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Abstract
Purpose Renin–angiotensin system hyperactivation in autosomal-dominant polycystic kidney disease (ADPKD) patients 
leads to early hypertension. Cystic enlargement probably causes parenchymal hypoxia, renin secretion, and endothelial dys-
function. Sympathetic and parasympathetic balance is altered in this condition, especially during the night, also affecting 
blood pressure circadian rhythm. Aim of this study was to evaluate sympathetic/parasympathetic balance using heart rate 
variability (HRV) parameters and find a correlation between HRV and renal damage progression, as total kidney volume 
enlargement, in ADPKD patients.
Methods Sixteen adult ADPKD patients were enrolled in the study. Eleven patients (68.8%) were male, and the median age 
was 42 years (IQR 36–47.5). HRV parameters were calculated using 24 h-ECG Holter. A kidney magnetic resonance imaging 
(MRI) scan 3 Tesla was performed to evaluate total kidney volume (TKV) and total fibrotic volume (TFV).
Results A statistically significant positive linear correlation was observed between length of kidneys and frequency domain 
parameters as low frequency (LF) (r = 0.595, p < 0.05) and LFday (r = 0.587, p < 0.05). Moreover, a statistically significant 
positive linear correlation exists between high frequency (HF) and TFV (r = 0.804, p < 0.01) or height-adjusted (ha) TFV 
(r = 0.801, p < 0.01). Finally, we found a statistically significant positive linear correlation between HFnight and TKV 
(r = 0.608, p < 0.05), ha-TKV (r = 0.685, p < 0.01), TFV (r = 0.594, p < 0.05), and ha-TFV (r = 0.615, p < 0.05).
Conclusion We suppose that the increase in TKV and TFV could lead to a parasympathetic tone hyperactivation, probably 
in response to hypoxic stress and vasoconstriction due to cystic enlargement.
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Introduction

Autosomal-dominant polycystic kidney disease (ADPKD) 
is an inherited monogenic disease, with a prevalence rang-
ing from 1 in 543 to 1 in 4000 [1]. It is characterized by the 
growth of cystic in kidney, due to a mutation in polycystin 1 
and 2, expressed on primary cilium and much more rarely by 
other recently identified genes as GANAB [2], PMM2 [3], 
DNAJB11, ALG9, and IFT140 [4]. Cysts growth leads to a 
parenchymal overthrow causing renal function impairment. 
It is well known that cardiovascular risk is higher in these 
patients, regardless their renal function [5, 6]. In particular, 
renin–angiotensin–aldosterone system (RAAS) is hyperac-
tivated rapidly in the absence of clinically hypertension and 
the loss of renal function. This evidence could be explained 
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by the effects of cystic enlargement on renal vessels with 
parenchymal ischemia. Altered intrarenal hemodynamic 
causes endothelial dysfunction, impairment in nitric oxide 
(NO) production, and hyperactivation of the sympathetic 
nervous system (SNS), mainly during the night [7]. The 
blood pressure circadian rhythm is also lost in this condi-
tion. For these reasons, an early detection of these alteration 
could be useful to address an adequate therapy. Sympathetic/
parasympathetic balance could be a very early marker to 
evaluate. Heart rate variability (HRV) analysis based on 
24-h ECG Holter [8] with specific parameters on time and 
frequency domain is a simple and non-invasive test to assess 
the risk of cardiovascular events due to sympathetic/para-
sympathetic imbalance [9].

With this background, the aim of this pilot study was to 
assess in ADPKD patients the sympathetic/parasympathetic 
balance using HRV parameters and correlate it with renal 
damage progression, as total kidney volume enlargement.

Materials and methods

We enrolled ADPKD patients in this study. DNA samples 
were analyzed in all patients for PKD genetic diagnosis and 
mutation in the PKD1 gene was found. Fifteen patients had 
a family history of ADPKD, except one patient who had a de 
novo mutation. No patient was in dialysis treatment. Patients 
with diabetes were excluded a priori.

