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Abstract
Random flights (also called run-and-tumble walks or transport processes) represent finite
velocity random motions changing direction at any Poissonian time. These models in d-
dimension, can be studied giving a general formulation of the problem valid at any spatial
dimension. The aim of this paper is to extend this general analysis to time-fractional pro-
cesses arising from a non-local generalization of the kinetic equations. The probabilistic
interpretation of the solution of the time-fractional equations leads to a time-changed version
of the original transport processes. The obtained results provide a clear picture of the role
played by the time-fractional derivatives in this kind of random motions. They display an
anomalous behavior and are useful to describe several complex systems arising in statistical
physics and biology. In particular, we focus on the one-dimensional random flight, called
telegraph process, studying the time-fractional version of the classical telegraph equation
and providing a suitable interpretation of its stochastic solutions.
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1 Introduction

Random flights (or transport processes) describing the finite velocity random motion of a
particle in a d-dimensional space have been object of many studies in the probabilistic and
physical literature. There are many different models related to these random motions of a
particle in R

d . The first formulation probably dates back to Pearson which considered a
randomwalk with fixed and constant steps [56]. Many papers appeared in literature analyzed
isotropic random motions with finite velocity choosing new direction uniformly on a sphere
at each Poisson jumping time; see, for example, [39, 52, 54, 65, 66]. Furthermore, the kinetic
equations represent a useful tool to describe transport processes. Some generalizations of
the latter models have been proposed by assuming non-uniform scattering mode and/or time
steps with more general probability distributions (see, e.g., [18, 20, 41, 58]). It is particularly
interesting the one-dimensional model, also called telegraph process, introduced in [29, 36];
in this case, at Poissonian random time instants, the particle reverses its direction of motion
and then admits only two possible directions. Furthermore, the probability law of the position
reached from the particle at time t > 0 is solution of the telegraph equation (see [70] and
references therein). A complex version of the telegraph process has been studied in [19].

On the other hand, in the physical literature, run-and-tumblemotions are particular random
flights widely used for the study of active particles, for example to describe the dynamics
of motile bacteria, such as E.coli [1, 10, 12, 13, 16, 44, 47, 63, 67]. The motion of run-and-
tumble particles alternates stochastic time periods during which the particle moves along
a randomly chosen direction. For these reasons, it can be considered as a persistent time
random walk [70]. Also in this case there is a growing literature in which run-and-tumble
models are applied in a variety of different contexts and physical situations, such as, for
example, to investigate geometrical confinement and escape problems [2, 4, 14, 15, 35],
irreversible trapping [3], resetting processes [24, 68], entropy production [27, 28, 60] or
analyze experimental scattering functions of bacterial suspensions [40, 71] (just to mention
a few very recent works on selected topics).

Furthermore, several complex systems exhibit nonlinear mean-squared displacement over
time, long-range correlations, nonexponential relaxation, heavy-tailed and skewed marginal
distributions, lack of scale invariance, trapping effects (see, e.g., [61]). Therefore, such phe-
nomena follow an “anomalous” dynamics and cannot be described by means of classical
diffusion models. Fractional kinetic equations represent useful tools for the description of
transport dynamics in complex systems, which are governed by anomalous diffusion (see,
e.g., [51]).

In the recent paper [64], the authors have studied the time-fractional generalization of the
kinetic equation in order to show the utility of fractional models to study anomalous transport
problems of active particles. This fractional generalization of the run-and-tumble process is
interesting to describe the transition from super- to sub-diffusive anomalous behaviours.
Moreover, the fractional kinetic equation is directly related to the time-fractional telegraph-
type equation that has been object of many mathematical studies in the recent literature
(we refer, e.g., to [23, 45, 46, 53] and the references therein). Anomalous phenomena have
also been studied by means of generalized telegraph equations defined as integrodifferential
equations with memory kernels responsible for the time smearing of the first and second time
derivatives, respectively (see [33], [31] and [32]).

Inspired by thismodel, in this paper, we provide a new and clear stochastic interpretation of
the anomalous random flights governed by the fractional kinetic equation where the classical
time derivative is replaced with fractional Caputo derivative; i.e. let n ∈ N

+, for a suitable

123



Anomalous Random Flights and Time-Fractional Run-and-Tumble... Page 3 of 25   129 

function f the fractional Caputo derivative is defined as follows

∂ν
t f (t) =

{
1

�(n−ν)

∫ t
0 (t − τ)n−1−ν ∂nτ f (τ )dτ, n − 1 < ν < n,

∂nt f (t), ν = n,
(1.1)

where ∂nt f (t) denotes the ordinary time-derivative of order n and �(z) is the Euler gamma
function. If we consider ν ∈ (0, 1) (n = 1), the Laplace transform L of (1.1) becomes

L[∂ν
t f (t)](s) = sνL[ f (t)](s) − sν−1 f (0) (1.2)

(the reader can consult the fractional calculus monograph [37]).
In the general d-dimensional case,we obtain a randomflight time-changedwith the inverse

of stable subordinators (i.e. the first hitting time of an increasing and non-negative Lévy
processes with Laplace exponent given by ψ(u) = uν, ν ∈ (0, 1)). Indeed, we prove that the
formulation of the fractional problem can be reduced to the general theory of time-changed
random processes. We highlight that the transport process obtained from fractional kinetic
equation is not still with finite velocity and has sample paths trapped in some time intervals.
Furthermore, the particle shows nonlinear diffusion behavior over time. Then, we consider in
more detail the one dimensional case that is the more interesting and studied in the literature.
First of all, we prove the relation between the fractional telegraph-type equation and the
fractional kinetic equation. Then, we obtain the stochastic solution of the fractional telegraph
process that coincides with the time-changed telegraph process and generalizes the result
obtained in the standard framework (see [36]). On this topic the reader can also consult the
paper [42], where the authors provide d’Alembert’s formulas for abstract fractional telegraph
equations.

The paper is organized as follows. Section2 contains an overview on the run-and-tumble
motions in arbitrary d-dimension. In this section we show that, starting from the general
kinetic equation, we can recover many interesting explicit non-trivial results present in the
literature. In Sect. 3, we introduce a time-fractional linear Boltzmann equation; the main idea
is to replace the classical derivative with the Caputo derivative and introduce the related
random motions. By resorting to the general theory of non-local operators and time-changed
randomprocesses (briefly recalled inAppendix), in Sect. 4, we discuss the interpretation of d-
dimensional anomalous isotropic transport processes as time-changed random flights as well
as their pathwise behavior. Furthermore, in Sect. 5 we give some remarks on continuous-time
random walk (CTRW) approach in this setting. Finally, in Sect. 6, we study the particularly
interesting one-dimensional case, that is related to the time-fractional telegraph equation
widely studied in the mathematical literature. We give a probabilistic interpretation of the
solution for the Cauchy problem and show the relation with the kinetic model equation.

