that the unstretched length-to-span ratios of the 𝑜 over-
actuating cables at time 𝜏 are equal to the mean value of the remaining

ratios.

. Numerical analyses: Application of the model to case-studies
DPMs

In this section, the feasibility of the analytical model developed in
he present work is shown by performing numerical simulations on se-
ected CDPM configurations. In particular, the application to the case of
D dynamics of a point-mass EE is first proposed by analyzing the case-
tudy examined in a recent work published by Du and Agrawal [33],
hose geometric and mechanical characteristics are reported below.
ifferently from the above mentioned work, where the dynamics of the

elected CDPM were studied only via a direct approach, in this work
t is shown also the solution via the inverse approach. Moreover, the
pplication of the here proposed dynamic model is shown also in the
ase of a CDPM endowed with an oriented mass EE.
 a

7

By referring to [33], an EE having mass 𝑀 = 20 kg and connected
through 𝑛 = 4 cables is considered in the simulations. The cables are
characterized by a mass per unit length 𝜌𝐴𝑖 = 4.19 × 10−2 kg/m and
by an axial stiffness 𝐸𝐴𝑖 = 150.36 × 103 𝑁 (𝑖 = 1,… , 𝑛); moreover, the
dissipative force are neglected, hence, the undamped case, i.e., 𝜁 = 0,
is considered. The selected CDPM configuration is depicted in Fig. 2
and the coordinates of the cables’ boundaries at 𝑠𝑖 = 0, provided in the
model by the dimensional vector 𝐱𝑖 (𝑖 = 1,… , 4), are summarized in
Table 2.

Table 2
Coordinates in the fixed frame

(

𝐞𝑥 , 𝐞𝑦 , 𝐞𝑧
)

of the cables’ boundaries
at 𝑠𝑖 = 0. Case-study taken from [33] with 𝑛 = 4 and point mass
end-effector, dimensions are in meters (m).
𝑖 1 2 3 4

𝑥𝑖 0 40 0 40
𝑦𝑖 0 0 30 30
𝑧𝑖 0 0 0 0

The end-effector is demanded to track an horizontal, circular, trajec-
tory given by the vector 𝐩M(𝑡) =

[(

20 + 𝛥𝑝 cos𝛺 𝑡
) (

15 + 𝛥𝑝 sin𝛺 𝑡
)

− 5
]⊤

(components are in meters), where 𝛥𝑝 = 2.5 m and the angular velocity
of the prescribed motion is assumed to be 𝛺 = 0.314 rad/s; therefore,
the overall motion lasts 20 s; finally, at time 𝑡 = 0 the position in space
of the end-effector is given by the vector 𝐩M(0) = [22.5 15 − 5]⊤.

As mentioned before, further analyses are also carried out to val-
date the fully 3D dynamic model of CDPM considering the case of
igid-body end-effector and its orientation in space. The mechanic
haracteristics of the cables are kept identical to those used in the
oint-mass EE case-study, including the weight of the EE mass. On the
ther hand, although the geometry of the end-effector can be generic,
n the present case-study a square cuboid, having height of 1 m and
he two square faces having edges length of 0.5 m, is considered.
herefore, the dimensional vectors describing the geometry of the end-
ffector mass are (dimensions are in meters): 𝐫01 = [−0.25 − 0.25 0.5]⊤,
0
2 = [0.25 − 0.25 0.5]⊤, 𝐫03 = [0.25 0.25 0.5]⊤, 𝐫04 = [−0.25 0.25 0.5]⊤,
𝐫05 = [−0.25 − 0.25 − 0.5]⊤, 𝐫06 = [0.25 − 0.25 − 0.5]⊤, 𝐫07 = [0.25 0.25 −
.5]⊤, 𝐫08 = [−0.25 0.25 − 0.5]⊤, respectively. Finally, the matrix of
he principal mass moment of inertia with respect to the local frame
𝐛1(𝑡),𝐛2(𝑡),𝐛3(𝑡)

)

is given by

M = 𝑀
⎡

⎢

⎢

⎣

0.1042 0 0
0 0.1042 0
0 0 0.0417

⎤

⎥

⎥

⎦

kg m2. (33)

Moreover, in the present case-study also small damping effects are
onsidered by assuming in the simulations a damping ratio 𝜁 = 0.5%

for each cable. Finally, the selected CDPM configuration is depicted in
Fig. 3 and the coordinates of the cables’ boundaries at 𝑠𝑖 = 0, provided
in the model by the dimensional vector 𝐱𝑖 (𝑖 = 1,… , 8), are summarized
in Table 3.

