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A B S T R A C T

Generative techniques continue to evolve at an impressively high rate, driven by the hype about these
technologies. This rapid advancement severely limits the application of deepfake detectors, which, despite
numerous efforts by the scientific community, struggle to achieve sufficiently robust performance against the
ever-changing content. To address these limitations, in this paper, we propose an analysis of two continuous
learning techniques on a Short and a Long sequence of fake media. Both sequences include a complex and
heterogeneous range of deepfakes (generated images and videos) from GANs, computer graphics techniques,
and unknown sources. Our experiments show that continual learning could be important in mitigating the need
for generalizability. In fact, we show that, although with some limitations, continual learning methods help to
maintain good performance across the entire training sequence. For these techniques to work in a sufficiently
robust way, however, it is necessary that the tasks in the sequence share similarities. In fact, according to
our experiments, the order and similarity of the tasks can affect the performance of the models over time.
To address this problem, we show that it is possible to group tasks based on their similarity. This small
measure allows for a significant improvement even in longer sequences. This result suggests that continual
techniques can be combined with the most promising detection methods, allowing them to catch up with the
latest generative techniques. In addition to this, we propose an overview of how this learning approach can be
integrated into a deepfake detection pipeline for continuous integration and continuous deployment (CI/CD).
This allows you to keep track of different funds, such as social networks, new generative tools, or third-party
datasets, and through the integration of continuous learning, allows constant maintenance of the detectors.
. Introduction

Generative AI tools like Midjourney,1 ChatGPT,2 or the more recent
ora3 are completely revolutionizing the way media content is created,
eading to the mass adoption of tools that were unimaginable until
ecently. However, this progress makes the threat of new-generation
isinformation or defamation campaigns increasingly concrete. Unfor-
unately, forensic tools for detecting this content are not advancing at
he same rate. Although it is possible to train highly accurate detectors,
hese methodologies still poorly generalize to new generative methods
ue to data drift (Paleyes et al., 2022). Detectors perform well on the
enerative techniques they are trained on but commonly fail when
xposed to content generated with a new generative model.

Because of these limitations, the practical application of automatic
etectors has been almost nil. When someone wants to deploy these

∗ Corresponding author at: Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy.
E-mail addresses: tassone.1814263@studenti.uniroma1.it (F. Tassone), maiano@diag.uniroma1.it (L. Maiano), amerini@diag.uniroma1.it (I. Amerini).

1 https://www.midjourney.com/
2 https://openai.com/chatgpt
3 https://openai.com/sora

tools in commercial or mass verification systems, they must face nu-
merous challenges that go far beyond the need to generalize from a
few known benchmarks (Rossler et al., 2019; Corvi et al., 2023; Li
et al., 2023; Zi et al., 2020). Prominent among these is the need to
continuously train these models on new generative techniques through
continuous learning methods. To address this continuous change, we
analyze continuous learning techniques to evaluate their limitations
when applied to mitigate this problem. Continual learning, also known
as lifelong learning or incremental learning, is a constant learning
approach. Unlike transfer learning techniques, where a model trained
on one task is retrained on a new task to improve its performance on
the latter, continual learning involves maintaining good model perfor-
mance on a set of evolving tasks as these become available without
incurring in catastrophic forgetting (French, 1999). These requirements
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fit well with the problem of learning to recognize content generated
by new techniques and the need to continually readjust a model with
respect to data drift produced by the shift in the distribution of data
observed in inference versus those seen in training.

This work aims to investigate the effectiveness of two continu-
ous learning techniques with the intention of integrating them into a
real, end-to-end deepfake detection system that allows for continuous
integration and continuous delivery/deployment (CI/CD). Our goal
is therefore to propose a simple yet effective design for a Machine
Learning Model Operations (MLOps (Paleyes et al., 2022; Semola et al.,
022)) pipeline that would enable the end-to-end development of con-
inuously trained and monitored intelligent detectors with a minimal
et of components.

ontributions
Therefore, the main contributions of this preliminary study are

ummarized below.

• Analysis of continual learning methods. We study the effectiveness
of two continuous learning methods, Knowledge Distillation KD
– (Hinton et al., 2015) and Elastic Weight Consolidation (EWC –
Kirkpatrick et al., 2017), and show their superiority to transfer
learning when continuous training is needed.

• Sequence. We study how the order of arrival of the tasks can
affect the performance of the model. In particular, we show how
task similarity plays an important role in maintaining optimal
performance.

• Multi-task continual training. We show how aggregating tasks
based on their similarity can significantly improve the overall per-
formance over the entire sequence. This result is particularly im-
portant and helps us to better outline the possible developments
of these techniques for deepfake recognition.

• CI/CD pipeline for deepfake detection. We propose an overview of
an end-to-end system for continuous integration and continuous
delivery/deployment for a deepfake detection application.

