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Relevant metrological scenarios involve the simultaneous estimation of multiple parameters. The fundamental
ingredient to achieve quantum-enhanced performance is based on the use of appropriately tailored quantum
probes. However, reaching the ultimate resolution allowed by physical laws requires nontrivial estimation
strategies from both a theoretical and a practical point of view. A crucial tool for this purpose is the application
of adaptive learning techniques. Indeed, adaptive strategies provide a flexible approach to obtain optimal
parameter-independent performance and optimize convergence to the fundamental bounds with a limited amount
of resources. Here, we combine on the same platform quantum-enhanced multiparameter estimation attaining
the corresponding quantum limit and adaptive techniques. We demonstrate the simultaneous estimation of three
optical phases in a programmable integrated photonic circuit, in the limited-resource regime. The obtained
results show the possibility of successfully combining different fundamental methodologies towards transition
to quantum sensors applications.
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I. INTRODUCTION

Quantum correlation has revealed itself to be a funda-
mental resource in a large variety of fields ranging from
computation and communications to metrology and sensing
[1–7]. In the latter, the use of quantum probes enables en-
hanced measurement sensitivity with respect to their classical
counterparts. Given this paradigm, several classes of quantum
sensors such as atomic clocks and magnetic sensors [8,9] as
well as networks of sensors [10–14] have been developed. In
several practical scenarios, such as imaging and microscopy,
the estimation process generally requires the simultaneous
measurement of more than one parameter. This consideration
motivated a growing interest in investigating multiparameter
quantum estimation, from both a theoretical and an experi-
mental perspective [6,15,16].

Several open challenges still need to be addressed to fully
exploit the potential of quantum-enhanced estimation in the
multiparameter regime. These open points include the de-
sign of appropriate strategies to generate the most suitable
probes, depending on the specific set of parameters and on
the technological peculiarities of the quantum sensor. Then,
the quality of the estimation strategies can be assessed study-
ing the quantum Fisher information (QFI) [17], from which
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can be derived the ultimate precision bound consisting in the
quantum Cramér-Rao bound (QCRB) [18]. Such a quantity is
valid in the asymptotic resource regime and depends on the
particular probe state chosen to investigate the process and on
its interaction with the parameters of interest. Tighter bounds
can be evaluated in different regimes, depending also on the
available prior information on parameters [19–22]. After hav-
ing identified the correct probe, to achieve the ultimate bound,
it is necessary to optimize also the adopted measurement
strategy. Furthermore, the realization of an actual quantum
sensor requires a detailed counting of the number of employed
resources. It is then important to optimally allocate them to
demonstrate quantum-enhanced sensitivity, independently of
the parameter values under investigation. To this aim, a crucial
tool is represented by adaptive strategies which are able to
optimize the measurement apparatus parameters during the
estimation protocols [23].

Multiport interferometry, which allows multiphase estima-
tion processes to be investigated [24–26], is an especially
useful platform to develop such methodologies. Some relevant
work has been done in this direction [27,28] in nonadap-
tive regimes. However, increasing the number of optical
modes, and subsequently the number of phases which can be
estimated efficiently, requires one to deal with several exper-
imental issues. Indeed, the optimal sensitivity over multiple
parameters can be achieved by probing the process with high-
dimensional entangled states. The realization of such states is
still limited to a small number of modes. To solve scalability
issues, integrated photonics represents an optimal solution
[29–31], allowing one to implement complex and tunable
transformations on the input states. In particular, integrated
circuits permit one to easily realize multiport interferometers
with the possibility of handling several embedded phases
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among the different arms. One of the principal strengths of
such platforms is the great stability achieved, necessary to im-
plement multiphase estimation protocols. Integrated devices
meet almost all the fundamental prerequisites to accomplish
quantum-enhanced estimations. Such devices indeed allow
one to easily switch the desired input states and the performed
measurement schemes, and at the same time they permit a fast
tuning of control parameters to implement adaptive protocols.

In this paper, we satisfy simultaneously all the aforemen-
tioned requirements in a single experiment. In particular,
we report multiparameter estimation of three optical phases,
demonstrating experimentally the capability to overcome the
optimal separable sensitivity limit, exploiting a two-photon
input state with two photons distributed in a four-arm inter-
ferometer. Notably, this is done by employing a Bayesian
adaptive protocol that allows us to efficiently allocate the
number of resources for each estimation, while ensuring an
optimized convergence to the ultimate bound in the limited-
resource regime. Indeed, the application of real-time adaptive
feedbacks enables us to approach such a bound already af-
ter only ∼50 probes. This procedure is shown to provide
performance which is independent of the particular value of
the unknown parameters. Differently from Refs. [26,28], we
implement an adaptive protocol capable of achieving quantum
enhancement in a limited-data regime. This kind of protocol
has been previously investigated only in the classical regime
[32] and for quantum single-parameter estimation [33–35].

