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Abstract: In this paper, we introduce specific approximations to simplify the vibronic treatment
in modeling absorption and emission spectra, allowing us to include a huge number of vibronic
transitions in the calculations. Implementation of such a simplified vibronic treatment within our
general approach for modelling vibronic spectra, based on molecular dynamics simulations and
the perturbed matrix method, provided a quantitative reproduction of the absorption and emission
spectra of aqueous indole with higher accuracy than the one obtained when using the existing
vibronic treatment. Such results, showing the reliability of the approximations employed, indicate
that the proposed method can be a very efficient and accurate tool for computational spectroscopy.

Keywords: indole; vibronic transitions; QM/MM; electronic states; theoretical chemistry;
computational chemistry; absorption spectra; emission spectra

1. Introduction

Tryptophan (Trp) fluorescence has long been applied to obtain structural and dy-
namical information about proteins. In fact, the extensively documented sensitivity of its
spectroscopic properties to environment polarity makes Trp an attractive intrinsic probe
in such systems [1–4]. This environment effect can be observed in both the wavelength
and the intensity of its fluorescence spectrum, and it is generally accepted that the former
reflects the degree of exposure to the solvent, ranging from λmax of 308 nm in a very hy-
drophobic environment in azurin, to around 350 nm when completely exposed [1,4]. What
still remains challenging is the possibility to interpret the spectral signal, beyond a simple
qualitative assessment [5,6], providing detailed quantitative information on the molecular
system of interest.

For such reasons, indole, the chromophore of the Trp amino acid, has been the subject
of numerous experimental and theoretical studies [7–15]. Despite the relatively small size
of the molecule, understanding its complex spectroscopic behavior requires accurately
describing the electronic properties of its electronic ground and excited states (in particular
for the excited states involving the first two gas-phase, i.e., unperturbed, spectroscopic
active excited states named Lb and La) and to properly account for the vibrational structure
of the corresponding electronic transitions (i.e., the vibronic transitions). The former aspect
requires the use of computationally demanding methods [12], especially in order to identify
the energy minimum of the La [9,10] excited state. At the same time, it is often not feasible
to characterize all the relevant vibronic transitions (possibly a huge number) by means
of the existing approaches [16,17], without using proper approximations resulting in a
simplified efficient treatment. Finally, it is worth remarking on the need for an explicit
(atomistic) solvent model and corresponding phase-space extended sampling to accurately
reconstruct the effects of the perturbation on the chromophore spectral behavior, as further
suggested by a very recent paper [15]. All these issues, i.e., high-level ab-initio calculations,
explicit atomistic treatment of the solvent, an extended statistical sampling of the phase
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space and the inclusion of all the relevant vibronic transitions, are crucial for a proper
modelling of the vibronic spectra. Several efficient methods for reproducing vibronic
spectra in condensed matter have appeared in the literature [17–22], as recently concisely
and effectively reviewed in the work of Santoro et al. [17]. However, all such methods
do not fully address all the above-mentioned important issues. In the present work, we
further develop the approach presented in a previous work [23] for modelling vibronic
spectra in condensed phase which was based on molecular dynamics (MD) simulations
and the perturbed matrix method (PMM) [24–26] in combination with a widely used
vibronic treatment [16]. The approach presented in this work, although maintaining the
physical consistency of the theoretical–computational model, allows us to obtain rather
accurate results even in the case of very complex systems, avoiding the use of highly
expensive computational procedures. By employing the MD-PMM strategy and reasonable
general approximations for treating the vibronic transitions, we model the environment
perturbation effects on the chromophore quantum states, explicitly treating the dynamics
of the atomistic water–chromophore interactions, and, hence, of the spectroscopic signal,
over a much more extended statistical sampling of the system phase space (i.e., over a
huge number of MD frames as obtained by a very extended MD simulation) and including
a much larger number of vibronic transitions compared to the other methods. This is
achieved by using, for each chromophore conformational basin (harmonic-like basin),
the corresponding normal modes to provide the vibrational coordinates, assuming the
quantum vibrational modes of different electronic eigenstates with similar frequencies to
be identical, and, therefore, replacing the highly expensive integral calculations required
to evaluate the vibrational eigenstate overlaps with the computation of undemanding
single-mode integrals. In fact, similarly to the recently introduced approach of Santoro
et al. [17], our approach allows us to distinguish between classical-like and quantum
coordinate subspaces, permitting the use of only the quantum-mode transitions and, hence,
of the minimum energy structures within the quantum internal coordinate subspace only,
regardless of the positions of the semiclassical internal coordinates (e.g., at non-stationary
points). However, in our approach, the use of the local full-space normal modes providing,
within rather general and typically accurate approximations (see Appendix A), a proper
definition of the quantum subspace (avoiding any a-priori possibly arbitrary choice) makes
it possible to very easily separate and uncouple the corresponding vibronic transitions.
Interestingly, such a feature of the method allows the use of the electronic state properly
minimized reference configuration (e.g., by means of EOM-CCSD, necessary to obtain fully
reliable results) still calculating the corresponding harmonic vibrational modes via a less
accurate but computationally much more affordable method (e.g., TD-DFT). Note that
the use of a lower level of theory for calculating the Hessian at the obtained higher level
optimized geometry typically results in a few negative Hessian eigenvalues (i.e., the higher
level optimized geometry is a saddle point for the lower level calculations), corresponding
to a few classical-like modes (low-frequency modes). The efficiency of the proposed
approach, which allows us to adopt expensive ab-initio calculations (in this case EOM-
CCSD/6-311+G(d)) for obtaining the electronic properties and the minimized structures for
each electronic state, accurately describe the perturbation effects over a very extended MD
sampling and treat a huge number of vibronic transitions, made us confident about using
this method to overcome the shortcomings that current strategies may incur (i.e., inaccurate
perturbation treatment, insufficient phase space sampling, insufficient inclusion of vibronic
transitions and inadequate description of the excited states [12]). The reported results
show that the proposed extension of our MD-PMM approach, based on the use of the
simplified vibronic treatment, can provide accurate predictions of both the absorption and
fluorescence spectra of indole in aqueous solution, with a marked improvement compared
to the results obtained using the previously employed vibronic treatment.
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2. Theory
2.1. The Perturbed Vibronic Eigenstate

