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Abstract

The paper aims to investigate the impact of the optimization algorithms on the train-
ing of deep neural networks with an eye to the interaction between the optimizer
and the generalization performance. In particular, we aim to analyze the behavior of
state-of-the-art optimization algorithms in relationship to their hyperparameters set-
ting to detect robustness with respect to the choice of a certain starting point in ending
on different local solutions. We conduct extensive computational experiments using
nine open-source optimization algorithms to train deep Convolutional Neural Network
architectures on an image multi-class classification task. Precisely, we consider sev-
eral architectures by changing the number of layers and neurons per layer, to evaluate
the impact of different width and depth structures on the computational optimization
performance. We show that the optimizers often return different local solutions and
highlight the strong correlation between the quality of the solution found and the
generalization capability of the trained network. We also discuss the role of hyper-
parameters tuning and show how a tuned hyperparameters setting can be re-used for
the same task on different problems achieving better efficiency and generalization
performance than a default setting.
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1 Introduction

One of the key areas of artificial intelligence is supervised machine learning (ML),
which involves the development of algorithms and models capable of learning a model
on a given set of samples and making predictions or decisions based on previously
unseen data. In ML community, this property is commonly known as generalization
capability. In most real-world applications, as well as in the case analyzed in this paper,
the system is a neural network trained by minimizing a differentiable loss function
measuring the dissimilarity between some target values and the values returned by the
network itself. The training process consists in the minimization of a loss function
with respect to the network weights and biases, which can result in a complex and
large-scale optimization problem.

The crucial role played by optimization algorithms in machine learning, acknowl-
edged since the birth of this research field, has been widely and deeply discussed
in the literature, both from an operations research and a computer science perspec-
tive. Training a supervised ML model involves, indeed, addressing the optimization
problem (Gambella et al. 2021) of minimizing a function, which measures the dissim-
ilarity between predicted and correct values. Simple examples are the different type
of regression (Lewis-Beck and Lewis-Beck 2015; LaValley 2008; Ranstam and Cook
2018), the neural network optimization (Goodfellow et al. 2014), the decision trees
(Carrizosa et al. 2021; Rokach and Maimon 2010; Bertsimas and Dunn 2017; Buntine
2020), and support vector machines (Steinwart and Christmann 2008; Tatsumi and
Tanino 2014; Suthaharan and Suthaharan 2016; Pisner and Schnyer 2020). While the
underlying idea of stochastic gradient-like methods, proposed by Robbins and Monro
(1951), dates back to the 1950s, the research community has deeply investigated its
theoretical and computational properties and a vast amount of new algorithms have
been developed in the past decades.

Despite all the studies that have already been carried out in this field, which will
discuss further, to the best of our knowledge, only a few have tried to answer some rel-
evant computational questions encountered when using optimization methods to train
deep neural networks (DNNS5). In this paper, we point out and address the following
issues in solving training optimization problems to assess the influence of optimization
algorithm settings and architectural choices on generalization performances.

e Convergence to local versus global minimizers and the effect of the quality (in
terms of training loss) of the solution on the generalization performances;

o effect of the non-monotone behavior of mini-batch methods with respect to tradi-
tional batch methods (L-BFGS) on the computational performances;

e different role of the starting point and regions of attraction on L-BFGS than on
mini-batch algorithms;

e importance of the optimization algorithm’s hyperparameters tuning on the opti-
mization and the generalization performances;

e the robustness of hyperparameters setting tuned on a specific architecture and
dataset by modifying the number of layers and neurons and the datasets
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In this paper, we discuss and try to answer some questions regarding the aforemen-
tioned issues. We conduct extensive computational experiments to enforce our main
claims:

i) generalization performances can be influenced by the solution found in the training
process. Local minima can be very different from each other and result in very
different test performances;

ii) traditional batch methods, like L-BFGS, are less efficient and also more sensitive
to the starting point than mini-batch online algorithms;

iii) hyperparameters tuned on a specific baseline problem, namely a given baseline
architecture trained on an instance of a class of problems, can achieve better gener-
alization performance than the default ones even on different problems, changing
either the architecture and/or the instance in the given class.

To the aim above, we consider the task of training convolutional neural networks
(CNNs) for an image classification task. We use three open-source datasets to carry
out our experiments. We train the networks using nine optimization algorithms imple-
mented in open-source state-of-the-art libraries for optimization and ML. We show
that not all the algorithms reach a neighborhood of a global optimum, getting stuck in
local minima. In particular, FTLR, Adadelta, and Adagrad cannot find good solutions
on our experimental testbed, regardless the initialization seed and the hyperparame-
ters’ setting. We also notice that test performance, i.e., the classification test accuracy,
is remarkably higher when a good approximation of the global solution is reached and
that better solutions can be achieved by carefully choosing the optimization hyper-
parameters setting. We carry out a thorough computational analysis to assess the
robustness of the tuned hyperparameters’ configuration on a baseline problem (the
image classification task on the open-source dataset UC Merced (Yang and Newsam
2010) using a customized deep convolutional neural network) with respect to architec-
tural changes of the network and to new datasets for image classifications and we find
that the hyperparameters tuned on the baseline problem give often better out-of-sample
performance than the default settings even on different image classification datasets.
Notice that we define a problem as a couple dataset-network, e.g., UC Merced-Baseline
architecture. The paper is organized as follows. In Sect.2, we discuss some relevant
literature highlighting both the importance of what has already been produced by the
ML research community and the novelty of our contributions. In Sect. 3, we describe
the network architecture, while in Sect.4, we formalize the optimization problem
behind the image classification task, mathematically describing the convolution oper-
ation performed by the network layers. In Sect. 5, we briefly describe each of the nine
different open-source algorithms we have tested on our task. In Sect. 6, we describe the
composition of the three open-source datasets, and in Sect. 7, implementation details
are reported. In Sect. 8, we describe in detail the computational tests we have carried
out on different networks and datasets. We present our conclusions in Sect.9.
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2 Related literature

Several attempts have been made in the scientific literature to address the main issues
discussed in this paper, both in the form of a survey and in the form of a compara-
tive analysis and computational study. For instance, to understand how different types
of data and tuning of algorithm parameters affected performances, Lim et al. (2000)
carried out a thorough comparative analysis of nearly all the algorithms available at
the time for classification tasks. As machine learning and, in particular, deep learning,
gained steadily growing interest in the community, this comparative analysis methodol-
ogy became a standard framework applied to specific methods and neural architectures.
More recently, some other specific surveys have been produced, in particular compar-
ing the behavior of different optimization algorithms on image classification tasks
(Dogo et al. 2018; Kandel et al. 2020; Haji and Abdulazeez 2021), but they are mostly
focused on mere computational aspects rather than to performance in respect of the ML
task. Pouyanfar et al. (2018) and Braiek and Khomh (2020) provided methodological
surveys on different approaches to ML problems. In the same years, algorithms used
in machine learning have been widely studied also from an optimization perspective.
Bottou et al. (2018) studied different first-order optimization algorithms applied to
large-scale machine learning problems, while Baumann et al. (2019) produced a thor-
ough comparative analysis of first-order methods in a machine learning framework
and traditional combinatorial methods on the same classification tasks. Following the
increased need for a high-level overview, some other papers on first-order methods
have been published by Lan (2020), which provides a detailed survey on stochastic
optimization algorithms, and by Sun et al. (2019), which compares from a theoretical
perspective the main advantages and drawbacks of some of the most used methods in
machine learning.