Inclusion criteria were rapidly progressive disease (as 
kidney function loss > 5 ml/min/year), CKD ≥ stage G3b 
corresponding to estimated glomerular filtration rate (eGFR) 
30–44 ml/min/1.73  m2 (Kidney Disease Outcome Quality 
Initiative (KDOQI) staging system), absence of cardiovas-
cular events, blood pressure (BP) values in normal range 
under control with one of the following drugs: angiotensin-
converting enzyme inhibitors (ACEi), angiotensin II recep-
tor blockers (ARBs), and calcium channel blockers (CCB). 
The tests were performed before taking tolvaptan therapy. 
No patient was on beta-blocker therapy, 6 patients were on 
ACEi, 6 patients were on ARBs, and 11 were on CCB. No 
patient was on erythropoietin treatment for anemia. At the 
time of enrollment, medical records, physical assessment, 
and laboratory data were recorded in all patients. The study 
protocol was approved by the Local Clinical Research Ethics 
Committee. The study conforms to the principles outlined 
in the Declaration of Helsinki and a written consent by each 
patient enrolled was obtained.

Magnetic resonance imaging

All patients were subjected to a novel MRI protocol of 
advanced imaging with magnet 3Tesla (T) (Discovery MR 
750, 3 T, GE Healthcare) after positioning of the surface coil 

32 channels. Kidney MRI scan 3 T, with and without con-
trast, was performed to evaluate total kidney volume (TKV) 
and total fibrotic volume (TFV). The acquisition protocol 
included morphological sequences, single shot T2-weighted 
(SSFS) (TR 850 ms, TE 105 ms; Flip Angle 90°; FoV 
320 × 320; Matrix 320 × 224) acquired on axial, sagittal, and 
coronal planes and Gradient Echo (GRE) T1-weighted (TR 
5 ms; TE 1 ms; Flip Angle 15°; FoV 420 × 420; 288 × 192 
matrix). For the evaluation of parenchymal perfusion, ultra-
fast GRE T1-weighted sequences were used, acquired in the 
coronal plane (TR 2 mS; TE 1 mS; Flip Angle 13°; Thick-
ness 200 mm; FoV 300 × 300 mm, matrix 192 × 138) dur-
ing administration dynamic of i.v. contrast (gadobutrol 1 
mmoL/ml, Gadovist, Bayern, Germany) using a perfusion 
technique, with high temporal resolution of 4 s, for a total 
duration of about 8 min. The end of the dynamic sequence 
was made to coincide with the start of the administration 
of contrast material i.v.19. The evaluation of total perfu-
sion volume (TPV) and TFV results from perfusional MRI 
after a qualitative and quantitative approach. Each parameter 
resulted from a post-processed slice by slice renal segmen-
tation, respectively, in early arterial phase (first minute of 
perfusion) and late perfusional phase (eighth minute of per-
fusion). Segmentation was guided using colorimetric maps. 
After segmentation, software Workstation vers. 4.6 was used 
for three-dimensional (3D) volume rendering reconstruction, 
which resulted in semiquantitative estimation of parenchy-
mal perfonded tissue and fibrotic areas. These perfusional 
parameters give indication of functional parenchymal areas. 
Perfusion volume indicates kidney areas where blood flow 
is preserved, which is an indirect sign of normal functional 
parenchyma. Fibrotic areas indicate parenchymal areas that 
underwent fibrotical substitution and consequent loss of 
function [10].

Heart rate variability

Autonomic nervous activity was evaluated by HRV 
analysis during 24-h ECG recording following the rec-
ommendations of the Taskforce of the European Society 
of Cardiology and the North American Society of Pacing 
and Electrophysiology [11]. The time of registration was 
divided into two periods: day (d) (7 a.m. to 12 p.m.) and 
night (n) (12 p.m. to 7 a.m.). In the time domain, the stand-
ard deviation of normal-to-normal RR intervals (SDNN) 
(ms) and the square root of the mean of the sum of the 
squares of differences between adjacent NN intervals 
(RMSSD), representing global sympathetic and the para-
sympathetic system, respectively, were evaluated. Total 
power in the frequency domain range (0–0.40 Hz) was 
divided into low frequency (LF: 0.04–0.15 Hz, modulated 
mainly by sympathetic system) and high frequency (HF: 
0.15–0.40 Hz, modulated by parasympathetic system). The 
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power of LF and HF components was considered in nor-
malized units (nu). LF/HF rate is sympathovagal balance. 
Data analyses were performed with software Del Mar Avi-
onics Accuplus 363, Irvine California, USA.