The rest of this paper is organized as follows. Section 2 offers an
overview of the state of the art. In Section 3, we introduce the method-
ology used in this study. In Section 4, we present the experiments we
conducted. Finally, in Section 5, we draw the final considerations and
illustrate the future developments of this work.

2. Background and related works

2.1. Machine Learning Operations (MLOps)

MLOps is a set of scientific principles, tools, and techniques for
designing and constructing complex computer systems that combine
the scientific ideas, instruments, and methods of traditional Software
Engineering (DevOps, Leite et al. (2019)) with Machine Learning. It
covers every phase, including gathering data, creating the model, and
integrating it into the software production system. This is an actual
engineering field that deserves detailed study; however, for this reason,
in the following paragraphs, we will provide a very brief introduction.

MLOps results from the realization that the quality, transparency,
and agility of the entire intelligent software are reduced when the ML
model development process is isolated from the ML operations process
that produces it.4 A typical machine learning-based software includes
four key elements: (1) the data, (2) the machine learning model, (3)
the code, and (4) performance assessment, and each of these elements
contributes to creating four main phases. The data engineering phase
involves the study of gathering and preparing data. machine learn-
ing model engineering is a process that begins with model evaluation,

4 https://ml-ops.org/
2

training, and serving. Code engineering works on best practices to inte-
grate the model into the final product. Finally, performance monitoring
deals with performance assessment, reproducibility, and monitoring in
production to find deviations.

The quality and applicability of machine learning models in pro-
duction are affected by three main issues. First, the quality of input
data (quantity, completeness, and semantics) impacts the performance
of machine learning models. The second is model decay, which is
the gradual deterioration of the performance of the machine learning
models. In reality, real-world data is not stationary and is often absent
from model training. In this paper, we focus on this specific aspect.
Third, according to quality metrics (location). Models pre-trained on
known training data may not perform correctly when applied to new
inputs. This aspect is essential for deepfakes, where new tools and gen-
erative techniques can undermine the quality of the detectors. Readers
more interested in this topic can learn more about the challenges and
commercially available MLOps tools in Hewage and Meedeniya (2022)
and Kreuzberger et al. (2023).

2.2. Deepfake detection

Despite the difficulties in keeping up with the advancement of gen-
erative techniques, numerous studies have been proposed on detecting
generated images and videos (Amerini et al., 2021; Verdoliva, 2020).
In this section, we provide an overview of the most recent advances.
However, it is essential to note that many can be combined with the
continuous learning techniques analyzed in this paper. In fact, this
type of learning approach could be used not as an alternative to these
methods but to make these techniques maintainable over time.

First of all, several studies have found that there are some key ingre-
dients for more robust detection (Wang et al., 2020; Gragnaniello et al.,
2021). Among them, image compression and resizing can severely
mitigate model performance (Papa et al., 2023). Therefore, to cope
with these problems, it is usually recommended to avoid resizes, as
they entail image resampling and interpolation, which may erase the
subtle high-frequency traces left by the generation process and train
models with different forms of augmentation. Moreover, working on
local patches also appears to be important (Chai et al., 2020), as well
as analyzing both local and global features (Ju et al., 2022). Ciamarra
et al. (2024) examine the effects that deepfake production may have
had on the properties of the entire scene at the time of acquisition.
Specifically, the deepfake generation process may alter all of these
intrinsic relations. When an image (video) is taken, the scene’s overall
geometry (such as surfaces) and the acquisition method (such as illu-
mination) establish a clear environment that is directly represented by
the image pixel values. A descriptor that may be used to train a CNN
for deepfake detection can be obtained by analyzing the features of the
surfaces shown in the image.

A recent study from Aghasanli et al. (2023) showed that founda-
tional models like ViT can effectively distinguish between authentic
and counterfeit images, even when interpretability through prototypes
is important. Additionally, the study demonstrated that classifiers with
fine-tuned features consistently outperform those utilizing pre-trained
weights when applied to cross-dataset domains. Another study by Le
and Woo (2023) considers quality factors to train robust detectors.
The authors used an intra-model collaborative learning method to
minimize the geometrical differences of images in various qualities at
different intermediate layers. This idea, combined with an adversarial
weight perturbation module, can be used to improve the robustness
of the model against input image compression. Similarly, several stud-
ies (Corvi et al., 2023; Sha et al., 2023; Ojha et al., 2023) use CLIP
as a feature extractor. Cocchi et al. (2023) propose an analysis of the
robustness of this model to image augmentations, transformations, and
other pre-processing steps, while Amoroso et al. (2023) evaluate the
effects of different image feature extractors, presenting results on CLIP
and OpenCLIP. Many recent studies also focus on combining different

https://ml-ops.org/
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Fig. 1. Proposed CI/CD pipeline for deepfake detection. The data coming from different sources like new generative tools, social media, or existing databases are analyzed by
orensic experts to ensure the system’s continual retraining. Next, these data are used for continual learning and monitoring. The data drift distribution module raises an alert
henever it detects new input data distributions. The continual learning methods analyzed in this paper are part of the MLOps CI/CD pipeline block in the figure.
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odes, such as audio and video (Raza and Malik, 2023; Zhang et al.,
024) or video and depth (Maiano et al., 2022), as well as open-set
ecognition (Wang et al., 2023).