Some recent literature (see, e.g., Palagi 2019) also discusses the role of global
optimization in the training of neural networks, as well as the problem of hyperpa-
rameters’ optimization. The role of global optimization in ML is also strictly linked
to the emerging practice in ML of perfect interpolation, i.e., of training a model to fit
the dataset perfectly. Advanced studies in this direction have been carried out over the
past years, starting from Zhang et al. (2016) and Zhang et al. (2021), who reconsidered
the classical bias—variance trade-off, remarking that most of the state-of-the-art neural
models, especially in the field of image classification, are trained to reach close-to-
zero training error, i.e., a global minimizer of the loss function. Sun (2019) investigates
the problem of choosing the best initialization of parameters and the best-performing
algorithms for a given dataset, namely Global Optimization of the Network frame-
work. other computational studies (Advani et al. 2020; Spigler et al. 2019; Geiger et al.
2019) enforce the idea that larger or more trained (i.e., trained for a larger number of
epochs) models also generalize better.

Another particularly valuable work for our research is Im et al. (2016), where a
loss function projection mechanism is used to discuss how different algorithms can
have remarkably different performances on the same problem. Eventually, the issue of
having plenty of local minimizers, some of which are better than others in the sense that
they lead to better test performances (which is, indeed, the main point of our claim
i)), has been actively addressed both from a theoretical and from a computational
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perspective. Ding et al. (2022) provided detailed mathematical proof of the existence
of sub-optimal local minima for deep neural networks with smooth activation. The
authors show how it is not possible to create general mathematical rules to guarantee
convergence to good local minima. Recent research shows that local minima can, in
practice, be distinguished by visualizing the loss function (Sun et al. 2020) and, in
particular, the occurrence of bad local minima can be empirically reduced with some
architectural choices (Li et al. 2018). We show the role of selecting different stationary
points in Sect. 8.1, where a multistart approach is also used on a subset of algorithms
that seem particularly affected by the starting point.

The issues surrounding hyperparameters of optimization algorithms are also an
important field for the ML research community. These hyperparameters are often
treated in the same way as the hyperparameters defining the architecture (layers, neu-
rons, activation functions, etc.), thus causing possible confusion about the reason for
the good/bad performance of the obtained classification model. More specifically,
despite the problem of local minimizers being certainly well known, this has been
studied more in relation to the loss landscape, namely in relation to architecture hyper-
parameters, which can have an impact on shaping the loss landscape. However, recent
research highlights that hyperparameters’ setting can have a strong influence on algo-
rithms’ behavior, if they are specifically tuned on a given task. Xu et al. (2020) are
among the first to point out the problem of the robustness of hyperparameters; they
discuss how traditional first-order methods can get stuck in bad local minima or saddle
points when tackling non-convex ML problems and how computational results can
depend on the hyperparameters’ setting. Jais et al. (2019) carry out a thorough analysis
of Adam algorithm performance on a classification problem, focusing on optimizing
the network structure as well as Adam parameters. Nonetheless, hyperparameters are
often set to a default value, which is obtained by maximizing the aggregated (in most
cases, the average) performance across a variety of tasks, balancing a trade-off between
efficiency and adaptability to different datasets (Probst et al. 2019; Yang and Shami
2020; Bischl et al. 2023). To our knowledge, no one has systematically addressed the
question of whether it could be convenient to tune the hyperparameters on a baseline
problem (small network and small dataset) and use the tuned configuration on other
problems (network dataset) rather than using the default setting, which is our claim
iii). Indeed, performing a grid search is computationally expensive for the considered
task due to the high amount of training time needed for each possible combination
of hyperparameters. Thus, we aim to show that performing a single grid search for
hyperparameters and tuning them for the baseline network on a simple dataset can also
have advantages on more complex problems (network dataset). The grid search on the
baseline problems is reported in Sect. 8.2. We then reuse the best-identified hyperpa-
rameter setting to investigate the effect when the architecture changes (in Sect. 8.3),
and as the dataset varies (Sect. 8.4). Indeed, we aim to analyze if the high-demanding
operation of the grid search is more dataset-oriented or architecture-oriented, i.e., if
the hyperparameters are more sensitive when the architecture or dataset change, given
the same (classification) task.
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3 The task and the network architectures

The chosen task is multi-class image classification, which is a predictive modeling
problem where a class, among the set of classes, is predicted for a given input data.
More formally, we are given a training set made up of P pairs (x/, y/), j =1,..., P,
of two-dimensional input colorful images x represented by H x W pixels for each
of the three color channels (red, green, blue) thus as a tensor (3 x H x W), and the
corresponding class label y. We denote with N the number of possible classes, so that
y/ € {0, 1}" and the target class value of sample j is y/ = 1 if the sample image j
belongs to class i and yi] = 0 otherwise. In this paper, we consider three well-known
2D input images datasets, described in Sect. 6.

Developed and formalized by LeCun et al. (1995), deep Convolutional Neural
Networks (CNN), a special type of deep neural network (DNN) architecture, are one
of the most widespread types of neural network for image processing, e.g., image
recognition and classification (Hijazi et al. 2015), monocular depth estimation (Papa
et al. 2022), semantic segmentation (Guo et al. 2018), video recognition (Ding and
Tao 2017), and vision, speech, and image processing tasks (Abbaschian et al. 2021;
Kuutti et al. 2021; Shorten et al. 2021). In the literature, well-known Deep CNN
models have been developed to face multi-class classification. Among them, we cite
the DenseNet (Huang et al. 2017), the ResNet (He et al. 2016), and the MobileNet
(Howard et al. 2017). These architectures are distinguished by specific and complex
designs composed of stacked operational blocks.

In this paper, different optimizers are tested over the three datasets and different
CNN architectures. In particular, we specifically design a lightweight low-complexity
BASELINE CNN model composed of elementary operations, such as Convolution
(Conv2D), Pooling, and Fully Connected (FC) layers, briefly described below. More-
over, starting from the BASELINE model, we designed three architectural variants based
on the same elementary blocks, varying the number of units per layer (WIDE), the num-
ber of layers (DEEP), and both of them (DEEP&WIDE). We refer to these architectures
as Synthetic Networks.

The Synthetic Networks have been designed to analyze if the tuned set-up of the
hyperparameters for the BASELINE architecture on a baseline dataset shows simi-
lar improvements across architectural and dataset changes. To check whether this
behavior can be generalized to other architectures, we also used two traditional CNN
architectures, namely Resnet50 (He et al. 2016) and Mobilenetv2 (Sandler et al. 2018).

In this section, we present the architectural aspects of the BASELINE CNN archi-
tecture and its WIDE, DEEP, and DEEP&WIDE variants. Details and the mathematical
formalization of the operations performed by the different layers are presented in
Sect. 4.

The BASELINE CNN is composed of a cascade of

— five Convolutional Downsampling Blocks (CDBs)
— one Fully Connected Block (FCB)
— one final Classification Block (CB).

A graphical representation of the models and a detailed block diagram represen-
tation, with layers operations and respective parameters, are reported in Fig. 1. Each
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Fig.1 Overview of the BASELINE model and corresponding blocks used for the study and its variants WIDE,
DEEP, and DEEP&WIDE. A generic activation function o is used

CDB block, represented with the yellow blocks in Fig. 1, performs a sequence of
operations

— astandard 2D-convolution (Conv2D layer) which takes in input a tensor of dimen-
sion C x H x W and produces in output a new tensor with the spatial feature
dimensions H and W decreased and the channels C increased;

— application of an activation function o’

— 2D-max-pooling or 2D-mean-pooling operation allows downsampling the extracted
features along their spatial dimensions by taking the maximum value or the mean
over a fixed-dimension, known as pool size;

— batch normalization.

Both CDB and FCB allow dropout with a given drop rate. Dropout consists of
removing randomly parameters during optimization. Thus, it affects the structure of
the objective function during the iterations by fixing some variables, and it can be seen
as a sort of decomposition over the variables.

The FC layer is a shallow Feed-forward Neural Network (FFN) where all the pos-
sible layer-by-layer connections are established. The FCB block uses the Dropout
operation, which is considered a trick to prevent overfitting. The last Classification
layer is made up of a FC layer too, followed by the SoftMax activation function to
extract the probability of each class.

