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Abstract. We prove a compactness and semicontinuity result that applies to minimisation
problems in nonhomogeneous linear elasticity under Dirichlet boundary conditions. This
generalises a previous compactness theorem that we proved and employed to show existence
of minimisers for the Dirichlet problem for the (homogeneous) Griffith energy.
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1. Introduction

In this paper we study the minimisation of free discontinuity functionals describing energies
for linearly elastic solids with discontinuities, under Dirichlet boundary conditions. For a solid
in a given (bounded) reference configuration Ω ⊂ Rn, whose displacement field is u : Ω→ Rn,
the minimisation of integral functionals of the form

E(u) :=

ˆ
Ω

f(x, e(u)) dx+

ˆ
Ju

g(x, [u], νu) dHn−1 (1.1)

accounts for the interaction of the internal elastic energy and the energy dissipated in the
surface discontinuities.

The elastic properties of the solid are determined by the elastic strain e(u) = 1
2 (∇u+(∇u)T),

the symmetrized gradient of u, through a function f with superlinear growth in e(u) (often
a quadratic form) and in general depending on the material point x ∈ Ω. The surface term
is related to dissipative phenomena such as cracks, surface tension between different elastic
phases, or internal cavities, and is concentrated on the jump set Ju, representing the surface
discontinuities of u. The jump set is such that when blowing up around any x ∈ Ju, it is
approximated by a hyperplane with normal νu(x) ∈ Sn−1 and the displacement field is close
to two suitable distinct values u+(x), u−(x) ∈ Rn on the two sides of the body with respect to
this hyperplane. The jump opening, denoted by [u], is then [u](x) = u+(x)− u−(x). In order
to ensure that the volume and the surface term do not interact, it is usually assumed that g
be greater than a positive constant, or some growth condition for small values of [u] (besides
the superlinear growth of f). Therefore, the functionals we consider are bounded from below
through the Griffith-like energy ([32, 28])

G(u) :=

ˆ
Ω

|e(u)|p dx+Hn−1(Ju) , with p > 1 . (1.2)
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2 EQUILIBRIUM IN NONHOMOGENEOUS LINEAR ELASTICITY WITH DISCONTINUITIES

The first main issue in the minimisation of energies of the type (1.1) when also the control
from above is only through (1.2) (in particular if g is independent of [u]) is how to obtain
suitable compactness. This is related to the lack of good a priori integrability properties for
displacements with finite energy G. In fact, a pathological situation may occur in the pres-
ence of connected components, well included in Ω, whose boundary is contained (or almost
completely contained) in Ju: this allows to modify the displacement in these internal compo-
nents by adding any constant, so that arbitrarily large values of u may be reached without (or
slightly) modifying the energy.

Compactness results for sequences with equibounded energy (1.2) have been obtained with
increasing generality. In [11] compactness w.r.t. (with respect to) strong L1 convergence is
obtained assuming a uniform L∞ bound on the displacement field: this guarantees that the
distributional symmetrized gradient Eu is a bounded Radon measure and then u belongs to the
space SBD(Ω) of special functions of bounded deformation [8], and in particular u ∈ L1(Ω;Rn).
In [21], Dal Maso introduced the space of generalised special functions of bounded deformation
GSBD(Ω) (with the smaller GSBDp(Ω), the right energy space for (1.2), see Section 2) and
proved a compactness result under a uniform mild integrability control on sequences with
bounded energy, ensuring convergence in measure.

The first compactness result for (1.2) without further constraints is obtained by Friedrich
[29] in dimension two, basing on a piecewise Korn inequality. This inequality permits to
ensure the compactness for sequences with bounded energy, up to subtracting suitable piece-
wise rigid motions, namely functions coinciding with an infinitesimal rigid motion (that is
an affine function with skew-symmetric gradient) on each element of a suitable Caccioppoli
partition P = (Pj)j of the domain (that is ∂∗P =

⋃
j ∂
∗Pj has finite surface measure; see [17]

characterising piecewise rigid motions).
In [15] we proved in any dimension that each sequence (uh)h with equibounded energy (1.2)

converges in measure (up to subsequences) to a GSBDp function u, outside an exceptional set
with finite perimeter A where |uh| → +∞. Outside the exceptional set, weak Lp convergence
for the symmetrized gradients (e(uh))h holds and Hn−1(Ju∪ (∂∗A∩Ω)) ≤ lim infhHn−1(Juh).
The main ingredient for basic compactness w.r.t. the convergence in measure is the Korn-
Poincaré inequality for function with small jump set proven in [14], while the semicontinuity
properties are obtained through a slicing argument. In particular, this directly solves the
Dirichlet minimisation problem for the energy (1.2), with volume term possibly convex with
p-growth in e(u), but still attaining its minimum value for e(u) = 0: starting from a minimising
sequence (uh)h, a minimiser is given by any function equal to u in Ω\A and to an infinitesimal
rigid motion in A. One may argue analogously if the minimum value of f is independent of x.

However, for general nonhomogeneous materials (for instance composite materials) such
that the minimum value of f(x, ·) depends on x, this strategy does not work and a better
characterisation of the limit behaviour also in the exceptional set is required. A similar issue
arises when employing the compactness result by Ambrosio [2, 3, 5] in the space of generalised
functions of bounded variation GSBV , and in its subspace GSBV p to the minimisation of
energies

ˆ
Ω

f(x,∇u) dx+

ˆ
Ju

g(x, [u], νu) dHn−1 (1.3)

depending on the full gradient ∇u in place of e(u). For this reason a compactness result in
GSBV p of different type has been derived in [30]: for any sequence with bounded energy
(uh)h (1.3) it is possible to find modifications yh such that the energy increases at most by 1

h ,
Ln({∇uh 6= ∇yh}) ≤ 1

h , and (yh)h converges in measure to some u ∈ GSBV p. The functions
yh are indeed obtained from uh by subtracting a piecewise constant function up to a set of
small measure, in the same spirit of the aforementioned [29] with piecewise rigid motions
replaced by piecewise constant functions.

The present work is based on a different approach: we prove that, given (uh)h with
suph(G(uh)) < +∞, for suitable piecewise rigid motions ah the sequence (uh − ah)h con-
verges in measure to some u ∈ GSBDp, such that G(u) ≤ lim infhG(uh). Differently from
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[30], we have e(uh) = e(uh − ah) since we subtract piecewise rigid motions (without excep-
tional sets of small measure); this precludes in general uh − ah to be a minimising sequence,
but nevertheless the lower semicontinuity for the surface part is obtained directly in terms of
Juh . Our compactness result is the following (we use notation (2.9) for Caccioppoli partitions).

Theorem 1.1. Let p ∈ (1,+∞) and Ω ⊂ Rn be open, bounded, and Lipschitz. For any
sequence (uh)h with suphG(uh) < +∞ there exist a subsequence, not relabelled, a Caccioppoli
partition P = (Pj)j of Ω, a sequence of piecewise rigid motions (ah)h of the form

ah =
∑
j∈N

ajhχPj , (1.4)

with ajh infinitesimal rigid motions and

|ajh(x)− aih(x)| → +∞ for Ln-a.e. x ∈ Ω, for all i 6= j , (1.5a)

and a function u ∈ GSBDp(Ω) such that

uh − ah → u Ln-a.e. in Ω , (1.5b)

e(uh) ⇀ e(u) in Lp(Ω;Mn×n
sym ) , (1.5c)

Hn−1(Ju ∪ (∂∗P ∩ Ω)) ≤ lim inf
h→∞

Hn−1(Juh) . (1.5d)

The first step of the proof consists in finding a partition P, piecewise rigid motions ah, and u
measurable such that (1.4), (1.5a), and (1.5b) hold. In doing this, a fundamental tool is a Korn
inequality for functions with small jump set, proven in two dimensions in [18, Theorem 1.2]
and recently extended to any dimension in [13]. This permits, for every η > 0, to recover (1.4)
and (1.5b) in a set Ωη ⊂ Ω, such that Ln(Ω \ Ωη) < η. Then, the so obtained sequences of
infinitesimal rigid motions are regrouped in equivalence classes for fixed η, saying that any
(aih)h, (ajh)h (depending on η) are not equivalent if and only if (1.5a) holds for i, j. Finally,
we pass to η → 0 observing that this procedure is stable when η decreases: the objects found
in correspondence to η coincide with those found for η/2 on Ωη ∩ Ωη/2.

In the second step we prove (1.5d) through a slicing procedure. The guiding idea is that, if
(1.4), (1.5a), (1.5b) hold for n = 1 (with Ω a real interval, ah piecewise constant, and (|∇uh|)h
equibounded in Lp), then not only any jump point of u is a cluster point for (Juh)h but this
holds also for any point y ∈ ∂∗P ∩ Ω: in fact, by (1.5a) and (1.5b), the functions uh assume
arbitrarily far values, as h→∞, in couple of points close to y but on different sides of Ω\{y},
so uh have to jump near y for h large. We conclude by noticing that in view of (1.5d) the ah
are indeed piecewise rigid motions, so suphG(uh − ah) < +∞ and (1.5c) follows from former
compactness results.

Besides compactness, we examine the semicontinuity properties of E, defined in (1.1). The
lower semicontinuity of the surface term has been recently established for a large class of
densities in [31], for sequences equibounded w.r.t. G (defined in (1.2)) and converging in
measure (and also for functionals defined on piecewise rigid motions), providing a counterpart
for the analysis of energies (1.3) in [6, 7]. We then assume that the surface part is lower
semicontinuous w.r.t. the convergence in measure and move in two directions: we address the
semicontinuity properties both of the volume term, and of the surface term w.r.t. the notion
of convergence from Theorem 1.1. We prove the following result (see (2.8) for the definition
of weak convergence in GSBD and recall (2.9)).

Theorem 1.2. Let p ∈ (1,+∞) and Ω ⊂ Rn be open, bounded, and Lipschitz. Assume that
(f1) f : Ω×Mn×n

sym → [0,∞) be a Carathéodory function;
(f2) f(x, ·) be symmetric quasi-convex for Ln-a.e. x ∈ Ω;
(f3) for suitable C > 0 and φ ∈ L1(Ω), it holds

1

C
|ξ|p ≤ f(x, ξ) ≤ φ(x) + C(1 + |ξ|p) for a.e. x ∈ Ω and every ξ ∈Mn×n

sym ;

moreover assume that
(g1) g : Ω× Rn × Sn−1 → [c,+∞) be measurable, with c > 0;
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(g2) g(x, y, ν) = g(x,−y,−ν) for any x, y, ν;
(g3) g(·, y, ν) be continuous, uniformly w.r.t. y ∈ Rn and ν ∈ Sn−1;
(g4) for each x ∈ Ω gx = g(x, ·, ·) be such that for any cube Q and any vh → v weakly in

GSBDp(Q)ˆ
Jv

gx([v], νv) dHn−1 ≤ lim inf
h→∞

ˆ
Jvh

gx([vh], νvh) dHn−1 ;

(g5) there is g∞ : Ω × Rn → [0,+∞] such that either g∞ ≡ +∞ or g∞(x, ·) is a norm for
every x ∈ Ω, and

lim
|y|→+∞

g(x, y, ν) = g∞(x, ν) uniformly w.r.t. x ∈ Ω and ν ∈ Sn−1 .