Multiparticle input states enable us to perform a multiphase
quantum-enhanced estimation which, from a conceptual point
of view, represents a paradigmatic test bed for multiparame-
ter estimation protocols in the quantum regime. Finally, we
compare our results with the ones achievable by probing the
system with a sequence of optimal classical probe states,
demonstrating an enhancement in the simultaneous estimation
of the three phases, surpassing the classical limit and saturat-
ing the QCRB.

A. Multiparameter quantum metrology: Multiphase estimation

A multiparameter approach to quantum metrology has
proven to be beneficial in different scenarios where the si-
multaneous estimation of multiple parameters can provide
better precision than estimating them individually by using
the same amount of resources [15,16,19,24,25,36]. Note that
different strategies and paradigms have been recently consid-
ered to quantify the corresponding achievable limits [37,38].
Furthermore, in an actual experiment, even if the parameter
of interest is a single one, the estimation process unavoidably
involves other parameters, linked to noise, which have to be
estimated simultaneously to provide an unbiased estimation
[39,40]. While in the single-parameter scenario the QCRB
can in principle be always saturated choosing appropriate
measurement schemes, an additional problem arises in the
multiparameter case. Here, the saturability of the bound is
not always guaranteed [41,42]. It is of particular interest to
identify, within such a framework, quantum resources able to
obtain a sensitivity advantage versus classical strategies. The
ultimate achievable bound is indeed related to the estimation
of the vector ϕ = (ϕ1, ϕ2, . . . , ϕd ) of d parameters becoming

an inequality on their covariance matrix:

�(ϕ) � FC
−1(ϕ)

M
� FQ

−1(ϕ)

M
, (1)

where M is the number of independent probes employed and
the covariance matrix is given by

�(ϕ)i j =
∑

x

[ϕ̂(x) − ϕ]i [ϕ̂(x) − ϕ] j P(x|ϕ). (2)

Here, i, j = 1, . . . , d , ϕ̂ is the list of estimators of ϕ, x are the
possible outcomes, and P(x|ϕ) is the likelihood of the estima-
tion process. In the inequalities, FC is the Fisher information
(FI) matrix defined as FC (ϕ)i j = ∑

x[ 1
P(x|ϕ)

∂P(x|ϕ)
∂ϕi

∂P(x|ϕ)
∂ϕ j

],
while FQ(ϕ) is the quantum Fisher information (QFI) ma-
trix. The first inequality is referred to as the Cramér-Rao
bound (CRB), while the second inequality, i.e., QCRB, in
the multiparameter scenario is fulfilled only if the collective
saturation of the bound for all the parameters is simultane-
ously verified [43]. Therefore of particular interest are those
situations where the optimal measurement schemes for each
parameter are compatible and consequently the right hand
of the inequality (1) becomes an equality, making the CRB
equal to the QCRB. Such bounds are relative to the frequentist
approach [44] where the parameter is approximated with the
estimator that usually coincides with the one maximizing the
likelihood of the measurement results. The sensitivity of the
multiparameter estimation can be obtained by computing the
trace of the covariance matrix, which is then compared with
the trace of the FI and of the QFI. Note that this is not the
only possible choice for the definition of sensitivity. Indeed,
different figures of merit can be used, such as sums of FI terms
with general weights [45].

The saturation of the QCRB is verified asymptotically;
therefore, in a real scenario where only a limited amount of
resources is available, it is important to optimize them at each
step in order to ensure the convergence. The optimization of
the resources can be implemented through adaptive strategies
which indeed ensure a faster convergence to the ultimate
bound. Adaptive Bayesian estimation protocols are usually
employed to accomplish such tasks [23,32,46–52], where at
each step the posterior distribution is updated depending on
the settings of some control parameters. Although the afore-
mentioned bounds are not computed for Bayesian estimation,
in the limit of a large number of repeated measurements the
frequentist and the Bayesian methods agree; therefore the
QCRB can still be employed as a reference for Bayesian
settings in the asymptotic regime.