Statistical analysis

Data management and analysis were performed using 
 IBM®  SPSS® Statistics 26 for  Windows® software (IBM 
Corporation, Armonk, N.Y., USA). The normality of 
the variables was tested using the Shapiro–Wilk method 
for normal distributions. All continuous variables were 
expressed as median and interquartile range (IQR) and cat-
egorical variables were expressed as absolute frequencies 
and percentages. Spearman or Pearson tests were used for 
bivariate correlations, as appropriate. A probability value 
of p < 0.05 was considered statistically significant.

Results

Sixteen adult ADPKD patients were enrolled in this study. 
Eleven patients (68.8%) were male, and the median age 
was 42 years (IQR 36–47.5). Median serum creatinine 
was 1.38 mg/dl (IQR 1.2–1.61), and median eGFR was 
58.1 ml/min (IQR 52–60). Median renal resistive index 
(RRI) was 0.65 (IQR 0.61–0.67). Table  1 shows the 
anthropometric and clinical features of patients enrolled.

MRI of the kidneys showed a median TKV of 2102 ml 
(IQR 1372.5–3155.3) and a median TFV of 298.51  cm3 
(IQR 177–352.9); median length was 17.97  cm (IQR 
16.41–21.39) and median stiffness was 22.13 kPa (IQR 
15.8–30). These findings are summarized in Table 2.

Median heart rate (HR) was 75.2 bpm (IQR 67.5–82.25) 
and median of corrected QT interval (QTc) registered was 
398 ms (IQR 384–425). Moreover, median SDNN was 
127.85 ms (IQR 113.9–168.25) and median RMSSD was 
41.35 ms (IQR 27.2–50.5). Table 3 shows HRV parameters 
during 24-h ECG recording.

A statistically significant positive linear correlation was 
observed between length of kidneys and LF nu (r = 0.595, 
p < 0.05) and LFd nu (r = 0.587, p < 0.05). Moreover, a 
statistically significant positive linear correlation exists 
between HF nu and TFV (r = 0.804, p < 0.01) and height-
adjusted (ha) TFV (r = 0.801, p < 0.01). Finally, we found a 
statistically significant positive linear correlation between 
HFn nu and TKV (r = 0.608, p < 0.05), ha-TKV (r = 0.685, 
p < 0.01), TFV (r = 0.594, p < 0.05) and ha-TFV (r = 0.615, 
p < 0.05). All linear correlations are showed in Fig. 1.

Table 1  Demographic and clinical characteristics of enrolled patients

BMI body mass index, SBP systolic blood pressure, DBP diastolic 
blood pressure, eGFR estimated glomerular filtration rate, CRP 
C-reactive protein, NLR neutrophil-lymphocytic ratio, HDL high-
density lipoprotein, LDL low-density lipoprotein, AST aspartate ami-
notransferase, ALT alanine aminotransferase, GGT  gamma GT, CPK 
creatine kinase, iPTH parathyroid hormone, IMT intimal media thick-
ness, RRI renal resistive index, IQR interquartile range

