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Abstract
Orexins/hypocretins are neuropeptides produced by the hypothalamic neurons, binding two G-protein coupled receptors 
(orexin 1 and orexin 2 receptors) and playing a critical role in regulating arousal, wakefulness, and various physiological 
functions. Given the high prevalence of sleep disturbances in Alzheimer’s disease (AD) and their reported involvement 
in AD pathophysiology, the orexin system is hypothesized to contribute to the disease pathogenesis. Specifically, recent 
evidence suggests that orexin’s influence may extend beyond sleep regulation, potentially affecting amyloid-β and tau 
pathologies. Dual orexin receptor antagonists (DORAs), namely suvorexant, lemborexant, and daridorexant, demonstrated 
efficacy in treating chronic insomnia disorder across diverse clinical populations. Considering their stabilizing effects on 
sleep parameters and emerging evidence of a possible neuroprotective role, these agents represent a promising strategy for 
AD management. This leading article reviews the potential use of orexin receptor antagonists in AD, particularly focusing 
on their effect in modulating disease-associated sleep disturbances and clinical outcomes. Overall, clinical studies support 
the use of DORAs to enhance sleep quality in patients with AD with comorbid sleep and circadian sleep–wake rhythm dis-
orders. Preliminary results also suggest that these compounds might influence AD pathology, potentially affecting disease 
progression. Conversely, research on selective orexin receptor antagonists  in AD is currently limited. Further investigation 
is needed to explore orexin antagonism not only as a symptomatic treatment for sleep disturbances, but also for its broader 
implications in modifying AD neurodegeneration, emphasizing mechanisms of action and long-term outcomes.

1 � The Orexin System: Brain Structures, 
Pathways, and Role in Arousal and Sleep

Orexins/hypocretins are neuropeptides that exist in two 
isoforms derived from a common precursor (prepro-
orexin) isolated independently in 1998 by two research 
groups [1, 2]. The orexin/hypocretin isoforms—orexin-
A (hypocretin-1) and orexin-B (hypocretin-2)—are syn-
thesized by a small group of neurons located in the lat-
eral and dorsal areas of the hypothalamus and bind two 

G-protein coupled receptors, the orexin-A/hypocretin-1 
receptor (OX1R) and the orexin-B/hypocretin-2 receptor 
(OX2R). OX2R has the same affinity for both orexin-A 
and orexin-B, whereas OX1R binds orexin-A with higher 
affinity [1–3].

The two orexin receptors are extensively distributed 
throughout the brain, supporting a diffuse network of 
projection fibers that target cortical, subcortical, and 
brainstem regions, establishing the orexin system [3–5]. 
Although this system is involved in a variety of behavio-
ral and physiological functions (e.g., energy homeostasis, 
emotion regulation, and reward) [6–11], it predominantly 
projects to brain areas involved in the regulation of wake-
fulness and sleep, such as cholinergic neurons in the basal 
forebrain and noradrenergic neurons in the locus coer-
uleus [3–5, 12–14]. In short, in the sleep–wake flip-flop 
model, orexin neurons facilitate prolonged wakefulness by 
enhancing the activity of aminergic neurons, which in turn 
inhibit sleep-promoting GABAergic neurons in the ventro-
lateral preoptic area [5, 15–17]. Conversely, when orexin 
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Key Points 

Recent research highlights a potential role for orexin 
neurotransmission in counteracting Alzheimer’s disease 
(AD).

Dual orexin receptor antagonists proved effective in the 
treatment of insomnia and circadian sleep–wake disor-
ders associated with AD.

Further studies are needed to evaluate orexin antagonism 
as a preventive strategy against AD neurodegeneration.

neurons are switched to the OFF state, aminergic neurons 
are not activated and sleep is promoted by the GABAergic 
neurons [15, 18]. In line with these results, orexin neurons 
discharge has been shown to be more pronounced during 
wakefulness and almost absent during sleep [19, 20].

