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Abstract

Disease-specific DNA methylation patterns (DNAm signatures) have been estab-

lished for an increasing number of genetic disorders and represent a valuable tool for

classification of genetic variants of uncertain significance (VUS). Sample size and

batch effects are critical issues for establishing DNAm signatures, but their impact on

the sensitivity and specificity of an already established DNAm signature has not pre-

viously been tested. Here, we assessed whether publicly available DNAm data can be

employed to generate a binary machine learning classifier for VUS classification, and

used variants in KMT2D, the gene associated with Kabuki syndrome, together with

an existing DNAm signature as proof-of-concept. Using publicly available methyla-

tion data for training, a classifier for KMT2D variants was generated, and individuals

with molecularly confirmed Kabuki syndrome and unaffected individuals could be

correctly classified. The present study documents the clinical utility of a robust

DNAm signature even for few affected individuals, and most importantly, underlines

the importance of data sharing for improved diagnosis of rare genetic disorders.
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1 | INTRODUCTION

During the recent years, analysis of disease/gene-specific DNA meth-

ylation (DNAm) patterns has emerged as a highly informative comple-

mentary tool to classify the pathogenicity of gene variants for the

diagnosis of rare genetic disorders (RGDs).1,2 Machine learning classi-

fiers (MLCs) which recognize these patterns (DNAm signatures) were

initially developed to evaluate genetic variants of uncertain clinical sig-

nificance (VUS) using methylation arrays. Subsequently, they were

used to solve clinically ambiguous cases with a neurodevelopmental

phenotype but without a genetic diagnosis,1–6 to predict the functional

consequences of the variants (loss- or gain-of function),3 and to distin-

guish the molecular subtypes of a given disorder, for example, Phelan-

McDermid syndrome.7 The number of disorders with DNAm signa-

tures keeps growing, but training MLCs for effective VUS testing for

each gene can be rather challenging taking into consideration the large

number of RGDs and only few individuals with a given RDG would be

identified in a single diagnostic laboratory. Indeed, depending on the

effect size of the DNAm changes, a sample size of minimum 10 individ-

uals affected by a given RGD together with age and sex-matched con-

trols are generally necessary to train MLCs,8 and bona fide

representative DNA samples for individual disorders are not always

available. A potential way to circumvent this issue is to take advantage

of publicly available DNAm datasets and known CpG sites characteriz-

ing the disease specific DNAm signature to train the MLC. It is, how-

ever, uncertain whether batch effects and datasets originating from

different methylation array platforms can influence the ability of the

classifier to differentiate between pathogenic and benign variants.

In this study, we investigated whether we could correctly predict

the pathogenicity of an unselected panel of pathogenic KMT2D vari-

ants identified in seven individuals with clinical diagnosis of Kabuki

syndrome (OMIM #147920) referred to our department for genetic

diagnosis, using publicly available DNAm data (GSE97362),9 and the

previously established DNAm signature for KMT2D and Kabuki syn-

drome defined by 153 CpG sites.3

2 | MATERIALS AND METHODS

2.1 | Subjects, methylation array analysis and
public methylation data

Three different datasets, where genome-wide DNAm data was gen-

erated using peripheral blood, were included in the study (Table 1):

The internal cohorts 1 and 2 (IC1 and IC2) and public cohort (PC).

The affected individuals in IC1 and IC2 were clinically diagnosed

with Kabuki syndrome and a pathogenic or likely pathogenic KMT2D

variant, as evaluated according to the ACMG criteria,10 was

detected in each individual (Supplementary Table 1). DNA of the

affected individuals and healthy controls of IC1 and IC2 was bisul-

fite converted, and genome-wide DNAm levels were quantified

using Infinium MethylationEPIC arrays (850K) (Illumina, San Diego,

CA). The PC comprised samples from 19 individuals with pathogenic

or likely pathogenic KMT2D variants and 57 age and sex-matched

healthy controls, where genome-wide DNAm data was generated

using Infinium 450K arrays (Illumina) and was publicly available

(GEO: GSE97362).9 The present study has been conducted in accor-

dance with the tenets of the Declaration of Helsinki and was

approved by the ethical committees of the Capital Region of

Denmark (H-22050775) and Ospedale Pediatrico Bambino Gesù

(ref. 1702_OPBG_2018). Detailed methods can be found in Support-

ing information.