2 A General Approach for Random Flights inR
d

In this section we introduce isotropic transport processes and recall their main properties.
We consider a d-dimensional run-and-tumble walk describing a particle moving at constant
speed v and changing its direction of motion with rate α > 0, at each collision. In particular,
after any collision the particle randomly reorients its direction of motion uniformly on the
unit (d − 1)-dimensional sphere Sd−1 = {x ∈ R

d : ||x|| = 1} (see, e.g., [1, 44, 54]). For
d = 1 the above notation means that the new direction is randomly chosen on the discrete
set S0 = {−1, 1}. The initial direction is randomly chosen on S

d−1. Let p(x, t; e) be the
probability density function to find the particle at position x ∈ R

d at time t (for d = 1 we
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indicate the position with x) with velocity orientation e ∈ S
d−1. We can write the kinetic

equation for the run-and-tumble motion as in [44, 66] (also called forward Kolmogorov
equation)

∂t p(x, t; e) = −v e · ∇x p(x, t; e) − α p(x, t; e) + α

∫
Sd−1

p(x, t; e′)σ (de′), (2.1)

where σ(de) = de
	d

and 	d = 2πd/2/�(d/2) is the solid angle in d dimension (i.e. the
uniform density law on the (d − 1)-dimensional unit sphere). We note that for d = 1, the
particle moves rightward and leftward and then we have only two possible directions, that is
e ∈ {−1, 1}. The previous equation continues to be valid in d = 1, bearing in mind that the
integral becomes a sum ∫

Sd−1
f (e)σ (de) → 1

2

∑
e=±1

f (e), d = 1, (2.2)

and the system is described by two hyperbolic equations (see, e.g., [63] and [70])

∂t p(x, t; e) = −ve · ∂x p(x, t; e) + α

2
[p(x, t;−e) − p(x, t; e)]. (2.3)

It is worthwhile to observe that the density p is not normalized with respect to orientation e;
that is

∫
Rd

∫
Sd−1 p(x, t; e)dxde = 	d , where de is the surface measure.

Now, we describe the above motions in terms of stochastic processes. As will become
clear later, it is convenient to treat differently the cases d ≥ 2 and d = 1. For d ≥ 2
let {N (t) : t ≥ 0} be a homogeneous Poisson process with rate α > 0. We can describe
run-and-tumble motions by means of the velocity-jump process

V(t) = Vk, Tk ≤ t < Tk+1, (2.4)

where {Vk : k ≥ 0} is a sequence of independent and identically distributed random variables
taking values uniformly on S

d−1 (which are independent of {N (t) : t ≥ 0}), and Tk, k ≥ 0
(T0 = 0), represent Poisson jumping times. The random position reached by the particle at
time t > 0 is denoted by

X(t) = v

∫ t

0
V(s)ds (2.5)

where ∫ t

0
V(s)ds =

N (t)∑
k=1

Vk−1(Tk − Tk−1) + VN (t)(t − TN (t)).

Therefore, we have that for any A1 ∈ B(Rd) and A2 ∈ B(Sd−1), one has that

P(X(t) ∈ A1,V(t) ∈ A2) =
∫∫

A1×A2

p(x, t; e)dxσ(de).

For d = 1 it is convenient to define {N (t) : t ≥ 0} as a homogeneous Poisson process with
rate α/2, corresponding to the inversion of the particle velocity instead of the simple resetting
of its orientation (when we refer to the d = 1 case in the rest of the manuscript we mean
exactly this definition of stochastic process). In this case

X(t) = v

∫ t

0
V (s)ds
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is a telegraph process with V (t) = V (0)(−1)N (t),where V (0) is a random variable assuming
values ±1 with the same probability and independent of N (t).

Hereafter, {N (t) : t ≥ 0} stands for a Poisson process with rate α for the random motions
in R

d with d ≥ 2, while the rate is fixed as α/2 in the one-dimensional case.
By introducing the projector operator, defined as an integral (sum in d = 1, see (2.2)) over
velocity orientations

P f (x, e) =
∫
Sd−1

f (x, e)σ (de), (2.6)

the kinetic equations (2.1) and (2.3), can be put in the form

∂t p(x, t; e) = −v e · ∇x p(x, t; e) + α(P − 1)p(x, t; e). (2.7)

We look for the solution of the Eq. (2.7) averaged over swimming directions

P(x, t) = P p(x, t; e), (2.8)

representing the probability density function of the position reached from the particle at time
t . Furthermore, we have that

P(x, t) = Ps(t)δ(||x|| − vt) + Pac(x, t)1||x||<vt , (2.9)

where the first term represents the singular component of the probability distribution arising
when the particle does not change direction up to time t , and the second term is the absolutely
continuous component of the probability law of X(t), t > 0, which lies within S

d−1
vt . The

singular term is, in the one-dimensional case

Ps(t) = e−αt/2

2
, d = 1, (2.10)

and, in higher dimensions

Ps(t) = e−αt

	d(vt)d−1 , d ≥ 2. (2.11)

The α/2, instead of α, appearing in the exponential for d = 1 is due to the fact that after
a tumble, occurring at rate α, the particle can proceed along the original direction with
probability 1/2, or, in other words, the particle effectively changes (inverts) direction not at
the rate of tumbling but at its half.

Now,wedescribe themethodology allowing to explicit the solution P(x, t) in somedimen-
sions. Let g(x, t) be a suitable function; we introduce the Fourier and Laplace transforms,
respectively, as

ĝ(k, t) = F[g(x, t)](k, t) =
∫
Rd

eik·xg(x, t)dx, k ∈ R
d ,

and

g̃(x, s) = L[g(x, t)](x, s) =
∫ ∞

0
e−st g(x, t)dt, s ≥ 0.

The Fourier-Laplace transform of p(x, t; e) is denoted by ˆ̃p(k, s; e) and considering the
initial condition

p(x, 0; e) = p0(x; e), (2.12)

whose Fourier transform is p̂0(k; e), we can write the kinetic equation (2.7) in the Fourier-
Laplace domain as

(s − ivk · e) ˆ̃p(k, s; e) = α(P − 1) ˆ̃p(k, s; e) + p̂0(k; e). (2.13)
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We specialize to the case in which the particle starts its motion at the origin with randomly
distributed orientation,

p0(x; e) = δ(x), (2.14)

implying p̂0(k; e) = 1. By solving (2.13) for ˆ̃p(k, s; e) and applying the projector operator
P we finally arrive at the expression of (2.8) in the Laplace-Fourier domain

ˆ̃P(k, s) = P0(k, s)

1 − αP0(k, s)
=

∞∑
n=0

αn Pn+1
0 (k, s), (2.15)

where

P0(k, s) = P

(
1

s + α − ivk · e
)

, (2.16)

and the expansion in (2.15) is justified by |αP0| < 1 since (for |s + α| > α)
α

|s + α − ivk · e| = α√
(s + α)2 + v2(k · e)2 ≤ α

|s + α| < 1.

By noting that P0 is a function of k = ||k|| and s +α, we can write the formal expression
of the probability distribution P(r , t) as a function of r = ||x|| (therefore the random flights
are isotropic) and t . Indeed, by passing to the spherical coordinates and using formula (2.12)
in [20], we get

P(r , t) = 1

r
d
2 −1

∞∑
n=0

αn
∫ ∞

0

dk

(2π)
d
2

k
d
2 Jd

2 −1(kr) L−1[Pn+1
0 (k, s)](k, t), (2.17)

with Jν(x) =∑∞
k=0(−1)k (x/2)2k+ν

�(k+ν+1) , x, ν ∈ R, the Bessel function of the first kind and L−1

the inverse Laplace transform. For completeness we also report the expressions of the PDF
in Fourier and Laplace domains

P̂(k, t) =
∞∑
n=0

αnL−1[Pn+1
0 (k, s)](k, t),

and

P̃(r , s) = 1

r
d
2 −1

∞∑
n=0

αn
∫ ∞

0

dk

(2π)
d
2

k
d
2 Jd

2 −1(kr) Pn+1
0 (k, s).