Other studies focus on reconstructing fake artifacts introduced by
enerative models by considering second-order statistics in the spatial
nd frequency domains (Wang et al., 2020). Corvi et al. (2023)
howed that similar to GANs, diffusion models also give rise to visible
rtifacts in the Fourier domain and exhibit anomalous regular patterns
n autocorrelation. In fact, synthetic and real images exhibit significant
ifferences in the mid-high frequency signal content, observable in their
adial and angular spectral power distributions.

Among the various detection strategies, watermarks have also been
roposed (Fei et al., 2023; Wu et al., 2020). Through the addition
f special information within the image being generated, these wa-
ermarks can be used to verify the generative model used to create
ontent. For example, Zhao et al. (2023) proposed an encoder–decoder
etwork to embed watermarks as anti-deepfake labels into the facial
dentity features. The injected label is entangled with the facial identity
eature, so it will be sensitive to face swap translations and robust
o conventional image modifications like resizing and compression.
ernandez et al. (2022) examined the robustness of watermarks when
he image is subjected to transformations. A similar study has also been
n detection methods specifically designed for facial manipulation.
owever, these solutions are limited in that they require a model

o integrate the watermark into the content during the generation
hase (Lu and Ebrahimi, 2024).

Our method, instead, falls into a different line of studies targeted
t designing continual learning methods for deepfake detection. This
earning approach has only been partially explored for this task. The
tudy by Marra et al. (2019) was one of the first to propose a multi-
ask incremental learning method for GAN-generated images based
n iCaRL (Rebuffi et al., 2017). A similar approach was applied to
ideos in Khan and Dai (2021), while Pan et al. (2023) have recently
roposed to learn semantically consistent representations across do-
ains based on supervised contrastive learning and a carefully designed

eplay set. In contrast, Kim et al. (2021) combined a knowledge
istillation method with a representation learning loss. However, these
ethods have been tested on datasets not explicitly designed for this
ype of learning approach, which very often consists of a limited p

3

umber of generative techniques. To overcome this limitation, Li et al.
2023) recently introduced a new collection of deepfakes from known
nd unknown generative models. The proposed CDDB dataset includes
ultiple evaluations on detecting an easy, hard, and long sequence of
eepfakes with appropriate measures. For these reasons, in this paper,
e focus our studies on this dataset by measuring the performance of

he continual learning methods examined in this paper on this dataset.
recent study from Epstein et al. (2023) takes a similar direction by

pplying online learning to several generative tools available today.
Different from other studies, we analyze this specific learning me-

hod to integrate it into a CI/CD system appropriately designed for this
ask in the future.

. Method

The practical application of deepfake detectors has been severely
imited by the need to develop robust detectors with respect to new gen-
rative techniques. To overcome this problem, we propose an analysis
f two continual learning strategies and an overview of a simple CI/CD
ipeline that can complement this preliminary study. This pipeline
depicted in Fig. 1) has the advantage of being constantly updated with
espect to the latest detectors, which can be adapted for continuous
earning as described below.

.1. Learning strategies

To evaluate the effectiveness of continual learning in the deepfake
ecognition task, we examine two learning methods. These techniques
ere chosen based on their demonstrated effectiveness in other tasks

De Lange et al., 2022).

nowledge Distillation (KD)
Distillation techniques were introduced by Hinton et al. (2015)

n order to transfer knowledge from a neural network  (the teacher)
o a neural network  (the student). The key idea behind knowledge
istillation is that soft probabilities predicted by a network of trained

‘teachers’’ contain much more information about a data point than a
imple class label. For example, if multiple classes are assigned high

robabilities for an image, this could mean that the image must be
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close to a decision boundary between those classes. Forcing a student
to mimic these probabilities should then cause the student network
to absorb some of this knowledge that the teacher discovered above
and beyond the information in training labels alone. To implement
the KD strategy, we modify the cross-entropy loss 𝑆 by adding a
regularization term (𝐷) as follows.

𝐾𝐷(𝜃) = 𝛼𝐷 + 𝛽𝑆 (1)

Here, 𝛼 and 𝛽 are scalar coefficients that control the balancing between
the current and past tasks. The distillation loss 𝐷 uses the output
of the teacher model to facilitate knowledge transfer from previous
tasks to the new student model. As the teacher is non-trainable, its
predictions are solely based on prior knowledge, producing soft labels
for the training process of the student model. This term is computed as:

𝐷 =
∑

𝑥𝑖∈𝑋
𝜎
(

 (𝑥𝑖, �̂�𝑖), 𝜏
)

log 𝜎
(

(𝑥𝑖, 𝑦𝑖), 𝜏
)

(2)

where �̂� represents the output of  , 𝜎 denotes the softmax function with
temperature 𝜏 and  represent the student network.