Age, years, median and IQR 42 (36–47.5)
Female/male, n (%) 5 (31.3)/11 (68.8)
BMI, Kg/m2, median and IQR 24.59 (21.02–25.26)
SBP/DBP, mmHg, median and IQR 120 (110–132.5)/80 (70–85)
Azotemia, mg/dl, median and IQR 50.5 (47.1–57)
Creatinine, mg/dl, median and IQR 1.38 (1.2–1.61)
eGFR, ml/min, median and IQR 58.1 (52–60)
CRP, mg/l, median and IQR 4 (4–8)
NLR, median and IQR 1.65 (1.37–1.98)
Uric acid, mg/dl, median and IQR 6.25 (5–6.9)
Hemoglobin, g/dl, median and IQR 12.8 (12.3–14.2)
Glycemia, mg/dl, median and IQR 82.5 (79–91)
Cholesterol, mg/dl, median and IQR 206 (163–225)
HDL, mg/dl, median and IQR 55 (46–67)
LDL, mg/dl, median and IQR 111.2 (103.4–142.6)
Triglycerides, mg/dl, median and IQR 120 (97–137)
Albumin, g/dl, median and IQR 4.15 (3.8–4.2)
AST, IU/l, median and IQR 21.5 (17–26)
ALT, IU/l, median and IQR 17.5 (12–26)
GGT, IU/l, median and IQR 18 (14–20)
CPK, U/l, median and IQR 144 (119–160)
Na+, mmol/l, median and IQR 141 (140–143)
K+, mmol/l, median and IQR 4.25 (4.1–4.7)
Cl−, mmol/l, median and IQR 105 (102.5–106)
Ca2+, mg/dl, median and IQR 9.8 (9.5–10.2)
P−, mg/dl, median and IQR 3.4 (3.2–4)
25-OH-vitD, ng/ml, median and IQR 21.7 (16–34.3)
iPTH, pg/ml, median and IQR 61.5 (41–75)
IMT, mm, median and IQR 0.7 (0.67–0.8)
RRI, median and IQR 0.65 (0.61–0.67)

Table 2  Kidney’s magnetic resonance imaging (MRI) parameters in 
enrolled patients

TKV total kidney volume, hA height-adjusted, TFV total fibrotic vol-
ume, RV residual volume, IQR interquartile range

TKV, ml, median and IQR 2102 (1372.5–3155.3)
hA-TKV, ml/m, median and IQR 1312.2 (968.7–1783.9)
TFV,  cm3, median and IQR 298.51 (177–352.9)
hA-TFV,  cm3/m, median and IQR 182.5 (112–192.84)
RV,  cm3, median and IQR 556.02 (448.94–790.62)
Length, cm, median and IQR 17.97 (16.41–21.39)
Stiffness, kPa, median and IQR 22.13 (15.8–30)
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Discussion

Autonomic dysfunction is a common finding in patients with 
chronic kidney disease (CKD) and it is a leading cause of 
cardiovascular morbidity and mortality. Hyperactivation of 
the sympathetic system not only leads to an increased basal 
heart rate, but also promotes myocardial hypertrophy and 
fibrosis associated with increased risk for sudden cardiac 
death. HRV is an indirect measure of the sympathovagal 
interaction at the sinoatrial node and an index of cardiac 
neural control [7].

In autoimmune diseases characterized by fibrous of 
the skin and internal organs, a parasympathetic modula-
tion increases in relation to microcirculation dysfunction 
induced by Raynaud vasospasm [12]. Thus, autonomic 
system seems to stimulate vasodilatation trough para-
sympathetic system. Chou et al. [13] have demonstrated 
that HRV represents a predictor of rapid kidney injury 
in CKD patients on dialysis. Orscelik et al. [14] showed 
impaired HRV in 28 ADPKD patients without hyperten-
sion, suggesting a link between ADPKD and the auto-
nomic nervous system. Cerasola et al. [15] suggest that 
increased activity of the sympathetic system could play a 
role in the pathogenesis of hypertension associated with 