Explicit expressions of P(r , t) canbeobtainedwhenone is able to explicitly invert theLaplace
transform of Pn+1

0 , calculate the integral on k and sum the series. This is, for example, the
case of d = 1 and 2. In the one-dimensional case one has

P(x, t) = e−αt/2
{

δ(x − vt) + δ(x + vt)

2

+ α

4v

[
I0(α�/2v) + vt

�
I1(α�/2v)

]
θ(vt − |x |)

}
, (2.18)

where � = √
v2t2 − x2 and Iν(x) = ∑∞

k=0
(x/2)2k+ν

�(ν+k+1) , x, ν ∈ R, is the modified Bessel
function and θ represents the Heaviside function (see, e.g., [70] and [44]). Furthermore,
it is well-known that the telegraph process is linked to the telegraph hyperbolic equation
(also called damped wave equation), since P(x, t) is the fundamental solution of the Cauchy
problem (see, e.g., [70])

∂2t u(x, t) + α∂t u(x, t) = v2∂2xxu(x, t), (2.19)
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u(x, 0) = δ(x), ∂t u(x, 0) = 0.

Furthermore if we replace in (2.19) the initial condition with u(x, 0) = φ(x),where φ ∈ C2,

we obtain the interesting stochastic solution derived in [36]

u(x, t) = 1

2

(
E

[
φ

(
x − v

∫ t

0
(−1)N (s)ds

)]
+ E

[
φ

(
x + v

∫ t

0
(−1)N (s)ds

)])
. (2.20)

In two-dimensions we have (see, e.g., [39, 44, 52, 65])

P(r , t) = e−αt
[

δ(r − vt)

2πr
+ α

2πv�
exp

(
α�

v

)
θ(vt − r)

]
, (2.21)

with � = √
v2t2 − r2. It is worth noting that the case d = 3 has not explicit solution, while,

interestingly, d = 4 does (see [21, 54, 55]).
It is useful to describe some features of the random motions by means of the mean square

displacement (MSD), that can be easily calculated as

r2(t) =
∫
Rd

r2P(r , t)dx = − ∇2
k P̂(k, t)

∣∣∣
k=0 . (2.22)

In the Laplace domain, from (2.15) we obtain

∇k
ˆ̃P = ∇kP0

(1 − αP0)2
,

∇2
k

ˆ̃P = ∇2
kP0

(1 − αP0)2
+ 2α

(1 − αP0)3
(∇kP0) · (∇kP0).

From (2.16) and its derivatives we have that, at k = 0,

P0|k=0 = 1

s + α
,

∇kP0|k=0 = 0,

∇2
kP0|k=0 = − 2v2

(s + α)3
,

which allows us to obtain the expression of the MSD in the Laplace domain

r̃2(s) = 2v2

s2(s + α)
. (2.23)

Rewriting the above expression in the form

r̃2(s) = 2v2

α2

[
α

s2
− 1

s
+ 1

s + α

]
,

and considering inverse Laplace transforms [34], we finally obtain the MSD in the time
domain

r2(t) = 2v2

α2 (αt − 1 + e−αt ). (2.24)

It is worth noting that, although the form of PDF (and also the existence of an explicit
expression for it) depends on the dimension of the scattering environment, its secondmoment
is independent of d .

For the random flights it is also useful to deal with the backward Kolmogorov equation

∂t u(x, t; e) = Lu(x, t; e), u(x, 0; e) = f (x, e), (2.25)
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where

L := v e · ∇x + α(P − 1) (2.26)

is the infinitesimal generator of the strong Markov process {(x + X(t),V(t)) : t ≥ 0}, and
f ∈ Dom(L) = { f ∈ L2(Rd × S

d−1) : v e · ∇x f ∈ L2(Rd × S
d−1)}. It is worth to

mention that the operator appearing on the right side of (2.7), that is −v e · ∇x + α(P − 1),
represents the adjoint of L. Therefore, the unique solution of Cauchy problem (2.25) admits
the following stochastic interpretation

u(x, t; e) = Ee f (x + X(t),V(t)), (2.27)

given the starting position and direction (x, e) ∈ R
d ×S

d−1 of the particle (Ee stands for the
mean conditionally on V(0) = e). Furthermore, for d ≥ 2

u(x, t; e) = f (x + vet, e)e−αt + α

∫ t

0
e−αs

∫
Sd−1

u(t − s, x + ves; e′)σ (de′)ds (2.28)

(see, e.g., Lemma 2.1 in [69]), while if d = 1

u(x, t; e) = f (x + vet, e)e− α
2 t + α

2

∫ t

0
e− α

2 su(t − s, x + ves;−e)ds.

3 Time-Fractional Kinetic Equations

The main idea of this paper is to introduce a fractional version of the classical kinetic Eq.
(2.1) and then to analyze the related randommodel. While there is a wide literature about the
fractional telegraph equation,we underline that, as far aswe know, there is not a general theory
regarding the modified kinetic equation obtained by replacing the ordinary time derivative
with the Caputo derivative of order ν ∈ (0, 1). The main object of the paper is to provide a
complete analysis to this general exploratory mathematical problem in order to understand,
a posteriori, its meaning and the potential utility in physical and probabilistic models. The
strong motivation for this study is given by the great interest in the physical models for the
time-fractional Cattaneo equation that is just a particular, but relevant, special case of the
general fractional kinetic equation that we are going to discuss in detail. In our view all
this suggests that a general theory is fundamental to better clarify the non-trivial impact of
the time-fractional generalization. Heuristically the time-fractional generalization of kinetic
models leads to anomalous diffusion, due to the so-called memory effects. Here we provide
the rigorous probabilistic interpretation of the related processes starting from the general
d-dimensional fractional kinetic equation.

Let us start by introducing the time-fractional kinetic equation in space dimension d given
by

∂ν
t pν(x, t; e) = −v e · ∇x pν(x, t; e) + α(P − 1)pν(x, t; e), (3.1)

where (x, e) ∈ R
d × S

d−1, and p0,ν(x, e) = pν(x, 0; e). The standard time derivative
appearing in (2.1) has been replaced with the Caputo time-fractional derivative (1.1) of order
ν ∈ (0, 1). Clearly for ν = 1 the Eq. (3.1) reduces to (2.1). Strictly speaking, for dimensional
reasons, we should introduce a factor τ ν−1

0 on the left side of the previous equation, with
τ0 an arbitrary time-scale parameter. In the following, without loss of generality, we express
times in unit of τ0, i.e., we set τ0 = 1. In the Fourier-Laplace domain the Eq. (3.1) becomes

(sν − ivk · e) ˆ̃pν(k, s; e) = α(P − 1) ˆ̃pν(k, s; e) + sν−1 p̂0,ν(k; e),
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having used the property (1.2) of the Laplace transform of the Caputo derivative. Proceeding
as before, we can obtain the averaged probability density function Pν(x, t) = P pν(x, t; e),
valid for initial condition p0,ν(x; e) = δ(x),

ˆ̃Pν(k, s) = sν−1 P0(k, s)

1 − αP0(k, s)
, (3.2)

where

P0(k, s) = P

(
1

sν + α − ivk · e
)

. (3.3)

Therefore, the above expressions allow us to express Pν in terms of the classical probability
density function P investigated in the previous section:

ˆ̃Pν(k, s) = sν−1 ˆ̃P(k, sν),

or, in the variable x,
P̃ν(x, s) = sν−1 P̃(x, sν). (3.4)

We show that Pν represents itself a probability density function. Indeed, from (3.4) by inte-
grating with respect to variable x, we derive∫ ∞

0
e−st

(∫
Rd

Pν(x, t)dx
)
dt = sν−1

∫ ∞

0
e−sν t

(∫
Rd

P(x, t)dx
)
dt

= sν−1
∫ ∞

0
e−sν t dt

= 1

s
.