Elastic Weight Consolidation (EWC)
EWC remembers old tasks by selectively slowing down learning on

weights that are important for these tasks. As shown in Kirkpatrick
et al. (2017), learning from a task 𝐴 to a task 𝐵, there exist many
configurations of 𝜃 leading to the same performance. In fact, the over-
parametrization of the model makes it more likely the existence of a
solution 𝜃∗𝐵 for task B that is close to task 𝐴. Therefore, previous tasks’
performances are kept by constraining, with a quadratic penalty, the
parameters to stay in a region centered in 𝜃∗𝐴 of low error for task A.
Formally, the function  that we minimize in EWC is:

𝐸𝑊 𝐶 (𝜃) = 𝐵(𝜃) +
∑

𝑖

𝜆
2
𝐹𝑖(𝜃𝑖 − 𝜃∗𝐴,𝑖)

2 (3)

where 𝐹 is the Fisher information matrix, 𝜆 sets how important the old
task is compared to the new one and 𝑖 labels each parameter. When
moving to a third task (i.e., task 𝐶), EWC will try to keep the network
parameters close to the learned parameters of both task A and B. This
can be enforced either with two separate penalties, or as one by noting
that the sum of two quadratic penalties is itself a quadratic penalty.

3.2. Training procedure

The training procedure for both learning methods described in the
previous section is summarized in Algorithm 1. Given a stream of AI-
generated contents  = {𝐷1,… , 𝐷𝑛}, 𝑛 ≥ 1, at each training iteration

we train a model 𝑔𝑡(𝑥𝑡, 𝜃𝑡) on the actual 𝑡 ∈ . After the first
raining iteration on the first available batch of samples 1 ∈ , the

model is trained on all next batches {2,… , 𝐷𝑛} ∈  for all 𝑛 > 1.
ifferently from transfer learning, however, the model is forced to
inimize the loss function for both new and old examples without

equiring training over the past data samples, therefore learning an
ptimal set of parameters 𝜃𝑡 for all observed inputs (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ {0,… , 𝑡}.

3.3. Lightweight CI/CD for deepfake detection

We conclude this section by providing an overview of how the
proposed methodology could be integrated into a continuous integra-
tion and continuous delivery pipeline. The Fig. 1 shows the complete
pipeline. The upper part of the figure shows all the phases of an
MLOps CI/CD system. The lower part shows the complete pipeline into
which the continuous learning methods analyzed in this paper can be
integrated.

The pipeline consists of three main modules. In the first module,
data from generative tools, social media or databases are organized and
analyzed if necessary by forensic experts or journalists. This module
enables the preparation of model training data. In the next module, the

model continuously learns from incoming data. This module also allows

4

Algorithm 1 Training procedure for continual learning methods.
Require:  = {1,… ,𝑛}, 𝑛 ≥ 1

𝑡 = .𝑝𝑜𝑝()
𝑔𝑡(𝑥𝑡, 𝜃𝑡) ← 𝑡𝑟𝑎𝑖𝑛(𝑡)
while !.𝑖𝑠𝐸𝑚𝑝𝑦() do

𝑡 = .𝑝𝑜𝑝()
if strategy == KD then

 ← 𝑔𝑡(𝑥𝑡, 𝜃𝑡).𝑐𝑜𝑝𝑦()
 ← 𝑡𝑟𝑎𝑖𝑛

(

 ,𝑡
)

⊳ Train using the 𝐾𝐷 loss in Eq. (1).
𝑔𝑡(𝑥𝑡, 𝜃𝑡) ← 

else if strategy == EWC then
𝑔𝑡(𝑥𝑡, 𝜃𝑡) ← 𝑡𝑟𝑎𝑖𝑛(𝑡) ⊳ Train using the 𝐸𝑊 𝐶 loss in Eq. (3).

end if
end while

you to keep several copies of the model in case you need to restore a
previous version. Finally, in the last part, a continuous delivery and
monitoring module takes care of serving the newly trained model to
check for any data drift. If a new distribution of input data is identified
(e.g., content generated with a new technique), it is immediately saved
and flagged so that the model can be verified and possibly retrained on
the new data.

4. Experiments

In this section, we discuss the analyses conducted to evaluate the ef-
fectiveness of the continual learning methods introduced in Section 3.1.
We begin by introducing the dataset and selected architectures in
Section 4.1, and then, in Section 4.2 we analyze the performance of
the two continuous learning strategies by comparing them with transfer
learning. The code base will be made available at https://github.com/
francescotss/MLOpsDeepfakeDetection.