One of the most investigated frameworks for studying
multiparameter estimation is optical interferometry, where the
unknown parameters are mapped in the different phase shifts
between the arms of an interferometer with respect to a ref-
erence [24–28,32,37,51,53–58]. The quantum estimation of
phases is of paramount importance for different applications:
Apart from direct use in sensing such as biological imaging
[59–62], it can be employed also in tasks such as quantum
communication [63], simulation [64], and even gravitational
wave detection [65].

Lastly, and importantly, multiphase estimation is a paradig-
matic scenario representing a fundamental test bed for general
multiparameter estimation protocols. In this context, a probe
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FIG. 1. Full experimental setup employed for multiphase estimation experiments on chip. (i) Source. Two-photon states are generated
via parametric down-conversion in a β-barium borate (BBO) crystal. (ii) Preparation. Photons are made indistinguishable in time via delay
lines, and in the polarization degree of freedom via fiber polarization controller. (iii) Integrated device. Photons are injected in the integrated
interferometer, and collected at the output, via fiber arrays. (iv) Detection. Two-photon events are collected via a probabilistic photon-counting
scheme. (v) Control unit. Measurement outcomes are processed by the control unit and are used to drive the thermal shifter operation. Inset:
Scheme of the integrated circuit. Each thermal shifter Ri is able to control a specific optical phase of the device. In particular, with regard to the
internal arms of the interferometer, we identify the three independent internal phase shifts (ϕA, ϕB, ϕD ) := (φA − φC, φB − φC, φD − φC ) by
setting C as the reference arm. Instead, φ1, φ2, φ3, and φ4 define the equivalence class of each quarter transformation. SHG, second-harmonic
generation; DM, dichroic mirror; SPDC, spontaneous parametric down-conversion; HWP, half-wave plate; C, walk-off compensation; BPF,
bandpass filter; PBS, polarizing beamsplitter; PC, polarization compensation; SMF, single-mode fiber; DL, delay line; SMFA, single-mode
fiber array; MMFA, multimode fiber array; FBS, fiber beamsplitter; APD, avalanche photodiode; TT, time tagger.

|�0〉, prepared by a suitable operation in the space of d + 1
modes, interacts with the phase shifts through the unitary evo-
lution: |�ϕ〉 = e(i

∑d
i=1 niϕi )|�0〉, where ni is the generator of the

phase ϕi along the mode i, i.e., the photon number operator for
that mode. Since such generators commute, [ni, n j] = 0 ∀i, j,
the QFI matrix FQ(ϕ)i j = 4[〈nin j〉 − 〈ni〉〈n j〉], where the av-
erage 〈·〉 is over |�ϕ〉 and the probe states are assumed to
be pure [6]. Finally, after a final transformation, the state
is measured and an estimator provides the estimation of the
unknown phases. It has been demonstrated that the optimal
quantum probe state, together with the optimal measurement,
can achieve quantum-enhanced performance with also an ad-
vantage of order O(d ) over the best quantum precision for the
phases estimated separately [25]. Note that the improvement
O(d ) achieved by the simultaneous estimation is reduced to a
constant if the resource count is chosen differently [37].

Particular interest needs to be devoted to identify those
configurations, i.e., the number of optical modes constituting
the arms of the multiport interferometer and the possible
input states, which allow us to saturate the ultimate bound
of precision [24]. These configurations demonstrate enhanced
performance compared with the use of classical probe states.
In particular, states having a coherent superposition of M
photons in one mode and none in the others, allowing the
simultaneous estimation of multiple phases, achieve advan-

taged performance compared with any classical probe states.
The need to control the input states, as well as the performed
measurements, and to configure some control parameters to
implement adaptive protocols requires a versatile and pro-
grammable platform. All these conditions are attained by in-
tegrated photonics, which represents a promising platform for
quantum sensing and metrology studies and applications [30].

II. RESULTS

A. Integrated multiport interferometer for quantum sensing

Our platform consists of an actively tunable integrated
four-arm interferometer realized through femtosecond laser
waveguide writing in glass [31,66]. In particular, the device is
composed of two cascaded quarters, which are 4 × 4 optical
elements that split equally the optical power at all its input
ports across all output ports. Each quarter is composed of four
directional couplers arranged in a two-layer configuration and
a three-dimensional waveguide crossing, as depicted in Fig. 1.
Moreover, each quarter is equipped with two thermal phase
shifters (R1, R2, R3, R4), which allow us to actively control
the internal optical phase between the directional coupler
layers (φ1, φ2, φ3, φ4) and select a specific equivalence class
of the quarter transformations [67]. Between the two quar-
ters, the interferometric region is composed of four straight
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waveguide segments whose optical phases φA, φB, φC, φD