Then, for any sequence (uh)h such that suphE(uh) < +∞ there exist a subsequence (not
relabelled), a Caccioppoli partition P of Ω, a sequence of piecewise infinitesimal rigid motions
(ah)h, and u ∈ GSBDp(Ω) such that (1.4), (1.5) hold andˆ

Ω

f(x, e(u)) dx+

ˆ
Ju∩P(1)

g(x, [u], νu) dHn−1 +

ˆ
∂∗P∩Ω

g∞(x, νP) dHn−1 ≤ lim inf
h→∞

E(uh)

if g∞ is finite, while Hn−1(∂∗P ∩ Ω) = 0 and E(u) ≤ lim infhE(uh) if g∞ ≡ +∞.

The proof relies on a blow-up argument ([27]). For the bulk part we use again the result in
[13]. Blowing up around a point x0 /∈ Ju, since the density of jump vanishes in Hn−1-measure,
the Korn-type inequality of [13] give that the rescaled function coincides with a W 1,p field up
to a small set; we then combine this with an approximation through equi-Lipschitz functions,
in the footsteps of [1, 4, 24], in order to apply Morrey’s Theorem [33] in most of the blow-up
ball.

As for the surface energy concentrated on ∂∗P, we blow-up around x0 ∈ ∂∗P ∩ Ω to find
that the rescaled function converges in measure, up to subtracting in the two halves of the
blow-up cell two different infinitesimal rigid motions whose difference diverges as h → +∞,
so that the jump has arbitrarily large amplitude near the middle of the cell. This allows to
conclude through a slicing argument (anisotropic), which requires a suitable condition on g∞,
such as (g5) (notice that this condition, which states that g∞ is independent of the amplitude
of the jump, is very restrictive, however we have currently no idea of how to treat more general
cases).

Theorem 1.2 ensures existence of solutions to the class of minimisation problems

min
(u,P)

{ˆ
Ω

f(x, e(u)) dx+

ˆ
Ju\∂∗P

g(x, [u], νu) dHn−1 +

ˆ
∂∗P∩Ω

g∞(x, ν) dHn−1

}
under Dirichlet boundary condition. The further condition ∂∗P ∩ Ω ⊂ Ju may be enforced,
permitting to detect the effective fractured zone by looking only at u. In this class of problems
we minimise not only in u, but also on the possible partitions that may be created. If g∞ ≡
+∞, minimising sequences converge without modifications, see Proposition 4.2. The case
g(x, [u], ν) = g∞(ν) = ψ(ν) corresponds to minimise an anisotropic version of (1.2) with
general nonhomogeneous bulk energy (see Proposition 4.4; we refer to [20, Theorem 5.1] for
an anisotropic version of (1.2) in the context of epitaxially strained materials [12]).

The paper is organised as follows: in Section 2 we recall basic notions and prove two lemmas
on infinitesimal rigid motions. Section 3 is devoted to the proof of Theorem 1.1. In Section 4
we prove Theorem 1.2 and address the Dirichlet minimisation problems.

2. Preliminaries

In this section we fix the notation and recall the main tools employed in this work.

2.1. Basic notation. For every x ∈ Rn and % > 0, let B%(x) ⊂ Rn be the open ball with
center x and radius %, and let Q%(x) = x + (−%, %)n, Q±% (x) = Q%(x) ∩ {x ∈ Rn : ± x1 > 0}.
For ν ∈ Sn−1 := {x ∈ Rn : |x| = 1}, we let also Qν%(x) the cube with “center” x, sidelength %
and with a face in a plane orthogonal to ν. We omit to write the dependence on x when x = 0.
(For x, y ∈ Rn, we use the notation x ·y for the scalar product and |x| for the Euclidean norm.)



EQUILIBRIUM IN NONHOMOGENEOUS LINEAR ELASTICITY WITH DISCONTINUITIES 5

By Mn×n, Mn×n
sym , and Mn×n

skew we denote the set of n × n matrices, symmetric matrices, and
skew-symmetric matrices, respectively. We write χE for the indicator function of any E ⊂ Rn,
which is 1 on E and 0 otherwise. If E is a set of finite perimeter, we denote its essential
boundary by ∂∗E, and by E(s) the set of points with density s for E, see [9, Definition 3.60].
We indicate the minimum and maximum value between a, b ∈ R by a∧b and a∨b, respectively.

We denote by Ln and Hk the n-dimensional Lebesgue measure and the k-dimensional
Hausdorff measure, respectively. The m-dimensional Lebesgue measure of the unit ball in
Rm is indicated by γm for every m ∈ N. For any locally compact subset B ⊂ Rn, (i.e. any
point in B has a neighborhood contained in a compact subset of B), the space of bounded
Rm-valued Radon measures on B [respectively, the space of Rm-valued Radon measures on B]
is denoted by Mb(B;Rm) [resp., by M(B;Rm)]. If m = 1, we write Mb(B) for Mb(B;R),
M(B) forM(B;R), andM+

b (B) for the subspace of positive measures ofMb(B). For every
µ ∈ Mb(B;Rm), its total variation is denoted by |µ|(B). Given Ω ⊂ Rn open, we use the
notation L0(Ω;Rm) for the space of Ln-measurable functions v : Ω → Rm, endowed with the
topology of convergence in measure.

Definition 2.1. Let E ⊂ Rn, v ∈ L0(E;Rm), and x ∈ Rn such that

lim sup
%→0+

Ln(E ∩B%(x))

%n
> 0 .

A vector a ∈ Rm is the approximate limit of v as y tends to x if for every ε > 0 there holds

lim
%→0+

Ln(E ∩B%(x) ∩ {|v − a| > ε})
%n

= 0 ,

and then we write
ap lim
y→x

v(y) = a .

Definition 2.2. Let U ⊂ Rn be open and v ∈ L0(U ;Rm). The approximate jump set Jv is
the set of points x ∈ U for which there exist a, b ∈ Rm, with a 6= b, and ν ∈ Sn−1 such that

ap lim
(y−x)·ν>0, y→x

v(y) = a and ap lim
(y−x)·ν<0, y→x

v(y) = b .

The triplet (a, b, ν) is uniquely determined up to a permutation of (a, b) and a change of
sign of ν, and is denoted by (v+(x), v−(x), νv(x)). The jump of v is the function defined by
[v](x) := v+(x)− v−(x) for every x ∈ Jv.

We note that Jv is a Borel set with Ln(Jv) = 0, and that [v] is a Borel function.

2.2. BV and BD functions. Let U ⊂ Rn be open. We say that a function v ∈ L1(U)
is a function of bounded variation on U , and we write v ∈ BV (U), if Div ∈ Mb(U) for
i = 1, . . . , n, where Dv = (D1v, . . . ,Dnv) is its distributional derivative. A vector-valued
function v : U → Rm is in BV (U ;Rm) if vj ∈ BV (U) for every j = 1, . . . ,m. The space
BVloc(U) is the space of v ∈ L1

loc(U) such that Div ∈ M(U) for i = 1, . . . , d. If n = 1,
v ∈ L1(U) is a function of bounded variation if and only if its pointwise variation is finite, cf.
[9, Proposition 3.6, Definition 3.26, Theorem 3.27].

A function v ∈ L1(U ;Rn) belongs to the space of functions of bounded deformation if the
distribution Ev := 1

2 ((Dv)T +Dv) belongs toMb(U ;Mn×n
sym ). It is well known (see [8, 35]) that

for v ∈ BD(U), Jv is countably (Hn−1, n−1) rectifiable, and that

Ev = Eav + Ecv + Ejv ,

where Eav is absolutely continuous w.r.t. Ln, Ecv is singular w.r.t. Ln and such that |Ecv|(B) =
0 if Hn−1(B) <∞, while Ejv is concentrated on Jv. The density of Eav w.r.t. Ln is denoted
by e(v).

The space SBD(U) is the subspace of all functions v ∈ BD(U) such that Ecv = 0. For
p ∈ (1,∞), we define SBDp(U) := {v ∈ SBD(U) : e(v) ∈ Lp(Ω;Mn×n

sym ), Hn−1(Jv) < ∞}.
Analogous properties hold for BV , such as the countable rectifiability of the jump set and the
decomposition of Dv. The spaces SBV (U ;Rm) and SBV p(U ;Rm) are defined similarly, with
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∇v, the density of Dav, in place of e(v). For a complete treatment of BV , SBV functions and
BD, SBD functions, we refer to [9] and to [35, 8, 11, 19], respectively.

2.3. GBD functions. The space GBD of generalized functions of bounded deformation has
been introduced in [21]. We recall its definition and main properties, referring to that paper
for a general treatment and more details. Since the definition of GBD is given by slicing
(differently from the definition of GBV , cf. [3, 23]), we first introduce some notation. Fixed
ξ ∈ Sn−1, we let

Πξ := {y ∈ Rn : y·ξ = 0}, Bξy := {t ∈ R : y+tξ ∈ B} for any y ∈ Rn and B ⊂ Rn , (2.1)

and for every function v : B → Rn and t ∈ Bξy, let

vξy(t) := v(y + tξ), v̂ξy(t) := vξy(t) · ξ . (2.2)

Definition 2.3 ([21]). Let Ω ⊂ Rn be a bounded open set, and let v ∈ L0(Ω;Rn). Then
v ∈ GBD(Ω) if there exists λv ∈M+

b (Ω) such that one of the following equivalent conditions
holds true for every ξ ∈ Sn−1:

(a) for every τ ∈ C1(R) with − 1
2 ≤ τ ≤ 1

2 and 0 ≤ τ ′ ≤ 1, the partial derivative
Dξ

(
τ(v · ξ)

)
= D

(
τ(v · ξ)

)
· ξ belongs toMb(Ω), and for every Borel set B ⊂ Ω∣∣Dξ

(
τ(v · ξ)

)∣∣(B) ≤ λv(B);

(b) v̂ξy ∈ BVloc(Ωξy) for Hn−1-a.e. y ∈ Πξ, and for every Borel set B ⊂ Ωˆ
Πξ

(∣∣Dv̂ξy∣∣(Bξy \ J1
v̂ξy

)
+H0

(
Bξy ∩ J1

v̂ξy

))
dHn−1(y) ≤ λv(B) ,

where J1
ûξy

:=
{
t ∈ Jûξy : |[ûξy]|(t) ≥ 1

}
.

The function v belongs to GSBD(Ω) if v ∈ GBD(Ω) and v̂ξy ∈ SBVloc(Ωξy) for every ξ ∈ Sn−1

and for Hn−1-a.e. y ∈ Πξ.