As usual for mixed quantum–classical models, we subdivide the system into the
quantum center (QC), the subpart to be treated at quantum level, and the purely classical
perturbing environment. The accurate evaluation of the QC electronic Hamiltonian operator
(including the QC–environment interaction) and, hence, of the (perturbed) electronic
eigenstates (electronic states) and properties can be used, in principle, to obtain any QC
quantum process, possibly involving both the electronic and nuclear quantum degrees of
freedom. It is worth noting that the QC nuclear semiclassical degrees of freedom, beyond
the roto-translational coordinates, possibly include both the conformational coordinates
corresponding to highly anharmonic degrees of freedom and providing large structural
changes, and the semiclassical vibrational coordinates responsible, at each conformational
configuration, for relatively small harmonic or quasi-harmonic structural fluctuations.
Within the PMM framework, the electronic eigenstates are obtained by diagonalizing
the electronic Hamiltonian at each QC–environment atomic configuration as (typically)
given by MD simulations providing the position of the semiclassical coordinates, with the
QC nuclear quantum degrees of freedom either at the corresponding energy-minimized
position (when modelling electronic excitations and chemical reactions) or along predefined
vibrational modes (when modeling vibrational excitations). Such MD-PMM calculations
have been employed to evaluate, beyond the usual electronic spectra [27], the vibrational
and vibronic equilibrium spectra [23,28–30], the electron-transfer thermodynamics and
kinetics [31–34] and the time-resolved spectroscopic signals [35]. When modeling the
vibronic transitions, we assume each vibronic eigenstate as properly described by the
Born–Oppenheimer approximation and, hence, given within the coordinate representation
by the combination of an electronic eigenstate Φi with a corresponding vibrational one
φi,m (i.e., the mth vibrational eigenstate of the ith electronic eigenstate), providing the
i, m vibronic eigenstate via their product Φiφi,m. Different levels of theory can be used
to obtain the electronic eigenstates, based on the type of expansion/approximation used
to express the perturbation operator within the electronic Hamiltonian [26]. A typically
accurate approximation (used in this paper) for the Hamiltonian matrix H̃e representing
the electronic Hamiltonian operator Ĥe within the unperturbed electronic eigenstate basis
set Φ0

j (i.e., the eigenstates of the non-interacting QC) is [26][
H̃e

]
j,l

= 〈Φ0
j |Ĥe|Φ0

l 〉 ∼=
[
U 0

j + ∑
N

q0
N,jV(RN) + ∆V

]
δj,l (1)

− E(r0) · 〈Φ0
j |µ̂|Φ

0
l 〉
(

1− δj,l

)
where U 0

j is the energy of the jth unperturbed electronic eigenstate (i.e, the jth unperturbed

electronic energy), N runs over the QC atoms with positions RN , q0
N,j is the Nth atomic

charge in the j unperturbed eigenstate, V(RN) is the perturbing electric potential at the Nth
atom position, the scalar function ∆V (independent of the electronic states) approximates
all the higher order terms of the diagonal elements, E(r0) is the perturbing electric field at
the reference position r0 (typically the QC center of mass), and µ̂ is the dipole operator and
δj,l is the Kronecker delta. By means of the eigenvectors and eigenvalues of the Hamiltonian
matrix provided by Equation (2), we can obtain any perturbed electronic property at each
MD frame, and, in principle, the vibrational eigenstates and frequencies for each perturbed
electronic eigenstate. Unfortunately, a complete evaluation of the perturbed vibrational
eigenstates to be used when modeling vibronic spectra is computationally unfeasible and,
thus, considering that the perturbed vibrational modes are typically virtually identical to the
unperturbed ones [36] (i.e., to the vibrational modes of the unperturbed electronic eigenstate
best corresponding to the perturbed electronic eigenstate) and the vibrational frequency
variations due to the perturbation provide negligible changes in the excitation/relaxation
energy of vibronic transitions involving an electronic excitation/relaxation, we can adopt
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the approximation of using, for each perturbed electronic eigenstate, the unperturbed
harmonic vibrational eigenstates and frequencies of the proper unperturbed electronic
eigenstate (i.e., the unperturbed electronic eigenstate best matching the perturbed one) to
reconstruct the (perturbed) vibronic eigenstates and related properties.

2.2. The Excitation and Emission Modeling

From the general expression providing the complete vibronic spectral signal [23],
we obtain the extinction coefficient for a given (perturbed) excitation from the vibronic
ground eigenstate to the m vibrational eigenstate of the ith electronic excited eigenstate
(i.e., the Φ0φ0,0 → Φiφi,m vibronic transition) with (perturbed) electronic transition dipole
〈Φ0|µ̂|Φi〉 = µ0,i

εm
0,i(ν)

∼= ∑
νm

re f

ΓA(ν
m
re f ) n(νm

re f ) hν

N f

e−
(ν−νm

re f )
2

2σ2

σ
√

2π
(2)

ΓA(ν
m
re f ) =

|µ0,i|2νm
re f

6ε0ch̄2 |〈φ
0
0,0|φ0

ji ,m〉|
2
νm

re f
(3)

and the emission signal km
i,0(ν) ρm(ν) (with km

i,0(ν) the emission rate constant and ρm(ν)
the probability density of the emitting molecules) for the (perturbed) vibronic relaxation
from the vibrational ground eigenstate of the ith electronic excited eigenstate to the mth
vibrational eigenstate of the electronic ground eigenstate (i.e., for the Φiφi,0 → Φ0φ0,m
vibronic transition)

km
i,0(ν) ρm(ν) ∼= ∑

νm
re f

ΓE(ν
m
re f ) n(νm

re f ) (ν/c)3

N f

e−
(ν−νm

re f )
2

2σ2

σ
√

2π
(4)

ΓE(ν
m
re f ) =

8πh|µ0,i|2νm
re f

6ε0h̄2 |〈φ0
ji ,0|φ

0
0,m〉|2νm

re f
(5)

where c is the light speed, ε0 is the vacuum dielectric constant, h is the Planck constant
(h̄ = h/(2π)), the summation runs over the frequency bins used to construct the spectrum
and identified by the mth vibronic transition reference frequencies νm

re f (i.e., the bin middle
values), N f is the total number of MD frames (necessarily a huge number to obtain a reli-
able spectral signal), n(νm

re f ) is the number of MD frames with the mth vibronic transition

frequency ν within the bin centered in νm
re f , and |µ0,i|2νm

re f
is the corresponding electronic

vertical transition dipole mean square norm as obtained averaging over the bin MD frames.
Both the transition frequency and transition electronic dipole at each MD frame can be
provided by the PMM using the MD frame semiclassical configuration to obtain the envi-
ronment perturbation and QC atomic positions, relaxing only the QC vibrational quantum
and semiclassical degrees of freedom at their energy-minimized positions [23,27], as given
by the minimum energy structure of the unperturbed electronic ground eigenstate (Equa-
tions (2)–(3)) or the ji unperturbed electronic eigenstate best corresponding at each frame
to the ith perturbed electronic eigenstate (Equations (4)–(5)). Moreover, |〈φ0