Table 3
Coordinates in the fixed frame

(

𝐞𝑥 , 𝐞𝑦 , 𝐞𝑧
)

of the 𝑛 = 8 cables’ boundaries at 𝑠𝑖 = 0, with
oriented mass end-effector, dimensions are in meters (m).
𝑖 1 2 3 4 5 6 7 8

𝑥𝑖 0 40 40 0 0 40 40 0
𝑦𝑖 0 0 30 30 0 0 30 30
𝑧𝑖 0 0 0 0 −10 −10 −10 −10

A horizontal, circular, trajectory of the EE center of mass, given
by the vector 𝐩M(𝑡) =

[(

20 + 𝛥𝑝 cos𝛺 𝑡
) (

15 + 𝛥𝑝 sin𝛺 𝑡
)

− 5
]⊤ (com-

ponents are in meters and 𝛥𝑝 = 2.5 m), is prescribed together with the
constraint that no proper rotations of the EE are allowed, i.e., Θ(𝑡) = 𝐎.
Moreover, an angular velocity equal to 𝛺 = 0.314 rad/s is considered.

Finally, it is worth mentioning that, for all simulations performed
n this work, results were reported in dimensional form so as to allow
n easier interpretation of the phenomena investigated.
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Fig. 2. Configuration of the point-mass EE. Red, blue, green, and orange dashed lines indicate the directions of cables 1, 2, 3, and 4, respectively; while black dashed line
epresents the EE trajectory. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Configuration of the oriented mass EE. Red, blue, green, orange, brown, yellow, cyan, and black dashed lines indicate the directions of cables 1, 2, 3, 4, 5, 6, 7 and 8,
respectively; while gray dashed line represents the EE trajectory. The inset shows a zoomed view of the three-dimensional EE. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
5.1. Direct dynamics simulations for point-mass EE

Simulations were performed by considering 5 trial functions
(i.e., 𝑚 = 4) to approximate the solution vector of each cable and
the numerical computations were carried by implementing an in-house
made code in the software Mathematica© [49].

The case-study investigated was representative of an over-actuated
system with degree of over actuation 𝑜 = 1. As discussed in the last
part of Section 4.1, tentative values of the ratios 𝛬0,𝑖 (𝑖 = 1,… , 4) can
be calculated according to the relationship given by Eq. (30) and the
indeterminacy of the 𝑜th ratio was resolved by borrowing Eq. (32) so as
to obtain the following set of values: 𝛬0,1 = 0.998373, 𝛬0,2 = 0.998708,
𝛬0,3 = 0.999157, 𝛬0,4 = 0.997255. Hence, the equilibrium configuration
at 𝑡 = 0 was first calculated in order to describe the state of the
CDPM representative, together with the assumption of zero velocity,
of the initial condition necessary to solve the equations of motion of
the system. In Fig. 4(𝑎) and (𝑏), is shown the equilibrium configuration
of the CDPM and a zoomed view of the EE neighborhood, respectively,
and colored lines represent the four elastic cables. On the other hand,
8

straight, dashed lines represent the distance between the cable bound-
aries at 𝑡 = 0, while the dotted circular line is the considered trajectory.
As discussed in Section 4.1, within the context of the direct dynamic
approach the exact position of the EE cannot be granted; in fact, in the
case-study here investigated, the equilibrium of the EE at time 𝑡 = 0 was
reached at the position 𝐩∗M(0) = [22.5097 15.0095 − 5.01324]⊤, which
corresponds to an error with respect to the assigned position 𝐩M(0) of
0.04%, 0.06%, and 0.265%, in the components along 𝐞𝑥, 𝐞𝑦, and 𝐞𝑧,
respectively. Finally, Fig. 4(𝑐) and (𝑑) depict the stress state of cables
1 and 4 and of cables 2 and 3, respectively, showing the variation
of the axial force along the arclength 𝑠𝑖 of the corresponding cable,
whose total length 𝐿𝑖(0) was not the same for all cables due to the
non-symmetric position of the EE mass at 𝑡 = 0.