Every v ∈ GBD(Ω) has an approximate symmetric gradient e(v) ∈ L1(Ω;Mn×n
sym ) such that

for every ξ ∈ Sn−1 and Hn−1-a.e. y ∈ Πξ there holds

e(v)(y + tξ)ξ · ξ = v̇ξy(t) for L1-a.e. t ∈ Ωξy ; (2.3)

where v̇ξy denotes the density of the absolutely continuous part of the derivative Dv̂ξy of v̂ξy, the
approximate jump set Jv is still countably (Hn−1, n−1)-rectifiable (cf. [21, Theorem 6.2]) and
may be reconstructed from its slices through the identity

(Jξv )ξy = Jv̂ξy and v±(y + tξ) · ξ = (v̂ξy)±(t) for t ∈ (Jv)
ξ
y , (2.4)

where Jξv := {x ∈ Jv : [v] · ξ 6= 0} (it holds that Hn−1(Jv \ Jξv ) = 0 for Hn−1-a.e. ξ ∈ Sn−1). It
follows that, if v ∈ GSBD(Ω) with Hn−1(Jv) < +∞, for every Borel set B ⊂ Ω

Hn−1(Jv ∩B) = (2γn−1)−1

ˆ

Sn−1

(ˆ
Πξ

H0(Jv̂ξy ∩B
ξ
y) dHn−1(y)

)
dHn−1(ξ) (2.5)

and the two conditions in the definition of GSBD for v hold for λv ∈M+
b (Ω) such that

λv(B) ≤
ˆ
B

|e(v)|dx+Hn−1(Jv ∩B) for every Borel set B ⊂ Ω . (2.6)

For any countably (Hn−1, n−1)-rectifiable set M ⊂ Ω with unit normal ν : M → Sn−1, it
holds that for Hn−1-a.e. x ∈M there exist the traces v+

M (x), v−M (x) ∈ Rn such that

ap lim
±(y−x)·ν(x)>0, y→x

v(y) = v±M (x) (2.7)

and they can be reconstructed from the traces of the one-dimensional slices. This has been
proven by [21, Theorem 5.2] for C1 manifolds of dimension n−1, and may be extended to
countably (Hn−1, n−1)-rectifiable sets arguing as in [10, Proposition 4.1, Step 2].
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Finally, if Ω has Lipschitz boundary, for each v ∈ GBD(Ω) the traces on ∂Ω are well defined
in the sense that for Hn−1-a.e. x ∈ ∂Ω there exists tr(v)(x) ∈ Rn such that

ap lim
y→x, y∈Ω

v(y) = tr(v)(x).

For 1 < p <∞, the space GSBDp(Ω) is defined by

GSBDp(Ω) := {v ∈ GSBD(Ω): e(v) ∈ Lp(Ω;Mn×n
sym ), Hn−1(Jv) <∞} .

We say that a sequence (vk)k ⊂ GSBDp(Ω) converges weakly to v ∈ GSBDp(Ω) if

sup
k∈N

(
‖e(uk)‖Lp(Ω) +Hn−1(Juk)

)
< +∞ and uk → u in L0(Ω;Rn) . (2.8)

We say that (vk)k is bounded in GSBDp(Ω) if supk
(
‖e(uk)‖Lp(Ω) +Hn−1(Juk)

)
< +∞.

We recall the following approximate Korn-type inequality for GSBDp functions with small
jump set in a ball, recently proven in [13]. (We fix the case ε = 1 in that result.) We refer to
[29] and [18] for Korn-type inequalities in GSBDp in two dimensions.

Theorem 2.4 ([13], Theorem 3.2). Let n ∈ N with n ≥ 2, and let p ∈ (1,+∞). Given σ ∈
(0, 1) there exist C = C(n, p) and η = η(n, p, σ), such that for every % > 0, v ∈ GSBDp(B%)
with Hn−1(Jv) ≤ η%n−1 there exist w ∈ GSBDp(B%) and a set of finite perimeter ω ⊂ B%
such that w = v in B% \ ω, Hn−1(∂∗ω) < CHn−1(Jv), w ∈W 1,p(Bσ%;Rn), andˆ

B%

|e(w)|p dx ≤ 2

ˆ
B%

|e(v)|p dx , Hn−1(Jw) ≤ Hn−1(Jv) .

Employing this result, in [13] it is proven that any function v ∈ GSBDp(Ω) is approximately
differentiable Ln-a.e. in Ω, that is for Ln-a.e. x ∈ Ω there exists ∇v(x) ∈ Mn×n (such that
e(v)(x) = (∇v(x))sym for a.e. x) for which it holds

ap lim
y→x

|v(y)− v(x)−∇v(x)(y − x)|
|y − x|

= 0 .

2.4. Caccioppoli partitions. A partition P = (Pj)j of an open set U ⊂ Rn is said a Cacciop-
poli partition of U if

∑
j∈N ∂

∗Pj < +∞. (see [9, Definition 4.16]). For Caccioppoli partitions
the following structure theorem holds.

Theorem 2.5 ([9], Theorem 4.17). Let (Pj)j be a Caccioppoli partition of U . Then⋃
j∈N

P
(1)
j ∪

⋃
i 6=j

(∂∗Pi ∩ ∂∗Pj)

contains Hn−1-almost all of U .

For any Caccioppoli partition P = (Pj)j we set

∂∗P :=
⋃
j∈N

∂∗Pj , P(1) :=
⋃
j∈N

P
(1)
j , νP(x) := νPj (x) for x ∈ ∂∗Pj \

⋃
i<j

∂∗Pi . (2.9)

2.5. Symmetric quasi-convexity. We recall the definition of symmetric quasi-convex func-
tions, introduced in [25].

Definition 2.6 ([25]). A function f : Mn×n
sym → [0,+∞) is symmetric quasi-convex if

f(ξ) ≤ 1

Ln(D)

ˆ
D

f(ξ + e(ϕ)(x)) dx

for every bounded open set D of Rn, for every ϕ ∈W 1,∞
0 (D;Rn), and for every ξ ∈Mn×n

sym .

This property is related to the quasi-convexity in the sense of Morrey [33]; indeed f is
symmetric quasi-convex if and only if f ◦ π is quasi-convex in the sense of Morrey, where π
denotes the projection of Mn×n onto Mn×n

sym (see [25, Remark 2.3]).
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2.6. Two lemmas on affine functions. We present below two lemmas that will be useful
in the slicing procedure in Theorems 1.1 and 1.2. We say that a : Rd → Rd is an infinitesimal
rigid motion if a is affine with e(a) = 1

2 (∇a+ (∇a)T) = 0.

Lemma 2.7. Let (Pj)j be a Caccioppoli partition and let (ah)h be a sequence of piecewise
rigid motions such that (1.4) and (1.5a) hold. Then for Hn−1-a.e. ξ ∈ Sn−1

|(ajh − a
i
h)(x) · ξ| → +∞ as h→ +∞ for Ln-a.e. x ∈ Ω, for all i 6= j , (2.10)

Proof. For fixed i ∈ N, j ∈ N, with i 6= j, (2.10) follows from [15, Lemma 2.7] applied to
vh = ajh − aih. This provides an Hn−1-negligible set of ξ Ni,j ⊂ Sn−1.

Then (2.10) holds for any i 6= j for every ξ ∈ Sn−1 \ N , where N =
⋃
i 6=j Ni,j is still

Hn−1-negligible. �

Lemma 2.8. Let (ak)k be a sequence of infinitesimal rigid motions, ak : Ω → Rn, ak(x) =
Akx+ bk, Ak ∈Mn×n

skew, bk ∈ Rn. Then, up to a subsequence, either (ak)k converges uniformly
to an infinitesimal rigid motion (with values in Rn) or there exists an affine subspace Π of
dimension at most n−2 such that |ak(x)| → +∞ for every x in Ω \Π.

Proof. If Ak and bk are uniformly bounded on a subsequence, then we have uniform conver-
gence to an infinitesimal rigid motion (with values in Rn). Else, µk := |Ak|+ |bk| diverges. Up
to a subsequence, we may assume that

Ak
µk
→ A and

bk
µk
→ b with |A|+ |b| = 1. (2.11)

Then, for any x,

Ax+ b 6= 0 ⇒ lim
k→+∞

|ak(x)| = lim
k→+∞

µk|Ax+ b| = +∞

If A = 0, this is true for all x (since b 6= 0). Else, this is true as long as x does not belong to
the affine subspace Π := {x : Ax + b = 0}, which has dimension at most n−2, A being a non
null skew-symmetric matrix. �

3. The compactness result

This section is devoted to the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof in steps.

Step 1: Existence of (ah)h. Let µh := Hn−1 Juh ∈ M
+
b (Ω). Since (uh)h is bounded in

GSBDp(Ω), suph |µh|(Ω) = Hn−1(Juh) < M and then, up to a (not relabelled) subsequence,
µh

∗
⇀ µ inM+

b (Ω). We denote by

J :=
{
x ∈ Ω: lim sup

%→0+

µ(B%(x))

%n−1
> 0
}
.

By [9, Theorem 2.56], the set J is σ-finite w.r.t. the measure Hn−1, so in particular Ln(J) = 0.
Let us fix σ ∈ ( 1

2 , 1) and consider η = η(σ) and C > 0 such that the conclusion of Theorem 2.4
holds true in correspondence to σ. (We assume n and p fixed once for all.)

Substep 1.1: Existence of (ah)h up to a set of small measure. Let us fix η ∈ (0, η). In the
following we perform a construction in correspondence of σ and η; to ease the notation, we
do not write explicitly the dependence on these parameters in the objects introduced in the
construction. Afterwards (starting from (3.6)), we shall keep track of the dependence on η.

By definition of J , for any x ∈ Ω \ J there exists %0 = %0(x, η) such that µ(B%(x)) ≤ η
2%
n−1

for every % ∈ (0, %0). Then, in view of the weak∗ convergence of µh to µ, for every % ∈ (0, %0)
such that µ(∂B%(x)) = 0 (notice that this holds for all % except countable many) we have
that limh→∞ µh(B%(x)) = µ(B%(x)). We denote by T0 = T0(x) the set of % < %0 for which
limh→∞ µh(B%(x)) = µ(B%(x)). This implies that there exists h0 = h0(x, η, %) such that
µh(B%(x)) < η%n−1 for % ∈ T0 and h ≥ h0.
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Applying Theorem 2.4 in correspondence to uh ∈ GSBDp(B%(x)) we deduce that for every
x ∈ Ω \ J , % ∈ T0, h ≥ h0, there exist vh,%,x ∈ GSBDp(B%(x)) and a set of finite perimeter
ωh,%,x ⊂ B%(x) such that vh,%,x = uh in B%(x) \ ωh,%,x, vh,%,x ∈W 1,p(Bσ%(x);Rn), andˆ

B%(x)

|e(vh,%,x)|p dx ≤ 2

ˆ
B%(x)

|e(uh)|p dx , (3.1a)

Hn−1(∂∗ωh,%,x) ≤ CHn−1(Juh ∩B%(x)) , (3.1b)

Ln(ωh,%,x) ≤ C η
n
n−1 %n , (3.1c)

where in (3.1c) we used also the Isoperimetric Inequality. In particular, by Korn and Korn-
Poincaré inequalities (see e.g. [35]) applied to vh,%,x in Bσ%(x), there exist infinitesimal rigid
motions ah,%,x such thatˆ

Bσ%(x)

(
|vh,%,x − ah,%,x|p

∗
+ |∇(vh,%,x − ah,%,x)|p

)
dx ≤ C

ˆ
B%(x)

|e(uh)|p dx . (3.2)

We notice that the family

F := {Bσ%(x) : x ∈ Ω \ J, % ∈ T0(x)}

is a fine cover of Ω \ J (cf. [9, Section 2.4]). Then, by Besicovitch Covering Theorem, there
exists a disjoint family of balls (Bσ%(xi)(xi))i ⊂ F with Ln

(
(Ω \ J) \

⋃
i∈NBσ%(xi)(xi)

)
= 0.