0,0|φ0
ji ,m
〉|2νm

re f

and |〈φ0
ji ,0
|φ0

0,m〉|2νm
re f

are the mean square norms of the unperturbed vibrational eigenstate

overlap, as obtained by averaging the bin frames possibly corresponding to different con-
formational basins, each providing different unperturbed properties. Furthermore, φ0

0,0
is the vibrational ground eigenstate of the unperturbed electronic ground eigenstate (typ-
ically virtually identical to the perturbed one), φ0

ji ,0
is the vibrational ground eigenstate

of the unperturbed ji electronic eigenstate, φ0
ji ,m

is the mth vibrational eigenstate of the ji
unperturbed electronic eigenstate, φ0

0,m is the mth vibrational eigenstate of the unperturbed
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electronic ground eigenstate and they are all modeled as harmonic vibrational eigenstates,
each as obtained at the corresponding electronic eigenstate energy minimum for the vibra-
tional coordinates. Note that for the excitation processes, the MD simulations used must
correspond to the perturbed electronic ground eigenstate ensemble virtually identical to
the unperturbed electronic eigenstate one, while for the relaxation processes the ensemble
of the perturbed excited electronic eigenstate required is possibly not corresponding to
a single unperturbed electronic eigenstate ensemble. Finally, the Gaussian distributions
centered in νm

re f approximate, beyond the homogeneous broadening typically negligible
in electronic excitations/relaxations, the broadening due to the QC semiclassical vibra-
tions disregarded in PMM calculations, with the variance possibly estimated by a set of
unperturbed electronic excitation energies corresponding to a set of QC configurations as
obtained in principle by the MD sampling of the QC semiclassical vibrations [23] (note that,
for sake of simplicity, we assume the same variance for all the Gaussian distributions).

In practice, for each electronic excitation by extracting the MD frames of the ground-
state simulation with the ith perturbed electronic excited eigenstate best corresponding
to a given jth unperturbed one and, for a flexible QC, also corresponding to a single
conformation (MD sub-ensemble), we obtain the corresponding excitation vertical electronic
spectrum by means of the electronic vertical energy and transition dipole, as provided by
PMM [27], via

ε0,i(ν) ∼= ∑
νre f

ΓA(νre f ) n(νre f ) hν

N f

e−
(ν−νre f )

2

2σ2

σ
√

2π
(6)

ΓA(νre f ) =
|µ0,i|2νre f

6ε0ch̄2 (7)

with, now, the summation running over the frequency bins identified by the vertical
electronic transition reference frequencies νre f , n(νre f ) the number of MD frames with
the vertical electronic transition frequency ν within the bin centered in νre f and |µ0,i|2νre f

the corresponding electronic vertical-transition dipole mean square norm as obtained by
averaging over the bin MD frames. Note that by conformation we mean a configurational
region of the internal semiclassical coordinate space (typically corresponding to a harmonic
or quasi-harmonic basin) where all the QC electronic vertical-transition properties, except
the vertical-transition energy, can be obtained at a single ground-state reference structure
corresponding to a local energy minimum of the unperturbed electronic ground eigenstate
(i.e., all such electronic properties are independent of the local configurational changes),
considering the inherent fluctuations in the semiclassical internal coordinates as local
classical vibrations. On the basis of the assumed negligible perturbation effects on the
vibrational eigenstates and eigenvalues and noting that within a single sub-ensemble
the unperturbed ji electronic eigenstate is invariant and, hence, we can use the ji → j
substitution, we can reconstruct for each sub-ensemble the mth vibronic spectral peak
by multiplying the vertical electronic spectrum by |〈φ0

0,0|φ0
j,m〉|

2 (the square norm of the
unperturbed vibrational eigenstate overlap in a single sub-ensemble, fully constant over
those MD frames) and locating its maximum at

νm = ν0
m + νel − ν0

el (8)

where ν0
m is the excitation frequency of the unperturbed mth vibronic transition (unper-

turbed mth vibronic frequency) possibly corrected to match the experimental gas-phase
value, νel is the (perturbed) excitation frequency of the maximum of the electronic ver-
tical spectrum and ν0

el is the excitation frequency of the unperturbed vertical electronic
transition (unperturbed electronic vertical frequency). The sum of these vibronic peaks
provides the sub-ensemble vibronic spectrum and, thus, summing such spectra over all the
sub-ensembles, each statistically weighted by the corresponding probability as provided
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by the ground state MD simulation, and then over all the relevant electronic excitations, we
obtain the complete vibronic excitation spectrum. When dealing with electronic relaxations,
a similar procedure is used, except that we utilize the excited-state MD simulation instead
of the ground-state one to obtain the ensemble statistics, with the following expression

ki,0(ν) ρ(ν) ∼= ∑
νre f

ΓE(νre f ) n(νre f ) (ν/c)3

N f

e−
(ν−νre f )

2

2σ2

σ
√

2π
(9)

ΓE(νre f ) =
8πh|µ0,i|2νre f

6ε0h̄2 (10)

providing for a given sub-ensemble the emission vertical electronic signal to be multiplied
by |〈φ0

j,0|φ
0
0,m〉|2, with now the electronic vertical transition frequency and transition dipole

as obtained at the excited reference structure (i.e., the local energy minimum of the proper
unperturbed electronic excited eigenstate). Moreover, we need for each electronic transition
as many independent excited-state MD simulations as all the electronic conditions acces-
sible to the perturbed excited eigenstate of interest, each well corresponding to a specific
unperturbed electronic eigenstate providing the QC atomic charges and intramolecular
properties to be used in the MD force field. Moreover, for each of such MD simulations, the
sub-ensembles can only correspond to the different conformational conditions, as the final
state of the emission is the electronic ground eigenstate virtually always well corresponding
to the unperturbed electronic ground eigenstate (note that we need to remove from the
excited-state simulation ensemble, if present, those configurations where the perturbed
electronic excited eigenstate of interest is not coherent with the unperturbed one used to
define the force field).