In Fig. 5 the black solid lines represent the motion of the EE mass
simulated via direct approach in terms of the component along 𝐞𝑥,
𝐞𝑦, and 𝐞𝑧, of the position vector of cable 1 at 𝑠1 = 𝐿1(𝑡) (i.e., the
connection of cable 1 with the EE), respectively shown in Fig. 5(𝑎), (𝑏),
and (𝑐). The effective motion was compared with the ideal trajectory
represented by the red dashed lines. As expected, the motion of the
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Fig. 4. Equilibrium configuration of the point-mass EE along the selected trajectory at 𝑡 = 0 (𝑎), and close-up of the end-effector position (𝑏). Axial forces in cables 1 and 4 (𝑐)
and in cables 2 and 3 (𝑑) along the corresponding unstretched, dimensional, arclength 𝑠𝑖. Red, blue, green, and orange colors indicate cables 1, 2, 3, and 4, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Time history of the point-mass EE motion for a selected trajectory in terms of the position vector 𝐩M(𝑡): (𝑎) component along the global direction 𝐞𝑥, (𝑏) component along
the global direction 𝐞𝑦, (𝑐) component along the global direction 𝐞𝑧, and (𝑑) 3D motion.

9



A. Arena, E. Ottaviano and V. Gattulli International Journal of Non-Linear Mechanics 151 (2023) 104382

Fig. 6. (𝑎) time variation of the cables’ axial forces at 𝑠𝑖 = 𝐿𝑖(𝑡), and (𝑏) unstretched length 𝐿𝑖(𝑡) (solid lines) versus stretched length 𝐿𝑠,𝑖(𝑡) (dashed lines) for 𝑖 = 1,… , 4. Red,
blue, green, and orange colors indicate cables 1, 2, 3, and 4, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. Components, at time 𝑡, along the axis 𝐞𝑥, 𝐞𝑦, and 𝐞𝑧 of the position vector of: (𝑎), (𝑐), and (𝑒), the quarter-span point, and (𝑏), (𝑑), and (𝑓 ), the mid-span point of the four
cables. Red, blue, green, and orange colors indicate cables 1, 2, 3, and 4, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

10
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Fig. 8. Fast Fourier Transform (FFT) of the components, along the axis 𝐞𝑥, 𝐞𝑦, and 𝐞𝑧 of the position vector of: (𝑎), (𝑐), and (𝑒), the quarter-span point, and (𝑏), (𝑑), and (𝑓 ),
the mid-span point of the four cables. Red, blue, green, and orange colors indicate cables 1, 2, 3, and 4, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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end-effector shows oscillations near the ideal trajectory and this is due
to the choice to keep constant in time the ratios 𝛬𝑖(𝑡) (𝑖 = 1,… , 4) by
assuming those equal to the corresponding values 𝛬0,𝑖, calculated as
discussed in the previous paragraph.

The parametric model developed in this work allowed also to re-
cover the time histories of the axial forces along the cables’ arclength
and to monitor the change in time of cables’ length. Such results are
shown in Fig. 6 where are reported, at time 𝑡, the axial forces at
𝑠𝑖 = 𝐿𝑖(𝑡) (i.e., at the connection with the end-effector) and the time
histories of the total stretched and unstretched lengths of the four
cables, in Fig. 6(𝑎) and (𝑏), respectively. In particular, in the case-
study investigated, cable 1 (red lines) and cable 4 (orange lines) possess
almost twice the tension of cable 2 (blue lines) and cable 3 (green
lines), respectively, even though their total length varies in the same
range. This is due only to the choice of fixing in time the ratios 𝛬𝑖(𝑡) at
elected values approximately calculated as discussed in the previous
ection.