In particular, there exists N , depending on η, such that

Ln
(

(Ω \ J) \
N⋃
i=1

Bσ%(xi)(xi)
)
< η . (3.3)

Let us fix i ∈ {1, . . . , N}. There exist (we set %i ≡ %(xi)) sequences of sets of finite perimeter
(ωh,%i,xi)h contained inB%i(xi), of functions (vh,%i,xi)h ⊂ GSBDp(B%i(xi))∩W 1,p(Bσ%i(xi);Rn)
with vh,%i,xi = uh in B%i(xi) \ ωh,%i,xi , and of infinitesimal rigid motions (ah,%i,xi)h such that
(3.1) and (3.2) hold for % = %i, x = xi.

Then, by (3.1b) and (3.1c), up to a subsequence (not relabelled) the characteristic functions
of the sets ωh,%i,xi converge weakly∗ in BV (B%i(xi)) as h→ +∞ to a set ω%i,xi ⊂ B%i(xi) with

Ln(ω%i,xi) ≤ C η
n
n−1 %i

n . (3.4)

Moreover, again up to a (not relabelled) subsequence, by (3.2) (recall that (e(uh))h is bounded
in Lp(Ω;Mn×n

sym ) since (G(uh))h is bounded) we have

vh,%i,xi − ah,%i,xi ⇀ u%i,xi in W 1,p(Bσ%i(xi);Rn) . (3.5)

We may assume that the convergences above hold along the same subsequence, independently
on i ∈ {1, . . . , N}. Let us denote

ωη :=

N⋃
i=1

(
ω%i,xi ∩Bσ%i(xi)

)
, aηh :=

N∑
i=1

ah,%i,xiχBσ%i (xi) , ũη :=

N∑
i=1

u%i,xiχBσ%i (xi) . (3.6)

By (3.4) we get
Ln(ωη) ≤ C η

n
n−1 Ln(Ω) , (3.7a)

where the constant C above depends on σ and n. Using the fact that uh = vh,%i,xi in Bσ%i(xi)\
ωh,%i,xi and Ln(ωh,%i,xi4ω%i,xi)→ 0, from (3.5) we deduce that

uh − aηh → ũη in L0(Ω \ Eη;Rn) , for Eη := ωη ∪
(

(Ω \ J) \
N⋃
i=1

Bσ%(xi)(xi)
)
. (3.7b)

We may now find a partition Pη = (P ηj )j of Ω \ Eη and a function uη ∈ L0(Ω \ Eη;Rn) such
that, up to extracting a further subsequence w.r.t. h, in correspondence to any P ηj there is a
sequence (aηh,j)h such that

|aηh,j(x)− aηh,i(x)| → +∞ for a.e. x ∈ Ω whenever i 6= j (3.8a)



10 EQUILIBRIUM IN NONHOMOGENEOUS LINEAR ELASTICITY WITH DISCONTINUITIES

and
uh − aηh,j → uη in L0(P ηj ;Rn) . (3.8b)

In fact, this is done as follows by regrouping the sequences of infinitesimal rigid motions in
each Bσ%i(xi) in equivalence classes, up to extracting a further subsequence.

By Lemma 2.8, denoting aih ≡ ah,%i,xi for every i ∈ N, we may extract inductively a
subsequence (not relabelled) such that for every 1 ≤ i < j ≤ N the sequence (aih− a

j
h)h either

converges to an infinitesimal rigid motion or diverges a.e. in Ω. We say that two sequences
(ah)h and (bh)h of infinitesimal rigid motions are in the same equivalence class if and only if
(ah − bh)h converges uniformly to an infinitesimal rigid motion.

We conclude (3.8) by considering the union of the Bσ%i(xi) \ ωη whose sequences of infini-
tesimal rigid motions are in the same equivalence class. We then get a partition Pη = (P ηj )j
by fixing a sequence of infinitesimal rigid motions as representative in each P ηj .

Substep 1.2: Conclusion of Step 1. Let us now take a summable positive sequence (ηk)k. By a
diagonal argument we may assume that (3.7b) holds for the same subsequence (uh)h for every
ηk, for suitable ωk, Ek, akh, u

k, and that Ln(Eηk) < Cη
n
n−1

k Ln(Ω) + ηk (see (3.3) and (3.7a)).
Moreover, we find partitions Pk such that (3.8) hold for ηk in place of η (for the notations,
just replace η by k; we prefer to use the apex k in place of ηk to not overburden the notation,
of course the notation in the following has nothing to do with the notation for the objects in
Substep 1.1 different from those recalled just above).

Consider two sets P k1j1 and P k2j2 , k
1 6= k2: if

Ln(P k1j1 ∩ P
k2
j2

) > 0 . (3.9)

then ak1h,j1−a
k2
h,j2
→ uk2−uk1 in L0(P k1j1 ∩P

k2
j2

;Rn) so that (ak1h,j1−a
k2
h,j2

)h converges uniformly on
bounded sets and the two sequences belong to the same equivalence class. On the other hand,
for j′2 6= j2, by construction |ak2h,j′2 − a

k2
h,j2
| → ∞ Ln-a.e., so that (3.9) gives |ak2h,j′2 − a

k1
h,j1
| → ∞

Ln-a.e., which implies Ln(P k1j1 ∩ P
k2
j′2

) = 0.
Let us consider the countable set of sequences {(akh,j)h≥1 : k, j} and C = {ci : i ≥ 1} the

(countable or finite) set of its equivalence classes. For i ≥ 1, we let:

Pi :=
⋃

(k,j) : (akh,j)h∈ci

P kj .

Then if i 6= i′, we have that Ln(Pi∩Pi′) = 0: otherwise one could find (k1, j1), (k2, j2) as above
with (3.9) and (ak1h,j1)h ∈ ci, (ak2h,j2)h ∈ ci′ , and the argument after (3.9) leads to a contradiction.
On the other hand, by construction, Ln(Ω \ (

⋃
k

⋃
j P

k
j )) = 0, hence P = {Pi : i ≥ 1} is a

Lebesgue partition of Ω (later on we will prove that it is a Caccioppoli partition). For i ≥ 1,
we choose a particular sequence (ah,i)h = (akh,j)h ∈ ci for suitable k, j and define the sequence
of piecewise rigid motions (ah)h as follows:

ah =
∑
i≥1

ah,iχPi .

By construction, uh − ah converges to some function u ∈ L0(Pi;Rn) Ln-a.e. in each set Pi
(since it is the case in each set P kj with (akh,j)h ∈ ci) and we denote u ∈ L0(Ω;Rn) the function
thus obtained.

Step 2: Proof of (1.5d). In this step we follow a slicing strategy, in the spirit of [15, The-
orem 1.1]. In particular, the first part of the argument above is similar to that in [15, The-
orem 1.1, lower semicontinuity]. We remark that we cannot directly apply that result (see
Remark 3.2).

Given ξ ∈ Sn−1 and y ∈ Πξ, we introduce

Iξy(uh) :=

ˆ

Ωξy

|(u̇h)ξy|p dt , (3.10)
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where (u̇h)ξy is the density of the absolutely continuous part of D(ûh)ξy, the distributional
derivative of (ûh)ξy ((ûh)ξy ∈ SBV

p
loc(Ωξy) for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ Πξ, since

uh ∈ GSBDp(Ω); we denote here and in the following ûh for ûh). Therefore, since (uh)h is
bounded in GSBDp(Ω), by (2.3) and by Fubini-Tonelli’s theorem we obtainˆ

Πξ

Iξy(uh) dHn−1(y) =

ˆ

Ω

|e(uh)(x)ξ · ξ|p ≤
ˆ

Ω

|e(uh)|p dx ≤M . (3.11)

Let uk = uhk be a subsequence of uh such that

lim
k→∞

Hn−1(Juk) = lim inf
h→∞

Hn−1(Juh) < +∞ , (3.12)

so that, by (2.5), (3.11), and Fatou’s lemma, we have that for Hn−1-a.e. ξ ∈ Sn−1

lim inf
k→∞

ˆ

Πξ

(
H0
(
J(ûk)ξy

)
+ εIξy(uk)

)
dHn−1(y) < +∞ , (3.13)

for a fixed ε ∈ (0, 1). Let us fix ξ ∈ Sn−1 such that (2.10) and (3.13) hold (cf. Lemma 2.7).
Then there is a subsequence um = ukm of uk, depending on ε and ξ, such that

(ûm − âm)ξy → ûξy in L0(Ωξy) for Hn−1-a.e. y ∈ Πξ (3.14)

where ûξy is the slicing of the function u introduced at the end of Substep 1.2, and

lim
m→∞

ˆ

Πξ

(
H0
(
J(ûm)ξy

)
+ εIξy(um)

)
dHn−1(y)

= lim inf
k→∞

ˆ

Πξ

(
H0
(
J(ûk)ξy

)
+ εIξy(uk)

)
dHn−1(y) .

(3.15)

As for (3.14), we notice that it follows from Fubini-Tonelli’s theorem and the convergence in
measure of uh−ah to u (see (1.5b)), which corresponds to tanh(uh−ah)→ tanh(u) ∈ L1(Ω;Rn)
(with tanh(v) = (tanh(v · e1), . . . , tanh(v · en)) for every v : Ω→ Rn). Therefore, by (3.15) and
Fatou’s lemma, we have that for Hn−1-a.e. y ∈ Πξ

lim inf
m→∞

(
H0
(
J(ûm)ξy

)
+ εIξy(um)

)
< +∞ , (3.16)

Moreover, we infer that, since ξ satisfies (2.10), then

for Hn−1-a.e. y ∈ Πξ |(âih − â
j
h)ξy(t)| = |(âih − â

j
h)ξy(0)| → +∞ for every t ∈ Ωξy (3.17)

for all i 6= j. Indeed, since e(aih) = 0 for every i, h, then, for fixed h, (âih − â
j
h)ξy is constant in

Ωξy. Thus

|(aih − a
j
h) · ξ| → +∞ in

⋃
{Ωξy : y ∈ Πξ s.t. |(aih − a

j
h)(y) · ξ| → +∞} ,

and (3.17) holds true.
Let us consider y ∈ Πξ satisfying (3.14), (3.16), (3.17), and such that (ûm)ξy ∈ SBVloc(Ωξy)

for every m. Then we may extract a subsequence uj = umj from um, depending also on y, for
which

lim
j→∞

(
H0
(
J(ûj)

ξ
y

)
+ εIξy(uj)

)
= lim inf

m→∞

(
H0
(
J(ûm)ξy

)
+ εIξy(um)

)
(3.18a)

and
(ûj − âj)ξy → ûξy L1-a.e. in Ωξy , (3.18b)

|(âi1j − â
i2
j )ξy(t)| = |(âi1j − â

i2
j )ξy(0)| → +∞ for t ∈ Ωξy and i1 6= i2 . (3.18c)

In the following, we denote (similarly to (2.9), in dimension one)

∂Pξy :=
⋃
j∈N

∂(Pj)
ξ
y ∩ Ωξy ⊂ Ωξy .
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Since, by (3.16) and (3.18a), the number of jump points of (ûj)
ξ
y is bounded uniformly w.r.t.

j, passing to a subsequence of ((ûj)
ξ
y)j we may assume that for every j

H0
(
J(ûj)

ξ
y

)
= Ny ∈ N .