4.1. Experimental setting

Dataset
We use the CDDB (Li et al., 2023) dataset for all our experi-

ments. The dataset offers three different evaluation scenarios: an easy
task sequence, a hard task sequence, and a long one. The dataset
contains media generated with 5 different types of GAN-based gen-
erative models (StyleGAN, BigGAN, CycleGAN, GauGAN, and Star-
GAN), 5 non-GAN models (Glow, CRN, IMLE, SAN, and FaceForen-
sics++), and two datasets whose origin is unknown (WhichFaceIsReal
and WildDeepfake).

For this study, we report the results on the easy and long sequences.
We refer to these two sequences as Easy and Long, respectively.

• The Easy set (composed of GauGAN, BigGAN, CycleGAN, IMLE,
FaceForensic++, CRN, and WildDeepfake) is used to study the
basic behavior of evaluated methods when they address similar
generative techniques.

• The Long set (composed of GauGAN, BigGAN, CycleGAN, IMLE,
FaceForensic++, CRN, WildDeepfake, Glow, StarGAN, StyleGAN,
WhichFaceIsReal, and SAN) is designed to encourage methods to
better handle long sequences of deepfake detection tasks, where
the catastrophic forgetting might become more serious.

For both sequences, we use the official training, validation, and
est splits proposed by Li et al. (2023). Additionally, we also extend
he original easy and long sets with two extra classes generated from
he Stable Diffusion 1.5 dataset generated from Papa et al. (2023) and
eepFloyd-IF images extracted from Elsa D35 to the Long set. Each new

5 Source: https://huggingface.co/datasets/elsaEU/ELSA_D3/viewer.

https://github.com/francescotss/MLOpsDeepfakeDetection
https://github.com/francescotss/MLOpsDeepfakeDetection
https://github.com/francescotss/MLOpsDeepfakeDetection
https://huggingface.co/datasets/elsaEU/ELSA_D3/viewer
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Fig. 2. Zero-shot performance of the models when trained on GauGAN and tested on the Long+ set. All models fail to generalize and register a significant drawdown when tested
on new fake samples created from new generative methods. Furthermore, we can see that when exposed to families of models similar to the one seen in training, the models
perform slightly better. This could be because the image generation process influences the detector’s performance.
class consists of 3000, 1000, and 2000 images for training, validation,
and testing, respectively. We call these two modified sets the Easy+ set
and the Long+ set.

The original dataset also reports a Hard set, i.e. a set in which the
same classes are rearranged to make the sequence particularly complex
for a continuous learning model. We do not report the tables with
the detailed experiments on this sequence because, with the modifi-
cations made on the Easy+ and Long+ sets, we are already analyzing
the model’s performance when classes very different from those seen
previously in the sequence come into play. In any case, we will briefly
comment the performances of this set on Section 4.3.

Architecture
For our analysis, we selected four different state-of-the-art that have

demonstrated to achieve good results on this task (Gragnaniello et al.,
2021; Papa et al., 2023): Resnet-50, Resnet-18, Mobilenet-V2, and
Xception.

4.2. Analysis

We now turn to analyze the performance of continuous learning
methods with selected backbones. We start by illustrating the results on
the short set and then extend the considerations to the longer (i.e., the
long set). We trained each model using early stopping with a patience
of 35 up to 250 epochs. We used the Stochastic Gradient Descent
(SGD) optimizer to modify the models’ weights, with an initial learning
rate of 0.005 and a momentum of 0.1. The learning rate is controlled
by a cosine annealing scheduler with a minimum value of 10−5. For
preprocessing, we applied a random cropped on each image with a
resolution of 128 × 128.

Zero shot
We begin by analyzing the results of all models trained on the Gau-

GAN task and evaluating the whole long set for a complete benchmark
over a heterogeneous set of generative models. As shown in Fig. 2, all
the models almost always fail to detect tasks outside their training data,
indicating a clear lack of generalizability. These evaluations confirm
that a model trained on a particular generative technique struggles to
detect other types of fake images. In fact, we can see that the model
manages to achieve more or less satisfactory performances on media
generated with GANs (in particular BigGAN, CycleGAN, and StarGAN),
which evidently have characteristics more similar to those seen in the
training phase, but it ultimately fails the tasks more complex ones like

FaceForensics++, WildDeepfake, Stable Diffusion 1.5 or DeepFloyd-IF.