The time histories of the dynamic response of the four cables are
hown in Fig. 7 in terms of the components along 𝐞 , 𝐞 , and 𝐞 of
𝑥 𝑦 𝑧

11
the displacement vector 𝐮𝑖(𝑠𝑖, 𝑡) (i.e., the displacement with respect to
he straight line connecting the two boundaries of each cable) of the
uarter-span point of the cables, i.e., Fig. 7(𝑎), (𝑐), (𝑒), and of the

mid-span point, i.e., Fig. 7(𝑏), (𝑑), (𝑓 ). The maximum displacement
in the horizontal plane (𝐞𝑥, 𝐞𝑦) is, on average, around the 0.6% and
the 0.8% of the corresponding length 𝐿𝑖(𝑡) for the quarter-span and for
he mid-span points, respectively; on the other hand, along the vertical
irection 𝐞𝑧 the displacements are, on average, around the 1.2% and the

1.8% of the corresponding length 𝐿𝑖(𝑡), respectively. The Fast Fourier
Transforms (FFT) of the above-mentioned time histories are reported in
Fig. 8 which shows the rich content in frequency of the response. On
the other hand, the shape of the components of vector 𝐮𝑖(𝑠𝑖, 𝑡) along
the arclength of the four cables are depicted in Fig. 9 for selected time
instants; in the figure can be appreciated the contribution of the four si-
nusoidal trial functions adopted in the discretization. The figure shows
that for taut cables, i.e., cable 1 (red lines) and cable 4 (orange lines),
the shape of the cable motion is mainly characterized by the lowest two
sinusoidal functions adopted to approximate the solution (i.e., 𝑗 = 1, 2

in Eq. (20)) while in slack cables, i.e., cable 2 (blue lines) and cable
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Fig. 9. Dynamic displacements of the four cables at selected times. Displacements along the 𝐞𝑥 direction (𝑎), (𝑑), and (𝑔), displacements along the 𝐞𝑦 direction (𝑏), (𝑒), and (ℎ),
and displacements along the 𝐞𝑧 direction (𝑐), (𝑓 ), and (𝑖). Red, blue, green, and orange colors indicate cables 1, 2, 3, and 4, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Time history of the unknown generalized coordinates of cable 1 (red lines, 𝑖 = 1) and cable 2 (blue lines, 𝑖 = 2): plots (𝑎), (𝑑), (𝑔), and (𝑙) show the components 𝑞(𝑥)𝑖,1 ,
𝑞(𝑥)𝑖,2 , 𝑞(𝑥)𝑖,3 , and 𝑞(𝑥)𝑖,4 , respectively; plots (𝑏), (𝑒), (ℎ), and (𝑚) show the components 𝑞(𝑦)𝑖,1 , 𝑞(𝑦)𝑖,2 , 𝑞(𝑦)𝑖,3 , and 𝑞(𝑦)𝑖,4 , respectively; plots (𝑐), (𝑓 ), (𝑖), and (𝑛) show the components 𝑞(𝑧)𝑖,1 , 𝑞(𝑧)𝑖,2 , 𝑞(𝑧)𝑖,3 ,
and 𝑞(𝑧)𝑖,4 , respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Inverse approach, equilibrium configuration of the point-mass EE along the selected trajectory at 𝑡 = 0 (𝑎), and close-up of the end-effector position (𝑏). Axial forces in
ables 1 and 4 (𝑐) and in cables 2 and 3 (𝑑) along the corresponding unstretched, dimensional, arclength 𝑠𝑖. Red, blue, green, and orange colors indicate cables 1, 2, 3, and 4,
espectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(green lines), also the third and the fourth sinusoidal components
i.e., 𝑗 = 3, 4) are representative of the cable dynamics. This is, in fact,
orroborated by the results shown in Fig. 10 where are reported the
ynamics of the generalized coordinates corresponding to the lowest
our sinusoidal trial functions adopted to discretize the position of cable

and cable 2, respectively. In particular, it is evident that in cable
, oscillating at lower tension level, as shown in Fig. 6(𝑎), the third
nd the fourth generalized coordinates reach non-negligible amplitudes
ith respect to the first and second generalized coordinates. Hence,

he study conducted highlighted the importance of the discretization
rder of the solution of the CDPM equations of motion depending on
he stress level possessed by the cables during the entire motion.