The importance of orexin neurotransmission has been 
recognized by studying narcolepsy type 1, a sleep disorder 
characterized by the autoimmune-mediated loss of orexin 
neurons, which has served as a pathological model of 
orexin suppression [21]. Consistent with the role of orexin 
in the sleep–wake cycle, patients with narcolepsy type 1 
experience excessive daytime sleepiness with marked 
instability of both sleep and wake states, manifested by 
sleep attacks, cataplexy (a sudden loss of muscle tone—
as in the REM sleep stage—triggered by strong positive 
or negative emotions), and sleep paralysis (a dissociated 
state with loss of muscle tone typical of REM sleep stage 
coupled with arousal from sleep). Selective agonism of 
OX2R has shown preliminary, but promising, results in 
reducing these symptoms [22]. Furthermore, chronic 
insomnia disorder (ID), which has been hypothesized to 
be related to overexpression/hyperactivation of the orexin 
system, is amenable to treatment with pharmacological 
antagonists targeting OX1R and OX2R [23–27]. Although 
direct and experimental evidence of orexin dysregulation 
in chronic ID has not yet been reported, the rationale for 
the use of dual orexin receptor antagonists (DORAs) in ID 
has been drawn from research documenting that sleep dep-
rivation (either total or selective) is associated, in humans, 
with an increase in cerebrospinal fluid (CSF) orexin levels, 
and in animal model studies, with high orexin-A levels in 
rat brain tissues from the cerebral cortex, locus coeruleus, 
and posterior hypothalamus, likely reflecting the increased 
activation of orexin neurotransmission [28, 29].

Indeed, both OX1R and OX2R play a role in the main-
tenance of vigilance and wakefulness [30]. However, while 

OX2R is mainly responsible for sleep–wake rhythm regu-
lation [31, 32], OX1R is significantly involved in reward 
modulation and emotional regulation [9], in line with its 
high expression in the locus coeruleus [33, 34]. Consist-
ently, co-administration of OX1R and OX2R antagonists 
showed attenuated sleep-promoting effects compared with 
a single OX2R antagonist in rats [32], suggesting that sleep-
promoting effects could be efficiently achieved by selectively 
antagonizing OX2R [35].

In light of this evidence, supported by the growing body 
of clinical research supporting the efficacy of DORAs 
[36–38], the modulation of the orexin system by targeting 
OX2R or both orexin receptors has been hypothesized as a 
promising pharmacological approach for managing ID and 
circadian sleep–wake cycle disorders. Nonetheless, given 
the complex interactions between orexin and other neuro-
transmitters [39–41], and considering previous evidence 
achieved in Alzheimer’s disease (AD) and showing the cor-
relation of high CSF orexin levels with a more marked sleep 
impairment, the clinical potential of the orexin antagonism 
has been investigated [42–44]. Consistently, an association 
between orexin activity, amyloid-β pathology, and circadian 
sleep–wake rhythm disruptions has been reported, and sleep 
promotion has been hypothesized as a therapeutic approach 
for counteracting the deposition of amyloid-β and the forma-
tion of amyloid plaques in the brain [43, 45–48].

This review summarizes the emerging findings on the 
role of orexin in the pathophysiology of AD and examines 
the current evidence for the efficacy of orexin antagonism 
in the treatment of sleep disorders and other behavioral dis-
turbances in AD.

2 � Alzheimer’s Disease and the Sleep–Wake 
Cycle

AD presents as a complex disorder characterized by diffuse 
neurodegeneration starting in the hippocampus and spread-
ing to the cerebral cortex, and is clinically characterized by 
cognitive decline accompanied by behavioral symptoms 
manifesting over the course of the disease. According to 
current research frameworks and guidelines, the pathophysi-
ological hallmarks of AD include extracellular aggregation 
of misfolded amyloid-β proteins (amyloid plaques), intra-
cellular deposition of twisted strands of tau proteins (neu-
rofibrillary tangles), and evidence of neuronal damage and 
cell death in the brain [49, 50]. These physiological signs 
may precede the development of clinical symptoms by sev-
eral years, primarily affecting memory and other cognitive 
domains and progressing along a continuum from subjec-
tive cognitive complaints to mild cognitive impairment and 
manifest dementia.
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Currently, up to 60–80% of dementia cases are attribut-
able to AD, and the increasing prevalence of the disease 
combined with the lack of effective treatments makes it 
a prominent public health and societal problem [50–52]. 
Moreover, considering that AD is a common neurological 
disease affecting the elderly, the increase in the mean age 
of the population may be associated with the progressive 
increase in the incidence of the disease [53].

In this context, great emphasis has been placed on identi-
fying feasible biomarkers and treatment targets to alleviate 
symptoms and slow the progression of AD, with increasing 
evidence highlighting the critical role of sleep disturbances 
[45, 54–56].