An overview of the input—output shapes of the BASELINE model and the respective
number of trainable parameters is reported in Table 1.

The WIDE, DEEP, and DEEP& WIDE architectures are detailed below, while a block
diagram for each designed architecture is shown in Fig. 1.
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Table 1 BASELINE architecture: input—output spatial dimensions, reported in the [Channels, Height, Width]
format, and number of trainable parameters (N° Param.) of each layer in the case of a 256 x 256 input

Operations sequence Input shape Output shape
[C,H,W] [C,H,W]
Convolutional Downsampling Block (3, 256, 256) (16, 123, 123)
Convolutional Downsampling Block; (16, 123, 123) (32,57,57)
Convolutional Downsampling Blocks (32,57,57) (64, 25,25
Convolutional Downsampling Blocks (64, 25, 25) (128, 10, 10))
Convolutional Downsampling Blocks (128, 10, 10) (256, 4, 4)
Fully Connected Block (256, 4, 4) (512,1,1)
Classification Block (512, 1, 1) (N, 1,1)

e The WIDE model is designed by doubling the dimension of the output of each
Conv2D layer, i.e., the number of output filters of the BASELINE model in the
convolution.

e The DEEP model is designed by doubling the number of convolutional operations,
i.e., stacking to each CDB a further Convolutional Block (CB), as reported in
Fig.1 (blue blocks), performing the same operations as the CDB except for the
downsampling step of the 2D-max/mean pooling.

e The DEEP&WIDE model is designed by combining the previous WIDE and DEEP
structures.

Finally, to assess the generality of the computational results, tests have been carried
out also using two well-known neural architectures: Resnet50 (He et al. 2016) and
Mobilenetv2 (Sandler et al. 2018). Resnet50 is a deep convolutional neural network
with 50 hidden layers and with residual connections at each layer, meaning that the
output of each layer is added to the output of the subsequent layer to prevent the
well-known vanishing gradient issue (Borawar and Kaur 2023). Mobilenetv2 is a
lightweight convolutional neural network, which uses a lighter convolutional operator.
Both Resnet50 and Mobilenetv2 are among the most used neural architectures for
image classification.

4 The optimization problem for the synthetic networks

The optimization problem related to our task consists in the unconstrained minimiza-
tion of the Categorical Cross Entropy (CCE) between the predicted output of the neural
model j)lj (w) and the correct classes yj € {0, I}N.

The predicted value j)l] (w) is the output of the last Classification block, and it
represents the probability, estimated by the neural architecture, that the sample j
belongs to class i. Thus, we have ZZNZI )Azl/ (w)=1Vj=1,..., P Vo € R". Thus,
the unconstrained optimization problem can be written as
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min f(@) = — ¥} log(§] (@)). (M)

P
j=

N

-

1i=1
We aim to derive the probability output of the BASELINE synthetic network as
a function of the network parameters o, i.e., )A/lj (w), and, in particular, to write the

dependency of j}lJ from w in a closed form

Asreported in Fig. 1, in the BASELINE model, the input images propagate along con-
volutional downsampling layers (CDB), a fully connected (FCB) and a classification
(CB) layers. We formalize this process to get an analytical expression for &i] (w).

Each CDB performs five operations: a standard 2D-convolution, denoted as Conv2D
layer in Fig. 1, followed by an activation function, a Max-pooling, or a Mean-pooling
operation, the batch normalization. In the FCB, the Max/Mean-pooling is removed.

The input X% to a Conv2D layer ¢ is a tensor of dimension [dz’l, mt1 me’l]
where d‘~! are the channels and m‘ is the height/width of each channel ¢ =
1,...,d" !, and the output X* is a tensor of dimension [d*, m¢, m*]. The input X0 at
layer £ = 0 of the CDB layer is the colorful sample image represented with m® = 256
pixels and d° = 3 color channels (red, green, blue). We denote by X g the matrix

mt x m* for each channelc = 1, ..., d* and by x. = X? e R"Mfore=1,...,d°
A Conv2D layer ¢ applies a discrete convolution on the input X¢~!. This operation
consists in applying filters (also called kernels) w’g e R™" fork =1,...,d" to the
c-th input channel Xf_l withe=1,...,d" L.

The convolution operation depends on the integer stride s > 1, representing the
amount by which the filter w’c‘ shifts around the input X¢~!. The stride is commonly
settos = 1, as we did for all the experiments except for L-BFGS for which the stride
has been fixed to s = 2. The dimension of the filter 1, the number of channels d*, and
the stride s > 1, for each layer £, are network hyperparameters. Let us denote as ®;
the discrete convolution operation with stride s € N. The expression component-wise
of the convolutional operation between the filter w’c‘ € R™ and the input feature
Xt Tis

n n

[w]; ®s XC:Iij = Z Z[wlg]a,b[xc]i+sa,j+sb i,j= 0,...,m—n,
a=1 b=1

where for the sake of simplicity, we avoid the use of the superscript . As reported in
Bengio et al. (2017) Chapter 9 (equation (9.4) with s = 1), the kth convoluted output is

(771[71 —n+1) x (mzfl —n+1)
5 5 defined as the sum over the channels, namely

the matrix F{ € R

a1
Fi=> wie x™ k=1,....d" 2
c=1
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The convoluted output F* of the Conv2D layer £ is thus

m®=1-nt1) % m*=1_nt1)
s 5

)

.....

The parameters of the convolutional layer £ are denoted as

— 14
ilk_l’m’d = Rnxnxd[xd‘z’I‘ (3)

14 k
Conv € lem1 gt

.....

The next block applies a nonlinear activation function o to the output of the Conv2D
layer £. The activation function o that has been used in the computational experiments
in Sect.8 can be either the ReLU o(z) = max{0, z} or the SiLU o(z) = 1+Ze—z
(Mercioni and Holban 2020; Ramachandran et al. 2017). In particular, the SiLU is
used when applying L-BFGS to ensure the smoothness of the objective function and
avoid failures of the optimization procedure.

In CDB blocks, the Conv2D output is submitted to the pooling operation aimed
at further reducing the image dimensionality. The pooling operation Pool involves
sliding a two-dimensional non-overlapping p x p matrix, where p is the pool size,
over each convoluted output F, ,f and contracting the features lying within the p x p
region covered by the filter using the max or the mean operation. More formally, let
us introduce the set P; ;) of positions, i.e., for each (i, j) the rows and columns of
the matrix F,f, that are located in the p x p region; then, Pool: F,f — Gi where

@ ongny ot

the kth pooled output is Gi eR = s . The output of the Max-Pool or
Mean-Pool layer is computed, respectively, as

GO = max (F.c (G =

= F)re, @
(r,c)e'P(,',j) |P(t,j)| Z ( k)r,c ( )

(r,0)€Pq, )

where for the sake of simplicity, we removed the superscript £. The set P(; ) depends
on how drastically we want to reduce the dimensionality. In our experiments, we have
set p = 2. In this case, the moving region is just a 2 x 2 matrix, and thus, we halve the
dimension of F'. Forinstance, P(1.1) = {(1, 1), (1, 2), (2, 1), (2, 2)}, meaning that Glfl
is the maximum/mean value between four different values { F' lk L F lk 2 Ff 1 sz »}. The
Max-pooling operation is widely used in image classification, but it introduces a non-
differentiability issue. For this reason, when testing L-BFGS, where differentiability
is crucial, we use the Mean-pooling.