.2. Inverse dynamics simulations for point-mass EE

In this section, the dynamic response of the over-actuated CDPM
ndowed with point-mass EE was studied by solving the equations of
otion according to the approach based on the inverse dynamics. The
otion of the system was therefore described correctly both in terms

f balance of linear and angular momentum and in terms of exact
rajectory followed by the EE. The solution of the inverse dynamic
roblem, in fact, provided the time evolution of the aspect ratios 𝛬𝑖(𝑡)
ecessary to seek the assigned trajectory of the EE. Five trial functions
i.e, 𝑚 = 4) were considered also in the present case-study and the
olution of the equilibrium at time 𝑡 = 0 was determined so as to
rovide the initial conditions of the CDPM motion. In particular, as
er the analyses conducted in the previous section, due to the non-
ymmetric position of the EE mass at 𝑡 = 0, the initial length 𝐿𝑖(0) was
ot the same for the four cables. The results in terms of equilibrium
onfiguration and axial forces along the cables’ dimensional arclength
𝑖 are reported in Fig. 11. Differently from the direct approach, the
our parameters 𝛬0,𝑖 = 𝛬𝑖(0) are, indeed, solutions of the inverse
ynamic problem and represent the aspect ratios that the four cables
 t

13
Fig. 12. Inverse approach, time histories of the aspect ratios 𝛬𝑖(𝑡) (𝑖 = 1,… , 4).
ed, blue, green, and orange colors indicate cables 1, 2, 3, and 4, respectively. (For

nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

ust possess in order to reach the exact position in space of the EE. The
alues of the aspect ratios, solution of the inverse problem, are reported
n Table 4 and are compared with the approximate values assigned in
he direct problem. The table shows also the percentage differences
f the parameters between the inverse and the direct approaches,
espectively; although very small, the differences in the aspect ratios
f the cables are such to provide largely different values of the cables’
xial forces between the two approaches.

Similarly to the equilibrium problem, the inverse approach allows
lso to calculate a balanced and compatible solution of the equations
f motion; therefore, ensuring that the motion of the EE follows exactly
he assigned trajectory. This is due to the fact that, while in the direct
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Fig. 13. Inverse approach, (𝑎) time variation of the cables’ axial forces at 𝑠𝑖 = 𝐿𝑖(𝑡), and (𝑏) unstretched length 𝐿𝑖(𝑡) (solid lines) versus stretched length 𝐿𝑠,𝑖(𝑡) (dashed lines), for
𝑖 = 1,… , 4. Red, blue, green, and orange colors indicate cables 1, 2, 3, and 4, respectively. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 14. Inverse approach, components, at time 𝑡, along the axis 𝐞𝑥, 𝐞𝑦, and 𝐞𝑧 of the position vector of: (𝑎), (𝑐), and (𝑒), the quarter-span point, and (𝑏), (𝑑), and (𝑓 ), the mid-span
point of the four cables. Red, blue, green, and orange colors indicate cables 1, 2, 3, and 4, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

14
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d

Fig. 15. Inverse approach, Fast Fourier Transform (FFT) of the components along the axis 𝐞𝑥, 𝐞𝑦, and 𝐞𝑧 of the position vector of: (𝑎), (𝑐), and (𝑒), the quarter-span point, and
(𝑏), (𝑑), and (𝑓 ), the mid-span point of the four cables. Red, blue, green, and orange colors indicate cables 1, 2, 3, and 4, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Values of the aspect ratio 𝛬0,𝑖 in the direct and inverse problem and percentage
ifference for the case-study CDPM with point-mass EE and 𝑛 = 4 cables.