5

Easy and easy+ set
In Table 1, we report the experiments conducted on this set. The

table reports the performance of each dataset trained on the entire
sequence. For example, Resnet-50 obtains an accuracy of 57.80% on
GauGAN after being trained with KD up to the last available dataset
in the sequence (i.e., WildDeepfake). From the table, we can draw
some initial insights. Starting with the backbones, the Resnet-50 and
Mobilenet-V2 achieve the best results on average. As for learning
techniques, we can see a general improvement in the performance
of continual learning methods compared to transfer learning. In par-
ticular, Knowledge Distillation achieves the best performance when
combined with Resnet-50. In this specific configuration, the model
achieves excellent performance on IMLE (97.30%) and CRN (94.36%),
and good performance on CycleGAN (79.85%), while the results on
the other datasets range between 51.22% and 64.45%. The results are
not surprisingly high, but to understand why, it is necessary to reason
about the different types of datasets contained in this sequence. IMLE
and CRN both contain media drawn from computer games, which are
indeed more easily recognized. GauGAN, BigGAN, and CycleGAN are
all datasets generated with Generative Adversarial Networks, so they
have similar characteristics. Finally, FaceForensics++ and WildDeep-
fake are both challenging sets containing diverse generative techniques.
These characteristics make the sequence highly varied and, therefore,
complex to be classified uniformly well. In particular, as we iterated
through the various tasks in the sequence, we noticed that performance
can fluctuate significantly depending on the order in which these
datasets are used. Compared to state-of-the-art methods, the KD model
is outperformed by iCaRL (Rebuffi et al., 2017) but works better than
gradient-based methods like NSCIL (Wang et al., 2021). However, it
is important to highlight that iCaRL requires examples from previous
tasks during training, while knowledge distillation only sees examples
belonging to the current task. Specifically, given a new task 𝐷𝑡 at
time 𝑡, iCaRL requires the sequence  = {𝐷1,… , 𝐷𝑡} to be trained
continuously.

In Figs. 3 and 4, we elaborate more on this behavior. The figure
shows the average accuracy on each dataset recorded by training the
model on the various tasks in the following order: (1) GauGAN, (2)
BigGAN, (3) CycleGAN, (4) IMLE, (5) FaceForensics++, (6) CRN, (7)
WildDeepfake, (8) Stable Diffusion 1.5, and (9) DeepFloyd-IF. From the
figure, we can see that the performance remains high on average on
the first three (GAN-based) tasks and then undergoes an initial slight
decrease with IMLE and stabilizes with a more substantial decrease
from the fifth task onward. By analyzing this behavior, we can infer
that the big difference between the generative techniques present in
FaceForensic++ and the previous tasks strains the model in finding a
region of optimum that reduces the error on all tasks. This result is

further confirmed with the arrival of WildDeepfake, Stable Diffusion



F. Tassone, L. Maiano and I. Amerini Computer Vision and Image Understanding 249 (2024) 104143

Fig. 3. Knowledge distillation average accuracy at each task 𝑡 calculated over tasks {1,… , 𝑡}. of all backbones on the Easy+ set. The order of the tasks is the following: (1)
GauGAN, (2) BigGAN, (3) CycleGAN, (4) IMLE, (5) FaceForensics++, (6) CRN, (7) WildDeepfake, (8) Stable Diffusion 1.5, and (9) DeepFloyd-IF. The last plot shows the average
accuracy across all classes.
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Fig. 4. Elastic Weight Consolidation average accuracy at each task 𝑡 calculated over tasks {1,… , 𝑡}. of all backbones on the Easy+ set. The order of the tasks is the following: (1)
GauGAN, (2) BigGAN, (3) CycleGAN, (4) IMLE, (5) FaceForensics++, (6) CRN, (7) WildDeepfake, (8) Stable Diffusion 1.5, and (9) DeepFloyd-IF. The last plot shows the average
accuracy across all classes.
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Table 1
Transfer learning, EWC, and KD performance on the Easy set. The average column represents the average accuracy of each model across all datasets. Bold and underlined values
epresent the highest value and second best for each learning method.
Method Model Type Average

GauGAN BigGAN CycleGAN IMLE FaceForensics++ CRN WildDeepfake

Transfer learning

ResNet-50 57.80 54.38 58.79 56.89 71.63 59.32 71.02 61.40
ResNet-18 48.70 51.50 44.87 65.02 58.23 66.25 67.32 57.41
Mobilenet-V2 54.30 49.38 54.40 72.03 74.88 78.82 73.31 65.30
Xception 45.90 51.38 45.79 48.87 59.81 46.16 65.26 51.88

Class-incremental Learning NSCIL (Wang et al., 2021) 48.35 50.25 49.43 56.58 56.56 70.73 57.63 55.65
iCaRL Resnet-32 (Rebuffi et al., 2017) 76.90 80.00 88.93 99.41 85.03 99.45 76.64 87.05

EWC

ResNet-50 65.30 61.13 62.64 68.11 73.77 71.77 70.24 67.56
ResNet-18 54.15 48.50 58.61 72.50 73.21 69.07 71.36 63.91
Mobilenet-V2 54.75 48.88 63.37 76.96 86.98 89.62 68.03 69.80
Xception 50.00 48.75 50.00 56.85 59.72 58.30 61.06 54.95