Therefore the above equality holds if and only if
∫
Rd Pν(x, t)dx = 1.

The non-negativity of Pν(x, t) follows from the fact that P̃ν(x, s) can be expressed as a
product of two completely monotone (CM) functions, as in (3.4). Recall that an infinitely
differentiable function f (s) is said to be completelymonotone if (−1)n f (n)(s) ≥ 0 for all s >

0 and non-negative integer n, whereas it is said to be aBernstein function if (−1)n−1 f (n)(s) ≥
0 for all s > 0 and n ∈ N. It is immediate to check that u(s) = sν−1 is completely monotone.
By Bernstein’s theorem [62], Theorem 1.4, also v(s) = P̃(x, s) is. By Theorem 3.7 in [62],
s 
→ P̃(x, sν) is CM since it is the composition of the CM function v and the Bernstein
function s 
→ sν . Since the product of CM functions is easily seen to be CM, see e.g.
Corollary 1.6 in [62], by Bernstein’s theorem P̃ν is the Laplace transform of a measure. The
conclusion follows by the uniqueness of the Laplace transform. Therefore Pν represents a
density function and then the Eq. (3.1) describes a random motion.

All the results obtained in the previous section can then be used to obtain the Laplace
transformed PDFs in the case of fractional derivative processes.

TheMSD r2ν = ∫
Rd r2Pν(r , t)dx associated to Pν can be calculated using (2.22) obtaining,

in the Laplace domain,

r̃2ν(s) = 2v2

sν+1(sν + α)
, (3.5)

in agreement with the one-dimensional expression reported in [6]. The inverse Laplace trans-
form of Eq. (3.5) provides the explicit form of the MSD regardless of dimension d , i.e. (see
(B.5) in Appendix B)

r2ν(t) = 2v2t2νEν,2ν+1(−αtν), (3.6)
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in agreement with equation (37) in [64].We recall that the function Eν,2ν+1(−αtν) appearing
in (3.6) is the well-known two-parameter Mittag-Leffler function, whose general form can
be expressed in series form as

Eα,β(z) =
∞∑
n=0

zn

�(nα + β)
, z ∈ C, α, β > 0, (3.7)

and Eα,1(z) = Eα(z). It can be proved by simple calculations that for ν = 1 we recover the
MSD (2.24) of the classical telegraph process (we refer to [30] for the properties of the two
parameter Mittag-Leffler function).

The long and short time behavior of the MSD can be obtained from the asymptotic form
of its Laplace transform (3.5), by using Tauberian theorems (see, e.g., Theorem 2–3, Chapter
XIII, [26]). According to this theory the asymptotic behaviour of the function r2ν(t) for
t → +∞ and t → 0 can be formally obtained from the asymptotic behaviour of its Laplace
transform respectively for s → 0+ and for s → +∞. Therefore, from (3.5) we can easily
prove that at short time the MSD behaves as

r2ν(t) ∼ 2v2

�(2ν + 1)
t2ν, t → 0. (3.8)

while, in the long time limit, we have

r2ν(t) ∼ 2v2

α�(ν + 1)
tν, t → ∞. (3.9)

The results (3.8) and (3.9) reveal that, as expected, the scattering random motion governed
by the fractional kinetic Eq. (3.1) has an anomalous behavior, because the asymptotic MSD
is not linear in time, but of order tν .

4 Anomalous Transport Processes with Random Time

In order to give a stochastic interpretation of the solution to the Eq. (3.1), let us consider the
time-fractional version of the Cauchy problem (2.25) given by

∂ν
t uν(x, t; e) = Luν(x, t; e), uν(x, 0; e) = f (x, e), (4.1)

where L is the infinitesimal generator (2.26) of the couple (x + X(t),V(t)), t ≥ 0, and
f ∈Dom(L). We resort to the general theory developed in [9, 50] on the time-fractional
abstract Cauchy problem and its stochastic solution defined by means of time-changed
Markov processes (see Appendix A).

First of all, we recall that a subordinator is a non-negative and non-decreasingLévy process
starting from zero (see, e.g., [7]). A stable subordinator {Lν(u): u ≥ 0} is a strictly increasing
Lévy subordinator with Laplace exponent given by

E

[
e−sLν (u)

]
= e−usν , ν ∈ (0, 1). (4.2)

We denote with gν the probability density function of the stable Lévy subordinator Lν(u).
The inverse stable subordinator {Yν(t) : t ≥ 0} (see, e.g., [49])

Yν(t) = inf{u > 0 : Lν(u) > t}, t > 0, (4.3)
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with Yν(0) = 0 a.s., is such that

E

[
e−sYν (t)

]
= Eν(−stν). (4.4)

The inverse process is a non-Markovianwith non-stationary, non-independent increments and
non-decreasing continuous a.s. sample paths. The probability density function of Yν(t), t >

0, is given by μν (see Appendices A and B).
Let {N (Yν(t)) : t ≥ 0} be the fractional Poisson process obtained time-changing the

classical Poisson process N (t) with Yν(t). This process coincides with a renewal process
with i.i.d. waiting times between two consecutive jumps given by {Jn : n ∈ N} with P(Jn >

t) = Eν(−αtν), for d ≥ 2 and P(Jn > t) = Eν(−α
2 t

ν), for d = 1 (see [48] for more details
on this process). We observe that Lν(Tk−) = sup{t > 0 : Yν(t) < Tk} coincides with the
k-th jumping time J1 + ... + Jk of {N (Yν(t)) : t ≥ 0} (see Lemma 2.1 and Theorem 2.2 in
[48]).

By exploiting the general theory recalled in Appendix which applies to our case, we can
claim that the stochastic process governed by Eq. (4.1) corresponds to a time-change with
the inverse of the stable subordinator Yν(t) (see (A.10)). Therefore, the unique solution of
the problem (4.1) is given by

uν(x, t; e) = Ee f (x + X(Yν(t)),V(Yν(t))). (4.5)

This means that the fractional equation (4.1) is the governing equation for the couple

{(x + X(Yν(t)),V(Yν(t))) : t ≥ 0},
where the original processes (2.4) and (2.5) are deformed by a random clock. The time-
changed jump-velocity process becomes

V(Yν(t)) = Vk, Tk ≤ Yν(t) < Tk+1, (4.6)

or equivalently

V(Yν(t)) = Vk, Lν(Tk−) ≤ t < Lν(Tk+1−). (4.7)

The time-changed random flight is given by

X(Yν(t)) = v

∫ Yν (t)

0
V(s)ds (4.8)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vV0Yν(t), 0 ≤ Yν(t) < T1,

X(T1) + vV1(Yν(t) − T1), T1 ≤ Yν(t) < T2
...