Sleep and circadian sleep–wake cycle disruptions are 
highly prevalent in patients with AD, with up to 40% expe-
riencing conditions such as sleep-disordered breathing, 
insomnia, sleep–wake rhythm disorders, excessive daytime 
sleepiness, and restless legs syndrome [57–63]. More than 
just an epiphenomenal manifestation of disease-related neu-
rodegeneration, sleep disturbances may be involved in the 
long-term, complex, pathophysiological mechanisms leading 
to AD [45, 64, 65]. In particular, sleep disturbances may 
affect patients with AD from the early stages of the dis-
ease, and sleep problems have been associated with a worse 
prognosis of AD and an increased risk of institutionalization 
[66]. Moreover, a fragmentation of the circadian rest–activ-
ity rhythm has been shown in cognitively unimpaired adults 
with evidence of preclinical amyloid pathology [67]. Sleep 
disturbances might even be considered as prospective risk 
factors triggering AD pathology, and several longitudinal 
population-based studies have shown that sleep disturbances 
and circadian sleep–wake cycle disorders, such as sleep frag-
mentation, reduction of REM sleep, dysregulation of non-
REM sleep, altered slow-wave activity, phase advance of 
the circadian sleep–wake cycle, and sleep-disordered breath-
ing might predict or accelerate the onset of dementia and 
cognitive decline by several years [68–73]. In line with this 
evidence, sleep pathological changes have been proposed as 
candidate biomarkers for early identification of patients with 
AD, although further evidence is needed [70].

In addition to robust evidence for the role of slow-wave 
sleep and REM sleep in cognitive function and memory 
consolidation [74–77], ongoing preclinical and clinical 
research has demonstrated how chronic sleep disruption may 
directly contribute to the pathophysiology of AD by impair-
ing glymphatic clearance, leading to increased accumulation 
of amyloid-β [45, 78–81].

This mechanism may be responsible for a recursive path-
way in which sleep disruption leads to increase cerebral 
amyloid-β deposition, which in turn impairs sleep continu-
ity and ultimately evolves into AD. Consistently, the local 
decrease in slow-wave activity associated with reduced hip-
pocampal activation during sleep has been shown to fully 

mediate the relationship between amyloid-β burden and 
memory consolidation [82].

Taken together, these findings support the central role of 
sleep in the pathogenesis of AD and highlight the impor-
tance of treating comorbid sleep disorders and enhancing 
sleep quality as a strategic approach to managing disease 
progression. A precise understanding of the role of orexin 
in the interplay between AD and sleep may help to tailor 
current treatment strategies to the specific clinical features 
of the disease.

3 � Orexin in Alzheimer’s Disease

The neurobiological mechanisms underlying sleep disrup-
tion in AD are complex and likely involve different neu-
rotransmitter systems, including GABAergic neurons, 
cholinergic neurons of the basal forebrain, and widespread 
aminergic regions [15, 42, 83, 84]. Orexinergic projections 
play a balancing role in these mechanisms by facilitating the 
wake-promoting activities of cholinergic and aminergic neu-
rons. Like other neuronal populations, orexin neurons may 
undergo progressive degeneration driven by AD. Post mor-
tem studies have indeed revealed a significant loss of hypo-
thalamic orexinergic neurons in patients with AD [85–87]. 
However, despite these findings in late-stage AD, conflicting 
evidence has emerged from studies investigating CSF orexin 
levels in patients with both mild cognitive impairment and 
dementia due to AD, conditions in which increased orexin 
levels have been detected [88–91]. This increase, observed 
across both early and symptomatic stages of the disease, may 
reflect a dysregulation due to a compensatory mechanism 
countering AD-induced neurodegeneration [43]. A compre-
hensive meta-analysis has shown that, although on the one 
hand patients with AD can present with higher CSF orexin 
levels when compared with controls, on the other hand dif-
ferent studies showed that CSF orexin levels of patients with 
AD are similar to that of controls, highlighting significant 
methodological heterogeneity across studies [92].