Finally, it is worth remarking that for each conformation of the ensemble MD simula-
tion (the ground-state simulation for the excitation process and the excited-state simulation
for the emission process), we use the corresponding ground- and excited-state reference
structures, i.e., the energy minima of the unperturbed ground and excited electronic eigen-
states, to obtain the unperturbed normal modes defining for each electronic eigenstate
the QC quantum vibrational degrees of freedom via the modes with frequencies such that
hν > kBT (kB is the Boltzman constant and T is the absolute temperature) and the QC
semiclassical internal coordinates via all the other modes, except the roto-translational
ones corresponding to the QC spatial changes due to the differential variations in the
roto-translational coordinates (we always consider the roto-translational coordinates given
by the center-of-mass Cartesian position and the Eulerian angles as semiclassical degrees of
freedom). In the appendix, we discuss the conditions ensuring that such a choice provides
for each conformation the proper definition of the internal coordinates.

2.3. A Simplified Efficient Strategy to Evaluate the Vibrational Overlap

From the previous theory subsections, it is evident that from the diagonalization of the
perturbed electronic Hamiltonian matrix we can, in principle, obtain at each MD frame all
the information necessary to reconstruct the spectroscopic signal according to Equations (6)–
(10), once we have a proper estimate of |〈φ0

0,0|φ0
j,m〉|

2 and |〈φ0
j,0|φ

0
0,m〉|2 for each vibronic

excitation and relaxation, respectively. However, the explicit evaluation of such vibrational
eigenstate overlaps for the typically huge number of possibly significant vibronic transi-
tions is computationally very demanding. Therefore, the available accurate methods for
such calculations can be used for a limited number of vibronic peaks (a few hundred) and
usually require for each electronic eigenstate the energy minimum in full configurational
space [23,37]. Such restrictions can be overcome using proper approximations leading to
a relevantly simplified procedure. In fact, when assuming for different electronic eigen-
states, within each MD sub-ensemble, the corresponding quantum vibrational modes with
approximately the same frequency being virtually identical, i.e., they are defined by the
same mass-weighted Hessian eigenvector and, thus, share the same mode coordinate with
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only different minimum energy positions, we can express the vibrational eigenstate over-
laps via the product of the single-mode eigenstate overlaps 〈η0

j,n,k(βn)|η0
j′ ,n,k′(βn)〉 where

η0
j,n,k(βn) and η0

j′ ,n,k′(βn) are the k and k′ vibrational eigenstates of the n quantum mode,
with coordinate βn, for the j and j′ electronic eigenstates, respectively. Note that within
our assumption, η0

j,n,k(βn) and η0
j′ ,n,k(βn) are identical except for the j and j′ electronic

eigenstate minimum-energy position along the mode coordinate βn. Therefore, for the j, j′

electronic eigenstate couple, the vibrational ground–ground overlap (i.e., the m = 0 vibronic
transition) is

〈φ0
j,0(β)|φ0

j′ ,0(β)〉 ∼= Πn〈η0
j,n,0(βn)|η0

j′ ,n,0(βn)〉 (11)

and for the m vibronic transition involving for the j′ electronic eigenstate the km excited
vibrational eigenstate of the nm mode (i.e., single mode excitation), we have

〈φ0
j,0(β)|φ0

j′ ,m(β)〉 ∼=

〈η0
j,nm ,0(βn)|η0

j′ ,nm ,km
(βnm)〉 Πn 6=nm〈η

0
j,n,0(βn)|η0

j′ ,n,0(βn)〉 (12)

with β = {β1, β2, ..., βn, ...} the vector representing all the quantum-mode coordinates.
When considering vibronic transitions involving multiple mode excitations for the j′ elec-
tronic eigenstate (i.e., the km,l excited vibrational eigenstates of the nm,l quantum modes
with coordinates βnm,l ), we have the general overlap expression

〈φ0
j,0(β)|φ0

j′ ,m(β)〉 ∼=

Πl〈η0
j,nm,l ,0

(βnm,l )|η
0
j′ ,nm,l ,km,l

(βnm,l )〉 Πn 6=nm 〈η
0
j,n,0(βn)|η0

j′ ,n,0(βn)〉 (13)

with nm = {nm,1, nm,2, nm,3, ..., nm,l , ...} the vector representing all the excited quantum
modes. Finally, note that the vibrational eigenstates of any electronic state form a complete
basis set for the vibrational state space, thus necessarily implying

∑
m
|〈φ0

j,0|φ
0
j′ ,m〉|

2 = 1 (14)

with m running over all the vibrational eigenstates of the unperturbed j′

electronic state.
Equations (11)–(13) clearly show that within the approximation used, the evaluation

of the vibrational overlap involving a very complex multiple integral is reduced to the
product of single-mode integrals, each trivially evaluated using two harmonic vibrational
wavefunctions corresponding to identical modes except for the minimum energy posi-
tion along the shared mode coordinate. This approach can then allow us to include in
the spectrum model a huge number of vibronic transitions, making straightforward the
separation between the quantum vibrational coordinates and the semiclassical ones, thus
possibly avoiding the restriction of using ground and excited reference structures strictly
corresponding to full-space energy minima (we need only the quantum coordinates to be
properly energy minimized).

3. Application to Aqueous Indole
3.1. Computational Details

The geometries of indole in the ground state and first three excited states were op-
timized in vacuum by means of CCSD and EOM-CCSD, using 6-311+G(d) as the basis
set. The gas-phase electronic properties of the first six excited states were calculated for
each geometry using EOM-CCSD, with 6-311+G(d) as the basis set. The harmonic vibra-
tional eigenstates and frequencies were calculated by means of DFT and TD-DFT, with the
functional M06-2X [38] and 6-311+G(d) as the basis set (the benchmarking [38–43] which
resulted in this choice is described in detail in the Supplementary Materials; see Table S1
and Figure S1), using both the geometries optimized with the same level of theory (DFT) as
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well as the geometries optimized with CCSD and EOM-CCSD. The geometry optimizations
and the vibrational-frequencies calculations were performed using Gaussian 16 [44], while
the electronic properties of the ground state and the excited states were calculated using
Q-Chem [45]. The calculated gas-phase vibronic transition energies were corrected in order
to match the 0–0 transition with the experimental gas-phase value. This resulted in a shift
in the vibronic transitions associated with the excitation to Lb of −0.32 eV (arising from
the difference between the reported gas-state experimental value of the 0-0 transition of
4.37 eV [8] and our calculated unperturbed value of 4.69 eV provided by CCSD/6-311+G(d)
calculations) and a shift by −0.57 eV for the vibronic transitions associated with the ex-
citation to La (given by the reported gas-state experimental value of the 0–0 transition of
4.54 eV [8] and our calculated unperturbed value of 5.11 eV). Finally, the value of σ used
to construct the spectra (0.0004 frequency atomic units corresponding to 0.068 eV) was
obtained by tuning the value estimated for Pyrene (about 0.02 eV) in a previous work [23]
in order to optimize the spectral lineshape. The Pyrene value was evaluated by calculating
the variance in the electronic transition energies of the semi-rigid chromophore in gas phase
for several configurations within its MD conformational basin (harmonic-like basin).