Therefore we have My ≤ Ny cluster points in the limit, denoted by

t1, . . . , tMy
.

Using the equiboundedness of Iξy(uj), which follows from (3.16) and (3.18a), we get that,
for L1-almost any choice of t ∈ (tl, tl+1),

t 7→ (ûj)
ξ
y(t)− (ûj)

ξ
y(t) are equibounded w.r.t. j in W 1,p

loc (tl, tl+1) , (3.19)

by the Fundamental Theorem of Calculus, and then, recalling (3.18b), this sequence converges
locally uniformly in (tl, tl+1), as j →∞.

Let us prove that
∂Pξy ⊂ {t1, . . . , tMy} (3.20)

We argue by contradiction, assuming that there exists l ∈ {1, . . . ,My} and i1 such that
∂(Pi1)ξy ∩ (tl, tl+1) 6= ∅. If this holds, there exist two sequences of infinitesimal rigid motions
(ai1j )j , (ai2j )j (the latter corresponds to some Pi2 with i1 6= i2) such that

(ûj − âi1j )ξy → ûξy L1-a.e. in (Pi1)ξy ∩ (tl, tl+1),

(ûj − âi2j )ξy → ûξy L1-a.e. in (Pi2)ξy ∩ (tl, tl+1) ,
(3.21)

with L1
(
(Pi1)ξy ∩ (tl, tl+1)

)
, L1

(
(Pi2)ξy ∩ (tl, tl+1)

)
> 0. But this gives, with (3.19) and since

âij are infinitesimal rigid motions and ûξy : Ωξy → R, that (âi1j − â
i2
j )ξy is constant in Ωξy and

uniformly bounded w.r.t. j. This is in contradiction with (3.18c). Therefore, (3.20) is proven.
Moreover, for every l there exists a unique i ∈ N such that

(ûj − âij)ξy → ûξy in W 1,p
loc (tl, tl+1) (3.22)

and in particular the above convergence is locally uniform in (tl, tl+1). Since aij are rigid
motions, and hence the functions (âij)

ξ
y are constant on Ωξy, we also have that

‖u̇ξy‖Lp(K) ≤ lim inf
j→∞

‖(u̇h)ξy‖Lp(tl,tl+1) for every compact set K ⊂ (tl, tl+1) ,

so
ûξy ∈ SBV p(Ωξy) and Jûξy ⊂ {t1, . . . , tMy} .

This implies, with (3.18a), that

H0
(
Jûξy ∪ ∂P

ξ
y

)
= H0

(
Jûξy ∩ (Pξy)(1)

)
+H0(∂Pξy) ≤ lim inf

m→∞

(
H0
(
J(ûm)ξy

)
+ ε Iξy(um)

)
. (3.23)

Notice that we have expressed Jûξy ∪ ∂P
ξ
y as the disjoint union

(
Jûξy ∩ (Pξy)(1)

)
∪ ∂Pξy , denoting

(Pξy)(1) :=
⋃
j∈N

(
(Pj)

ξ
y

)(1)

(recall (2.9) and that E(1) denotes the point where E ⊂ Rd has density 1 w.r.t. Ld; above
d = 1).

Integrating over y ∈ Πξ and using Fatou’s lemma with (3.15) we getˆ

Πξ

[
H0
(
Jûξy ∩ (Pξy)(1)

)
+H0(∂Pξy)

]
dHn−1(y)

≤ lim inf
k→∞

ˆ

Πξ

[
H0
(
J(ûk)ξy

)
+ ε Iξy(uk)

]
dHn−1(y)

(3.24)

for Hn−1-a.e. ξ ∈ Sn−1. In particular we deduce that each Pj has finite perimeter (cf. [9,
Remark 3.104]) and

∑
j∈NHn−1(∂∗Pj) < +∞. This confirms that P is a Caccioppoli partition,

as claimed at the end of Step 1.
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Integrating further (3.24) over ξ ∈ Sn−1, by (2.5), (3.11), and (3.12) we get

Hn−1
(
Ju ∪

⋃
j∈N

(∂∗Pj ∩ Ω)
)
≤ CMε+ lim inf

h→∞
Hn−1(Juh) , (3.25)

for a universal constant C. By the arbitrariness of ε, (1.5d) follows.

Step 3: Proof of (1.5c) and of u ∈ GSBDp(Ω). In order to prove (1.5c) it is enough
to combine what we have proven so far with an abstract result on compactness and lower
semicontinuity in GSBDp. In fact, the sequence (uh − ah)h is bounded in GSBDp(Ω): by
definition of ajh we have that

e(uh − ah) = e(uh) , Juh−ah ⊂ Juh ∪
⋃
j∈N

∂∗Pj ,

and we know that (uh)h is bounded in GSBDp(Ω) and
∑
j Hn−1(∂∗Pj) < +∞, by (1.5d).

Since we know that uh−ah → u Ln-a.e. in Ω, we are allowed to apply [15, Theorem 1.1] using
that the exceptional set A therein is empty (alternatively, using the pointwise convergence one
could resort to [21, Theorem 11.3]), to deduce that u ∈ GSBDp(Ω) and that

e(uh) = e(uh − ah) ⇀ e(u) in Lp(Ω;Mn×n
sym ) ,

so (1.5c) is proven and the general proof is concluded. �

Remark 3.1. With the notation of Theorem 1.1, the sequence (uh − ah)h is bounded in
GSBDp(Ω). This is proven in Step 3.

Remark 3.2. We cannot directly apply [15, Theorem 1.1] to uh − ajh for every j in Step 2.
Indeed, we would obtain Hn−1

(
(Ju ∩ P (1)

j ) ∪ ∂∗Pj ∩ Ω) ≤ lim infh→∞Hn−1(Juh), but the j’s
are countable many and we cannot localize on right-hand side, since the Pj ’s are not open sets.

4. Lower semicontinuity and minimisation

In this section we first prove our main lower semicontinuity result, concerning a class of free
discontinuity functionals with general bulk and surface energy densities. In the second part
we apply Theorem 1.2 to the minimisation of these problems.

Proof of Theorem 1.2. Up to a subsequence, we may assume that

lim inf
h→∞

E(uh) = lim
h→∞

E(uh) < +∞ . (4.1)

In view of the growth assumptions on f and g, we have that (uh)h is bounded in GSBDp(Ω).
Thus we may apply Theorem 1.1 to find a subsequence (not relabelled), a Caccioppoli partition
P of Ω, a sequence of piecewise infinitesimal rigid motions (ah)h, and u ∈ GSBDp(Ω) satisfying
(1.4) and (1.5).

By (4.1) we obtain that, up to a further subsequence,

f(x, e(uh))Ln Ω + g(x, [uh], νuh)Hn−1 Juh =: µh
∗
⇀ µ inM+

b (Ω)

as h→∞. Therefore, by the Besicovitch derivation theorem and the Radon-Nikodym decom-
position for µ (cf. [9, Theorem 2.2]), the result will follow from the estimates

dµ

dLn
(x0) ≥ f

(
x0, e(u)(x0)

)
for Ln- a.e. x0 ∈ Ω (4.2)

and
dµ

dHn−1
(x0) ≥ g

(
x0, [u](x0), νu(x0)

)
for Hn−1-a.e. x0 ∈ Ju ∩ P(1) ,

dµ

dHn−1
(x0) ≥ g∞(x0, νP) for Hn−1-a.e. x0 ∈ ∂∗P ∩ Ω .

(4.3)

Step 1: Proof of (4.2). We divide this step into different substeps.
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Substep 1.1: Choice of the blow up point x0 and first properties. We pick x0 in a subset of Ω
of full Ln-measure, satisfying the following five criteria. First, we notice that by the definition
of Radon-Nikodym derivative and [9, Theorem 2.2] we have that for Ln-a.e. x0 ∈ Ω

dµ

dLn
(x0) = lim

%→0+

µ(B%(x0))

γn %n
. (4.4)

Second, in [13] it is proven that every function in GSBDp is approximately differentiable
Ln-a.e., namely that for Ln-a.e. x0 ∈ Ω there exists ∇u(x0) ∈ Mn×n (such that e(u)(x0) =
(∇u(x0))sym for a.e. x0) for which it holds

ap lim
x→x0

|u(x)− u(x0)−∇u(x0)(x− x0)|
|x− x0|

= 0 . (4.5)

Third, we take
x0 ∈ P(1) , (4.6)

which is a set of full Ln-measure in Ω. The fourth criterion employed in the choice of x0 is
based on the properties of f . Since f is a Carathéodory function, arguing as in [24, proof
of Theorem 1.2], by Scorza Dragoni Theorem (see, e.g., [26], p. 235) one deduces that there
exists F ⊂ Ω with Ln(Ω\F ) = 0 such that for any x0 ∈ F there exists a compact set Kx0 ⊂ Ω
(depending on x0) such that

f |Kx0×Mn×nsym
is continuous in Kx0

×Mn×n
sym and x0 ∈ Kx0

∩K(1)
x0

. (4.7)

Finally, we assume that

x0 is a Lebesgue point of φ and φ(x0) < +∞ , (4.8)

where φ is the function that appears in (f3). Then the set of points x0 satisfying (4.4), (4.5),
(4.6), (4.7), and (4.8) is of full Ln-measure in Ω. Let us choose x0 in this set.

Let us fix a sequence (%k)k converging to 0 such that µ(∂B%k(x0)) = 0 for every k (in fact
this is true for any % > 0 except at most countable many). Then, by (4.4) we have that

γn
dµ

dLn
(x0) = lim

k→∞
lim
h→∞

µh(B%k(x0))

%nk

= lim
k→∞

lim
h→∞

1

%nk

{ˆ
B%k (x0)

f(x, e(uh)(x)) dx+

ˆ
Juh∩B%k (x0)

g(x, [uh], νuh) dHn−1

}
.

(4.9)

Moreover, (1.5b) gives that y 7→ (uh − ah)(x0 + %ky) converge pointwise in B1 to y 7→ u(x0 +

%ky), and by (4.5), (4.6) it holds that y 7→ u(x0+%ky)−u(x0)
%k

converges to y 7→ ∇u(x0) y pointwise
in B1. Therefore

lim
k→∞

lim
h→∞

ux0

k,h → vx0 in L0(B1;Rn), where

vx0(y) := ∇u(x0)y and ux0

k,h(y) :=
(uh − ah)(x0 + %ky)− u(x0)

%k
.

(4.10)

Furthermore, limk→∞ %
−(n−1)
k Hn−1(∂∗P ∩B%k(x0)) = 0, and so

lim
k→∞

lim
h→∞

Hn−1(Jah ∩B%k(x0))

%n−1
k

= 0 . (4.11)

Substep 1.2: Blow up argument: change of variables. We perform a blow up procedure at a
point x0 ∈ Ω chosen as above, in order to prove (4.2).