However, the high CSF orexin levels documented in 
AD have been associated with sleep impairment, since 
the increase of CSF orexin levels significantly correlated 
with the reduction of sleep efficiency, the increase of 
wakefulness after sleep onset, and the fragmentation of 
REM sleep [88, 89]. Further evidence documented that 
patients with obstructive sleep apnea (OSA) presented 
higher CSF orexin levels than patients with AD, who in 
turn showed higher CSF orexin concentrations than con-
trols. Notably, patients with OSA also presented low CSF 
levels of amyloid-β42 than controls, although these levels 
were higher than those of patients with AD [93]. Given 
these findings and the hypothesized link between sleep 
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disturbances and amyloid-β accumulation, orexinergic 
signaling might specifically influence the pathophysiol-
ogy of AD through its impact on the sleep–wake cycle. 
Correlations between CSF orexin levels and AD bio-
markers, namely amyloid-β and tau-proteins, have been 
reported in both patients with AD and the healthy elderly 
[94–96]. Murine models have shown that interstitial fluid 
(ISF) amyloid-β levels are associated with wakefulness, 
and they increase following acute sleep deprivation and 
intraventricular orexin infusion. Conversely, infusion of a 
DORA, almorexant, decreased amyloid-β in the ISF and 
reduced amyloid-β plaque formation in amyloid precursor 
protein (APP) transgenic mice [46]. In addition, reduced 
amyloid-β pathology and increased sleep duration were 
observed in APP transgenic mice with knocked-out orexin 
gene [47]. The rescue of orexinergic neurons in the hypo-
thalamus resulted in augmented amyloid-β pathology in 
the same model, while focal overexpression of orexin in 
the hippocampus did not alter the amount of wakefulness 
or amyloid-β levels.

Interestingly, an inverse process has been hypothesized 
to occur in narcolepsy type 1, characterized by chronic 
orexin deficiency, where reduced amyloid burden has been 
observed in elderly patients, and can be also related to the 
absence of orexinergic neurotransmission [97].

These findings align with recent evidence linking sleep 
deprivation with acute increases in CSF amyloid-β and 
tau proteins in humans [98, 99], and suggest that orexin 

hyperactivity contributes to increased cerebral amyloid 
burden through its impact on the sleep–wake cycle (see 
Fig. 1). This supports a potential bidirectional mechanism 
where orexin dysregulation disrupts sleep, thereby increas-
ing amyloid-β formation, which in turn detrimentally affects 
sleep, further impacting orexin transmission. Therefore, in 
the long-term, countering orexin dysregulation and address-
ing sleep disruptions could potentially result in a reduction 
in amyloid-β accumulation, as evidenced by preclinical stud-
ies showing that chronic administration of the DORA suvo-
rexant reduces amyloid-β pathology and mitigates cognitive 
impairment as measured by behavioral tests in APP mice 
[100]. In addition, a human study documented that use of 
suvorexant, the first approved DORA, acutely reduced tau 
phosphorylation and amyloid-β levels in the central nervous 
system [101].

Overall, this expanding research base encourages further 
investigation into drugs targeting the orexin systems in AD 
to explore their effects both on sleep disturbances and other 
clinical manifestations of the disorder.

4 � Orexin Antagonism in AD: Current Clinical 
Evidence and Ongoing Trials

Building on the basic understanding developed in the previ-
ous sections, this part of the review summarizes the current 
clinical evidence regarding the use of orexin antagonists 

Fig. 1   Schematic representation 
of the hypothesized mechanism 
linking sleep and the accumu-
lation of amyloid-β and tau 
proteins. Sleep disruption due to 
insomnia and sleep fragmenta-
tion contribute to the increase 
in neuropathology leading to 
clinical Alzheimer’s disease and 
neurodegeneration. Conversely, 
targeting insomnia with orexin 
antagonism may restore sleep 
and subsequently prevent or 
slow the deposition of toxic 
proteins in the brain. DORAs 
dual orexin receptor antagonists, 
SORAs selective orexin receptor 
antagonists
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in patients with AD and outlines ongoing studies aimed 
at evaluating the efficacy of DORAs and selective OX2R 
antagonists (2-SORAs) in targeting sleep disorders as well 
as disease-specific pathophysiological processes within the 
AD continuum.