NVT MD simulations of indole and 949 TIP3P water molecules were carried out in
a cubic box of side 3.02356 nm using periodic boundary conditions, at 300 K. The size
of the box was chosen in order to reproduce the experimental density of the system [46].
CHARMM36 [47,48] was used as the force field and the canonical sampling was achieved
using the velocity rescaling thermostat [49]. Indole was considered in the ground or in
one of the spectroscopically active (unperturbed) electronic excited states (the La and Lb
excited states) by replacing the values of its atomic charges in the force field with the ESP
charges [50,51] calculated at the EOM-CCSD/6-311+G(d) level. For each system simulation,
the MD trajectory was carried out for 400 ns with a 2 fs timestep, which resulted in 20,000
frames (taken each 20 ps) to be used in the MD-PMM procedure. The MD simulations were
performed using Gromacs 2020.1 [52].

3.2. Results

Indole (see Figure 1) is a semi-rigid molecule, thus allowing us to consider a sin-
gle conformational (quasi-harmonic) basin to fully describe its spectroscopic behavior.
According to the model described in the theory section, we used as the reference structure
for each perturbed electronic eigenstate of interest the energy minimum of the unperturbed
electronic eigenstate best corresponding to the perturbed one, hence providing all the
unperturbed electronic properties and vibrational modes and frequencies to be used. In
Figure 2, we show the matrices given by the squared inner products of the mass-weighted
Hessian eigenvectors (the squared elements of the Duschinsky matrix), as obtained for
the unperturbed QC at the energy minima of the ground and Lb (panel A), or the ground,
and La (panel B), the electronic, states. From the figure, it is clear that such matrices are
nearly diagonal, well matching the requirement for the use of our simplified treatment of
the vibronic transitions (note that, in both matrices, modes with the same index always
have nearly identical frequencies).

Figure 1. Indole structure.
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Figure 2. Matrices obtained by the squared elements of the Duschinsky matrix associated to the
ground-to-Lb-state transition (A) and to the ground-to-La-state transition (B). Note that, in both
matrices, modes with the same index always have nearly identical frequencies.

Concerning the modeling of the absorption spectrum, we obtained the ground-state
ensemble by performing a long equilibrium MD simulation (400 ns) with the indole force-
field parameters corresponding to the QC unperturbed electronic ground-state charge
distribution (as usual, the QC perturbed electronic ground state is virtually identical to
the unperturbed one, data not shown). From the obtained ground-state MD ensemble,
via PMM, we reconstructed the corresponding distributions of the projections (Hermitian
products) of the first and second perturbed electronic excited states on the unperturbed
electronic states [25] (the ground state GS, the excited states Lb La and the dark state πσ∗),
obtained at the (unperturbed) ground-state optimized geometry (ground-state geometry).
From such distributions, shown in Figures 3 and 4, it is evident that within the ground-state
MD ensemble the perturbed first electronic excited state mostly corresponds to the Lb
electronic state, while the perturbed second electronic excited state is largely corresponding
to the La electronic state (see panels A). Interestingly, from the panel B of the same figures,
we can realize that both perturbed electronic excited states essentially fluctuate between the
La and Lb states, being nearly identical to only one of them at each MD frame (we disregard
the few MD frames with the perturbed second electronic excited state projecting onto the
dark state πσ∗).

Figure 3. (A): Mean-squared projections of the perturbed first electronic excited state of indole, on
the first four unperturbed electronic eigenstates (the ground state GS, the excited states Lb, La and the
dark state πσ∗, in the figure ordered according to increasing energy) as obtained at the (unperturbed)
ground-state geometry by the ground-state MD ensemble. (B): Probability distribution of the pair
values of the projections of the perturbed first electronic excited state of indole, on the Lb and La

states as obtained at the (unperturbed) ground-state geometry by the ground-state MD ensemble.
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Figure 4. (A): Mean-squared projections of the perturbed second electronic excited state of indole, on
the first four unperturbed electronic eigenstates (the ground state GS, the excited states Lb, La and the
dark state πσ∗, in the figure ordered according to increasing energy) as obtained at the (unperturbed)
ground-state geometry by the ground-state MD ensemble. (B): Probability distribution of the pair
values of the projections of the perturbed second electronic excited state of indole, on the Lb and La

states as obtained at the (unperturbed) ground-state geometry by the ground-state MD ensemble.