Let us consider the functions ux0

k,h, defined in (4.10). We notice that (4.9) and (g1) imply
that for a suitable C̃ > 0

lim sup
k→∞

lim sup
h→∞

1

%nk
Hn−1(Juh ∩B%k(x0)) ≤ C̃ . (4.12)
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Together with (4.11), by a change of variable this gives that

lim sup
k→∞

lim sup
h→∞

Hn−1(Jux0k,h
) = 0 . (4.13)

Setting
fk(y, ξ) := f(x0 + %ky, ξ) ,

by (4.9) we obtain that

γn
dµ

dLn
(x0) ≥ lim sup

k→∞
lim sup
h→∞

ˆ
B1

fk(y, e(ux0

k,h)(y)) dy . (4.14)

Then a diagonal argument allows to define functions vk := ux0

k,hk
such that (4.10), (4.13), and

(4.14) hold true for vk (and considering the limit or the lim sup only in k).
Eventually we observe that, due to (4.7),

lim
k→∞

fk(y, ξ) = f(x0, ξ) for a.e. y ∈ B1, locally uniformly in Mn×n
sym . (4.15)

In fact, the pointwise convergence follows from the fact that x0 ∈ Kx0
∩K(1)

x0 , and the local
uniform convergence in Mn×n

sym by the continuity of f in Kx0
×Mn×n

sym .

Substep 1.3: Blow up argument: lower semicontinuity. Let us fix σ ∈ (0, 1). In correspondence
of σ we find positive constants η(σ) and C such that the conclusion of Theorem 2.4 holds. Fix
also δ ∈ (0, η(σ)

C̃
∧ 1), where C̃ is the constant from (4.12). We notice that, up to consider a

subsequence (not relabelled), we may assume that∑
k∈N
Hn−1(Jvk) <

(
C−1 ∧ 1

)
δ . (4.16)

In particular, we have that Hn−1(Jvk) < η(σ) for every k, and we may apply Theorem 2.4 to
the functions vk ∈ GSBDp(B1). This provides functions wk ∈ GSBDp(B1) ∩W 1,p(Bσ;Rn)
and sets of finite perimeter ωk ⊂ B1 such that

wk = vk in B1 \ ωk, Hn−1(∂∗ωk) < CHn−1(Jvk), (4.17)

Hn−1(Jwk) ≤ Hn−1(Jvk), andˆ
B1

|e(wk)|p dx ≤ 2

ˆ
B1

|e(vk)|p dx . (4.18)

By (4.16), (4.17), and the Isoperimetric Inequality Ln(ωk) ≤ (nnγn)
− 1
n−1Hn−1(∂∗ωk)

n
n−1 <

Hn−1(∂∗ωk), we have that

Ln(ωδ) < δ for ωδ :=
⋃
k∈N

ωk , (4.19)

and
wk = vk in B1 \ ωδ for every k ∈ N . (4.20)

Recalling the definition of vx0 in (4.10), we claim that

wk ⇀ vx0 in W 1,p(Bσ;Rn) :

first notice that wk → vx0 in L0(B1;Rn), since vk → vx0 in L0(B1;Rn) and Ln({wk 6= vk})→ 0
(by (4.16) and (4.17)); moreover, by Korn’s inequality there are ãk infinitesimal rigid motions
and w̃ ∈ W 1,p(Bσ;Rn) such that, passing to a (not relabelled) subsequence, wk − ãk ⇀ w̃ in
W 1,p(Bσ;Rn); we conclude since then ãk converge pointwise and then uniformly (being affine)
and by difference wk converge weakly in W 1,p(Bσ;Rn) (to vx0).

We now perform a further approximation, through a sequence of equi-Lipschitz functions.
This is done for two reasons: first, to employ (4.15) since therein the convergence holds for ξ
in compact sets; second, to pass to the limit in the integral of f(x0, e(wk)) over the set Bσ \ωδ,
which is not in general open and so the semicontinuity theorem in [1] does not apply directly.
Then we recall, adapting to the present case, what proven in [24, Proposition 3.1], in the spirit
of [1] and [4].
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In correspondence to δ, there exist a Borel set Eδ with Ln(Eδ) < δ (this replaces the
sequence (Ek)k with Ln(Ek) → 0 as k → ∞ in [24, Proposition 3.1]) and for every m and
k ∈ N there exist ŵk,m ∈W 1,∞(Bσ;Rn), Ek,m ⊂ Bσ Borel sets such that

‖ŵk,m‖L∞ + Lip(ŵk,m) ≤ C(n,B1)m, ŵk,m = wk in Bσ \ Ek,m , (4.21)

and, up to extracting a subsequence w.r.t. k, ŵk,m
∗
⇀ ŵm in W 1,∞(Bσ;Rn) for every m, with

lim
m→∞

lim sup
k→∞

ˆ
Ek,m\Eδ

(
1 + fk(y, e(ŵk,m))

)
dy = 0 ,

lim
m→∞

mp Ln(Am) = 0 , for Am := {ŵm 6= vx0} ∩ (Bσ \ Eδ) .
(4.22)

Recalling that fk ≥ 0, wk = vk in B1 \ ωδ, and ŵk,m = wk in Bσ \ Ek,m, it follows thatˆ
B1

fk(y, e(vk)) dy ≥
ˆ
Bσ\ωδ

fk(y, e(wk)) dy ≥
ˆ
Bσ\(Eδ∪ωδ∪Ek,m)

fk(y, e(ŵk,m)) dy

=

ˆ
Bσ\(Eδ∪ωδ)

fk(y, e(ŵk,m)) dy −
ˆ
Ek,m\(Eδ∪ωδ)

fk(y, e(ŵk,m)) dy .

(4.23)

We now use the fact that ŵk,m
∗
⇀ ŵm in W 1,∞(Bσ;Rn) (so that (ŵk,m)k is a sequence

of equi-Lipschitz functions and
(
f(x0, e(ŵk,m))

)
k
is equi-bounded in Bσ, by (f3) and since

φ(x0) < +∞) and (4.15), to deduce that

lim inf
k→∞

ˆ
Bσ\(Eδ∪ωδ)

fk(y, e(ŵk,m)) dy = lim inf
k→∞

ˆ
Bσ\(Eδ∪ωδ)

f(x0, e(ŵk,m)) dy ,

≥
ˆ
Bσ\(Eδ∪ωδ)

f(x0, e(ŵm)) dy .

(4.24)

We observe that in the equality above we used (4.15) and the fact that x0 is a Lebesgue point
of φ, and to prove the latter estimate it is enough to apply Morrey’s Lower Semicontinuity
Theorem in an arbitrary open set containing Bσ \ (Eδ ∪ ωδ) and observe that for any ε > 0,
thanks to the equi-boundedness, we can find an open set B′ε ⊃ Bσ \ (Eδ ∪ ωδ) such that the
integrals of f(x0, e(ŵk,m)) (for every k) and f(x0, e(ŵm)) over B′ε \

(
Bσ \ (Eδ ∪ ωδ)

)
are less

than ε.
The second estimate in (4.22), (4.21), and f ≥ 0 imply thatˆ

Bσ\(Eδ∪ωδ)
f(x0, e(ŵm)) dy ≥ Ln

(
Bσ \ (Eδ ∪ ωδ ∪Am)

)
f(x0, e(u)(x0)) . (4.25)

Moreover, employing again fk ≥ 0,ˆ
Ek,m\(ωδ∪Eδ)

fk(y, e(ŵk,m)) dy ≤
ˆ
Ek,m\Eδ

fk(y, e(ŵk,m)) dy . (4.26)

Collecting (4.23), (4.24), (4.26), (4.25), (4.22), and passing to the lim inf in k and to the
limit in m, we obtain that

lim inf
k→∞

ˆ
B1

fk(y, e(vk)) dy ≥ Ln
(
Bσ \ (Eδ ∪ ωδ)

)
f(x0, e(u)(x0)) > (γnσ

n − 2δ)f(x0, e(u)(x0)) .

Passing to the limit first as δ → 0 and then as σ → 1, by (4.14) (recall the definition vk = ux0

k,hk
)

we deduce (4.2).

Step 2: Proof of (4.3). We denote J ′u := (Ju ∩ P(1)) ∪ (∂∗P ∩ Ω).

Substep 2.1: Choice of the blow up point x0 and first properties. Since J ′u is countably rectifiable
and thanks to (2.7), for Hn−1-a.e. x0 ∈ J ′u there exist u+(x0), u−(x0) ∈ Rn, ν0 ∈ Sn−1 such
that

ap lim
x∈(Qν0% (x0))±

x→x0

u(x) = u±(x0) . (4.27)

Notice that ν0 denotes νu(x0) if x0 ∈ Ju and the outer normal to Pi at x0, if x0 ∈ ∂∗P ∩ Ω
and x0 ∈ ∂∗Pi ∩ ∂∗Pj for i < j. We remark that u+(x0) 6= u−(x0) for x0 ∈ Ju.
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Moreover, since µ is a positive bounded Radon measure and J ′u is countably rectifiable,
there exists the Radon-Nikodym derivative of µ w.r.t. Hn−1 J ′u (which is σ-finite) and it
holds (see e.g. [9, Theorems 1.28 and 2.83])

dµ

dHn−1
(x0) = lim

%→0+

µ(Qν0% (x0))

%n−1
for Hn−1-a.e. x0 ∈ J ′u . (4.28)

We thus fix x0 such that both (4.27) and (4.28) hold for x0.
Recalling the pointwise convergence of uh − ah to u, by a change of variables we obtain

from (4.27) that

(uh−ah)(x0 +%ky)→ u0(y), where u0(y) := u+(x0)χ
Q
ν0,+
1

+u−(x0)χ
Q
ν0,−
1

in L0(Qν01 ;Rn)

(4.29)
first as h → ∞ and then as k → ∞. (Recall the notation for half cubes in Section 2.)
Analogously to (4.9), we fix a vanishing sequence (%k)k with µ(∂Qν0%k(x0)) = 0, and then

dµ

dHn−1
(x0) = lim

k→∞
lim
h→∞

µh(Qν0%k(x0))

%n−1
k

= lim
k→∞

lim
h→∞

1

%n−1
k

{ˆ
Q
ν0
%k

(x0)

f(x, e(uh)(x)) dx+

ˆ
Juh∩Q

ν0
%k

(x0)

g(x, [uh], νuh) dHn−1

}
.

(4.30)

Substep 2.2: Blow up argument for x0 ∈ Ju ∩ P(1). Given x0 ∈ Ju ∩ P(1), there exists j ∈ N
such that x0 ∈ P (1)

j . Then

lim
k→∞

lim
h→∞

|ah(x0 + %ky)− ajh(x0 + %ky)| = 0 in L0(Qν01 ;Rn) , (4.31)

for ajh the infinitesimal rigid motion corresponding to Pj , cf. (1.4). Up to choosing a subse-
quence hk in (4.29), by (4.31) we get

ṽk → u0 in L0(Qν01 ;Rn), where ṽk(y) := (uhk − a
j
hk

)(x0 + %ky) (4.32)

and u0 is defined in (4.29).
By (4.30) and assumptions (g1), (g3) we obtain that

dµ

dHn−1
(x0) = lim

k→∞

{
%k

ˆ
Q
ν0
1

f
(
x0 + %ky,

1

%k
e(ṽk)(x)

)
dx+

ˆ
Jṽk∩Q

ν0
1

g(x0, [ṽk], νṽk) dHn−1

}
.