X(TN (Yν (t))) + vVN (Yν (t))(Yν(t) − TN (Yν (t))), Yν(t) ≥ TN (Yν (t))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vV0Yν(t), 0 ≤ t < L(T1−),

X(T1) + vV1(Yν(t) − T1), L(T1−) ≤ t < L(T2−)

...

X(TN (Yν (t))) + vVN (Yν (t))(Yν(t) − TN (Yν (t))), t ≥ L(TN (Yν (t))−)

= v

N (Yν (t))∑
k=1

Vk−1(Tk − Tk−1) + vVN (Yν (t))(Yν(t) − TN (Yν (t))),
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where clearlywe assume that
∑0

k=1 = 0. In particular, for d = 1, we obtain the time-changed
telegraph process

X(Yν(t)) = vV (0)
N (Yν (t))∑
k=1

(−1)k−1(Tk − Tk−1) + vV (0)(−1)N (Yν (t))(Yν(t) − TN (Yν (t))).

(4.9)

Furthermore, in this last case (d = 1), by recalling that (see [57])

P(V (t) = ±v|V (0) = ±v) = P(N (t) even) = 1

2
(1 + e−αt ),

P(V (t) = ±v|V (0) = ∓v) = P(N (t) odd) = 1

2
(1 − e−αt ),

from (4.4) follows that the time-changedvelocity jumpingprocessV(Yν(t)) = V (0)(−1)N (Yν (t))

representing a semi-Markov chain with

P(V (Yν(t)) = ±v|V (0) = ±v) = 1

2
(1 + Eν(−αtν)),

P(V (Yν(t)) = ±v|V (0) = ∓v) = 1

2
(1 − Eν(−αtν)).

Simulated sample paths of process (4.9) are shown in Fig. 1. Panel (A) shows a trajectory
of the classical telegraph process X with v = α = 1. Panels (B)–(C)–(D) show the sample
paths of X(Yν) for ν = 0.1, 0.5, 0.9, respectively. The same initial sample path of X has
been used in each plot, while the subordinators have been independently simulated. We note
that, as a consequence of the construction in (4.9), the sample path of X(Yν) (black line)
corresponds to the juxtaposition of shifted and reflected pieces of the path of Yν . Specifically,
whenever the path Yν (blue line) crosses a velocity change random time Tk (horizontal grey
lines), the path of X(Yν) undergoes a change in direction, as described in (4.8). The sample
paths of Yν have been simulated starting from realizations of a Lévy subordinator Lν on
a discretized time grid with �t = 10−3. The pictures display different behaviours of the
sample paths of X(Yν) and Yν as ν varies. Indeed, for small values of ν (Fig. 1 (B)), the
subordinator Lν admits big jumps (corresponding to the long trapping effect in the sample
path) and many infinitely small jumps. As ν approaches 1 (Fig. 1 (D)), the subordinator tends
to coincide with the deterministic time t and the time-changed sample path shows closer
resemblance to the original path of X . In this case the picture shows that X(Yν) remains
constant for small time intervals. In Fig. 1 (C) is represented an intermediate behavior of the
time-changed process compared to the Panels (B) and (D).

The probability law of X(Yν(t)), t > 0, is obtained by averaging the density function of
the original process with respect to the probability law of the random time-change Yν(t); i.e.∫ ∞

0
P(x, u)μν(u, t)du. (4.10)

Now, we prove that the probability density function Pν, obtained from the solution of (3.1),
coincides with (4.10); i.e.

Pν(x, t) =
∫ ∞

0
P(x, u)μν(u, t)du. (4.11)

The above equation is exactly the one obtained in the previous section in the Laplace domain,
Eq. (3.4). Indeed, by noting that the Laplace transform of the pdf gν(u, t) of the stable
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Fig. 1 Simulated paths of X , X(Yν) (black), Yν (blue). The grey horizontal/vertical lines represent the velocity
change times Tk . Yν is the inverse to a subordinator with density gν

subordinator Lν(t) with respect to the variable u is g̃ν(s, t) = e−tsν (see [44]), we have that
the Laplace transform of the pdf μν(u, t) with respect to t is μ̃ν(u, s) = sν−1e−usν (see
Appendix B). Therefore, the Laplace transform of (4.11) reads

P̃ν(x, s) =
∫ ∞

0
P(x, u)μ̃ν(u, s)du = sν−1 P̃(x, sν), (4.12)

which is exactly the eq. (3.4).
The Eq. (4.11) allows us to formally write the solution of the time-fractional kinetic

equation as a superposition of solutions of the classical (non-fractional) equation evaluated
at all times u and weighted with the (time-dependent) pdf μν(u, t). We note that for ν → 1
we recover the classical case, as limν→1 μν(u, t) = δ(t − u). For generic ν < 1 the pdf
μν(u, t) has support in (0,+∞) in the u variable for any t > 0, thus allowing the particle to
be at any arbitrary distance at any given time t with positive probability; that is given M > 0

P(||X(Yν(t))|| > M) ≤ P(Yν(t) > M/v) = P(Lν(M/v) < t) =
∫ t

0
g(w, M/v)dw,
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for each t > 0. Indeed, the singular component appearing in P(x, t) is spread over Rd ; that
is from (2.9) and (4.11) we get for any x ∈ R

d

Pν(x, t) = Ps(||x||/v)μν(||x||/v, t) +
∫ ∞

0
Pac(x, u)1||x||<vuμν(u, t)du,

where Ps(t) is given by (2.10) and (2.11). In other words, the underlying process is then
no longer associated to a finite velocity random motion. To further clarify this point we
give an alternative representation of the equation (4.11). Let us first explicitly indicate the
dependence of the PDF on the parameters α and v, as P(x, t;α, v). The classical solution P
has the following scaling property

P(x, ut;α, v) = P(x, t; uα, uv), (4.13)

as easily obtained from the scaling of (2.15), ˜̂P(k, s/u;α, v) = u ˜̂P(k, s; uα, uv), and the
property of the Laplace transform L[ f (ut)](s) = u−1L[ f (t)](s/u). Using such a property
and making a change of integration variable in (4.11), u → tνu, we can finally obtain the
following alternative form of Pν in term of P

Pν(x, t;α, v) =
∫ ∞

0
P(x, tν; uα, uv) μν(u, 1)du. (4.14)

We then conclude that the PDF of the time-fractional process can be viewed as a superposition
of classical PDFs at rescaled time tν averaged over different tumbling rate α and speed v

(with constant persistent length � = v/α) weighted with the (time-independent) pdfμν . This
clarifies why the finite velocity property is lost in the fractional case.

It is worth mentioning that from the representation (4.8), the sample paths of the process
X(Yν(t)), t ≥ 0, show an anomalous behavior, while in the classical case the trajectories of
the particle are represented by straight lines. The random time change leads to a non-linear
dependence with respect to the time of the sample paths of the process; besides the particle
is trapped in the same position when Yν(t) is constant (see Fig. 1).