can be controlled by means of eight thermal phase shifters
(Ra, Rb, Rc, Rd ; and RA, RB, RC, RD). The overall length of the
device is 3.6 cm. All thermal shifters have been fabricated by
femtosecond laser micromachining and include laser-ablated
isolation trenches around each microheater [68]. This config-
uration allows us to both reduce the power consumption (a
2π phase shift on a single resistor is obtained by dissipating
less than 25 mW of electrical power) and greatly reduce the
thermal cross talk between adjacent shifters. More details
regarding the circuit geometry, the waveguide inscription, the
thermal shifter fabrication processes, and the thermal shifter
performance are provided in Note 1 of the Supplemental
Material [69]. Finally, two four-channel single-mode fiber
arrays have been glued at the interferometer input and output
facets, with average fiber-to-fiber total insertion losses (from
the connector of the input fiber to the connectors of the output
fiber array) of 2.5 dB (insertion loss of the bare device before
pigtailing of 1.5 dB). Hence the overall efficiency of the whole
apparatus from the source to the detection is ηoverall ∼ 3–5%.

On the basis of the presented scheme, the transformation
performed by the phase shifters fabricated on the internal arms
of the interferometer reads

Uφ =

⎡
⎢⎢⎣

eiφD 0 0 0
0 eiφC 0 0
0 0 eiφB 0
0 0 0 eiφA

⎤
⎥⎥⎦, (3)

while the relation linking the dissipated power ω to the in-
serted phase shift can then be approximated by

ϕi =
∑

j

(
αi jω j + α

(2)
i j ωiω j

) + ϕ0i, (4)

where ϕ0 is the zero-current phase shift, while α and α(2) are
the linear and quadratic response coefficients associated with
the phase shift ϕ, respectively. In particular, in our device,
12 thermo-optic phase shifters can be suitably controlled.
The interferometer is able to perform the simultaneous es-
timation of three independent phase shifts ϕ between three
arms and a reference one. In the following, we choose C
as the reference arm, thus considering (ϕA, ϕB, ϕD) ≡ (φA −
φC, φB − φC, φD − φC ) as the triple phases to be estimated.
The transformation induced by the actual device will also
depend on the effective transmittivities and reflectivities of the
eight directional couplers.

We start by theoretically studying the operation and the
bounds relative to the ideal device, i.e., when the reflectivities
and transmittivities of all the directional couplers are equal to
the nominal value of 1

2 . The QFI depends only on the prepared
probe state; therefore it is a function of the input modes of
the injected photons and of the phases φ1 and φ2 of the first
quarter, whose transformation is given by

UQ = 1

2

⎡
⎢⎢⎣

eiφ2 ieiφ2 i −1
ieiφ2 −eiφ2 1 i

i 1 −eiφ1 ieiφ1

−1 i ieiφ1 eiφ1

⎤
⎥⎥⎦. (5)

However, depending on the specific input, the dependence on
these two phases can vanish. More specifically, this condition

is verified when injecting two photons either in the first two
modes (|1100〉) or in the last two (|0011〉). Such a choice
allows us to generate, after the first quarter, the multiphoton
entangled input state:

|ψ0〉 = i

2
√

2
(|2000〉 − |0200〉 + e−2iφ1 |0020〉

− e−2iφ1 |0002〉) − 1

2
(|1100〉 + e−2iφ1 |0011〉). (6)

For our device, the use of two-photon quantum probes ensures
that we approach the ultimate asymptotic quantum limit for
the three-phase estimation represented by the relative QCRB,
which is 2.5/M. The computed bound represents the ultimate
quantum limit achievable in the estimation precision for the
considered input. The overall amount of resources is 2M
single photons, thus taking into account the computation of
such a bound for M independent two-photon states. More
specifically, we count as resources only the effective detected
photon pairs, thus working in a postselection configuration.