For this purpose, we have updated and expanded a recent 
review we conducted on the utility of DORAs for sleep 
disturbances comorbid with neurological and psychiatric 
disorders [102]. To focus on clinically relevant results, we 
limited our research to human studies and trials with already 
approved and currently under-review DORAs including suv-
orexant [103], lemborexant [104], and daridorexant [105], 
and the 2-SORAs [37] seltorexant (JNJ-42847922) [106] and 
JNJ-48816274 [107]. In particular, suvorexant, Lemborex-
ant, and daridorexant have shown specific efficacy in treating 
insomnia in older adults, encouraging their use in AD and 
other neurodegenerative diseases [108–111].

Since the mechanism of action of orexin antagonists 
on AD manifestations is thought to be mediated by their 
effects on sleep, we chose to focus on 2-SORAs, which 
have shown preliminary promising sleep-promoting and 
antidepressant effects in patients with major depressive 
disorder [112, 113], and to exclude selective OX1R antag-
onists (1-SORAs). As we noted above, OX1R appears to 
be predominantly involved in motivational and emotional 
processes, and 1-SORAs are not expected to have pro-
nounced sleep-promoting effects [32]; they are primarily 
being studied in preclinical models for the treatment of 
psychiatric disorders within the anxiety spectrum and sub-
stance use [114, 115]. Furthermore, research on 1-SORAs 
is currently limited, with only one molecule in clinical 
development [116].

To select research papers easily accessible to clinicians 
and practitioners, target searches were performed on Pub-
Med/MEDLINE database with dedicated search queries 
(e.g., [“Alzheimer’s disease” AND “dual orexin receptor 
antagonist*”] or [“Alzheimer’s disease” AND “suvorex-
ant”]) for the period from January 2014 (year of approval of 
suvorexant) to the present (May 2024). The reference lists of 
relevant reviews were also screened, and all types of papers 
(clinical trial reports, case series, case reports) presenting 
results on the effects of DORAs or 2-SORA in patients with 
AD, as well as on AD biomarkers in cognitively unimpaired 
participants, were considered. In addition, the clinicaltrials.
gov database was searched for ongoing clinical trials involv-
ing DORAs and 2-SORAs in the context of AD, and trials 
of interest for this review were recorded and summarized.

Current evidence and ongoing trials are discussed in the 
two separate subsections below for DORAs and 2-SORAs, 
respectively. The results of the published studies that were 
reviewed are summarized in Table 1, while active clini-
cal trials retrieved from clinicaltrials.gov are reported and 
described in Table 2.

4.1 � DORAs in Alzheimer’s Disease

Several studies have investigated the efficacy of DORAs in 
patients diagnosed with AD. One significant study by Her-
ring et al. described a large double-blind, randomized clini-
cal trial (RCT) that explored the effect of 10 mg suvorexant 
(scalable to 20 mg after 2 weeks of treatment) compared 
with placebo on polysomnography-assessed sleep param-
eters in patients with mild-to-moderate probable AD demen-
tia and comorbid insomnia (n = 285 randomized patients; 
n = 142 suvorexant, n = 143 placebo) [117]. Eligible age 
ranged from 50 to 90 years, and 71% (n = 202) of enrolled 
patients were older than 65 years old. After 4 weeks of 
treatment, a greater increase in total sleep time (TST; mean 
change from baseline: +73 minutes for suvorexant versus 
+45 minutes for placebo) along with a greater decrease in 
wakefulness after sleep onset (WASO; mean change from 
baseline: −45 min for suvorexant versus −29 min for pla-
cebo) were observed in patients treated with suvorexant. 
Higher post-treatment sleep efficiency was also found in 
the suvorexant group, while no differences were observed 
in sleep latency or sleep architecture (i.e., portion of TST 
spent in different REM and non-REM sleep stages). The 
improvement in TST and reduction in WASO were particu-
larly pronounced toward the end of the night, with these 
changes unaffected by covariates (i.e., age, sex, Mini Mental 
State Examination score, apolipoprotein E genotype, and 
number of apnea/hypopnea events). Adverse events were 
reported in 22.5% of participants in the suvorexant group 
versus 16.1% of participants in the placebo group, with no 
treatment-emergent serious adverse events. The most com-
mon adverse event was mild-to-moderate somnolence (4.2% 
of treated patients versus 1.4% of placebo patients).