Furthermore, for d ≥ 2, from (2.28) we get that uν(x, t; e) satisfies the following integral
equation

uν(x, t; e) = E

[
f (x + veYν(t), e)e−αYν (t)

]

+ αE

[∫ Yν (t)

0
e−αsds

∫
Sd−1

uν(x + ves, Yν(t) − s; e′)σ (de′)
]

= E

[
f (x + veYν(t), e)e−αYν (t)

]
+ α

∫ ∞

0
μν(u, t)du

[∫ u

0
e−αs

P uν(x + ves, u − s; e′)ds
]

= E

[
f (x + veYν(t), e)e−αYν (t)

]
+ α

∫ ∞

0
e−αsds

[∫ ∞

s
P uν(x + ves, u − s; e′)μν(u, t)du

]

= E

[
f (x + veYν(t), e)e−αYν (t)

]
+ E

[
1Z<Yν (t) P u(x + ves, Yν(t) − Z; e′)

]
,

where Z is an exponential random variable with rate α, independent of Yν(t).
It is not hard to prove that for any t ≥ 0, X(Yν(t)) converges in distribution to B(Yν(t))

where {B(t) : t ≥ 0} is a standard d-dimensional Brownian motion. By assuming that
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Fig. 2 Simulated paths of X , X(Yν) (black), Yν (blue) for large v and α

α
v2

= 2
d + o(1) as v, α → ∞, we can apply Corollary at page 169 in [69] and then

lim
v,α→∞ Pe(x + X(Yν(t)) ∈ A) = lim

v,α→∞

∫ ∞

0
Pe(x + X(u) ∈ A)μν(u, t)du

=
∫ ∞

0
P(x + B(u) ∈ A)μν(u, t)du

= P(x + B(Yν(t)) ∈ A),

where A ∈ B(Rd) such that ∂A has Lebesgue measure 0. By applying the Portmanteau
theorem we can conclude that x+X(Yν(t)) converges weakly to x+B(Yν(t)). A simulated
sample path representing the limiting behaviour of X(Yν) is shown in Fig. 2, where we set
α = 103 and v = 103/2. The simulations were performed as in Fig. 1, by setting �t = 10−4.

As noticed for X(Yν(t)), the trapping effect of B(Yν(t)) depends on the values of ν.

Remark 4.1 It is worth mentioning that alternative anomalous scattering transport processes
have been introduced in literature. For instance in [59], the authors deal with a particle
switching velocity as in (2.4), that is with Mittag-Leffler waiting times, and having random
position given by

Xν(t) = x +
∫ t

0
V(Yν(s))ds.

Clearly, the previous process has sample paths which differ from those of the random flight
(4.8), obtained time-changing the position of the particle in the standard case. Indeed, in
[59] the fractional Boltzmann equation governing the couple (Xν(t),V(Yν(t))) involves a
non-local operator which does not coincide with the fractional Caputo derivative.

In [22], a one-dimensional telegraph processwith generalizedMittag-Lefflerwaiting times
has been analyzed.

Closer to our approach is the random motion studied in [11], where the authors consider
a planar model with time change given by a reflected Brownian motion.

Further examples of time-changed random motions related to fractional operators have
been discussed in [17].
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5 Continuous-Time RandomWalk

Here we show how it is possible to describe the anomalous run-and-tumble motions in
the framework of (space-time coupled) continuous-time random walks (CRTW) [1, 38]. The
randomwalk consists of independent steps described by the quantities σ(x, t), the propagator
of a completed step (space-time probability density to end a step at x at time t), and �(x, t),
the propagator of an incomplete step (space probability density that the particle is at x at time
t having not finished the step). The total pdf to find the particle at x at time t can be written
as a sum of convolution terms

Pν(x, t) =
∞∑
n=0

[σ ∗ σ ∗ · · · ∗ σ︸ ︷︷ ︸
n times

∗�](x, t), (5.1)

where

[ f1 ∗ · · · ∗ fn ](x, t) =
∫
Rd×···×Rd

dx1 · · · dxn
∫ ∞
0

dt1 · · · dtn f1(x1, t1) · · · fn(xn , tn)

× δ

⎛
⎝∑

i

xi − x

⎞
⎠ δ

⎛
⎝∑

i

ti − t

⎞
⎠ .

In the Fourier-Laplace domain one has

ˆ̃Pν(k, s) =
ˆ̃
�(k, s)

1 − ˆ̃σ(k, s)
. (5.2)

The classical run-and-tumble motion is described by a Poisson jump process at constant
velocity, whose run-time pdf and conditional pdf of displacements given the time t are

ψ(t) = αe−αt , (5.3)

λ(x|t) = 1

	drd−1 δ(r − vt), (5.4)

where r = ||x||. The time-changed procedure allows us to write the propagators of the
anomalous run-and-tumble motion as

σ(x, t) =
∫ ∞

0
du gν(t, u) λ(x|u) ψ(u), (5.5)

�(x, t) =
∫ ∞

0
du μν(u, t) λ(x|u)

∫ ∞

u
ψ(τ)dτ. (5.6)

We note that for ν → 1 the functions gν and μν tend to a delta function δ(t − u) and the
problem reduces to the standard run-and-tumble motion with propagators [1, 21]

σ(x, t) −−→
ν→1

λ(x|t) ψ(t), (5.7)

�(x, t) −−→
ν→1

λ(x|t)
∫ ∞

t
ψ(u)du. (5.8)

Substituting (5.3)–(5.4) in the general expressions (5.5)–(5.6) we obtain

σ(x, t) = α

v	drd−1 e−rα/v gν(t, r/v), (5.9)

�(x, t) = 1

v	drd−1 e−rα/v μν(r/v, t). (5.10)

123



Anomalous Random Flights and Time-Fractional Run-and-Tumble... Page 17 of 25   129 

The underlying randomwalk process is then characterized by steps with run time distribution

ϕ(t) =
∫
Rd

dx σ(x, t) =
∫ ∞

0
du gν(t, u) ψ(u) = αtν−1Eν,ν(−αtν) = −∂t Eν(−αtν),

(5.11)
and displacement distribution

ρ(x) =
∫ ∞

0
dt σ(x, t) =

∫ ∞

0
du λ(x|u) ψ(u) = α

v	drd−1 e−rα/v, (5.12)

not trivially coupled through Eqs. (5.5)–(5.6). In deriving (5.11) we have used the properties
(B.3), (B.5) and dEν(−x)/dx = −ν−1Eν,ν(−x) (see [30]). We note that the length distri-
bution of the steps (5.12) is independent of ν and is the same of the classical run-and-tumble
motion, as the time-change affects only the run-time of the particle during its motion (becom-
ing a random variable) and not the length of the space traveled. We also note that the spatial
integral of the quantity�(x, t) gives the probability that the time T between two consecutive
jumps exceeds t

P(T > t) =
∫
Rd

dx �(x, t) =
∫ ∞

0
du μν(u, t)

∫ ∞

u
ψ(τ)dτ = μ̃(α, t) = Eν(−αtν),

(5.13)
having used (5.6), (5.3), (5.4) and the property (B.8).
By using the known Laplace transforms of g and μ, (B.2) and (B.8), we have that the
propagators (5.9)–(5.10) in the Fourier-Laplace domains read

ˆ̃σ(k, s) = αP0(k, s), (5.14)

ˆ̃
�(k, s) = sν−1P0(k, s), (5.15)

where P0 is given by (3.3). Inserting in (5.2) we retrieve the solution (3.2).

6 Fractional Telegraph Equation and Its Stochastic Solution

Wenow consider in detail themore interesting case for the applications. The one-dimensional
anomalous transport process (4.9) is directly related to the time-fractional telegraph-type
equation. Bymeans of this connection, we are able to provide a clear stochastic interpretation
for the solution of the fractional telegraph-type equation.