𝑖 1 2 3 4

Direct 𝛬0𝑖 0.998470 0.998049 0.998234 0.998257
Inverse 𝛬0𝑖 0.998373 0.998708 0.999157 0.997255

Difference −0.0097% 0.066% 0.0925% −0.1%

approach the aspect ratios are assigned by tentative values and are then
assumed to be constant in time, in the inverse dynamic problem those
are solution of the equations of motion and vary in time, as shown
in Fig. 12, so as to ensure the match between the effective motion of
the EE and the assigned trajectory. In particular, in the simulations
the aspect ratios of cables 1, 2, and 3 (red, blue, and green lines,
respectively) varied significantly in time, while that of cable 4 (orange
line) turned out to be almost constant during the overall motion and
this was due to the fact that the aspect ratio of cable 4 was constrained
to satisfy Eq. (32).
 a

15
The time histories of the axial forces at 𝑠𝑖 = 𝐿𝑖(𝑡) (i.e., at the
onnection with the end-effector) and the variation in time of the
ables stretched and unstretched lengths are shown in Fig. 13(𝑎) and
𝑏), respectively. Differently from the results obtained via the direct
pproach, the solution of the inverse dynamic problem showed, for
he case-study investigated, that cable 1 (red lines) and cable 3 (green
ines) had a larger range of variation of the maximum and minimum
xial tension with respect to cable 2 (blue lines) and cable 4 (orange
ines); the latter, accordingly with the constraint given by Eq. (32),
howed an almost average value of the axial force in the whole dynamic
esponse.

Finally, the time histories of the cables’ displacements along 𝐞𝑥,
𝑦, and 𝐞𝑧 are shown in Fig. 14; in particular, the motions of the
uarter-span points with respect to the straight line connecting the
wo boundaries of the cable, are reported in Fig. 14(𝑎) (𝑐) (𝑒), while
hose of the mid-span points are shown in Fig. 14(𝑏) (𝑑) (𝑓 ). It is
vident that the solution of the inverse problem provides a more
egular dynamic response of all cables characterized by a main content
n frequency coming from the contribution of lowest trial functions
pproximating the solution. In particular, two main frequencies appear
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Fig. 16. Inverse approach, dynamic displacements of the four cables at selected times. Displacements along the 𝐞𝑥 direction (𝑎), (𝑑), and (𝑔), displacements along the 𝐞𝑦 direction
𝑏), (𝑒), and (ℎ), and displacements along the 𝐞𝑧 direction (𝑐), (𝑓 ), and (𝑖). Red, blue, green, and orange colors indicate cables 1, 2, 3, and 4, respectively. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
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o characterized the dynamic response of the cables, namely, that of
he prescribed circular trajectory (i.e., 𝛺∕2𝜋, which corresponds to
he lowest frequency of the response 𝑓 = 0.05 Hz), and that of the
owest trial function adopted in the discretization (i.e., 𝑗 = 1, 𝑓 ≈
.9 Hz), as shown in Fig. 15, where are reported the FFT of the cables’
isplacements along the directions 𝐞𝑥, 𝐞𝑦, and 𝐞𝑧, respectively. This is
erified also by the results shown in Fig. 16, where the configurations
f the four cables are displayed for selected times. In this figure,
nly the contribution of the lowest sinusoidal trial function (i.e., 𝑗 =
) appears to be relevant. This is, in fact, further confirmed by the
esults shown in Fig. 17 where are reported the time histories of the
eneralized coordinates corresponding to the lowest four sinusoidal
rial functions used to discretize the position of cable 1. The figure
learly shows that trial functions corresponding to 𝑗 ≥ 2 provide a
egligible contribution to the dynamic response of the cables, being
he corresponding generalized coordinates 𝑞(𝑥)1,𝑗 , 𝑞

(𝑦)
1,𝑗 , and 𝑞(𝑧)1,𝑗 (𝑗 = 2, 3, 4),

rder of magnitude lower that 𝑞(𝑥)1,1, 𝑞
(𝑦)
1,1, and 𝑞(𝑧)1,1, respectively.