KD

ResNet-50 64.45 58.75 79.85 97.30 64.65 94.36 51.22 72.94
ResNet-18 50.50 49.13 52.75 52.27 52.28 53.45 49.87 51.46
Mobilenet-V2 54.40 53.00 54.21 80.28 72.19 86.37 71.36 67.40
Xception 50.75 50.75 50.55 97.73 49.86 96.28 49.57 63.64
Table 2
Accuracy performance on the Easy set with Brightness, Contrast, and JPEG Compression transformations applied using KD models. The average column represents the average
erformance of each model across all datasets. Bold and underlined values represent the highest value and second best.
Model Transformation Type Average

GauGAN BigGAN CycleGAN IMLE FaceForensics++ CRN WildDeepfake

ResNet-50
Brightness 58.85 54.75 70.15 90.45 57.49 86.88 50.14 66.96
Contrast 59.70 56.75 70.70 94.91 59.35 90.21 51.14 68.84
JPEG Compression 69.30 60.75 74.18 83.92 58.51 80.93 51.22 68.40

ResNet-18
Brightness 55.30 56.00 60.26 58.57 61.3 58.18 69.45 59.87
Contrast 54.90 56.50 64.10 57.32 58.98 56.85 71.55 60.03
JPEG Compression 54.55 54.37 58.97 56.53 57.58 53.09 64.21 57.05

Mobilenet-V2
Brightness 54.2 50.88 55.68 76.56 66.14 82.18 68.36 64.86
Contrast 54.35 50.88 55.13 76.92 72.74 84.42 67.28 65.96
JPEG Compression 51.45 51.63 47.25 61.19 56.37 62.80 53.43 54.87

Xception
Brightness 50.35 50.13 49.45 84.27 49.86 85.75 49.61 59.92
Contrast 50.90 51.25 51.47 83.92 50.14 82.97 49.34 60.00
JPEG Compression 52.40 48.88 50.55 78.56 50.88 77.45 48.75 58.21
1.5, and DeepFloyd-IF, which turn out to be the most complex and
different tasks in the sequence. The strong asymmetry of some tasks
compared to others seems to play an important role, leading the model
to optimize performance towards some families of tasks rather than
others.

To confirm this hypothesis, we repeated the experiment by remov-
ing WildDeepfake from the easy set. As we can see from Fig. 5, the
performance of the models improves significantly if we compare the
performance of the model trained on the complete sequence (Fig. 5(a))
compared to the one trained on the sequence without WildDeepfake
(Fig. 5(b)). This tells us that the symmetry between the different tasks
is fundamental to maintaining overall satisfactory performance on the
entire sequence.

In Table 2, we measure the robustness of all models trained with
KD to three image transformations as done in Cocchi et al. (2023): (1)
brightness, (2) contrast, and (3) JPEG compression. As shown in the
table, all models register a minor degradation of their performance,
although Resnet-50 confirms being the best method followed by the
Mobilenet-V2.

Overall, the results suggest a few things. First, we can notice a
greater stability of continuous learning techniques compared to transfer
learning. Furthermore, Knowledge Distillation appears to be more ro-
bust overall than EWC, achieving higher performance on average than
its rival. In all cases, all techniques achieve better results than the zero-
shot scenario. However, the order of the sequence and the similarity of
the tasks seem to play a significant role in overall performance. Finally,
the most robust model seems to be the Resnet-50, followed closely by
the Mobilenet-V2.
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Long set
To complete the analysis, we extend the considerations made up to

now to the long sequence. In Fig. 7(a), we report the average accuracy
values on each task. As for the short sequence, the heterogeneity of
the 12 tasks poses a challenge to the continual learning methods,
preventing them from learning a general representation applicable
to all tasks. In particular, the similar result between the continual
learning methods and transfer learning suggests that the latter cannot
mitigate catastrophic forgetting. In fact, we can note that the models are
able to achieve good performance on some tasks like IMLE and CRN
(which have similar characteristics) and GAN-based tasks like Gau-
GAN, BigGAN, StarGAN, and StyleGAN but fail to maintain acceptable
performance on the other tasks.

Multi-task sequences
Collecting the considerations made so far, in this last test, we test

the methods on a hybrid continuous learning scenario. Instead of learn-
ing each individual task separately, we combined the Long sequence
tasks into groups of three, which we call Multi-tasks. Therefore, in this
configuration, the sequence is composed of 4 macro tasks:

• 𝑡1 = {GauGAN, BigGAN, CycleGAN};
• 𝑡2 = {IMLE, FaceForensics, CRN};
• 𝑡3 = {WildDeepfake, Glow, StarGAN};
• 𝑡4 = {StyleGAN, WhichFaceIsReal, SAN}.