The optimality of the full scheme is therefore demonstrated
when the CRB, obtained after the measurement process is also
considered, reaches the QCRB. Therefore, when studying the
CRB, the characteristics of the second quarter must also be
considered in the model. The state generated at the output after
injecting into the device two photons in the third and fourth
inputs is a coherent superposition of two photons in the four
output modes of the device:

|ψ〉out = a11|2000〉 + a22|0200〉 + a33|0020〉 + a44|0002〉
+ a12|1100〉 + a13|1010〉 + a14|1001〉 + a23|0110〉
+ a24|0101〉 + a34|0011〉, (7)

with a11 = a22, a33 = a44, a13 = a24, and a23 = a14, where all
the coefficients now depend on the parameters imposed by
UQ transformation and on the particular settings of φ1, φ2,
φ3, and φ4. The CRB, given such a state, can indeed saturate
the ultimate limit of 2.5/M, satisfying the general necessary
conditions for the saturation of QCRB of multiphase estima-
tion in interferometric setups [27]. It is fundamental to notice
that indistiguishability between the two input photons is a
necessary condition to reach such a bound. The minimum
of the CRB in the scenario of indistinguishable photons en-
sures the saturation of the QCRB and the achievement of a
quantum-enhanced estimation over three parameters. Indeed,
the use of completely distinguishable photons allows us to
achieve a minimum equal to 3 (see Note 2 of the Supplemental
Material for details).

To demonstrate the capability of reaching an estimation
enhancement, we compare our result also with the optimal
estimation obtained through single-photon states [25]. In or-
der to make a fair comparison, it is important to consider the
same number of photons for classical strategies. In this case,
the trace of the inverse Fisher information matrix is 5.6 for a
single photon prepared in the optimal state. Therefore prepa-
ration of two independent photons in such a state corresponds
to a value of 2.8 for the trace of the inverse Fisher infor-
mation matrix. Hence a strategy employing 2M independent
optimal single-photon states is associated with an achievable
bound of QCRB = 2.8/M. Therefore the saturation of 2.5/M
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FIG. 2. Cramér-Rao bound regions. Points corresponding to a
value of the CRB < 2.8/M. The orange points correspond to the min-
imum where the QCRB is saturated. (a) Bound relative to the ideal
device. (b) Bound for the real device whose minimum is 2.53/M.

demonstrates quantum-enhanced measurement sensitivity
reachable with indistinguishable two-photon states compared
with any sequence of classical single-photon probes and
independent measurement, even including the optimal single-
photon state.

The parameter (phase) regions showing such an advantage
where the achieved CRB, for the ideal device, is lower than
2.8 are limited and are reported in Fig. 2(a). However, thanks
to the implementation of an adaptive protocol we are able to
demonstrate the sensitivity enhancement independently of the
values of the estimated triplet of optical phase shifts in the
limited-resource regime.

B. Experimental saturation of the ultimate
quantum Cramér-Rao bound

In order to investigate the actual capabilities of the em-
ployed device with two-photon input states, it is necessary to
reconstruct its likelihood function through a calibration pro-
cedure (see Note 3 of the Supplemental Material for details).
This step is necessary to derive the achievable CRB with the
actual device.

We reconstruct the ten two-photon output probabilities
by fitting the measured data for different values of volt-
ages applied to the resistors of the device. In particular, we
collect measurements studying the device response as a func-
tion of the power dissipated on the three thermal shifters,
i.e., Ra, Rb, Rd , allowing the complete tuning of the internal
phases. In this way, using Eq. (4), we can model also the
effect that the voltage applied on a certain resistor has on

the other arms of the device, retrieving all the different cross
talks among the resistors. More specifically, we measure the
coincidence events registered at the output of the integrated
circuit by dissipating through each selected resistor ten differ-
ent power values, which are equally spaced over the allowed
range. More technical details regarding the characterization
data can be found in Note 3 of the Supplemental Material.

Finally, the output probabilities reconstructed from exper-
imental data can be used to compute the FI matrix and to
retrieve the experimental CRB. In Fig. 2(b) we report the
regions showing a bound lower than the minimum one achiev-
able with the best classical states for such measurement. To
highlight the regions of minimum uncertainty, we report three
cuts of the inverse of the trace of the FI in Fig. 3, where
the explicit two-variable function is plotted. From these plots
it is evident that the estimation uncertainty is highly related
to the particular value of the triplet of phases under study.
In order to perform the estimation in the point of minimum
uncertainty independently from the particular value of the
triplet investigated, it is therefore necessary to implement an
adaptive strategy which sets the device always in its more
informative point. For the actual device, considering all the
experimental imperfections, the minimum which corresponds
to the achievable bound is 2.53/M, and it is achieved in two
different points of the space [see Fig. 2(b)]. Note that this
bound has been obtained considering all the main sources of
imperfections affecting the experimental setup. More specif-
ically, we consider the nonunitary indistinguishability of the
two input photons and deviations from the ideal behavior of
the transformations performed by the optical elements in the
integrated device, including transmittivities of the directional
couplers and different detection efficiencies. This value is
very close to the ideal one of 2.5/M, and it is still below
the critical threshold of 2.8. With our device we demonstrate
quantum enhancement in the simultaneous estimation of three
optical phases, experimentally approaching the QCRB in a
postselected configuration.