The output of a CDB block obtained by Egs. (2) and (4) is
zt = {pool o (ZO)]},or 4, and finally given as

7= {eoor [ (F)]}_, ®

whereas the output of a CB block does not use the Pool operations and thus is given
simply by Z¢ = F*. In both cases, Z* is then normalized to stabilize and speed up
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the training process. The normalization is performed following the standard batch-
normalization procedure described in Ioffe and Szegedy (2015), i.e., subtracting the
mean and dividing by the standard deviation.

The output of the last layer X, being L the total number of layers, of either CDB or
CB s finally sent into the Fully Connected Block (FCB) and then into the Classification
Block. The FCB is a shallow Feed-forward Neural (FFN) Network with M g¢ g neural
units and the activation function o (ReLLU or SiLLU, as before). The output of the FCB
is given by

Zrcg =0(WhepXE +brep), (6)

where (Wrcp, brcp) are the weights and the biases of the FFN network. The Classi-
fication Block is made up of a shallow FFN network followed by a softmax operation,
so that the final output is

y =Soft(Zcp) = Soft (WgBZFCB—G—ch), )

where Soft is applied component-wise to the vector Z¢p as

eZh
Soft = .
(zn) N
j=1
The overall network parameters are
L 1
w = (WCB’ cha WFCB’ bFCB5 WCOVH}’ LR} Wanv)'

Mobilenetv2 (Sandler et al. 2018) and the Resnet50 (He et al. 2016) present dif-
ferences with respect to the Synthetic Network. Indeed, Mobilnetv2 instead uses
depthwise separable convolutions different from (2), while Resnet50 presents residual
connections among layers. Thus, the resulting optimization problem can be different
with respect to the one described in this section.

5 The selected optimization algorithms

In this paper, L-BFGS and eight state-of-the-art ML optimization algorithms with
multiple hyperparameters setups are compared. Precisely, those are: Adam (Kingma
and Ba 2015), Adamax (Kingma and Ba 2015), Nadam (Dozat 2016), RMSprop,1
SGD (Robbins and Monro 1951; Bottou et al. 2018; Ruder 2016; Sutskever et al.
2013b), FTRL (McMahan 2011), Adagrad (Duchi et al. 2011), and Adadelta (Zeiler
2012). We use the SciPy? version for L-BFGS and the built-in implementation in
TensorFlow library? for the eight others.

1 RMSprop is an adaptive learning rate method devised by Geoff Hinton in one of his Coursera Class
(http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) that is still unpublished.

2 https://scipy.org/.
3 https://www.tensorflow.org/probability/api_docs/python/tfp/optimizer/lbfgs_minimize.
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For the sake of completeness, we report the updating rule of each algorithm, assum-
ing it is applied to the problem as in Eq. (1), namely

min f () = Z fr(@).

We note that all algorithms require f to be a continuously differentiable function.
The use of non-differentiable activation functions (ReLU) in the network layers and
the MaxPooling layer, as usually done in CNN, implies that the objective function f
does not satisfy this essential property and a finite number of non-differentiable points
arise. When using L-BFGS, this aspect becomes evident as discussed in Sect. 8.1. We
tried to use L-BFGS with the standard setting in CNNs, but it happened very often
that the method failed and ended at a non-stationary point. Indeed, since L-BFGS
is a full-batch method using all the samples at each iteration, whenever a point of
non-differentiability is reached, the gradient returned by TensorFlow is None, and
the method gets stuck. The other eight first-order algorithms are instead mini-batch
methods, which perform network parameters update using only a small subset of
the whole samples. When it happens that the partial gradient is None on a subset
of samples, the method continues in the epoch, changing the batch and possibly the
new partial gradient can be used to move from the current iteration. Hence, although
convergence of the mini-batch methods requires smoothness, from the computational
point of view, they can work heuristically without it.

Hence, when using L-BFGS, we need to reduce non-differentiability. To this aim,
we set SiLU as activation function and we select the MeanPooling, which is not
a common practice in CNN for image classification. We also fully deactivate the
Dropout operation and set stride s =2. We also remark that we are comparing a globally
convergent traditional full-batch method with eight different mini-batch methods, that
require strong assumptions to prove convergence that do not hold for the problem at
hand. By studying L-BFGS performance against commonly used optimizers, we aim
to assess whether theoretical convergence really plays an important role in determining
the efficiency, the train performances, and, most of all, the generalization capability.

5.1 L-BFGS

Being one of the best-known first-order methods with strong convergence properties
(see Liu and Nocedal (1989)), L-BFGS belongs to the limited memory quasi-Newton
methods class. This algorithm is purely deterministic and, at every iteration k, exploits

an approximated inverse Hessian of the objective function, and it performs the follow-
ing update scheme:

w1 = wp — N HEV f(wy),

where 7y, is a step size obtained via some line search method.
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The updating rule for Hy has been formalized by Nocedal and Wright (1999). Given
an initial approximate Hessian Hy ~ [V2 f (wo)]_l, the algorithm uses the rule

T
SkS
Hepr = V] HiVi + —%,
Vi Sk
where
T
YkSy
Sk =0kl — O, Yk =V o) = Vflwr), Vi=1- Tsp’
K Sk

being [ is the identity matrix.

L-BFGS is not among the optimizers mostly used in machine learning. However, in
force of its strong convergence properties, this algorithm has recently gained increasing
interest in the research community. Some multi-batch versions of L-BFGS have been
proposed in the past years in (Berahas et al. 2016; Bollapragada et al. 2018; Berahas
and Takac¢ 2020), in particular for image processing tasks in medicine in (Yun et al.
2018; Wang et al. 2019).

Since L-BFGS is not directly available in TensorFlow, we have used the SciPy
version implemented with an open-source wrapper available online®.

5.2 SGD

The Stochastic Gradient Descent (SGD) is the basic algorithm to perform the mini-
mization of the objective function using a direction d¥ which is random estimate of
its gradient (see for details, the comprehensive survey Bottou et al. (2018)). In the
TensorFlow implementation, the following mini-batch approximation is used:

1
gilwy) = — Z V fi(wy) for some By C {1, ..., P}.
|Bk| ieBy

The updating rule is given by

w1 = ox — Nk gk (wi).

The update step can be modified by adding a momentum term (which depends on
a parameter ) or a Nesterov acceleration step which are an extrapolation steps
along the difference between the two past iterations. TensorFlow allows the use of
a Boolean parameter, called Nesterov, which enables the Nesterov acceleration
step (see Sutskever et al. (2013a)). When Nesterov=False, only a momentum is
applied and the basic SGD iteration is modified by adding

Bi(wr — wr—1)

4 https://gist.github.com/piyueh/712ec7d4540489aad2dcfb80f9a54993.
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with B > 0 momentum parameter. When Nesterov=True, first
2k = ok + Pr(wk — wr—1) (®)
is computed and the updating rule becomes

W1 = 2k — kg (25,

In both cases, the value of § is a hyperparameter to be tuned.

In Bertsekas and Tsitsiklis (2000), the pure SGD has been proved to converge to
a stationary point under strong assumptions. We further refer the reader to Drori and
Shamir (2020) for a thorough analysis of SGD complexity and convergence rate.

5.3 Adam

Adam is one of the first SGD extensions, where the gradient estimate is enhanced with
the use of an exponential moving average according to two coefficients: 81 and B,
ranging in (0, 1). The index i € {1, 2} is referred to as the moment of the stochastic
gradient, i.e., the first moment (expected value) and the second moment (non-centered
variance). Being g; the same mini-batch approximation used in SGD, we define the
following first and second-moment estimators at iterate k:

k
E[Vf(@)] ~me=1—p)Y B g ©)

i=1

k
E* [V f(o)] ~ v = (-2 B (2 ® g, (10)

i=1
where © is the Hadamard component-wise product among vectors.
Given the following matrix:

~ 1 ) 1
Vik(e) = - § [18 + dlag(vk)]2 ,

where diag(v) denotes the diagonal 2 x h matrix with elements v; on the diagonal,
and € > 0, the updating rule is the following:

~ 1
w, =awp — e Vi(e) ™! mp,
Je+1 ke — Nk Vi (€) - k
where my is given in (9). It has been recently proved in Défossez et al. (2020) that
Adam can converge under smoothness assumption and gradients boundness in L

norm with convergence rate 0(%), being & the number of variables and N the
numbers of iterations. For a more detailed discussion of Adam complexity (as well as
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for the other adaptive gradient methods Adamax and Nadam), we refer the reader to
Zhou et al. (2018).