There is no particular reason behind these four groups. We selected
them following the original order of the long set. In this experiment,
we are, in fact, interested in studying the behavior of the model in the
presence of different task batches (see Table 3).
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Fig. 5. The average accuracy of Resnet-50 trained with KD on the full Easy set
(Fig. 5(a)) and without WildDeepfake (Fig. 5(b)). Some datasets seem to heavily afflict
performance in the continuous learning context.

Fig. 7(b) reports the average accuracy values on each task. As was
reasonable to expect, by increasing the heterogeneity of the training
data for each task, the model records slightly more robust and uniform
performances between the different tasks. Moreover, from the figure
we can immediately see that, as suggested in the previous experiment,
WildDeepfake puts a strain on all learning techniques. It becomes clear
that including images from unknown sources and tasks with a restricted
dataset causes a drastic drop in accuracy. Moreover, regarding the
learning techniques, all methods achieved satisfactory results. In par-
ticular, Knowledge Distillation confirms itself as more robust in most
of the sequence but seems to suffer a slight decline in the last three
tasks. This result confirms that by aggregating tasks on the basis of
their similarity, continuous learning techniques are able to maintain
good performance over time (see Fig. 6).
9

Table 3
Precision, recall, and F1-score on the Easy set using KD models.

Model Metric Type

GauGAN BigGAN CycleGAN IMLE FaceForensics++ CRN WildDeepfake

ResNet-50
Precision 96.90 90.63 97.63 99.42 70.14 99.65 52.29
Recall 28.10 21.75 60.44 93.66 48.03 89.51 21.32
F1-score 43.57 35.08 74.66 96.45 57.02 94.31 30.29

ResNet-18
Precision 58.53 57.28 63.36 72.18 61.21 70.46 72.56
Recall 31.90 44.25 67.77 28.01 75.80 28.58 75.54
F1-score 41.29 49.93 65.49 40.36 67.73 40.67 74.02

Mobilenet-V2
Precision 62.89 55.49 57.14 81.72 75.55 83.23 70.96
Recall 22.20 25.25 57.14 76.60 70.73 90.52 73.82
F1-score 32.82 34.71 57.14 79.08 73.06 86.72 72.36

Xception
Precision 81.25 35.71 81.82 97.58 00.00 97.01 43.69
Recall 01.30 01.25 03.30 97.97 00.00 94.13 03.37
F1-score 02.56 02.42 06.34 97.77 00.00 95.55 06.25

4.3. Limitations

The analyzed results give us some interesting information. First of
all, continuous learning techniques show an improvement compared to
the zero-shot scenario. However, the similarity of the various tasks in
sequence and their order of arrival seem to play an important role in
maintaining satisfactory performance throughout the sequence. When
trained on the Hard set, the model struggles to maintain stable per-
formances (GauGAN 60.00%, BigGAN 54.12%, WildDeepfake 49.49%,
WhichFaceReal 54.25%, San 82.95%), registering an average 60.16%
accuracy.

The results presented require further investigation. First of all, in
this study, we limited ourselves to analyzing the behavior of 5 back-
bones commonly used in deepfake detection; however, a comparison
of more advanced deepfake detection methods present in the litera-
ture is necessary. Furthermore, the results obtained in the multi-task
configuration suggest that these techniques could benefit from using a
memory (del Rio et al., 2023). This aspect will be further analyzed in
our future studies. Finally, in this study, we assumed the different tasks
arrived in batches. This is certainly possible, as the release of a new
tool could lead to introducing a significant sample of media generated
with it. However, it remains essential to study the robustness of these
techniques on smaller and more heterogeneous sequences.

5. Conclusion

In this paper, we proposed an analysis of two deepfake detection
techniques (Knowledge Distillation and Elastic Weight Consolidation),
comparing them with zero-shot scenarios and transfer learning. The re-
sults show that continuous learning techniques can help make deepfake
detection models more robust and easily updated to new generative
methods. However, our analysis also highlighted some problems. The
performance of these learning strategies seems to depend significantly
on the similarity of the tasks and their order of arrival. To address this
problem, we have shown how it is possible to combine the different
tasks to obtain significantly better performance. Consequently, future
developments of this work could analyze the importance of using
memory and the robustness of these learning techniques to smaller and
more heterogeneous sequences.

In addition to this, we also gave an overview of a CI/CD pipeline
for deepfake detection, showing how the models used in this work
can be combined with other modules to obtain a pipeline that can
be used in a real application scenario. In this regard, in the future
we will present a complete version of all the fundamental modules of
this pipeline, starting first from the data drift detection module. This
module, in particular, could help to significantly improve performance
in continuous learning.
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Fig. 6. Validation accuracies for each task in the Easy+ set during the training on Task 9 (DeepFloyd-IF). The training task (9) is highlighted in bold.
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