In order to obtain the absorption spectrum (including the vibronic details), we ex-
tracted from the ground-state MD simulation, for each of the first two perturbed electronic
excited states, the MD frames where the perturbed electronic excited state of interest (as ob-
tained at the ground-state geometry) is virtually identical either to the Lb or to the La state,
thus allowing us to reconstruct (see the theory section) the corresponding vibronic spectra
(for each MD frame we assumed the same electronic-state assignment over the whole
relevant range of the mode coordinates). The complete absorption spectrum as shown in
Figure 5 was obtained from the weighted summation of all the contributions (including the
vibronic details) due to both the excited states. In this figure, we compare the experimental
absorption spectrum with the calculated ones, as obtained according to the theory section
using either our vibronic treatment or the vibronic structure provided by the algorithms
implemented in Gaussian [37] (Gaussian vibronic treatment). Note that, due to the limited
number of vibronic transitions considered by the Gaussian vibronic treatment, in order to
mimic in the corresponding spectral signal the effect of the missing vibronic transitions, we
scaled the estimated squared vibrational-state overlaps (as provided by Gaussian via the
unperturbed absorption intensities) to normalize their sum (see Equation (14)): we assume
all the missing vibronic transitions as included within the absorption range of interest and
distributed to provide the same intensity relative increment for each vibronic transition
considered. Therefore, the vibronic spectrum based on the Gaussian vibronic treatment re-
ported should be considered as corresponding to the highest possible absorption intensity:
i.e., the intensity of the spectrum we would obtain including within the Gaussian vibronic
treatment all the relevant vibronic transitions, with, hence, no normalization scaling of the
squared vibrational state overlaps, is likely to be lower. From the figure, it is clear the higher
accuracy of our vibronic treatment in reproducing the details of the spectrum, although
the Gaussian vibronic treatment also provides a proper spectrum intensity and width
(both calculated spectra properly reproduce the position of the maximum). It is worth
noting that due to computational limitations we always had to employ DFT calculations
for evaluating the mass-weighted Hessian at the reference structures (electronic-energy
minima) used to obtain the vibronic structure for the first two electronic transitions (the
energy minima of the GS, La and Lb unperturbed electronic eigenstates). Therefore, the use
of the vibronic treatment implemented in Gaussian, requiring full-space minima, forced
us to also employ DFT calculations to obtain the optimized structures to be used for the
Hessian calculations (for the PMM calculations we always used the higher level CCSD
and EOM-CCSD methods). Conversely, when using our (simplified) vibronic treatment,
requiring a minimum only within the quantum-mode subspace, we were able to utilize
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DFT Hessian calculations for reference structures optimized at CCSD and EOM-CCSD
level, thus possibly guaranteeing a higher accuracy. In addition, our approach allowed
us to include a huge number of vibronic transitions (over a million transitions instead of
about 100, as used within the Gaussian vibronic treatment) providing a virtually complete
reconstruction of the vibronic structure for each electronic excitation. The results reported
in Figure 5, indicating that the approximations we used to simplify the vibronic structure
calculations are accurate, plainly show that the inclusion of a very large number of vi-
bronic transitions and the possibility to treat separately the quantum- and classical-mode
subspaces can provide a significant improvement in modeling vibronic spectra.

Figure 5. (A): Calculated (colored) and measured (black; adapted from Hilaire et al. [53]) absorption
spectra of indole in aqueous solution. The predicted spectra were obtained using our vibronic treat-
ment (red) and with the vibronic structure calculated using the algorithms implemented in Gaussian
(blue), both as provided by the ground-state MD ensemble. (B): Calculated total absorption spectrum
(using our vibronic treatment) of indole in aqueous solution and the corresponding contributions to
the vibronic spectrum due to the first two electronic transitions.

In modeling the emission process, we had to consider the proper excited-state MD en-
semble to be used for reconstructing the fluorescence spectrum due to the first excited-state
radiative relaxation (as usual, we assumed no other radiative relaxations as a consequence
of the much faster non-radiative transitions from higher excited states to the first excited
state). From the absorption data discussed above, we know that the first two perturbed
electronic excited states can be conceived as fluctuating between the La and Lb states,
thus suggesting that the emission process should be modeled using the corresponding
excited-state MD ensembles and geometries, i.e., using the corresponding excited-state MD
force field and optimized geometry (La and Lb geometries). Note that as the fluorescence
mean lifetime is much longer than the ones of the inter-conversion processes involving the
first three perturbed excited states (within the GS geometry and MD ensemble, basically
corresponding to the Lb, La and πσ∗ unperturbed states, respectively), we cannot assume
the Lb ensemble as the proper excited-state MD ensemble to be used. Therefore, we used
two different excited-state MD ensembles and geometries, using the Lb and La optimized
geometries and corresponding MD simulations (we disregarded the spectroscopically
inactive dark state). In order to verify the consistency of the MD ensembles obtained,
we evaluated the mean-squared projections (mean-squared Hermitian products) of the
perturbed electronic first excited state over the first four unperturbed electronic states (the
ground state GS, the excited states Lb, La and the dark state πσ∗), as obtained either at the
Lb or La geometry and MD ensemble (see panels A of Figures 6 and 7). From these figures,
it is evident that within the Lb geometry and MD ensemble the perturbed first electronic
state is coinciding with the Lb state, while within the La geometry and MD ensemble the
same perturbed eigenstate is largely corresponding to the La state, although still projecting
onto the Lb state. Interestingly, from panel B of Figure 7 it emerges that in this last case the
perturbed first electronic excited state is not fluctuating between the La and Lb states but it
is, rather, a stationary combination of them. These results indicate that we can use in both
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cases the complete MD simulation to obtain a consistent excited-state MD ensemble for
evaluating the emission spectrum (for the La-state MD ensemble considering the ≈ 80 %
projection of the perturbed first excited state onto the La state).

Figure 6. Mean-squared projections of the perturbed first electronic excited state of indole, on the
first four unperturbed electronic eigenstates (the ground state GS, the excited states Lb, La and the
dark state πσ∗, in the figure ordered according to increasing energy) as obtained at the Lb geometry
by the Lb-state MD ensemble.

Figure 7. (A): Mean-squared projections of the perturbed first electronic excited state of indole, on
the first four unperturbed electronic eigenstates (the ground state GS, the excited states Lb, La and the
dark state πσ∗, in the figure ordered according to increasing energy) as obtained at the La geometry
by the La state MD ensemble. (B): Probability distribution of the pair values of the projections of
the perturbed first electronic excited state of indole, on the Lb and La states as obtained at the La

geometry by the La-state MD ensemble.

Finally, in Figure 8 we show the comparison between the calculated emission spectra,
as obtained employing either our vibronic treatment or the Gaussian vibronic treatment,
with the experimental emission spectrum for the La (panel A) and Lb (panel B) excited-state
geometries and MD ensembles. From this figure, it is evident that only the La geometry and
MD ensemble reproduce the experimental signal, with a clear improvement in reproducing
the spectrum when using our vibronic treatment. The comparison of such results with
those obtained for the absorption process shows that after the excitation process, a fast
relaxation must occur, providing a dramatic change in the perturbed first electronic excited-
state population from being largely coinciding with the Lb state (see Figure 3) to largely
resembling the La state.
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Figure 8. Calculated (coloured) and measured (black; adapted from Hilaire et al. [53]) normalized
emission spectra of indole in aqueous solution. Spectra calculated using our vibronic treatment are
reported in red, while the spectra obtained by the vibronic structure calculated using the algorithms
implemented in Gaussian are reported in blue. (A): Spectra calculated in the La-state MD ensemble.
(B): Spectra calculated in the Lb-state MD ensemble.