5.4 Adamax

Adamax performs mainly the same operations described in Adam, but it does not
make use of the parameter €, and the algorithm exploits the infinite norm to average
the gradient. Let '

we= max 'l Uk = diag(up)

and my as in (9). Thus, the updating rule is

1
-1
Wk+1 = o — MUy " ————my.

(1—B8H

5.5 Nadam

Nadam, also known as Nesterov—Adam, performs the same updating rule as Adam
but employs the Nesterov acceleration step Eq. (8). Nadam is expected to be more
efficient, but the Nesterov trick involves only the order in which operations are carried
out and not the updating formula.

5.6 Adagrad

Adagrad is the first Adam extension that makes use of adaptive learning rates to
discriminate more informative and rare features. The general update rule of w; €
R’ involves complex matrix operations, for which we need to introduce some other
notation. At iteration k, we introduce the cumulative vector

k—1
G = Z(gt © &)

t=0

where g; = Zi B, V fi(w;). Given ¢ > 0 and the identity matrix I, we define the
following matrix:

1
Hi(e) = [Ie + diag(G)]? |
where diag(v), where v € R”, denotes the diagonal /& x h matrix with elements v;
on the diagonal. Thus, the updating rule resulting after the minimization of a specific

proximal function (see Duchi et al. (2011)) is the following:

w1 = ok — nHi(e) ' g
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Convergence results concerning Adagrad, as well as its modification Adadelta, have
been reported in (Li and Orabona 2019; Défossez et al. 2020; Chen et al. 2018) and
they still require strong assumptions.

5.7 RMSProp

Proposed by Hinton et al. in the unpublished lecture Hinton et al. (2012), RMSProp
(Root Mean Square Propagation) performs a similar operations as Adagrad, but the
update rule is modified to slow down the learning rate decrease.

In particular, following the notation introduced in the last subsections, at iteration
k, the following matrix is used:

1
Vi(e) = [1e + diag(vp)]?
where vi be given by (10). The update rule is:
wrs1 = op — nVi(e) g
Despite being still unpublished, RMSProp has already been studied in the field

of convergence theory in (Défossez et al. 2020; De et al. 2018), with an eye to the
non-convex ML context.

5.8 Adadelta

Adadelta (Zeiler 2012) can be considered as an extension of Adagrad, which allows
for a less rapid decrease in learning rate. Let us consider the same matrix

1
Vi(e) = [Ie + diag(vy)]?
used in RMSProp. Further, let §; = wr4+1 — ok

- & ~ ~ 1
= P =p) G 08)  Awe) = [Ie +diag@p)]* -

t=1

Thus, we can write the Adadelta updating rule as follows:
_Ll~
i1 = o — Vi(€) 2 Ag—1(€) k-
5.9 FTRL

FTRL (Follow The Regularized Leader), as implemented in TensorFlow following
McMahan et al. (2013), is a regularized version of SGD, which uses the L1 norm to

@ Springer



Tuning parameters of deep neural network training...

perform the update of the variables. Given, at every iteration k, dy = Zle g:, and
fixed the quantity oy, such that Zf:o oy = nlk’ the update rule is the following:

k
o . T _ 2
@41 = argmin {dkw—i-zazllw o] +A||w||]}.

t=1

As proved in McMabhan et al. (2013), the minimization problem in the update rule
can be solved in closed form, setting

0 if |zx il <A
Ok+1,i = . (11
—Nk(zk,i — sagn(zk,;)A) otherwise,

k
where zx ; = di — Z osws and sgn(-) is the Signum function.

s=1
FTLR convergence can be proved only in the convex case, as explained in detail in

McMahan (2011).

6 The datasets

We have carried out our computational test using three datasets: UC Merced (Yang
and Newsam 2010), CIFAR10, and CIFAR100 (Krizhevsky et al. 2009). UC Merced
represents the benchmark dataset used to define the BASELINE problem, namely the
training of the BASELINE network defined in Sect.3. We use the BASELINE problem
(defined as the pair BASELINE network—UC Merced) to assess the performance of
the different optimization methods.

UC Merced is a balanced dataset that comprises a total of 2100 land samples divided
into 21 classes, i.e., 100 images per class. The dataset images have a resolution of
256 x 256 pixels. The high number of classes and the limited number of samples for
each class make the multi-class classification a non-trivial task.

To assess whether the computational results obtained on the BASELINE problem
generalize to different datasets, we have also carried out additional tests on two larger
datasets: CIFAR10 and CIFAR100 (Krizhevsky et al. 2009), respectively, with N =10
and N =100 classes, both containing 60000 samples at a resolution of H x W =
32 x 32 pixels.

Furthermore, for mini-batch methods, we also apply data augmentation, which is a
commonly used technique in machine learning for image classification. It consists of
random transformation of the selected mini-batch of samples with the aim of increas-
ing the training dataset diversity and achieving better generalization capabilities. For
a better understanding of this technique, we refer the reader to (Van Dyk and Meng
2001; Connor and Khoshgoftaar 2019); in our case, data augmentation involves ran-
dom transformations on selected images, such as rotation, scaling, adding noise, and
changing brightness and contrast.
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7 Implementation details

We implemented the proposed study using TensorFlow 2° deep learning high-level
API, using its implementation of Categorical Cross Entropy (CCE).® We set the envi-
ronment seed (also for the normal initializer of the convolutional kernels) at a randomly
chosen value equal to 1699806 or to a specific list’ of values in the multistart analysis.
Computational tests have been conducted using a mini-batch size bs = 128, except for
L-BFGS, which is a batch method, i.e., requires the whole gradient at each iteration.
Concerning the eight built-in optimizers, in Sect. 8.1, the network was trained setting
to 100 the number of epochs over the whole dataset. We remark that a single epoch
consists of % update steps, being P the number of samples in the dataset. In the exper-
iments with tuned hyperparameters in Sect. 8.2, we halved the number of epochs. In
other experiments with larger problems, the number of epochs was further reduced to
30. We underline that reducing the number of epochs is a common heuristic procedure
in deep learning (Diaz et al. 2017; Yu and Zhu 2020), where at an early testing phase,
the number of epochs is set to an arbitrary value (in our case 100) and, then, it is
reduced according to the training loss decrease, such that the network is not trained
when the loss has already reached values close to zero and is not further improving.
This prevents any waste of computational time that could result from training the
network when the loss is already extremely close to zero.

Eventually, we underline that the TensorFlow implementation of the eight built-in
optimizers, as well as the SciPy version of L-BFGS, uses back-propagation algorithm
to compute the gradients.

The training have been run on 12GB NVIDIA GTX TITAN V GPU. The L-BFGS
algorithm, being a full-batch method, cannot be run on a GPU due to the lack of
memory storage, and takes almost 30s on our reference Intel i9-10900X CPU to
execute an entire step, i.e., a batch containing all the training samples.