C. Comparison with the sequential bound

In a general scenario, we can study the sensitivity per-
formance obtained when estimating a linear combination of
the parameters under study. Distributed sensing [10–14] rep-
resents indeed a field that has been increasingly investigated
lately. However, instead of looking at any generic combination
of parameters ν · ϕ = ∑d

i=1 νiϕi, here, following Ref. [45], we
can study the achieved performance over the optimal combi-
nation of phases to show the quantum-enhanced sensitivity.
Therefore we compare for our setup the sensitivities reached
with the simultaneous multiparameter estimation with respect
to sequential strategies where the different parameters are all
estimated independently. In particular, the optimal vector ν for
our setup is the eigenvector of the QFI matrix associated with
the largest eigenvalue fmax, i.e., νmax = (1/2, 1/2,−1/

√
2). It

follows that the optimal linear combination of optical phases
that we can estimate is (φA − φD)/2 + (φB − φD)/2 − (φC −
φD)/

√
2. The study of this figure of merit allows us to con-

sider also the off-diagonal terms of the QFI that in general
depend on mode entanglement in the probe state. It is then
possible to compute the sensitivity bound on the estimate of
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FIG. 3. Slices of the Fisher information matrix. Three cuts of Tr[F−1] obtained fixing, in the left, middle, and right panels, the values of ϕD,
ϕB, and ϕA, respectively. The plots show the sensitivity of different regions of the parameter space. The orange star represents the minimum of
the variance where the CRB is equal to 2.53/M, which indeed coincides with the orange point in Fig. 2(b). The color legend has been chosen
to be logarithmic in order to highlight the regions associated with the minimum uncertainty.

the linear combination, achieved when using the employed
entangled input states, which is given in Ref. [45], and the
result is

�2(νmax · ϕ) = νmaxFQνT
max = 0.292. (8)

The comparison can be done with the optimal separable strat-
egy achieved using coherent states with an average number of
photons 〈n̄〉 = 2 to estimate sequentially three optical phases
embedded in a network of Mach-Zehnder interferometers. In
such a setting, the QCRB is

�2(νmax · ϕ)seq =
3∑

i=1

ν2
i

Fi
. (9)

Here, Fi is the single-parameter QFI for coherent states
injected into a Mach-Zehnder interferometer, i.e., Fi = n̄i

[70]. By numerical optimization, we obtain the minimum of
�2(νmax · ϕ)seq = 1.45, corresponding to the bound achiev-
able with sequential classical measurements. Consequently, a
sensitivity in the estimation of the optimal linear combination
below this separable bound is a demonstration of the enhance-
ment achieved using entangled probes [45].

D. Adaptive three-phase estimation

Finally, we study the performance achieved when imple-
menting adaptive strategies, able to set the device in the
optimal working point for the estimation [23,32,46–48]. This
optimization can be done before each probe, and it is in-
dependent of the specific unknown values. It is based on
controlling additional parameters, used as feedbacks during
the estimation cycle [Fig. 4(a)]. Adaptive techniques are used
when the number of resources is limited or to solve estimation
ambiguities related to the output probability of the system.
The capability of asymptotic saturation of lower bounds is
not sufficient when an optimal estimation in a few probes is
required. Moreover, the computation of which optimal feed-
backs have to be applied is in general nontrivial, especially for
increasing complexity of the system. For this reason, machine
learning techniques are often adopted, able to tackle this hard

computational task and in general to enhance sensing proto-
cols [6,52,71–76].

Here, we employ a Bayesian framework (see the
Supplemental Material for details) for the adaptive protocol,
which represents a powerful tool for multiphase estimation
[50,51]. In particular, we use the Bayesian multiparameter es-
timation protocol employed in Refs. [32,50,77]. Simultaneous
adaptive two-phase estimation experiments have been demon-
strated without quantum enhancement, injecting a three-mode
interferometer with single-photon states [32]. Thus we se-
lect such an approach for our multiphase estimation problem
demonstrating the saturation of the ultimate precision bounds.

The realization of adaptive multiphase estimation requires
the identification of unknown and control parameters. The
structure of our platform allows us to handle independently
two layers of internal phases by simply acting on different
resistors: the phases to be estimated ϕ(X ) and the phases to be
tuned for adaptive estimation ϕ(C), such that ϕ = ϕ(X ) + ϕ(C).
In our case, the triplet of unknown parameters ϕ(X ) is set
using the thermal shifters RA, RB, RD, while the control pa-
rameters ϕ(C) are tuned using Ra, Rb, Rd . To easily achieve
adequate control for each estimate, the calibration of resistors
Ra, Rb, Rd can be repeated for each selected triplet RA, RB, RD.
This method guarantees also a more precise calibration of the
specific working point of the device.