3 | RESULTS AND DISCUSSION

To investigate whether publicly available DNAm data could be used

to train a machine-learning model directed to classify a VUS based on

DNAm patterns, a public dataset consisting of 19 individuals with

KMT2D variants and 57 controls (GSE97362, Table 1)9 was used to

train an MLC to classify KMT2D variants leading to Kabuki syndrome.

The 153 CpG sites used for the classifier were previously published as

sites defining the DNAm signature for Kabuki syndrome.3 A DNAm

dataset from an internal testing cohort (IC1, Table 1) was then used to

validate the MLC. As different array platforms were used (450K and

850K arrays were used for the public and internal datasets, respec-

tively), the data were merged into a single dataset and normalized to

correct the different distribution of methylation values between the

two different array platforms prior to the establishment of the classi-

fier (Supplementary Figure 1).

Following a SuperLearner ranking of the tested machine-learning

approaches (Supplementary Table 2), a support vector machine (SVM)

classifier was trained to classify KMT2D variants, and then applied to

the testing cohort. Samples receiving a probability score above 0.5

were classified as having a DNAm pattern matching the Kabuki syn-

drome DNAm signature. Of note, the SVM was able to correctly pre-

dict the pathogenicity of all the variants in our testing cohort, as well

as all the controls, even though training and testing samples were

TABLE 1 Cohorts included in the study.

Cohort Individuals with pathogenic KMTD2 variants (n) Controls (n) Array platform Type

Internal cohort 1 (IC1) 7 55 850K Testing cohort

Internal cohort 2 (IC2) 12 13 850K Training cohort

Public cohort (PC) 19 57 450K Training cohort

Abbreviations: 450K, Infinium 450K arrays covering 450 000 CpG sites (Illumina); 850K, Infinium MethylationEPIC arrays covering approx. 850 000 CpG

sites (Illumina); n, number of individuals.

HILDONEN ET AL. 689

 13990004, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cge.14304 by O

spedale Pediatr B
am

bino G
esu, W

iley O
nline L

ibrary on [14/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



analyzed using different array platforms (Illumina 450K and 850K

arrays, respectively) (Figure 1A).

To assess the impact of the training cohort size on the sensitiv-

ity and prediction confidence (probability), MLCs were trained using

smaller subsets of the public cohort (nine or 14 KMT2D samples

included from the public cohort and all the 57 PC-controls, Supple-

mentary Table 3). To minimize the impact of sample selection on

the results, the training and testing were repeated 10 times for each

subset size with random combinations of KMT2D samples, and the

results were averaged. Furthermore, an MLC supplemented with

additional samples (IC2, Table 1) was trained, and finally a synthetic

oversampling step (SMOTE)11 was added to balance the ratio of

affected individuals and controls in the dataset before MLC training.

As expected, the prediction confidence increased with the size of

the training cohort from an average probability of 0.74 including

nine KMT2D samples to 0.84 when all 19 samples from PC was

supplemented with the IC2 data (Supplementary Table 3). Balancing

the dataset by SMOTE further improved the prediction confidence

to an average probability of 0.89 for all samples (Supplementary

Table 3, Figure 1B). None of the MLCs misclassified any of the con-

trol samples. Surprisingly, the average sensitivity (proportion of

pathogenic variants classified correctly) of the MLCs using nine

KMT2D samples was higher (0.93) than the average of the classifiers

using 14 samples (0.91) (Supplementary Table 3). This indicates that

when employing MLCs on samples including more heterogeneous

DNAm patterns, the individual DNAm patterns of the samples used

in the training cohort are important for the sensitivity of the MLC,

suggesting caution in sample selection for small training datasets

(e.g., <15 samples).