8 Computational results

We present in this chapter our computational experiments divided into three blocks.
In Sect. 8.1, we explain how we have tested L-BFGS and the eight optimizers briefly
described in Sect. 5 on the baseline problem, i.e., training the BASELINE architecture on
UC Merced dataset, using default setting of the hyperparameters. We have also carried
out a multistart test on the three worst-performing algorithms (Adadelta, Adagrad,
and FTLR) to assess whether poor performances were caused only by an unfortunate
weights initialization or by the inherent behavior of these optimizers on the dataset. We
discuss the correlation between the test accuracy performances and the precision with
which the problem in Eq. (1) is solved, the loss profiles produced by the algorithms,
as well as the role of the data augmentation technique. Our further analysis in the
following sections is focused only on five of these optimizers since, as shown in

5 https://www.tensorflow.org/.
6 https://www.tensorflow.org/api_docs/python/tf/keras/losses/Categorical Crossentropy.
710, 100, 500, 1000, 1500, 10000, 15000, 100000, 150000, 1000000, 1500000, 1699806]
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Table 2 Number of trainable

A Architecture # variables [M]

parameters (variables) of the

different neural architectures; UCMerced CIFARIO CIFAR100

they depend on H, W, N. The

values are reported in millions BASELINE 4.84 0.72 0.74

M] WIDE 10.97 2.72 2.74
DEEP 9.83 1.57 1.62
DEEP & WIDE 22.52 5.99 6.05
Resnet50 24.77 24.77 24.79
Mobilenetv2 3.05 3.05 3.07

Sect. 8.1, they achieved the highest accuracy prediction. In Sect. 8.2, we describe the
grid search we have carried out on the baseline network on UC Merced dataset to tune
optimizers’ hyperparameters. We show how a careful tuning aimed at finding a nearly
optimal hyperparameters setting can result in significant improvements in terms of
test accuracy. In Sect. 8.3, we discuss the results obtained after modifying the network
architecture with respect to the baseline, investigating in particular hyperparameters
robustness to the increase in depth and width.

Finally, in Sect. 8.4, we carry out tests on the two other image classification datasets,
CIFARI10 and CIFAR100 with H = W = 32 pixels and N = 10, 100, respectively.
For the sake of completeness, we report in Table 2 the number of trainable parameters
for all the architecture-dataset pairs.

8.1 The BASELINE problem with default hyperparameters

The first tests we have carried out are aimed at studying the optimizers’ performances
both from an optimization perspective (i.e., the value of the final loss) and a machine
learning perspective (i.e., the test accuracy). Hyperparameters have been set to their
default values (Table 3), taken from the TensorFlow documentation.

For each algorithm, we report in Fig. 2 the behavior of the training losses without
and with data augmentation, and in Table 4 the test accuracy.

We noticed that, while most of the algorithms converge to points in the neighborhood
of the globally optimal solution, i.e., the training loss is close to zero, Adadelta,
Adagrad, and FTRL get stuck in some local minima, as can be seen in Fig.2. This
results in quite poor accuracy performances for Adadelta, Adagrad, and FTRL as
reported in the first column of Table 4. We highlight that FTRL is an extreme case,
being the descent so slow that the loss profile looks like an horizontal line. This
is not surprising, because, as explained in McMahan et al. (2013), FTRL has been
thought to deal with extremely sparse datasets, which is not the case for colored
images. Furthermore, FTLR convergence requires a very strong convexity condition
(McMahan 2011), making it impossible to predict its behavior in such a non-convex
context.

The observed behavior seems to confirm what has been already pointed out in
(Swirszcz et al. 2016; Yun et al. 2018): neural networks can be affected by the local
minima issue, which has a direct influence on the performance metrics. Getting stuck
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CPU Time (seconds) CPU Time (seconds)
150 200 250 300 350 400 0 50 100 150 200 250

0 50 100 300 350 400

—— Adadelta —— Adadelta

—— RMSProp
— sGD

—— RMSProp
— sGD

A~

Training Loss
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(a) W/out data augmentation (b) with data augmentation

Fig. 2 Training loss for the BASELINE problem with default hyperparameters setting: (a) without data
augmentation and (b) with data augmentation. A color is assigned to each algorithm according to the
legend

in bad local minima often implies also an accuracy level that makes the entire network
useless for the classification task. In the case of FTRL, the test accuracy is so low that
the network selects randomly the predicted class.

Furthermore, data augmentation has no substantial effect in modifying the con-
vergence endpoint. Indeed, Adadelta, Adagrad, and FTRL are somehow stable in
returning the a bad point, as well as SGD, Adam, Adamax, Nadam, and RMSProp
always converge to good solutions, leading to similar values of accuracy, as we can
see again in Table 4. Nonetheless, data augmentation have a boosting effect on test
accuracy for all five working algorithms. This improvement is obtained, because data
augmentation artificially increases the diversity and the quantity of the training data
and, thus, enhances the network generalization capability. Nonetheless, data augmen-
tation also makes the task harder, and thus, the the training loss decrease is slightly
slower, i.e., the network needs more time to learn.

To investigate the behavior of Adadelta, Adagrad, and FTRL and to assess the sta-
bility of their bad performance, we have carried out another test employing a multistart
procedure. To this aim, we have initialized the weights using two different distribu-
tions Glorot Uniform (GU) (Glorot and Bengio 2010) and Lecun Normal (LN) (LeCun
etal. 1989) and 16 different seed values, i.e., starting from 16 different initial points for
each initialization, that is from 32 different points in total. The three algorithms always
get stuck in a point, with value of the training loss quite far from zero with respect
to the others. This behavior is very stable and does not change with the initialization
seeds.

Best accuracy values, not reported in a table for the sake of brevity, are always 4.6%
for FTRL, 18.2% for Adadelta, and 32.7% for Adagrad. These results suggest that the
bad behavior of Adadelta, Adagrad, and FTRL is not just caused by an unfortunate
initial point. These algorithms seem to converge to points which are not good for our
classification task. Hence, we have discarded Adadelta, Adagrad, and FTRL from the
testing phases reported in the next sections.

Concerning L-BFGS, we use the original dataset without data augmentation (which
is specific for mini-batch methods). We have first trained the baseline problem using
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CPU Time (seconds)
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Number of Steps

(a) Using ReLU activation function, MaxPooling and Dropout operations

CPU Time (seconds)
o s0 100 150 200 250 300 350

300 350

(b) Using SiLU activation function, MeanPooling and without Dropout and
using Conv with 2 strides

Fig.3 L-BFGS training loss with 5 different initialization seeds as reported in the legend, using the Lecun
Normal (LN) and Glorot Uniform (GU) initialization procedures

the ReLU as activation function, as well as the MaxPooling Eq. (4) and the Dropout
operations. Since the final points returned by L-BFGS are influenced by the starting
point (Liu and Nocedal 1989), we ran the algorithm with different initialization seeds.
In particular, we have used again the Glorot Uniform and Lecun Normal distributions
and, due to the heavy computational effort, only 5 different seed values for each initial-
ization. The training loss profile of this first set of experiments is reported in Fig. 3a.
We observe that the algorithm always fails before achieving convergence: the lines
in Fig.3a stop, because the returned loss was infinite at a given iteration. We argue
that this is caused by a non-differentiability issue. Indeed, as we already discussed,
L-BFGS convergence is guaranteed exclusively when the objective function is contin-
uously differentiable (Liu and Nocedal 1989) and the ReLU, as well as the MaxPooling
operation Equation (4), cause the occurrence of non-differentiable points, i.e., points
where the gradient is not defined. Although, this could in principle happen with any
other algorithm, since L-BFGS is a full-batch method, once a non-differentiable point
is reached the algorithm gets stuck.

Hence, we have also trained the baseline network in a more differentiable setting,
namely using the SiL.U activation function, the MeanPooling and disabling the Dropout
operation. As we show in Fig. 3b, results significantly improved with almost all the
initialization seeds. However, the loss does not always tend to zero and L-BFGS
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generally converges to points with a far worse loss function value than Adam, Adamax,
Nadam, RMSProp, and SGD.

This difference can be seen also in terms of test accuracy. Indeed, when using the
MaxPooling layers and the ReLU activation function, L-BFGS performs quite poorly
in terms of test accuracy reaching the maximum value of 15.4%.