The algorithm is based on a sequential Monte Carlo (SMC)
technique, and it is discussed in detail in the Supplemental
Material. The SMC guarantees a high level of performance
in computing integrals—replaced by sums—also when the
dimensions of the space increase. The quality of the approxi-
mation can be improved by adding further particles, at the cost
of a more expensive computation. Then the algorithm allows
the computation of the control parameters to be applied during
the adaptive estimation. Such optimal values are those which
maximize the expected overall variance after measurement of
the subsequent probe. Here, the expectation value is computed
using the SMC approach. In order to identify appropriate
values of the algorithm parameters for the experiment, we
simulated adaptive multiphase estimations for different con-
figurations of such parameters. A set of phase triplets {ϕ(X )}
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M probes

Bayesian
update

Optimization

Measurement
result

(a)

(b)

FIG. 4. Adaptive estimation and control feedbacks. Example of
adaptive multiparameter Bayesian learning by injecting a series of
M probes into the device. (a) After each measurement result, the
algorithm computes the best control parameters, i.e., a set of currents
to apply for optimizing the estimation efficiency of the next probe.
At the same time, each measured probe updates the knowledge of
the parameters according to Bayes’ rule, concentrating the proba-
bility distribution around the true values. (b) Evolution of posterior
knowledge (green cloud) after sending 2, 9, 28, and 85 probes to
estimate the three phases (ϕ (X )

A , ϕ
(X )
B , ϕ

(X )
D ) = (−1.82, 1, 0.54) simul-

taneously. The distribution converges rapidly around the true values
of the triple phases (black cross).

is uniformly selected in [0, 2π ] × [0, 2π ] × [0, 2π ] and es-
timated by a series of two-photon states. The estimation of
each triplet is repeated 30 times. A single experiment of
adaptive three-phase estimation is reported in Fig. 4(b), by
showing how the updated posterior distribution converges to
the true value after sending 2, 9, 28, and 85 probes. The output
probability distribution of our device, given the considered
entangled input state, can estimate unambiguously each of the
three phases in a π range. For this reason, we set the a priori
Bayesian distribution equal to a uniform distribution with a
π width. Note that, by repeating the estimation procedure
several times, we obtain the mean of the Bayesian posterior
distribution, from which we retrieve the achieved sensitivity

FIG. 5. Experimental adaptive three-phase estimation. Quadratic
loss C(ϕ) is plotted as a function of the number M of injected
two-photon input states |0011〉. Green dots show the performance
averaged on 12 different triple phases, estimated using the online
Bayesian adaptive technique described in the text. The experiment
for each phase triplet is repeated 30 times, and the final performance
is characterized by the mean estimator; the shaded green area is
the one-standard-deviation region. The solid line is the ultimate
precision bound, i.e., the QCRB (2.5/M) for the ideal device when
injected with indistinguishable photons.

for all the performed repetitions, allowing us to compare our
results with the bounds of the frequentist scenario.

The accuracy of the estimation can be computed look-
ing at different figures of merit. We start investigating one
that was commonly employed in the first studies of multi-
phase estimation [25] by firstly considering a figure of merit
that takes into account the trace of the covariance matrix.
Then, we generalize the discussion considering also the off-
diagonal terms of the covariance matrix, when demonstrating
quantum-enhanced sensitivity for the estimate of a linear
combination of the considered parameters. The covariance
of the posterior distribution �(ϕ̂) represents the confidence
interval of the estimate and thus the actual error of the quan-
tum sensor employed. In parallel, the quadratic loss distance
C(ϕ), between the estimated parameters and their true values,
provides a reliable evaluation of both the estimation uncer-
tainty and the presence of possible biases. Such quantities are
obtained as follows: C(ϕ) = (ϕ − ϕ̂)T (ϕ − ϕ̂) and �(ϕ̂) =∫

(ϕ − ϕ̂)2 p(ϕ|d )dϕ, where p(ϕ|d ) represents the posterior
probability which is updated through the Bayesian procedure
after each measurement result d has been registered. In the
asymptotic regime the average of both the covariance and
the quadratic loss C(ϕ) must saturate the CRB. Conversely,
this does not represent a stringent bound in the low-number-
of-probes regime due to the a priori knowledge retained on
the parameter values as discussed in more detail in Ref. [20].
Here, we employ the adaptive technique in order to approach
the ultimate precision bound with the minimum number of
probes, reporting the experimentally attained quadratic loss
function averaged over 12 different triplets of phases. As
shown in Fig. 5 we are able to reach a performance close to
the asymptotic limit already after sending around 50 probes.