Hence, the study conducted highlighted the fact that the effective
dynamics of the CDPM, whose full description can be obtained by an
inverse approach, can be studied by adopting a low order discretiza-
tion (a single sinusoidal trial function is needed), and so by strongly
reducing the computational effort, in contrast to the direct approach
for which a higher order discretization is required.

5.3. Direct dynamics simulations for EE with oriented mass

In this section, the motion of a three-dimensional end-effector over-
actuated by means of eight cables (i.e., degree of over actuation 𝑜 = 2)
is investigated by adopting the direct dynamic approach to show the
feasibility of the analytical model developed in this work to properly
16
escribe the 3D dynamics of a CDPM. Tentative values of the ratios
0,𝑖 (𝑖 = 1,… , 8) were calculated according to the relationship given
y Eq. (30) and the indeterminacy of the 𝑜th ratio was resolved by
orrowing Eq. (32) so as to obtain the following set of values: 𝛬0,1 =
.994175, 𝛬0,2 = 0.994175, 𝛬0,3 = 0.989284, 𝛬0,4 = 0.996243, 𝛬0,5 = 0.999,
0,6 = 0.988343, 𝛬0,7 = 0.999133, 𝛬0,8 = 0.989526. Hence, in Fig. 18(𝑎)
nd (𝑏), is shown the equilibrium configuration of the CDPM and a
oomed view of the 3D end-effector, respectively, and colored lines
epresent the eight elastic cables. On the other hand, straight, dashed
ines represent the distance between the cable boundaries at 𝑡 = 0. As
iscussed before, within the context of the direct dynamic approach the
xact position and orientation of the EE cannot be obtained; therefore,
n the case-study here investigated, the equilibrium of the EE at time
= 0 was reached at the position of its center of mass 𝐩∗M(0) =

22.5211 15.0005 − 5.10016]⊤, which corresponds to an error with re-
pect to the assigned position 𝐩M(0) of 0.09%, 0.003%, and 2.003%,
n the components along 𝐞𝑥, 𝐞𝑦, and 𝐞𝑧, respectively. Furthermore, the
E orientation was calculated to be described by the non trivial angles
0
1 = −3.01 deg, 𝜃02 = 2.61 deg, and 𝜃03 = 1.98 deg, despite the
ssigned trajectory considered zero rotations. Finally, Fig. 18(𝑐) and
𝑑) depict the stress state of cables 2, 4, 5, and 7, and of cables 1, 3, 6,
nd 8, respectively, showing the variation of the axial force along the
rclength 𝑠𝑖 of the corresponding cable, whose total length 𝐿𝑖(0) was
ot the same for all cables due to the non-symmetric position of the EE
ass at 𝑡 = 0.

In Fig. 19 are shown the time histories of the axial forces at the con-
ection of each cable to the end-effector together with the variation in
ime of the stretched and unstretched lengths of the cables, respectively.
n particular, in the case-study investigated, cables 5 and 7 (brown and
yan lines, respectively) possessed a very low tension while cables 1, 3,
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Fig. 17. Inverse approach, time history of the unknown generalized coordinates of cable 1: plots (𝑎), (𝑑), (𝑔), and (𝑙) show the components 𝑞(𝑥)1,1 , 𝑞(𝑥)1,2 , 𝑞(𝑥)1,3 , and 𝑞(𝑥)1,4 , respectively;
lots (𝑏), (𝑒), (ℎ), and (𝑚) show the components 𝑞(𝑦)1,1, 𝑞

(𝑦)
1,2, 𝑞

(𝑦)
1,3, and 𝑞(𝑦)1,4, respectively; plots (𝑐), (𝑓 ), (𝑖), and (𝑛) show the components 𝑞(𝑧)1,1, 𝑞

(𝑧)
1,2, 𝑞

(𝑧)
1,3, and 𝑞(𝑧)1,4, respectively.
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, and 8, (red, green, yellow, and black lines, respectively) turned out
o be the higher tensioned cables. This is due only to the choice of fixing
n time the ratios 𝛬𝑖(𝑡) at the selected values approximately calculated
s discussed in the previous sections. Finally, the configuration of the
DPM at selected time instants of the motion is shown in Fig. 20
ogether with close-up images of the end-effector configuration.