For simplicity we set uν(x, t; e) = u(x, t; e). For d = 1, we have that e ∈ {−1, 1} and
the solution (4.5) of the Cauchy problem (4.1), is given by

u(x, t; e) = Ee[ f (x + X(Yν(t)), V (Yν(t)))]
=

∑
j∈{−1,1}

∫
R

f (x + y, jv)

∫ ∞

0
P(X(u) ∈ dy, V (u) = jv|V (0) = e)μν(u, t)du,

where μν represents the probability density function of Yν(t) at time t > 0.
The fractional kinetic Eq. (4.1) leads to the following system involving two time-fractional

partial differential equations

∂ν
t u(x, t; 1) = v∂xu(x, t; 1) + α

2
(u(x, t;−1) − u(x, t; 1)),

∂ν
t u(x, t;−1) = −v∂xu(x, t;−1) + α

2
(u(x, t; 1) − u(x, t;−1)),
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and by setting u(x, t) = u(x, t; 1) + u(x, t;−1) and w(x, t) = u(x, t; 1) − u(x, t;−1), we
can write down

∂ν
t u(x, t) = v∂xw(x, t), (6.1)

∂ν
t w(x, t) = v∂xu(x, t) − αw(x, t). (6.2)

By applying the time-fractional differentiation ∂ν
t and the first space derivative to equations

(6.1)-(6.2), one has

∂ν
t ∂ν

t u(x, t) = v∂ν
t ∂xw(x, t),

∂ν
t ∂xw(x, t) = v∂2xxu(x, t) − α∂xw(x, t).

Therefore, we obtain the fractional telegraph equation

∂ν
t ∂ν

t u(x, t) + α∂ν
t u(x, t) = v2∂2xxu(x, t), (6.3)

also studied in [42] and [6].
We shed in light that u(x, t) represents a solution for (6.3) for any ν ∈ (0, 1). Furthermore,

the equation (6.3) differs from the fractional damped wave equation studied in [23, 53]. This
is due to the lack of semigroup property for the Caputo derivative and then ∂ν

t ∂ν
t �= ∂2νt .

Nevertheless, under suitable initial conditions, it is possible to get the Cauchy problem
studied in [53].

Now, let ν ∈ ( 12 , 1) and suppose f (x, e) = φ(x). Hence the fractional Cauchy problem

∂ν
t ∂ν

t u(x, t) + α∂ν
t u(x, t) = v2∂2xxu(x, t), (6.4)

u(x, 0) = φ(x), ∂ν
t u(0, x) = 0,

is equivalent to the following problem studied, e.g., in [53] or [42]

∂2νt u(x, t) + α∂ν
t u(x, t) = v2∂2xxu(x, t), (6.5)

u(x, 0) = φ(x), ∂t u(0, x) = 0,

(for the proof it is sufficient to apply the properties of Laplace transform for the Caputo
derivatives). Clearly, for ν = 1 both time-fractional equations appearing in (6.4)-(6.5), reduce
to the classical telegraph Eq. (2.19). We observe that the time fractional telegrapher’s Eq.
(6.5) was also derived from the standard telegrapher’s equation by using the subordination
approach in [31] and [32]. Moreover, an interesting recent generalization of the telegrapher’s
equation with power-law memory kernels derived within the persistent random walk theory
has been studied in [33].

Then, we are able to provide a suitable probabilistic interpretation of the unique solution
of the fractional telegraph-type equation in (6.5) (or equivalently in (6.4)); that is

u(x, t) = E [φ(x + X(Yν(t)))] (6.6)

= 1

2
(E1 [φ(x + X(Yν(t)))] + E−1 [φ(x + X(Yν(t)))])

= 1

2

(
E

[
φ

(
x + v

∫ Yν (t)

0
(−1)N (s)ds

)]
+ E

[
φ

(
x − v

∫ Yν (t)

0
(−1)N (s)ds

)])
.

Therefore, (6.6) allows to conclude that the anomalous telegraph process is the randommodel
governed by the fractional telegraph Eq. (6.4). Furthermore, (6.6) generalizes Kac’s solution
(2.20) time-changing the classical solution.
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Going back to the general scheme provided by Eq. (3.2), in dimension d = 1 we have

P0(k, s) = sν + α

(sν + α)2 + (vk)2
, (6.7)

and then
ˆ̃P(k, s) = s2ν−1 + αsν−1

s2ν + αsν + (vk)2
. (6.8)

We now easily show that the Fourier-Laplace transform of the fundamental solution (6.8)
coincides with the the Fourier-Laplace transform of the Green function for the time-fractional
telegraph equation. Indeed, by algebraic manipulation we can write (6.8) as follows(

s2ν + αsν + (vk)2
) ˆ̃P(k, s) = s2ν−1 + αsν−1, (6.9)

and recalling the Laplace transform for Caputo fractional derivatives (1.2), we recognize that
the expression in (6.8) coincides with the Fourier-Laplace transform of the solution for the
time-fractional equation

∂2νt u(x, t) + α∂ν
t u(x, t) = v2∂2xxu(x, t), (6.10)

under the initial conditions u(x, 0) = δ(x) and ∂t u(x, 0) = 0. We have two relevant out-
comes. First of all, this is the first rigorous proof of the relation between the fractional
telegraph equation and the fractional kinetic equation (3.1). Then, we can say that the stochas-
tic solution of the fractional telegraph process coincides with the time-changed telegraph
process (4.9).

In the literature it is known the Fourier transform of the solution for (6.10) under the given
conditions (see, e.g., [23]) and therefore we can directly obtain the characteristic function of
the processX(Yν(t)) that coincides for ν = 1 with the characteristic function of the classical
telegraph process.

Moreover, by inverting the Fourier transform, using the property

F−1
[ 1

a2 + k2

]
(x) =

∫
R

dk

2π

e−ikx

a2 + k2
= 1

2a
exp(−a|x |), (6.11)

we obtain

P̃(x, s) =
√
sν(sν + α)

2vs
exp
(

−
√
sν(sν + α)

v
|x |
)
, (6.12)

in agreement with the result reported in [6]. The previous expression can also be obtained
from (3.4) using the solution of the classical run-and-tumble process.

For simplicity we set v = 1. Now, we show that the stochastic solution (6.6) coincides
with the representation (4.12) in [42] given by

u(x, t) = Eφ(x + Sν(t))) = 1

2
[Eφ (x + Zν(t)) + Eφ (x − Zν(t))] , (6.13)

where Sν(t) := V (0)Zν(t) and {Zν(t) : t ≥ 0} represents the inverse of a subordinator with
Laplace exponent given by

√
s2ν + αsν; i.e. let ην(z, t), z > 0, be the density function of

Zν(t), we have ∫ ∞

0
e−stην(z, t)dt =

√
s2ν + αsν

s
e−z

√
s2ν+αsν .

It is not hard to check that the density function of Sν(t), t ≥ 0, is given by 1
2ην(|x |, t), x ∈ R.

Therefore
1

2

∫ ∞

0
e−stην(|x |, t)dt = P̃(x, s),
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and then Sν(t)
d= X(Yν(t)).

We also recall that it is possible to find the inverse Laplace transform of (6.8) that is given
by (see e.g. [53])

P̂(k, t) = 1

2

[(
1 + α√

α2 − 4v2k2

)
Eν(r1t

ν) +
(
1 − α√

α2 − 4v2k2

)
Eν(r2t

ν)

]
, (6.14)

where

r1 = −α

2
+
√

α2

4
− v2k2, r2 = −α

2
−
√

α2

4
− v2k2. (6.15)

7 Conclusions

In this paper, anomalous transport models were introduced using a general approach derived
from the generalization of the kinetic equation through the time fractional derivative. Nowa-
days, fractional operators aswell as fractional partial differential equations represent standard
tools to study motions different from Brownian motion with the inclusion of memory effects.