When using the “differentiable” setting, we obtain better results reported in Table 5.
We report the average over the 5 runs of the final training loss values and of the test
accuracies.

We observe that even the most unlucky initialization, which is GU 10, results in a
test accuracy of 15.6% which is better than the highest one obtained with ReLLU and
MaxPooling. However, L-BFGS is much more sensible to the initialization seed with
respect to the other built-in methods, confirming claim (ii). The final training loss, as
well as the test accuracy, are not stable and may vary in a wide range of values. Despite
this computational result could question the practical effectiveness of traditional batch
methods in deep learning, it also confirms our claim (i): the quality of local minima
matters. Indeed, looking at Table 5, we observe a relation between the final loss value
and the test accuracy: lower final loss value usually corresponds to higher test accuracy.
In general, the accuracy performances achieved are not satisfactory when compared
to mini-batch methods as well as the training loss decrease in unstable and highly
influenced by the starting point. Finally, we also remark that L-BFGS is significantly
less efficient with respect to the other built-in algorithms. Indeed, it is practically
impossible to run it on a standard GPU, because one needs enough memory storage
to access the entire dataset in one single step, which is possible only on CPU and this
results in slower training.

8.2 Impact of tuning on the BASELINE problem

In this section, we perform tuning of hyperparameters of the optimization algorithm
on the baseline problem, namely on the BASELINE architecture and the UC Merced
problem, to assess their role in the computational efficiency and, in turn, on the final
test accuracy. As we mentioned in the introduction, default values for hyperparameters
are often obtained by maximizing the aggregated (in most cases the average) perfor-
mance across a variety of different tasks, balancing a trade-off between efficiency and
adaptability to different datasets (Probst et al. 2019; Yang and Shami 2020; Bischl
et al. 2023). We aim here to assess if a specific tuning on the classification task has
a influence on algorithms’ behavior. As this will be the case, in the next section, we
analyze the impact of the tuning obtained on a baseline problem to other settings
(architecture and/or dataset).

We discard Adadelta, Adagrad, FTRL, and L-BFGS from further analysis due to
their extremely poor performance on the baseline problem. Thus, we have carried out
a grid search to tune the hyperparameters of Adam, Adamax, Nadam, RMSProp, and
SGD on the BASELINE problem.

The grid search ranges are reported in Table 6. Concerning numerical hyperparam-
eters, we have chosen ranges centered in the default values, resulting in almost 200
possible combinations for each algorithm. We did not perform either a k-fold cross-
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Fig. 4 Training loss with tuned hyperparameters values for the BASELINE problem: (a) without data aug-
mentation and (b) with data augmentation

validation or a multistart procedure, as is usually the case in computer vision (see, e.g.,
Girtner et al. (2023)) for computational reasons. Indeed, each run (including loading
the dataset and the network to the GPU and the effective computational time) takes
approximately 9min (around 2s per epoch plus the set-up time). Thus, performing
the grid search over about 200 hyperparameter settings takes 1.25 days on a fully
dedicated 12GB NVIDIA GTX TITAN V GPU for each of the five algorithms. This
implies that each training phase with a complete grid search would require nearly 6.25
days. Therefore, performing, e.g., a k-fold cross-validation would require 6.25 - k days
on a fully dedicated machine, being a prohibited amount of time for standard values
of k (5 or 10). Similar observations holds for a multistart procedure.

The tuned values of the hyperparameters are selected considering the best test
accuracy obtained and are reported into brackets in Table 3, when different from
default ones. Once tuned the hyperparameters to new values, we have used them on
the BASELINE problem halving the number of epochs.

We report in Fig.4a, b the training loss profiles for the two settings without data
augmentation and with data augmentation. Comparing with the corresponding training
loss with default values in Fig. 2a, b, we can state that tuning does not directly influence
the final value of the objective function returned by the algorithms, which was already
the global optimal value near to zero. However, the loss decrease is faster, and nearly
optimal values (near to zero) are reached earlier, obtaining good results despite having
halved the number of epochs. In particular, in Fig.4a, the loss is almost zero already
after 15-20 epochs, while in Fig.2a after 25-30 epochs. Considering the case with
data augmentation, in Fig.2b, the loss is almost zero after 40 epochs in Fig.4b the
same is true after approximately 60 epochs.

However, our computational experience shows that the most relevant benefit of
hyperparameters tuning is the gain in terms of test accuracy. In Table 4, we report in
square brackets the test accuracy changes for the five optimizers, with and without
data augmentation.The change is always positive except for RMSProp with data aug-
mentation. We also observe that Adam, SGD, and Nadam show a larger improvement
over Adamax and RMSProp both w/out and with data augmentation.
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Fig.5 Training Loss trends of the 5 algorithms for UC Merced on the synthetic architectures

8.3 Impact of tuning when changing the architectures

In this section, we aim to investigate the impact of tuned vs default hyperparameters
when changing the network architecture, while the dataset is UC Merced.

In particular, we are interested in assessing how optimizers react to the increase in
depth and width, using the three synthetic configurations (WIDE, DEEP, DEEP& WIDE)
described in Sect. 3, as well as in determining the impact of tuning the hyperparameters
on state-of-the-art architectures as Resnet50, and Mobilenetv2. In this experiment, we
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perform a single run for each algorithm starting from the same initial point, fixing
the distribution and the random seed to LN 1699806, and considering the use of data
augmentation, which gave better results in the former experiments.

The results for the synthetic architectures are reported in Fig.5 (training results)
and in Table 7 (test accuracy), whereas the results for the state-of-the-art architectures
are in Fig. 6 (training) and Table 8 (test).

In terms of training loss, on the synthetic networks, the tuned version seems to
reach, on average, slightly smaller values, whereas on the state-of-the-art architectures,
there are not noticeable differences in the reached value. Thus, the tuning of the
hyperparameters does not improve significantly the decrease rate.

As regard the test accuracy on synthetic networks, in Table 7, we report for each
algorithm the % accuracy obtained for UC Merced dataset on the four different archi-
tectures and also the average % over the architectures (column Avg ARCH).

From Table 7, it seems that SGD and Adamax benefit from the tuned setting on the
synthetic architectures, significantly improving the average of the % accuracy (Avg
ARCH), whereas Adam and Nadam are slightly worse on average. RMSProp deteri-
orates significantly, but we remark that this was the only case of worst performance
also in the BASELINE problem with data augmentation (see Table 4).

The accuracy on Resnet50 and Mobilenetv?2 are reported in % in Table 8. On these
architectures, the tuned configuration does not perform uniformly better. However, we
observe an improvement when using SGD on Mobilenetv2, which is more similar in
the architecture to the BASELINE architecture. Thus, we can conclude that when the
architecture is significantly different from the BASELINE used for tuning Hyperparme-
ters, the advantages are limited.

8.4 Impact of tuning when changing the datasets

In this final set of experiments, we aim to assess the role of tuning when training all
the architectures on the two additional datasets CIFAR10 and CIFAR100, described
in Sect. 6.

The training loss of the the default and tuned versions of the five algorithms on
CIFAR 10 are reported in Fig. 7 for the synthetic architectures and Fig. 9 for the state-
of-the-art architectures. The same results on CIFAR100 are shown in Fig. 8 and Fig. 10.
The test accuracies, expressed as percentages, are reported in Table 7 and Table 8. For
each algorithm in the two settings DEFAULT and TUNED, we report a final row with
the average over the datasets when the architecture is fixed (Avg DATA), and a final
column with the average over the architecture when the Dataset is fixed (Avg ARCH).
The entries in the Avg ARCH columns and in the Avg DATA rows are in bold to
highlight which is the winning between the default and tuned configuration.