Another study by Moline et al. investigated the effect 
of various dosages of lemborexant (2.5 mg, 5 mg, 10 mg, 
15 mg) compared with placebo in a phase 2 multicenter, 
double-blind, RCT involving patients with mild-to-moder-
ate AD dementia and irregular sleep-wake rhythm disorder 
(ISWRD; n = 62 randomized patients; n = 12 lemborexant 
2.5 mg; n = 13 lemborexant 5 mg; n = 13 lemborexant 10 
mg; n = 12 lemborexant 15 mg; n = 12 placebo) [118]. 
Patients’ age was between 60 and 90 years (n = 59, i.e. 94% 
≥ 65 years). All patients underwent actigraphy monitoring 
for 2 weeks prior to randomization and then during 4 weeks 
of treatment and 2 weeks of follow-up. Actigraphy-derived 
circadian (including least active 5 h, L5; most active 10 h, 
M10; relative amplitude of the rest–activity rhythm, RA; 
interdaily stability; and intradaily variability), wake, and 
sleep parameters (wake efficiency, wake fragmentation, sleep 
efficiency, sleep fragmentation, and daytime and nighttime 
TST) were considered as clinical endpoints. After 4 weeks of 
treatment, a significantly greater decrease in mean L5 activ-
ity was observed in the lemborexant 2.5 mg, 5 mg, and 15 
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mg groups compared with placebo, but not in the lemborex-
ant 10 mg group. Patients receiving lemborexant 5 mg and 
15 mg also showed a significant increase in RA, indicating 
an improvement in the robustness of the circadian rhythm. 
In addition, a significant decrease in the median percentage 
of mean daytime sleep bouts was observed in the lemborex-
ant 5 mg and 15 mg groups, and a significant decrease in 
the mean number of nighttime wake bouts from baseline 
to week 4 was observed in the two low-dose lemborexant 
2.5 mg and 5 mg groups compared with the placebo group. 
No significant treatment-related changes in sleep duration or 
sleep efficiency were reported, and the study does not pro-
vide an explanation for the lack of effect of the intermediate 
10 mg dosage, which does not appear to be due to significant 
differences in demographic or clinical variables between the 
treatment arms. Regarding safety, the incidence of adverse 
events was higher in the highest-dose group (lemborexant 
15 mg) compared with placebo (50.0% versus 33.3%), but 
treatment-related adverse events occurred only in the lembo-
rexant 5 mg, 10 mg, and 15 mg groups. Constipation, som-
nolence, arthralgia, headache, and nightmares were the most 
common adverse events and were not reported for placebo, 
lemborexant 2.5 mg, or lemborexant 5 mg. No worsening of 
cognitive function was observed after the treatment period. 
Overall, this study, which is the first to report the effects of 
a DORA in AD patients with circadian sleep–wake cycle 
disruption, supports the efficacy and safety of lemborexant 
in improving circadian-related parameters in ISWRD, sug-
gesting that lemborexant 5 mg may be the most effective and 
safe dose in this frail population of patients.

Two smaller reports also investigated suvorexant’s effec-
tiveness in treating sleep-related symptoms of AD. Although 
less reliable in terms of the results obtained, these case 
series were included in the review list as a possible basis 
for future investigations in real clinical settings. A prospec-
tive trial conducted in Japan assessed suvorexant (15 mg 
starting dose, up to 20 mg as needed) over 4 weeks in six 
elderly patients (mean age, 87.5 ± 7.1 years) with dementia 
due to AD and insomnia (defined as difficulty in sleeping 
continuously for more than 4 h per night for more than 3 
nights a week) [119]. Post-treatment, all patients managed 
to sleep continuously 6 six h per night. The suvorexant dose 
was increased to 20 mg at the end of treatment in five of six 
patients, and no adverse effects among those monitored (i.e., 
somnolence, headache, and weakness) were observed. Mov-
ing to another sleep-related clinical manifestation, a case 
series described the effectiveness of acute administration of 
suvorexant 15 mg for 3 nights to treat nocturnal delirium in 
four hospitalized patients with AD [120]. Two cases were 
refractory to antipsychotics, one case was contraindicated for 
antipsychotics, and the last case was given suvorexant as a 
first-line treatment. In all cases, immediate improvement in 
sleep was observed, with one case of symptom recurrence 

after discontinuation, which was reversed by restarting suvo-
rexant. Despite the very small sample size and the lack of 
a rigorous study design, it is noteworthy that in these two 
reports, suvorexant was successfully administered to patients 
older than 80 and up to 98 years of age. Furthermore, these 
preliminary results in delirium associated with AD are con-
sistent with previous studies showing the clinical potential of 
suvorexant and lemborexant in the prevention and treatment 
of delirium in intensive care units [121, 122] and encour-
age further longitudinal research in this area, as delirium is 
recognized as a risk factor for dementia, which may share 
pathophysiological mechanisms with AD [123, 124].