Multi-dimensional scaling (MDS) analysis was employed to further

verify the SVM predictions. Following model evaluation (GOF = 0.50,

R2 = 0.92), we used DNAm values from the 153 CpGs to check sam-

ple clustering in the new lower-dimensional space. Our analysis

F IGURE 1 SVM prediction scores. (A) Probability scores of the MLC, which was trained using the public cohort. All the samples from affected
individuals in the testing cohort (IC1) received probability scores above 0.5 and their variants were thus correctly classified as pathogenic. (B) The
probability scores of the MLC, which was trained using both the public cohort and the IC2 as well as an oversampling step (SMOTE) to balance
the data. Probability scores, and thus the prediction confidence for all the samples in the testing cohort increased to above 0.75, supporting the
predictions from using only the public cohort for MLC training. IC1, internal cohort 1; IC2, internal cohort 2; PC, public cohort. [Colour figure can

be viewed at wileyonlinelibrary.com]

F IGURE 2 Multidimensional scaling of public and internal data.
Samples from individuals with KMT2D variants clearly separates from

the control cluster in the first dimension. There can be seen some
separation of samples from the different cohorts in the second
dimension, although this separation does not consistently coincide
with the array platform the samples were analyzed on. IC1, internal
cohort 1; IC2, internal cohort 2; PC, public cohort. [Colour figure can
be viewed at wileyonlinelibrary.com]
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showed that the samples from individuals with KMT2D variants were

clearly clustered separately from the controls by the first dimension

(Figure 2). This means that the largest source of variation at the

153 CpG-sites in this dataset was due to the methylation differences

between individuals with Kabuki syndrome and controls. Batch

effects, which slightly separated the internal cohort 1, internal cohort

2, and the public cohort in the second dimension further highlighted

the importance of a careful evaluation of sources of bias that could

affect the sensitivity and specificity of DNAm signatures, as previ-

ously reported.2 Despite the slight separation between IC1 (850K

arrays), IC2 (850K arrays) and the public cohort (450K arrays) clusters,

the samples did not form consistent clusters by which array type they

were analyzed with. This indicates that the main differences between

the cohorts came from other batch effects rather than the samples

being analyzed on different array platforms, and that following proper

normalization of the data, cross-platform MLCs for variant classifica-

tion can be a useful option.

Furthermore, it was tested whether the classification results would

still be valid when the ratio of samples analyzed with different array

types in the dataset was unbalanced, as it is a common situation that

only a few individuals with a specific RGD are diagnosed in a clinical lab-

oratory. For this purpose, data from one sample with a KMT2D variant

and one control (generated with 850K arrays) was normalized together

with the data from the 76 samples of the public cohort (generated with

450K arrays). The MLC prediction confidence for the classification of

the KMT2D sample was similar to the confidence when the full testing

cohort dataset (IC1: 7 KMT2D and 55 control samples) was included

(probability scores of 0.54 and 0.55, respectively). The samples were

also correctly clustered using MDS analysis (Supplementary Figure 2).

This suggests that even with a small number of samples DNAm signa-

tures could be an effective tool for testing the pathogenicity of gene

variants when a robust DNAm signature and an adequate size of train-

ing dataset are available. This result advocates for the importance of

making data publicly available to improve genetic diagnosis. It is though

not possible to define the minimum number of samples necessary for

MLC training as the individual DNAm patterns of the samples both in

the training and testing cohort would affect the ability of the MLC to

recognize and classify according to a given DNAm signature.

4 | CONCLUSION

In this study, we trained a machine-learning classifier by using a pub-

licly available DNAm dataset and a previously generated disease-

specific DNAm signature for variant classification in Kabuki syndrome.

The trained classifier could correctly predict the pathogenicity of

KMT2D variants identified in seven Kabuki syndrome patients. An

increasing number of DNAm signatures are being identified2,3,5 but

this method cannot be established in clinical laboratories where only a

few individuals are diagnosed with a given RGD. When DNAm data is

publicly available, even if different methylation array platforms are

employed, it is possible to overcome this hindrance enabling a higher

diagnostic yield for a range of rare genetic disorders.
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