Examining the training losses for both CIFAR10 and CIFAR 100, we do not observe
significant differences in the training loss profiles between the default and tuned
configurations for most architectures. Thus, one might conclude that the optimal hyper-
parameters setting found in Sect. 8.2 on the BASELINE network is not robust enough.
However, when we consider the generalization performance, measured by the final
test accuracy, the situation appears different.
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Fig.6 Training Loss trends of the 5 algorithms for UC Merced on Resnet50 and Mobilenetv2

Indeed, looking at Table 7 and Table 8, we observe that SGD shows a strong
advantage with the tuned configuration, while the average accuracy values for other
optimizers are often very close to each other. SGD is the only non-adaptive optimizer,
meaning that the learning rate is not adjusted during the training. We argue that this
makes SGD much more sensitive to the hyperparameters setting than other adaptive
algorithms. Nonetheless, even on Adam and Nadam, the tuned configuration achieves
slightly better test accuracy. A remarkable exception to this pattern is Resnet50 in
Table 8, where the default configuration significantly outperforms the tuned one. This
result seems to suggest that our hyperparameter configuration found on the baseline
is not robust to more radical architectural changes, like in Resnet50, where residual
connections (see Sect.3) are added to each layer to prevent the vanishing gradient
effect.

Looking at Tables 7 and 8, we observe that some dataset/architecture/algorithm
configurations have differences in test accuracy that are too slight to claim which is
the best performing configuration. Although, in deep learning, it is usual to perform a
single-run test (see, e.g., Girtner et al. (2023)), to assess the potential advantage of the
tuned configuration over the default one, we decided to carry out an additional multi-
start computational test on a reduced number of possible configurations which present,
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Fig.7 Training Loss trends of the 5 algorithms for CIFAR10 on the synthetic architectures
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Fig.8 Training Loss trends of the 5 algorithms for CIFAR100 on the synthetic architectures
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Fig.9 Training loss trends for CIFAR10 on Resnet50 and MobilenetV2

in our opinion, the most inconclusive results. To this aim, we identified in Tables 7 and 8
the dataset/architecture/algorithm combinations with the smallest accuracy differences
between the tuned and the default configuration. We selected the six architectures (i.e.,
the four synthetic networks, Resnet50, and Mobilenetv2), algorithms Adam, Adagrad,
Nadam on the CIFAR100 dataset, and Adamax on both CIFAR10 and CIFAR100, for
a total of 30 datasets/architectures/algorithms combinations on which we performed
5 runs with a different seed (we set the seed to 0,1000,10000,150000,1698064). To
reduce the computational burden of such a test, we decided to halve the number of
epochs for each training compared to the original value (see Sect. 7). As a result, the
test accuracy values are lower than the ones in Tables 7 and 8.

We report the results in Table 9 where, for each dataset/architecture/algorithm com-
bination, we report the average test accuracy and the standard deviation (in brackets)
over the five multistart runs. We can conclude that the tuned configuration clearly
outperforms the default one on all the synthetic networks. The differences are gen-
erally significant, particularly when considering the standard deviation. Given that
we halved the number of epochs, this result suggests that, even when the difference
in accuracy between default and tuned configuration is slight, the tuned configura-
tion tends to achieve better generalization performance more quickly. However, the
advantage of the tuned configuration is smaller when the architecture is significantly
changed. RESNET50 and MOBILENETV2 do not show the same trend on all experiments

@ Springer



C. Coppola et al.

CPU Time (seconds) CPU Time (seconds)
1000 1500 1000 1500

0 500 2000 2500 0 500 2000 2500
— Adam — Adam
a —— Adamax a —— Adamax
Nadam Nadam
—— RMSProp —— RMSProp

—— SGD —— SGD

w

~

Training Loss
Training Loss

0 20 40 60 80 100 0 20 40 60 80 100
Number of Epochs Number of Epochs
(a) Resnet50 - Default HP (b) Resnet50 - Tuned HP
CPU Time (seconds) CPU Time (seconds)
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
5 5
— Adam —— Adam
—— Adamax —— Adamax
Nadam Nadam
a —— RMSProp 4 —— RMSProp
—— SGD —— SGD

Training Loss
w

N

Training Loss

Number of Epochs Number of Epochs
(c¢) Mobilenetv2 - Default HP (d) Mobilenetv2 - Tuned HP

Fig. 10 Training Loss trends of the 5 algorithms for CIFAR100 on Resnet50 and MobilenetV2

and it is not possible to draw such a definitive conclusion. We believe that this is due
to the structural architectural difference of the residual networks with respect to the
other synthetic networks.

8.5 Collective impact of tuning: performance profiles

In this section, we consider a collective representation of the training results with
the aim of assessing the impact of tuned versus default setting in reaching the global
solution. Following the underlying idea of the bench-marking method proposed in
(Dolan and Moré 2002) and (Moré and Wild 2009), we consider a variant of the
performance profiles as an additional tool of comparison between the five algorithms:
Adam, Adamax, Nadam, RMSProp, and SGD.

Following (Moré and Wild 2009), given the set of problems P and the set of solvers
S, aproblem p € P is solved by a solver s € S with precision 7 if

f@ps) < ff +T(f @) = f).
being a)g the starting point of problem p € P, which is the same for all solvers,

f(wp,s) the final value of the objective function in (1) after the training process and
pr = minges f(wp ). In our case, P is made up of the 18 different versions of
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Fig. 11 Success rate performance profiles og(7) of the five algorithms s on the 18 problems arising by
considering all the 6 architectures over all the three datasets: a with default and b tuned hyperparameters’
settings

the problem (1) corresponding to all the possible combinations of the 6 network
architectures (BASELINE, DEEP, WIDE, DEEP&WIDE, Resnet50, Mobilenetv2), with
the three datasets. Further, in our set of experiments, we have fixed the epochs, i.e., the
computational time. Hence, differently from (Moré and Wild 2009), we are interested
in checking how many problems are solved to a given accuracy t. Thus, we introduce
the success rate performance profile oy (7) for a solver s in Fig. 11 as:

1

B/lP € P fl@ps) = fL+t(f @) — O

os(t) =

In Fig. 11, we plot o4(7) with 7 € [1074, 1]. The higher the plot on the left, the
better. Looking at the performance profiles in Fig. 11, we confirm that it is not possible
to state the superiority of the tuning versions in the training performance. However,
the tuned versions of the algorithms differ less from each other, being more stable.

8.6 Data availability

All the data we have presented in this section are fully reproducible from the
source code, which is available on the public Github repository at https://github.com/
lorenzopapa5/Computational_Issues_in_Optimization_for_Deep_networks.

9 Conclusions

In this paper, nine optimization open-source algorithms have been extensively tested
in training a deep CNN network on a multi-class classification task. Computational
experience shows that not all the algorithms reach a neighborhood of a global solution,
and some of them get stuck in local minima, independently of the choice of the starting
point. Algorithms reaching a local non-global solution have test performances, i.e.,
accuracy on the test set, far below the minimal required threshold for such a task. This
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result confirms the initial claim that reaching a neighborhood of a global optimum is
extremely important for generalization performance.

A fine grid search on the optimization hyperparameters leads to hyperparameter
choices that give remarkable improvements in test accuracy when the network structure
and the dataset do not change. Thus, using a default setting might not be the better
choice.

Finally, the tests on different architectures and datasets suggest that when the
architectural changes are not too radical, it may be more effective to use the tuned
configuration rather than the default one. We believe that this finding can have a sig-
nificant impact, especially for ML practitioners tasked with training similar models on
different datasets within the same problem class, such as image classification, which
is common in real-world applications. Conducting a grid search on a representative
problem within a given class and tuning the hyperparameters accordingly, rather than
using the default configuration, can be viewed as creating a new customized setting,
which is reusable for larger instances and achieves better generalization performance.
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