Finally, as mentioned above, a recent study explored the 
putative preventive role of suvorexant in AD-related neu-
rodegeneration [101]. Building on the reviewed literature 
on the relationship between orexin dysregulation, and cer-
ebral amyloid-β accumulation and tau pathology, Lucey 
et al. examined the effects of the acute administration of 
two suvorexant dosages (10 mg and 20 mg) versus placebo 
on CSF concentrations of different isoforms of amyloid-β 
and tau proteins in a small RCT involving 38 healthy and 
cognitively unimpaired adults aged 45–65 years without 
self-reported or diagnosed sleep disorders (n = 13 suvorex-
ant 10 mg, n = 12 suvorexant 20 mg, n = 13 placebo). Dif-
ferent forms of amyloid-β (Aβ38, Aβ40, and Aβ42), tau and 
phosphorylated-tau (T181, pT181, S202, pS202, T217, and 
pT217) were measured in CSF samples collected continu-
ously over 36 h. Starting 5 h after administration, both suvo-
rexant dosages reduced all amyloid-β isoforms (Aβ38, Aβ40, 
and Aβ42) compared with placebo (10–20% decrease), and 
a reduction in phosphorylated-tau-threonine-181 (10–15% 
decrease in the ratio of phosphorylated tau-threonine-181 - 
pT181 - to unphosphorylated tau-threonine-181 - T181) was 
observed in participants receiving suvorexant 20 mg, while 
no changes were observed in phosphorylated-tau-serine-202 
- pS202 - and phosphorylated-tau-threonine-217 - pT217. 
Notably, suvorexant had no effect on sleep parameters, with 
no significant differences in sleep architecture between the 
three groups. The authors speculate that this finding may 
support a direct, sleep-independent mechanism of action of 
orexin antagonism on AD pathophysiology. However, larger 
studies investigating the long-term effects of suvorexant and 
other DORAs on AD-related biomarkers in clinical sam-
ples are needed to test whether relevant differences in sleep 
macrostructure were masked by the small sample size and 
to clarify whether the observed acute effects are maintained 
over time under sustained treatment conditions. Indeed, 
two registered clinical trials currently enrolling participants 
aim to investigate the potential preventive long-term use of 
DORAs in AD. Specifically, the SToP-AD trial (clinical-
trials.gov identifier: NCT04629547) is evaluating whether 
24 months of daily suvorexant treatment can slow brain 
amyloid-β accumulation as measured by plasma biomarkers 
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in cognitively intact elderly patients. Another study (clinical-
trials.gov identifier: NCT06274528) is also recruiting older 
adults without significant cognitive impairment to evaluate 
whether 6 months of treatment with lemborexant can reduce 
amyloid-β (Aβ38, Aβ40, Aβ42 isoforms) and tau proteins 
(pT181/T181 ratio) in the CSF.

Two other clinical trials are recruiting patients with 
dementia due to AD or mild cognitive impairment to further 
evaluate the efficacy and safety of lemborexant and darido-
rexant in the treatment of comorbid insomnia (clinicaltrials.
gov identifiers: NCT06093126 and NCT05924425), while 
a phase II study evaluating the acute effect of lemborexant 
25 mg on CSF tau (pT181/T181 ratio) and amyloid-β was 
withdrawn prior to completion of enrollment in late 2023 
due to enrollment and supply difficulties (clinicaltrials.gov 
identifier: NCT05728736).

4.2 � 2‑SORAs in Alzheimer’s Disease

As previously mentioned, 2-SORAs are currently under 
investigation for the treatment of depression [125, 126], 
considering the hypothesized sleep-promoting and antide-
pressant effects of seltorexant [112, 113, 127, 128]. Given 
the frequent co-occurrence of depression and AD and its 
potential direct association with AD-related neuropathology 
[59, 129–131], exploring treatments that simultaneously tar-
get both sleep impairment and depression could be valuable.