4. Conclusions

The use of general and typically accurate approximations for modelling vibronic
transitions (see the Theory section), allowed us to relevantly simplify the vibronic treat-
ment [16,17], resulting in a very efficient and accurate reconstruction of the absorption
and emission spectra, within the MD-PMM framework. In fact, taking advantage of the
approximately identical vibrational modes and frequencies of the energy minima involved
in the electronic transitions, we are able to explicitly include in our treatment a huge num-
ber of vibronic transitions, which are necessary to reproduce the details of the spectral
signal. Moreover, stemming from the approximations/simplifications adopted, we can
easily discriminate between classical-like and quantum-mode vibronic transitions, allowing
us to uncouple the corresponding vibronic calculations, hence permitting the use of the
quantum-mode transitions only and avoiding the restriction of using ground and excited
reference structures strictly corresponding to full-space energy minima, i.e., we need only
the quantum coordinates to be properly energy minimized. Such a feature of the method
allows the use of high-level calculations for the evaluation of properly minimized reference
configurations and related fully reliable properties (e.g., by means of EOM-CCSD), still
calculating the corresponding harmonic vibrational modes and frequencies via a less accu-
rate but computationally much more affordable method (e.g., TD-DFT), often unable to
provide the correct minimum energy position for the classical-like modes. The application
of such an approach to aqueous Indole quantitatively reproduces both the experimental
absorption and emission spectra with higher accuracy than the one obtained by employing
the usual vibronic treatment as implemented in Gaussian [16,37]. Moreover, it also pro-
vided indications on indole-complex excited-state behavior, shedding light on the different
sub-populations accessed by means of the absorption process, i.e., the La, Lb and πσ∗

(unperturbed) state sub-populations of the perturbed first and second electronic excited
states. Finally, the comparison of the calculated emission spectra as obtained by the first
(perturbed) excited-state MD ensemble and geometry corresponding to either the La or the
Lb states clearly showed that, although the excitation provides a first perturbed excited
state largely corresponding to the Lb state, in the emission, the La ensemble and geometry
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can only provide a proper spectral signal, thus showing that a fast relevant relaxation of
the electronic perturbed first excited-state population (converting the Lb sub-population
into the La one) must occur.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27238135/s1, Figure S1: Vibronic spectrum of gas-phase
indole calculated with different DFT functionals; Table S1: Electronic properties of gas-phase indole
calculated with different DFT functionals. References [16,37–44] are cited in Supplementary Materials.
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Appendix A

In this appendix, we show that when the nuclear coordinates of a molecule or a tightly
bound molecular cluster, they can be subdivided into semi-classical and quantum degrees of
freedom; within proper conditions (typically present in usual physical–chemical systems),
we can locally (i.e., within each harmonic-like basin) express them via two different sets
of the normal modes as obtained by the quantum coordinates’ local minimum energy
mass-weighted Hessian.

Let us assume that we can define the generalized nuclear coordinates as q = {ζ, α},
where ζ are semi-classical coordinates and α are quantum degrees of freedom, with no
mixing between the semi-classical and quantum sub-spaces (i.e., within the whole accessible
configurational space, the same definition of such coordinates can be used). Making use of
the typical stiffness of the nuclear quantum coordinates providing at each semi-classical
position ζ only tiny harmonic-like vibrations of the quantum coordinates around their
local energy minimum α0(ζ), we can employ a theorem from analytical mechanics stating
that the generalized coordinates can always be defined in such a way the mass tensor (the
symmetric matrix M̃q) becomes a block diagonal matrix [54]

M̃q ∼=
[

M̃ζ,ζ 0̃
0̃ M̃α,α

]
(A1)

where the symmetric, typically virtually constant within a harmonic-like basin, matrices
M̃ζ,ζ , M̃α,α are the mass tensor (diagonal) blocks corresponding to the semi-classical and
quantum degrees of freedom, respectively (the approximation becoming exact on the
α0(ζ) surface), with, then, the kinetic energy operator K̂ (expressed within the coordinate
representation) given by the sum of two independent terms (concerning the momenta)

K̂ ∼= Kζ + K̂α (A2)

with Kζ identical to the classical kinetic energy of the semi-classical degrees of freedom
(i.e., involving only the classical coordinates conjugated momenta πζ) and K̂α provid-
ing the kinetic energy operator of the quantum degrees of freedom (i.e., involving only
the operators of the quantum coordinate conjugated momenta π̂α). Note that such a

https://www.mdpi.com/article/10.3390/molecules27238135/s1
https://www.mdpi.com/article/10.3390/molecules27238135/s1
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semi-classical and quantum-momenta uncoupling becomes exact only over the α0(ζ)
surface. However, given the tiny displacements allowed for the quantum coordinates
around each α0 position, Equation (A2) can be used as a general accurate approximation.
Therefore, we can readily obtain the vibrational Hamiltonian operator at each semi-classical
configuration via

Ĥv = K̂α + Ue(ζ, α)−Ue(ζ, α0(ζ))

∼= K̂α + ∆αT G̃α,α

2
∆α (A3)

∆α = α− α0(ζ) (A4)

K̂α = π̂T
α

(
M̃α,α

)−1

2
π̂α (A5)[

G̃α,α

]
i,j

=
∂2Ue

∂αi∂αj
(A6)

where Ue is the electronic energy and G̃α,α is the Hessian matrix (within the α subspace) of
the electronic energy, as obtained at ζ, α0(ζ). Introducing the quantum-mass weighted co-

ordinates ∆α′ =
√

M̃α,α ∆α with conjugated momenta operators π̂α′ =

(√
M̃α,α

)−1
π̂α =√(

M̃α,α

)−1
π̂α, we obtain (expressing ∆α and π̂α via ∆α′ and π̂α′ )

Ĥv ∼=
1
2

π̂T
α′ π̂α′ +

(
∆α′
)T
√(

M̃α,α

)−1 G̃α,α

2

√(
M̃α,α

)−1
∆α′ (A7)

where

√(
M̃α,α

)−1
G̃α,α

√(
M̃α,α

)−1
is the mass-weighted Hessian, within the harmonic-

like basin independent of the ζ, α0(ζ) configuration and often invariant over the different
accessible basins, with eigenvectors and eigenvalues providing the (quantum) vibrational
modes and frequencies. Note that due to the symmetry of the M̃α,α matrix, it follows that√

M̃α,α =

(√
M̃α,α

)T
=

√(
M̃α,α

)T
(A8)√(

M̃α,α

)−1
=

(√(
M̃α,α

)−1
)T

=

√((
M̃α,α

)−1
)T

(A9)