Finally, we also use the adaptive approach to study the
estimation of the optimal linear combination of the three
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FIG. 6. Experimental adaptive performance. Estimation perfor-
mance as a function of the employed resources is reported in terms
of C(νmax · ϕ). The experimental data with the relative standard devi-
ation (shaded blue region) are averaged over 12 phases estimated 30
independent times. For comparison, both the separable (orange line)
and parallel (cyan line) bounds are provided. The shaded gray area
represents the region showing enhanced sensitivity compared with
sequential strategies. The inset shows a zoom of the behavior for a
number of two-photon probes in the range M = 30–70.

parameters discussed in the previous section. The results of
the experimental estimates are reported in Fig. 6. Here, we
manage to outperform classical separable strategies, by show-
ing that the average over multiple repetitions of the estimation
protocol performed on different triplets of phases is found
to be below the sequential bound. Note that, in this paper,
we demonstrate experimentally the violation of the sequential
bound, assuring the convenience of adopting parallel strate-
gies in multiphase estimation problems.

III. DISCUSSION

In this paper we have addressed some of the most relevant
open issues of multiphase estimation, satisfying simultane-
ously all the relevant requirements of practical multiparameter
quantum metrology in a postselected configuration. We
demonstrate the saturation of the ultimate precision bound,
i.e., the QCRB employing multiphoton entangled states. We
experimentally prove the enhancement achieved using en-
tangled probes over optimal separable estimation strategies
when estimating an optimal linear combination of the inves-
tigated parameters [45]. Furthermore, to grant the optimal
sensitivity in the practical limited-resource regime, we imple-
ment a Bayesian adaptive multiparameter technique, which
requires us to operate on a suitably programmable platform
applying real-time feedbacks. We performed our experiment
through a versatile setup by means of a state-of-the-art inte-
grated circuit with low insertion losses, low power dissipation,
and high reliability of the thermal phase shifters, all char-
acteristics that will allow the number of spatial modes and
the complexity of the devices to be further scaled up in
the future.

We characterized the integrated circuit using two-photon
quantum states and then reconstructing the likelihood function
of the device operation. From the collected output statistics,

we were able to retrieve the FI matrix of the apparatus, demon-
strating the saturation of the QCRB on sensitivity. Then, we
exploited the circuit to perform an optimal Bayesian adaptive
protocol that allowed us to approach the quantum limits after
only ∼50 resources. Notably, the obtained precision is higher
than the one achievable by the best sequential classical strat-
egy estimating the three phases independently.

The results shown here represent an important step towards
the achievement of practical quantum metrology (as shown
in a table in the Supplemental Material). In particular, in
this paper we extend multiparameter adaptive strategies to
the quantum realm, accomplishing this task within a versatile
and scalable integrated device, approaching ultimate quantum
bounds when estimating simultaneously three parameters and
overcoming recently introduced sequential bounds.

The demonstrated approach will be the test bed for
general quantum multiparameter estimation protocols [52],
and it will empower different applications, from biological
sensing [78–81] to improving strategies for error compen-
sation in quantum communication protocols working in the
single-photon regime [82]. Furthermore, protocols for the
synchronization of networks of sensors [83,84] can also ben-
efit from the demonstrated technique. Finally, our findings
can be applied even in tasks of quantum computation and
simulation whose subroutines often rely on quantum phase
estimation algorithms [64,85,86]. To reach a fully scalable
and convenient quantum sensor, two other issues have to
be addressed, simultaneously with those closed here. The
first one is the scaling of quantum resources: In order to
achieve quantum scalings with a large number of resources
[87], either different kinds of encoding [88] or more efficient
sources such as quantum dots [89] are required. Finally, the
unconditional quantum advantage can be claimed if classical
limits are overcome even when all the generated resources,
including loss and noise mechanisms, are taken into account
[10,90]. The most relevant sources of losses lie in the gen-
eration and collection of photons. A possible solution to
the former is represented by integrated sources [91,92] that
can be directly interfaced with integrated interferometers.
For the detection efficiency, a possible solution is the use
of superconductive single-photon detectors with near-unity
efficiency [93].
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