To date, no study has been published on the efficacy 
of 2-SORAs in AD. However, there is an ongoing inter-
est in this area, as indicated by a registered clinical trial 
that has recently been completed (clinicaltrials.gov identi-
fier: NCT05307692). This trial investigated the effects of 
seltorexant on the behavioral and psychological symptoms 
of patients with AD presenting with clinically significant 
agitation and aggression, although results have yet to be 
published.

5 � Conclusions and Future Directions

This review has provided a succinct summary of the current 
evidence on the clinical potential of orexin antagonism in the 
treatment of sleep disturbances in patients with AD, and has 
also discussed the possibility of impeding neurodegenera-
tive processes by counteracting amyloid-β and tau pathology 
through antagonism to orexin neurotransmission and thereby 
improving sleep.

Overall, two main lines of evidence emerged from this 
review. First, orexin antagonism by DORAs appears to be 
an effective treatment for sleep and circadian sleep–wake 
cycle disorders in AD with an acceptable safety profile. 
Specifically, in two well-designed RCT involving patients 
with AD, suvorexant effectively increased polysomnography Ta
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(PSG)-measured sleep duration and restored sleep continu-
ity in participants concurrently diagnosed with insomnia, 
while lemborexant improved the robustness of the circa-
dian cycle assessed by actigraphy throughout the study in 
patients with comorbid ISWRD. Although similar stud-
ies have not yet been completed with the other approved 
DORA, daridorexant, or with the 2-SORAs, these results 
are promising, especially in light of longstanding concerns 
about therapeutic options for the treatment of insomnia 
and other sleep disorders in patients with AD [132–136]. 
Nevertheless, the current findings should be considered 
preliminary, and further studies with long-term follow-up 
and a wider range of outcomes (e.g., neuropsychiatric symp-
toms, cognitive function, patients’ and caregivers’ health-
related quality of life) are warranted to confirm the clinical 
effectiveness of DORAs in sleep disorders comorbid with 
neurodegeneration. The heterogeneity of sleep assessment 
methods (i.e., PSG, actigraphy, clinical judgment, self- or 
caregiver-reported sleep quality) should also be addressed, 
possibly encompassing the full spectrum of sleep medicine 
assessment tools and combining their respective advantages. 
In this context, the thorough evaluation of OSA is critical, 
given its well-established role as a modifiable risk factor for 
cognitive decline in AD [73, 137]. A comprehensive multi-
method assessment protocol, such as that outlined in the 
ongoing Sleep Impairment in Subjects at Risk of Develop-
ing Alzheimer’s Disease (WAVE-APOE4; clinicaltrials.gov 
identifier: NCT05649514) clinical study, could be pursued.

Furthermore, regarding the hypotheses linking AD with 
orexin dysregulation—specifically, the potential role of 
orexin in AD onset, which might be exerted both indirectly 
and directly through sleep and wake disturbances—evidence 
on the impact of orexin receptor antagonists on AD patho-
physiology and core clinical features remains limited. The 
pivotal study by Lucey et al. [101] demonstrated an acute 
decrease in CSF AD-related biomarkers following adminis-
tration of suvorexant in healthy adults, but further data are 
needed to confirm these findings and assess their signifi-
cance. Notably, ongoing research and trials aim to investi-
gate these effects over the long term and may soon enrich 
our understanding.

Future studies should build on these foundations to 
directly explore whether orexin antagonism can act as a 
preventive treatment for AD beyond being a symptomatic 
therapy for comorbid sleep disturbances. Such efforts should 
capitalize on the potential of multimethod sleep assessment, 
complementing the benefits of full PSG and quantitative 
EEG analysis with the prolonged measures of circadian 
rest–activity rhythms achievable with actigraphy and the 
home-based assessment of sleep stages and respiratory 
events with portable devices [70, 138], especially consider-
ing that PSG-based assessment may not be clinically feasi-
ble in severely impaired patients. Dedicated trials, such as 

the ongoing SToP-AD study, could be designed to include 
elderly individuals at risk of AD with and without sleep dis-
turbances to investigate the longitudinal effects of prolonged 
treatment with DORAs or 2-SORAs on a comprehensive set 
of outcomes that include recognized features of AD. Along 
with detailed sleep measurements and biomarkers, cognitive 
and functional assessments should be considered as end-
points in these studies to effectively evaluate the extent to 
which targeting the orexin system can slow AD progression 
both pathophysiologically and clinically.
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