(4.33)

We remark that above we used that g does not depend separately on the two traces v+ and
v− but only on [v]. This allowed us to infer that for any function v and infinitesimal rigid
motion a the surface part evaluated on v is equal to the surface part evaluated on v − a.

By the growth assumptions on f and g it follows that (ṽk)k converges weakly inGSBDp(Qν01 )
to u0.

Therefore, (g4) and (4.33) imply that

g
(
x0, [u](x0), νu(x0)

)
=

ˆ
Ju0

gx0
([u0], ν0) dHn−1

≤ lim inf
k→∞

ˆ
Jṽk∩Q

ν0
1

gx0
([ṽk], νṽk) dHn−1 ≤ dµ

dHn−1
(x0) .
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Substep 2.3: Blow up argument for x0 ∈ ∂∗P ∩ Ω. Assume that x0 ∈ ∂∗Pi ∩ ∂∗Pj , for i < j.
By Lemma 2.7 it holds that for every k ∈ N and for Hn−1-a.e. ξ ∈ Sn−1

lim
h→∞

|(aih(x0 + %ky)− ajh(x0 + %ky)) · ξ| = +∞ for Ln-a.e. y ∈ Qν01 . (4.34)

Let us fix is a countable dense subset of Sn−1, included into the subset of full measure for
which (4.34) holds, that we call D. By a diagonal argument, for every k we may take hk ∈ N
such that the convergences in (4.29) and (4.30) hold with hk in place of h, and moreover,
setting a+

k (y) := ajhk(x0 + %ky), a−k (y) := aihk(x0 + %ky) for y ∈ Qν01 , it holds

lim
k→∞

|(a+
k (y)− a−k (y)) · ξ| = +∞ for Ln-a.e. y ∈ Qν01 and ξ ∈ D . (4.35)

We notice that e(a+
k − a

−
k ) = 0 gives, for every k ∈ N, ξ ∈ Sn−1, y ∈ Πξ, that (â+

k − â
−
k )ξy is

a constant function. From (4.35) we then deduce that there are suitable ck,ξ,y > 0 for which

|(â+
k − â

−
k )ξy| ≡ ck,ξ,y → +∞ as k →∞, for any ξ ∈ D and Hn−1-a.e. y ∈ Πξ(Qν01 ) . (4.36)

Let us denote
vk(y) := uhk(x0 + %ky) for y ∈ Qν01 .

These functions satisfy (by a change of variables in (4.30))

dµ

dHn−1
(x0) = lim

k→∞

{
%k

ˆ
Q
ν0
1

f
(
x0 + %ky,

1

%k
e(ṽk)(x)

)
dx+

ˆ
Jwk∩Q

ν0
1

g(x, [vk], νvk) dHn−1

}
(4.37)

by (4.29), (uhk − ahk)(x0 + %k·)→ u0 in L0(Qν01 ;Rn) as k →∞, so that

vk − a±k → u±(x0) in L0(Qν0,±1 ;Rn) . (4.38)

Case g∞(x0, ν0) ∈ R. Assume that g∞(x0, ν0) ∈ R, so that g∞ takes finite values, and fix
η > 0 small. We find ξ0 = ξ0(ν0, η) ∈ D ⊂ Sn−1 such that ξ0 satisfies (2.10) and

0 ≤ g∞(x0, ν0)− |ν0 · ξ0|
g∗x0,∞(ξ0)

< η , (4.39)

where g∗x0,∞ is the dual norm of g∞(x0, ·), given by φ∗(ξ) := supφ(ν)≤1 |ν · ξ|. This is done by

choosing a vector ξ in Sn−1 such that g∞(x0, ν0) = |ν0·ξ|
g∗x0,∞

(ξ)
and by continuity, using that D

is dense in Sn−1.
By (g5) there is a function κ : [0,+∞)→ [0,+∞) with limt→+∞ κ(t) = 0 such that

g(x, y, ν) > g∞(x, ν)− κ(t) for every x ∈ Ω, |y| > t, and ν ∈ Sn−1,

and, from (g3), g(x, y, ν) > g∞(x0, ν) − κ(t) in a neighbourhood of x0. By the definition of
dual norm, (g5), (4.39), and since |[vk] · ξ0| ≤ |[vk]|, we get

g(x, [vk], νvk) ≥ (g∞(x0, νvk)− κ(t))χ{|[vk]|>t} ≥

(
|νvk · ξ0|
g∗x0,∞(ξ0)

− κ(t)

)
χ|{[vk]·ξ0|>t} (4.40)

Hn−1-a.e. in Jvk ∩Q
ν0
1 . We observe that by (4.37)

lim sup
k→∞

Hn−1(Jvk ∩Q
ν0
1 ) =: L < +∞ , (4.41)

since g takes values in [c,+∞). Then, using also (f3), (4.37), and (4.40) we obtain that

dµ

dHn−1
(x0) ≥ lim inf

k→∞

{ˆ
Q
ν0
1

|e(vk)ξ0 · ξ0|p

C%p−1
k

dx+

ˆ
Jvk∩Q

ν0
1

(
|νvk · ξ0|
g∗x0,∞(ξ0)

χ{|[vk]·ξ0|>t} + ε

)
dHn−1

}
− (κ(t) + ε)L

= lim inf
k→+∞

ˆ
Πξ0

F ξ0,εy,t ((v̂k)ξ0y ) dHn−1(y)− (κ(t) + ε)L

(4.42)
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with

F ξ0,εy,t (v) :=
1

C

ˆ
(Q

ν0
1 )

ξ0
y

|v′(s)|p ds +H0({s : |[v](s)| > t}) 1

g∗x0,∞(ξ0)
+ εH0(Jv)

for v : (Qν01 )ξ0y → R. We observe that the second relation in (4.42) follows from the Area
Formula (cf. e.g. [34, (12.4)]) and the slicing property (2.4).

Fatou’s lemma and (4.42) give that lim infk F
ξ0,ε
y,t ((v̂k)ξ0y ) < +∞ for Hn−1-a.e. y ∈ Πξ0 , so

we may find, for Hn−1-a.e. y ∈ Πξ0 , a subsequence v̂m = v̂km (depending on y) such that

lim
m→∞

F ξ0,εy,t ((v̂m)ξ0y ) = lim inf
k→∞

F ξ0,εy,t ((v̂k)ξ0y ) , H0
(
J

(v̂m)
ξ0
y

)
= Ny ∈ N . (4.43)

Recalling (4.38), we may also choose the subsequence (km)m such that, denoting by (v̂m−â±m)ξ0y
the functions (v̂km − â±km)ξ0y , it holds

(v̂m − â±m)ξ0y → u±(x0) · ξ0 in L0
(
(Qν0,±1 )ξ0y

)
. (4.44)

We now claim that given t > 0 there exists m ∈ N such that{
s ∈ (Qν0,±1 )ξ0y : |[(v̂m)ξ0y ](s)| > t

}
6= ∅ for m ≥ m. (4.45)

Indeed, let us argue by contradiction assuming that (4.45) is not true. Then, by (4.43),

D
(
(v̂m)ξ0y

)(
(Qν0,±1 )ξ0y

)
≤
ˆ

(Q
ν0
1 )

ξ0
y

∣∣∣((v̂m)ξ0y
)′

(s)
∣∣∣ds+ tNy ≤ Ĉ , (4.46)

for a suitable Ĉ > 0 independent of m. Therefore, for any s+ ∈ (Qν0,+1 )ξ0y , s− ∈ (Qν0,−1 )ξ0y ,

|(â+
m − â−m)ξ0y | ≡ |(â+

m)ξ0y (s+)− (â−m)ξ0y (s−)|

=
∣∣∣(v̂m − â−m)ξ0y (s−)− (v̂m − â+

m)ξ0y (s+) +
(

(v̂m)ξ0y (s+)− (v̂m)ξ0y (s−)
)∣∣∣ .

From the identity above we obtain a contradiction for m large enough, since the left-hand side
tends to +∞ by (4.36) while the right-hand side is bounded by (4.44) and (4.46). This proves
(4.45).

In particular, (4.45) implies that limm→∞ F ξ0,εy,t ((v̂m)ξ0y ) ≥ 1
g∗x0,∞

(ξ0) . Recalling (4.43) and

integrating in Πξ0 = Πξ0(Qν01 ), by Fatou’s lemma, (4.42), and the arbitrariness of t, η, ε, we
get

dµ

dHn−1
(x0) ≥ |ν0 · ξ0|

g∗x0,∞(ξ0)
. (4.47)

The second estimate in (4.3) follows now by (4.39) and the arbitrariness of η.

Case g∞ ≡ +∞. We have to prove (with the usual notation ν0 = ν(x0)) that

Hn−1(∂∗P ∩ Ω) = 0 . (4.48)

Assume by contradiction that there is x0 ∈ ∂∗P ∩Ω satisfying (4.27) and (4.28). Then, by the
assumption (g5), for any fixed large M > 0 there exists tM such that

g(x, [vk], νvk) ≥Mχ{|[vk]|>tM} ≥M |νvk · ξ0|χ{|[vk]·ξ0|>tM} (4.49)

for any ξ0 ∈ D. Arguing as in the case g∞(x0, ν0) ∈ R, with (4.40) replaced by (4.49), we
obtain that dµ

dHn−1 (x0) ≥ M |ν0 · ξ0| for every M > 0 and ξ0 ∈ D. Taking ξ0 such that
|ν0 · ξ0| > 1

2 we obtain a contradiction for M > 2 dµ
dHn−1 (x0), so (4.48) is proven. Therefore the

general proof is concluded. �

Remark 4.1. In [31] a class of functions g : (Rn)3 → [0,+∞) satisfying for any bounded open
set Ω ⊂ Rnˆ
Jv

g(v+, v−, νv) dHn−1 ≤ lim inf
h→∞

ˆ
Jvh

g(v+
h , v

−
h , νvh) dHn−1 if vh → v weakly in GSBDp(Ω)
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has been provided. This is the class of symmetric jointly convex functions, which are charac-
terized by (see [31, Definition 3.1 and Theorem 5.1])

g(i, j, ν) = sup
h∈N

(fh(i)− fh(j)) · ν for all (i, j, ν) ∈ (Rn)3 with i 6= j

where fh : Rn → Rn is a uniformly continuous, bounded, and conservative vector field (that
is, there exists a potential Fh ∈ C1(Rn) for which ∇Fh = fh) for every h ∈ N. Any symmetric
jointly convex function depending only on the difference i − j provides a function satisfying
(g4). Examples of such functions are (see [31, Section 4])

g1(y, ν) = g̃(|y|) for g̃ : [0,+∞)→ [0,+∞) increasing with
g̃(t)

t
nonincreasing in (0,+∞) ,

g2(y, ν) = sup
{ξk}nk=1 orthornormal basis

(
n∑
k=1

θk
(
y · ξk

)2|ν · ξk|2)1/2

for θk ∈ C(R; [0,+∞)) even and subadditive, for k = 1, . . . , n (this class has been introduced
and studied in a BD setting in [22]), and

g3(y, ν) = ψ(ν)

for ψ a norm.