. Conclusions

A parametric nonlinear dynamic model of CDPM undergoing three-
imensional motions was presented and discussed in this paper. Ca-
les were modeled as elastic one-dimensional continua possessing
istributed inertia and damping and characterized by time-varying
ength for the exact positioning (and orientation) in time of a three-
imensional end-effector mass. A solution strategy based on an ad
oc nondimensionalization of the system parameters and equations,
nd on the best choice of minimum admissible trial functions adopted
o discretize the equations of motion of the cables, was proposed so
s to overcome the analytical and numerical drawbacks related to

he time-varying length of the cables. The particularization of the

17
echanical problem to the case of point-mass end-effector and to the
wo-dimensional motion, respectively, was further provided. Finally,
oth the direct and the inverse dynamic problems were formulated and
iscussed in the case of minimally-actuated and over-actuated CDPM.
imulations were carried out on two case-studies to show the feasibility
f the analytical model to investigate the dynamic response of an
ver-actuated CDPM via both, the direct, and the inverse approach. In
articular, in the case of point-mass EE undergoing 3D circular uniform
otion, the analyses carried out within the direct approach showed the

mportance of the discretization order of the solution of the equations
f motion depending on the stress level possessed by the cables during
he entire motion. Thus, it was highlighted that a small number of trial
unctions was sufficient also to describe the dynamics of moderately
agged cables (i.e., characterized by a moderately low pre-tension);
herefore, it was shown that it is possible to appropriately describe
he dynamics of CDPM by a low-order dynamical model which, thus,
an be suitably adopted for designing optimal control strategies. On
he other hand, the capability of the proposed model to study the 3D
ynamics via an inverse approach, allowed to determine the effective
otion of the EE and of the cables and, in particular, to claim that the
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Fig. 18. Equilibrium configuration of the oriented mass EE along the selected trajectory at 𝑡 = 0 (𝑎), and close-up of the end-effector position and orientation (𝑏). Axial forces
n cables 2, 4, 5 and 7 (𝑐) and in cables 1, 3, 6, and 8 (𝑑) along the corresponding unstretched, dimensional, arclength 𝑠𝑖 (𝑖 = 1,… , 8). Red, blue, green, orange, brown, yellow,
yan, and black colors indicate cables 1, 2, 3, 4, 5, 6, 7 and 8, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
Fig. 19. Time variation of the cables’ axial forces at 𝑠𝑖 = 𝐿𝑖(𝑡) (𝑎), and unstretched length 𝐿𝑖(𝑡) (solid lines) versus stretched length 𝐿𝑠,𝑖(𝑡) (dashed lines) (𝑏), for 𝑖 = 1,… , 8. Red,
blue, green, orange, brown, yellow, cyan, and black colors indicate cables 1, 2, 3, 4, 5, 6, 7 and 8, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
dynamic configurations of all cables were characterized by two main
frequencies: the first, corresponding to that of the assigned trajectory,
and the second given by the lowest mode shape of each cable. This
was due to the fact that, while in the direct approach the cables’ aspect
ratios are not effective values, since those are parameters assigned a
priori and typically assumed constant in time, in the inverse dynamic
problem those can be calculated as the solution of the equations of
18
motion and vary in time. Finally, a further case-study analysis was
carried out to show the feasibility of the parametric model developed
in this work to properly describe the 3D dynamics of a CDPM endowed
with an oriented mass EE, both in terms of equilibrium and dynamic
configurations, and in terms of the capability to recover the time
histories of the axial forces along the cables’ arclength and to monitor
the change in time of the cables’ length.
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Fig. 20. Configurations of the oriented mass EE along the selected trajectory (𝑎), (𝑐), (𝑒), (𝑔), and close-up of the end-effector position and orientation (𝑏), (𝑑), (𝑓 ), (ℎ); each row
corresponds to 𝑡 = 0, 5, 10, 15 sec, respectively.
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