In particular, starting from the Kolmogorov forward equation governing the so-called
run and tumble walks or random flights, we have studied its possible generalization by
replacing the time derivative appearing in (3.1) with the Caputo fractional derivative, thus
introducing memory effects in the kinetic model. Furthermore, by resorting to the general
subordination theory, it is possible to describe the random motions associated to (3.1) and
(4.1) as time-changed random flights. These latter stochastic models are deeply analyzed and
many properties highlighted. The time-changed run and tumble walks represent anomalous
scattering motions showing a different behaviour with respect to the original random flight:
for instance they are no longer finite velocity motions. We also provided a description of
the anomalous run-and-tumble motion in the framework of continuous-time random walk.
Finally, we have analyzed the one-dimensional case; i.e the fractional telegraph process. It is
worth mentioning that we are able to provide a stochastic solution of the fractional telegraph
equation, in the true hyperbolic regime ν ∈ ( 12 , 1), which is given by the original Kac’s
solution with random clock.

Some generalizations of the models studied in this paper are possible. Indeed, a future
research topic is represented by anomalous random flights with space-dependent velocity.
Inspired by [5], we can introduce and analyze a time-fractional version of the telegraph
equation with speed depending on the space x . Another generalization concerns the time-
changed run and tumble motions in the stochastic resetting framework, where the particle
position is reset randomly in time to somefixed point (e.g. its initial position). For an overview
with discussion on the applications of the stochastic resetting models the reader can consult,
e.g., [25].

Appendix A. Time-Fractional Cauchy Problems and Stochastic
Solutions

For the utility of the reader, here we briefly recall the basic mathematical theory about
abstract time-fractional Cauchy problems and their stochastic interpretation. For a complete
treatment, we refer for example to [9] and to the recent monograph [8].
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First of all, let us recall that a family of linear operators Tt , t ≥ 0 on a Banach space X is
called a C0 semigroup if

T0 f = f (A.1)

Tt Ts f = Tt+s f , (A.2)

‖Tt f − f ‖ → 0, in the Banach space norm as t → 0 (A.3)

∀t ≥ 0, ∃ a constant Mt > 0 such that ‖Tt f ‖ ≤ Mt‖ f ‖, (A.4)

for all f ∈ X . Every C0 semigroup has a generator

A f = lim
t→0

Tt f − f

t
, (A.5)

defined for f ∈ Dom(A).
Then, we recall that p(x, t) = Tt f (x) solves the abstract Cauchy problem

∂t p = Ap, p(x, 0) = f (x), ∀ f ∈ Dom(A). (A.6)

Furthermore, let {X(t) : t ≥ 0} be a Markov process with infinitesimal generator A,we have
that the solution of the abstract Cauchy problem (A.6) is given by

p(x, t) = Ex [ f (X(t))]
The abstract fractional Cauchy problem involving the Caputo fractional derivative of order
ν ∈ (0, 1)

∂ν
t q = Aq, q(x, 0) = f (x), ∀ f ∈ Dom(A), (A.7)

has solution

q(x, t) =
∫ ∞

0
p(x, u)μν(u, t)du, (A.8)

where p(x, t) = Tt f (x) is the solution of the Cauchy problem (A.6), while μν(u, t) is the
density of the inverse of a stable subordinator Yν(t) (in the Appendix B we summarize some
useful properties of the function μν(u, t) as well as of the probability density gν(t, u) of the
stable subordinator Lν(u). By using the property (B.6) we can write the solution in the form

q(x, t) =
∫ ∞

0
p(x, u)

t

ν
u−1−1/νgν(tu

−1/ν, 1)du. (A.9)

The stochastic representation of the solution of the fractional Cauchy problem (A.7) is the
following one

q(x, t) = E(p(x, Yν(t))). (A.10)

One of the most relevant consequence of the general theory is given by the stochastic repre-
sentation of the solution of the time-fractional heat equation. Let us consider the fractional
Cauchy problem

∂ν
t u = 1

2
∂xxu, u(x, 0) = f (x). (A.11)

The stochastic representation of the solution is given by

u(x, t) = E

[
f (x + B(Yν(t))

]
, (A.12)

where we denoted by B(Yν(t)) the Brownian motion time-changed with the inverse of the
stable subordinator Yν(t). This means that the fundamental solution of the time-fractional
heat equation (that can be represented by means of M-Wright functions, see [43]) coincides
with the density of the time-changed process B(Yν(t)).
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Appendix B. Properties of the Functions g� and ��

For convenience we summarize here the main properties of the probability density functions
gν(t, u) and μν(u, t) of the stable subordinator Lν(u) and the inverse stable subordinator
Yν(t) [49].
The function gν satisfies the following scaling relation

gν(t, u) = u−1/νgν(tu
−1/ν, 1) (B.1)

The Laplace transform of gν(t, u) with respect to the variables t is

g̃ν(s, u) = e−usν . (B.2)

The Laplace transform with respect to the variable u is (we define the Laplace variables pairs
t ↔ s and u ↔ σ )

g̃ν(t, σ ) = tν−1 Eν,ν(−σ tν). (B.3)

The last expression can be easily obtained by noting that the double Laplace transform of gν

reads – from (B.2)
˜̃gν(s, σ ) = 1

sν + σ
, (B.4)

and considering the inverse-Laplace transform with respect to s, using the property [30]

L[tν−1Eμ,ν(at
μ)](s) = sμ−ν/(sμ − a), Reμ, ν > 0. (B.5)

The function μν(u, t) is given by

μν(u, t) = t

ν
u−1−1/νgν(tu

−1/ν, 1), (B.6)

and it is related to the function gν through

νuμν(u, t) = tgν(t, u). (B.7)

The Laplace transform of μν(u, t) with respect to the variables t is

μ̃ν(u, s) = sν−1e−usν , (B.8)

as obtained by using (B.7), (B.2) and the property of the Laplace transform L[t f (t)](s) =
−∂sL[ f (t)](s). The Laplace transform of μν with respect to the variable u reads

μ̃ν(σ, t) = Eν(−σ tν). (B.9)

The latter result, as before for the g function, can be obtained by noting that the double
Laplace transform of μν reads – see (B.8)

˜̃μν(σ, s) = sν−1

sν + σ
, (B.10)

and considering the inverse-Laplace transform with respect to s, using (B.5) and the identity
Eν,1(x) = Eν(x).
Some interesting asymptotic behaviors of the μν function are as follows. For fixed u > 0
and t ↓ 0 we have

μν(u, t) ∼
√

ν

2π(1 − ν)

(ν

u

) 2−ν
2−2ν

t−
ν

2−2ν exp

(
−|1 − ν|u 1

1−ν

(ν

t

) ν
1−ν

)
, (B.11)
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For t → +∞, we have that

μν(u, t) ∼ t−ν

�(1 − ν)
. (B.12)

Finally we note that for ν → 1 the gν and μν functions tend to a delta function

lim
ν→1

gν(t, u) = lim
ν→1

μν(u, t) = δ(t − u), (B.13)

as simply obtained by considering the inverse Laplace transform of (B.2) and (B.8) for ν = 1.
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