From Theorem 1.2 we deduce existence for the following minimisation problems with Dirich-
let conditions, in the propositions below. In the following Ω ⊂ Rn is a bounded, open, con-
nected and Lipschitz set. Moreover, we assume that u0 ∈ W 1,p(Rn;Rn) and that ∂DΩ ⊂ ∂Ω

be relatively open with ∂DΩ = Ω̃ ∩ ∂Ω for a bounded, open, connected domain Ω̃ ⊃ Ω.
We consider first the simpler cases corresponding to g∞ ≡ +∞ and g independent of the

jump amplitude, in Propositions 4.2 and 4.4. Then we consider the case with general f , g as
in Theorem 1.2, which formally includes the other two cases. We prefer to state three different
results since the proofs of Propositions 4.2 and 4.4 are more direct.

Proposition 4.2. Assume f , g as in Theorem 1.2, with g∞ ≡ +∞. Then the problem

min
u=u0∈Ω̃\Ω

{ˆ
Ω

f(x, e(u)) dx+

ˆ
Ju

g(x, [u], νu) dHn−1

}
(4.50)

admits a solution in GSBDp(Ω̃). In particular, this holds for g(y, ν) = g̃(|y|) with g̃ : [0,+∞)→
[0,+∞) increasing, unbounded, and such that g̃(t)

t is nonincreasing.

Proof. Let us apply Theorem 1.2 to a minimising sequence (uh)h for (4.50) in GSBDp(Ω̃).
Since g∞ ≡ +∞, we have that the partition P of Ω̃ is trivial. The fact that uh = u0 in
Ω̃ \Ω implies that one can choose ah (which for every h reduces to a unique infinitesimal rigid
motion) as ah = 0: in fact, if for aih = ah and ajh = 0 (1.5a) holds (namely, if ah and 0 are not
in the same equivalence class, as discussed in the proof of Theorem 1.1), then uh − ah would
diverge on Ω̃ \ Ω, in contrast to the pointwise convergence toward a finite valued function in
(1.5b). Therefore uh → u in L0(Ω̃;Rn). In particular uh = u0 in Ω̃ \ Ω and using again that
g∞ ≡ +∞ we get the lower semicontinuity of the functional E to minimise. �

Remark 4.3. In the above assumptions, if g(y, ν) ≥ c̃|y| for some c̃ > 0, the solutions to (4.50)
belong to SBDp(Ω̃). In fact, this follows from the fact that [u] ∈ L1(Ju;Rn): under such
condition, every GSBD function is in SBD, as shown in [16, Theorem 2.9] (take Av = Ev

therein, cf. [16, Remark 2.5]). For other surface densities g, such as g(y, ν) = c +
√
|y|, one

obtains existence for the Dirichlet problem in GSBDp.

Proposition 4.4. Assume f as in Theorem 1.2 and let g : Ω×Sn−1 → [c,+∞) be continuous
in the first variable and such that the positively one-homogeneous extension of g(x, ·) is a norm
for every x ∈ Ω. Then the problem

min
u=u0∈Ω̃\Ω

{ˆ
Ω

f(x, e(u)) dx+

ˆ
Ju

g(x, νu) dHn−1

}
(4.51)
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admits a solution in GSBDp(Ω̃).

Proof. Let us apply Theorem 1.2 to a minimising sequence (uh)h. By (1.5) we obtain a function
u ∈ GSBDp(Ω̃), with u = u0 in Ω̃ \ Ω. In fact, arguing as in the proof of Proposition 4.2
with (1.5a) and (1.5b), the choice a1

h = 0 is possible in the set Ω̃ \ Ω, which than has to be
contained in a single element P1 of the Caccioppoli partition.

Moreover, recalling Theorem 2.5 we have thatˆ
Ω

f(x, e(u)) dx+

ˆ
Ju

g(x, νu) dHn−1 ≤
ˆ

Ω

f(x, e(u)) dx+

ˆ
(Ju∩P(1))∪(∂∗P∩Ω̃)

g(x, νu) dHn−1

≤ lim inf
h→+∞

ˆ
Ω

f(x, e(uh)) dx+

ˆ
Juh

g(x, νuh) dHn−1

= inf
u=u0∈Ω̃\Ω

ˆ
Ω

f(x, e(u)) dx+

ˆ
Ju

g(x, νu) dHn−1 .

Therefore u is a solution to the problem (4.51) and this concludes the proof. We notice that
by the chain of inequalities above, expressing the domain of the surface integral in the second
inequality as the disjoint union (Ju∩P(1))∪(Ju∩∂∗P)∪

(
(∂∗P∩Ω̃)\Ju

)
= Ju∪

(
(∂∗P∩Ω̃)\Ju

)
,

it holds
0 =

ˆ
(∂∗P∩Ω̃)\Ju

g(x, νu) dHn−1 ≥ cHn−1
(
(∂∗P ∩ Ω̃) \ Ju

)
and then ∂∗P ∩ Ω̃ ⊂ Ju, up to a Hn−1-negligible set. �

We consider now the case of general g.

Proposition 4.5. Assume f , g as in Theorem 1.2. Then the problem

min
u=u0∈Ω̃\Ω

P Caccioppoli partition of Ω̃, ∂∗P∩Ω̃⊂Ju

{̂
Ω

f(x, e(u)) dx+

ˆ
Ju\∂∗P

g(x, [u], νu) dHn−1+

ˆ
∂∗P∩Ω̃

g∞(x, ν) dHn−1

}

admits a solution in GSBDp(Ω̃).

Proof. Let us denote

F (u,P) :=


ˆ

Ω

f(x, e(u)) dx+

ˆ
Ju\∂∗P

g(x, [u], νu) dHn−1+

ˆ
∂∗P∩Ω̃

g∞(x, ν) dHn−1 if ∂∗P ∩ Ω̃ ⊂ Ju,

+∞ otherwise,

and fix a minimising sequence (uh,Ph) for F . To shorten the notation, in the following of the
proof we write simply ∂∗P in place of ∂∗P ∩ Ω̃. We observe that, for Ph = (Ph,j)j we can
assume that Ω̃\Ω ⊂ Ph,1 (arguing as in the proofs of Propositions 4.2, 4.4, and we may choose
0 as the infinitesimal rigid motion in Ph,1) and find piecewise rigid functions ãh such that

ãh =
∑
j∈N

ãjhχPh,j , (4.52)

ã1
h = 0, |ãjh(x)− ãih(x)| → +∞ for Ln-a.e. x ∈ Ω, for all i 6= j , (4.53)

and
E(uh − ãh) < F (uh,Ph) +

1

h
(4.54)

for every h ∈ N. (Recall (1.1) for the definition of E). In fact, since uh ∈ GSBDp(Ω̃) it
holds that [uh] : Juh → Rn is Hn−1-measurable, and then there exists for every h a vanishing
sequence (shk)k such that

Hn−1(Juh ∩ {|[uh]| > k}) < shk . (4.55)
Moreover, since Hn−1(∂∗Ph) < +∞, for every h, k ∈ N there exists mh

k ∈ N such that∑
j>mhk

Hn−1(∂∗Ph,j) < k−1 . (4.56)
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Then we choose, in correspondence of (Ph,j)j , a sequence (ãjh)j ⊂ Rn (that is, each ãjh is
a constant function) with ã1

h = 0 (in view of the Dirichlet boundary conditions), such that
|ãjh − ãih| > 2k for i 6= j ≤ mh

k . By (4.55), (4.56), and triangle inequality we find that

Hn−1(∂∗Ph ∩ {|[uh − ãh]| < k}) < shk + k−1 .

This implies, in view of (g5) and since g is a measurable function taking finite values, that
there is k ∈ N, depending on h, large enough so that (4.54) holds true.

Let us now apply Theorem 1.2 to the sequence (uh − ãh)h ⊂ GSBDp(Ω̃) (that satisfies
the assumptions of Theorem 1.2 by (4.54)): this provides a function u ∈ GSBDp(Ω̃) and
a sequence (âh)h of piecewise rigid functions corresponding to a partition P̂ = (P̂j)j (in
particular, Jâh = ∂∗P̂ ∩ Ω̃) such that

uh − ãh − âh → u Ln-a.e.

andˆ
Ω

f(x, e(u)) dx+

ˆ
Ju∩P̂(1)

g(x, [u], νu) dHn−1+

ˆ
∂∗P̂∩Ω̃

g∞(x, νP̂) dHn−1 ≤ lim inf
h→+∞

E(uh−ãh) .

(4.57)
In particular, in view of the boundary conditions we may take Ω̃ \ Ω ⊂ P̂1, â1

h = 0 and we
have that ∂∗P̂ ∩ Ω̃ ⊂ Ω and u = u0 in Ω̃ \ Ω. Collecting (4.54), (4.57), and since (uh,Ph)h is
a minimising sequence for F , we have that
ˆ

Ω

f(x, e(u)) dx+

ˆ
Ju∩P̂(1)

g(x, [u], νu) dHn−1 +

ˆ
∂∗P̂∩Ω̃

g∞(x, νP̂) dHn−1 ≤ inf
v,P

F (v,P) .

(4.58)
We notice now that we can find a piecewise rigid function ã with ã = 0 in Ω̃\Ω and Jã ⊂ ∂∗P̂∩Ω̃

for which ∂∗P̂ ∩ Ω̃ ⊂ Ju−ã. This follow from the fact that there are at most countable many
s ∈ Rn such that Hn−1(∂∗P̂ ∩ {[u] = s}) > 0. Moreover, since ∂∗P̂ ∩ Ω̃ ⊂ Ju−ã (and in view
of the fact that g depends only on the jump amplitude, cf. below (4.33)), we have that for
û = u− ãˆ

Ω

f(x, e(u)) dx+

ˆ
Ju∩P̂(1)

g(x, [u], νu) dHn−1 =

ˆ
Ω

f(x, e(û)) dx+

ˆ
Jû∩P̂(1)

g(x, [û], νû) dHn−1 .

(4.59)
Therefore, in view of the fact that ∂∗P̂ ∩ Ω̃ ⊂ Jû, by (4.58) and (4.59) we get that (û, P̂) is a
minimiser for F . This concludes the proof. �

Remark 4.6. The minimisation problem in Proposition 4.5 formally reduces to those one in
Proposition 4.2 and 4.4 noticing that P = {Ω̃} when g∞ ≡ +∞ (cf. Theorem 1.2) and the
functional in Proposition 4.5 does not depend on P when g depends only on ν and coincides
with g∞.

Remark 4.7. In the minimisation problem in Proposition 4.5 the restriction ∂∗P ∩ Ω̃ ⊂ Ju
may be dropped. The mechanical interpretation for including this condition is to regard ∂∗P
as part of the discontinuity set of the displacement, where the fracture is present, since also in
∂∗P the material can be interpreted as fractured.
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