Let us consider now the Hessian G̃q within the whole q = {ζ, α} space

[
G̃q

]
i,j
=

∂2Ue

∂qi∂qj
(A10)

as obtained at ζ, α0(ζ) with ζ not far from the local minimum energy position ζ0: i.e.,
the Hessian is obtained within the harmonic-like basin corresponding to the full-space
minimum-energy position ζ0, α0(ζ0). It is worth noting that due to the very different
stiffness of the quantum and semi-classical coordinates, when considering positions not far
from ζ0, α0(ζ0), we typically have ∂2Ue/∂ζl∂αn ≈ 0, thus providing

G̃q ≈
[

G̃ζ,ζ 0̃
0̃ G̃α,α

]
(A11)
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Moreover, in general, when expressing the elements of G̃q via the Cartesian coordinates
of the laboratory reference frame x, we obtain

[
G̃q

]
i,j

= ∑
l

∑
l′

∂2Ue

∂xl′∂xl

∂xl′

∂qi

∂xl
∂qj

+ ∑
l

∂Ue

∂xl

∂2xl
∂qi∂qj

= ∑
l

∑
l′

[
G̃x

]
l,l′

[
T̃
]

l′ ,i

[
T̃
]

l,j
+ ∑

l

∂Ue

∂xl

∂2xl
∂qi∂qj

(A12)

with
[

G̃x

]
l,l′

= ∂2Ue/∂xl′∂xl the elements of the Cartesian Hessian and

[
T̃
]

l′ ,i
=

∂xl′

∂qi
(A13)[

T̃
]

l,j
=

∂xl
∂qj

(A14)

the elements of the transformation matrix T̃ defined by

dx = T̃dq (A15)

and involved in the mass tensor transformation

M̃q = T̃T M̃x T̃ (A16)

where M̃x is the (diagonal) Cartesian mass tensor with elements
[

M̃q

]
l,l′

= mlδl,l′ given

by the particle masses ml (note that the index l runs over all the Cartesian coordinates of
the particles and, thus, ml has a three-fold degeneration). From Equations (A12)–(A14), we
then have [

G̃q

]
i,j
=
[

T̃TG̃x T̃
]

i,j
+ ∑

l

∂Ue

∂xl

∂2xl
∂qi∂qj

(A17)

plainly showing that only when evaluating the Hessian at a full-space energy minimum
(i.e., ∂Ue/∂xl = 0) or when dealing with a linear coordinate transformation (i.e., constant T̃
matrix and, thus, ∂2xl/∂qi∂qj = 0), we exactly have that the q space Hessian is obtained by
simply transforming the Cartesian Hessian via the same transformation used to obtain M̃q

from M̃x. However, considering that within each harmonic-like basin the semi-classical
coordinates are not far from their minimum-energy position, with the Hessian always
obtained at fully energy minimized quantum coordinates (i.e., ∂Ue/∂xl ≈ 0), and the
transformation matrix T̃ able to be treated as almost constant, we can write

G̃q ≈ T̃TG̃x T̃ (A18)

typically valid for each ζ, α0(ζ) configuration within the harmonic-like basin. From
Equations (A1) and (A11), we can obtain the q full-space mass-weighted Hessian
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√(
M̃q

)−1
G̃q

√(
M̃q

)−1

≈


√(

M̃ζ,ζ

)−1
0̃

0̃

√(
M̃α,α

)−1


[

G̃ζ,ζ 0̃
0̃ G̃α,α

]
√(

M̃ζ,ζ

)−1
0̃

0̃

√(
M̃α,α

)−1

 (A19)

=


√(

M̃ζ,ζ

)−1
G̃ζ,ζ

√(
M̃ζ,ζ

)−1
0̃

0̃

√(
M̃α,α

)−1
G̃α,α

√(
M̃α,α

)−1


clearly showing that the eigenvectors of such a mass-weighted Hessian (i.e., the vibrational
modes) correspond to two independent groups: the classical-like modes as provided by the
block of the semi-classical coordinates and the quantum modes as provided by the quantum-
coordinate block. Note again that within the harmonic-like basin, at least the quantum
coordinate block and, hence, its eigenvectors and eigenvalues, are independent of the
configuration used to evaluate the mass-weighted Hessian (the semi-classical coordinates,
possibly involving anharmonic effects, may provide a slightly different configuration-
dependent mass-weighted Hessian block). Finally, from Equations (A16) and (A18), we
also have √(

M̃q

)−1
G̃q

√(
M̃q

)−1
=
√

M̃q

(
M̃q

)−1
G̃q

√(
M̃q

)−1

≈
√

M̃q T̃−1
(

M̃x

)−1(
T̃T
)−1

T̃TG̃x T̃

√(
M̃q

)−1
(A20)

=
√

M̃q T̃−1

√(
M̃x

)−1
√(

M̃x

)−1
G̃x

√(
M̃x

)−1
√

M̃x T̃

√(
M̃q

)−1

= Θ̃−1

√(
M̃x

)−1
G̃x

√(
M̃x

)−1
Θ̃

with

Θ̃ =

√
M̃x T̃

√(
M̃q

)−1
(A21)

the matrix for the
√

M̃qq →
√

M̃xx coordinate transformation (note that according to
the approximations used, such a transformation matrix is also virtually constant within
the harmonic-like basin). Equation (A21) demonstrates that within the approximations
used, for a given ζ, α0(ζ) configuration, the eigenvectors and eigenvalues of the Cartesian

mass-weighted Hessian

√(
M̃x

)−1
G̃x

√(
M̃x

)−1
correspond to the ones obtained by the

generalized coordinate mass-weighted Hessian

√(
M̃q

)−1
G̃q

√(
M̃q

)−1
, thus providing

the proper classical-like and quantum vibrational modes, with the latter and their fre-
quencies representative of the whole harmonic-like basin: the quantum modes provided
by the quantum-coordinate mass-weighted Hessian and the transformation matrix Θ̃ for
expressing them within the Cartesian mass-weighted coordinate basis set, are both virtu-
ally constant. Therefore, regardless of the semi-classical configuration chosen, we always
consider all the eigenvectors of the Cartesian mass-weighted Hessian with frequencies ν
such that hν > kBT as corresponding to the eigenvectors of the quantum-coordinate mass-

weighted Hessian

√(
M̃α,α

)−1
G̃α,α

√(
M̃α,α

)−1
, thus providing the quantum vibrational

modes and frequencies of at least the selected harmonic-like basin, see Equation (A7) (h is
the Planck constant, kB is the Boltzmann constant and T is the absolute temperature).
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