ADPKD. Hypertension related to ADPKD occurs early 
and it could be favored by cyst enlargement. This process 
can cause renal ischemia with renin release, complicated 
by endothelial dysfunction, reduced NO, and sympathetic 
tone activation [16]. In ADPKD, continuous RAAS stimu-
lation worsens hypertension and accelerated cyst growth 
and for this reason, it is not surprising to find in our study 
that the marker of nightly parasympathetic activity showed 
a significant positive correlation with TKV and TFV. TKV 
is a known predictor of CKD progression in ADPKD. In an 
early stage of kidney disease, TKV and ha-TKV seem to be 
more accurate markers of disease progression than eGFR 
[17]. In CKD patients, we usually observe an increased 
sympathetic activity with lower parasympathetic tone. 
Some studies showed how HRV in end-stage renal dis-
ease (ESRD) leads to an impaired regulation of sinus node 
activity [7]. In the present study, we can suppose that para-
sympathetic low activity, mainly during the night, is prob-
ably due to the enlargement of kidney volume. This aug-
mentation in TKV could result in kidney fibrosis, induced 
by chronic hypoxia and vasoconstrictor insults due to the 
cysts growing. TFV is a non-cystic area of the polycys-
tic kidney, likely characterized by peritubular interstitial 
fibrosis, tubular dilation, atrophy, and vascular sclero-
sis [10]. Few studies have evaluated HRV parameters in 
ADPKD patients to assess their cardiovascular risk, so 
far [11, 12]. To the best of our knowledge, this is the first 
study that evaluates TKV and TFV in ADPKD patients in 
relation to autonomic balance.

The study has some limitations. First, this is a single 
center study, nonrandomized, with a small cohort of patients 
since ADPKD is a rare disease. Second, we also have not 
recorded the onset of cardiovascular events. Anyway, our 
data show significant results which can address the search to 
novel early cardiovascular markers in ADPKD population, 
encumbered by high cardiovascular mortality. Third, the 
lack of follow-up cannot generalize the results in ADPKD 
population. Thus, considering the originality as a strength 
point of this pilot study, in the future, we aim to observe if 
the progression of renal damage could be correlated to auto-
nomic dysfunction with large number of patients and ade-
quate follow-up. Changes in the MRI parameters and HRV 
will be evaluated between two measurements (T0 already 
performed and T1) in terms of their correlations.

It is advisable that future studies in this field will be 
multicentric and include larger populations possibly more 
representative of the ADPKD population, to confirm the 
results. We suppose that the increase in TKV and TFV 
could lead to a parasympathetic tone hyperactivation, 
probably in response to hypoxic stress and vasoconstric-
tion due to cystic enlargement.

Table 3  Heart rate variability (HRV) parameters during 24-h ECG 
recording

VLF very low frequencies, IQR interquartile range, LF low frequen-
cies, HF high frequencies, d day, n night, nu normal unit, SDNN 
standard deviation of normal-to-normal RR intervals, RMSSD square 
root of the mean of the sum of the squares of differences between 
adjacent NN intervals, HR heart rate, QTc corrected QT interval

VLF, Hz, median and IQR 706 (463–1682)
LF/HF, median and IQR 2.45 (2–2.6)
LF nu, median and IQR 58.85 (55–66.9)
HF nu, median and IQR 32.5 (29.05–36.5)
LFd, Hz, median and IQR 672 (388–1596)
HFd, Hz, median and IQR 411 (245–749)
LF/HFd, median and IQR 2.55 (2.2–2.7)
LFd nu, median and IQR 59.35 (56.5–66.75)
HFd nu, median and IQR 32 (29.5–40)
LFn, Hz, median and IQR 900 (618.5–1723.5)
HFn, Hz, median and IQR 563 (357.5–936.5)
LF/HFn, median and IQR 2.1 (1.85–2.55)
LFn nu, median and IQR 58.5 (52.55–64.15)
HFn nu, median and IQR 34.5 (31.5–39.75)
SDNN, ms, median and IQR 127.85 (113.9–168.25)
RMSSD, ms, median and IQR 41.35 (27.2–50.5)
HR, bpm, median and IQR 75.2 (67.5–82.25)
QTc, ms, median and IQR 398 (384–425)
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Fig. 1  Linear correlation between kidney’s magnetic resonance imag-
ing (MRI) parameters and heart rate variability (HRV) parameters 
during 24-h ECG recording. LF low frequencies, HF high frequen-

cies, d day, n night, nu normal unit, TKV total kidney volume, hA 
height-adjusted, TFV total fibrotic volume
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