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Abstract: Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only
in recent years has the complexity of the transcriptome started to be elucidated. However, its
components are still under investigation and their identification is one of the challenges that scientists
are presently facing. In addition, their function is still far from being fully understood. The non-
coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large
fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating
an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET)
that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among
such interactions can be enough to cause a transition from health to disease, but the opposite is
equally true, leading to the possibility of intervening based on these mechanisms to cure human
conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating
how they can be used for disease treatment, the current challenges and pitfalls, and the roles of
environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social
issues arising from their (improper) use.

Keywords: microRNA; miR; oncogene; oncosuppressor; gene therapy; epigenetics; Europe’s beating
cancer plan

1. Introduction—Filling the Protein World with RNA

Some decades ago, it was assumed that the biological needs of cells were essentially
met through the actions of proteins. This assumption came basically from the experiments
of Beadle and Tatum, who ca. 80 years ago for the first time showed the direct link between
genes and enzymatic reactions in the organism Neurospora crassa [1]—the so called one gene,
one enzyme hypothesis—whose discovery earned them the Nobel Prize in Physiology or
Medicine in 1958, together with Lederberg. This concept was further expanded thanks
to Vernom Ingram’s work in 1956, with the statement one gene, one polypeptide, when by
studying the sickle cell hemoglobin he found that genetic variations in proteins could affect
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only a single polypeptide chain inside a multimeric protein complex [2]. The discovery of
the DNA structure [3] and the cracking of the genetic code in the following years [4] set
the basis for the formulation of the central dogma of molecular biology, first formulated in
1956 [5] in the following form: “once information has got into a protein it cannot get out
again”. Beyond the obvious consequence of information not travelling back from proteins
to nucleic acids, the central dogma indirectly tells us two additional things: (1) the flux of
information cannot go beyond the protein level, which means that once the information
arrives at a protein, the protein performs the cellular job; (2) however, nothing prevents
information from stopping “before” reaching a protein, which in turn means that the
information can be used by other molecules, i.e., DNA and RNA. As for the DNA, there are
portions of the genome that store information that is strictly connected to the DNA; indeed,
this part of the genome is normally not transcribed at all—for example, in centromeres and
telomeres, in which (i) the information is stored in the DNA sequence itself; (ii) the cellular
jobs are essentially chromosome segregation and integrity, respectively [6]; and (iii) their
maintenance is epigenetically regulated [7]. As for the RNA, the first identification of tRNA
(transfer RNA) dates back to 1958 [8], and in the same year the ribosome components
started to be identified [9], including ribosomal RNA (rRNA). Together, the tRNAs and
rRNAs represent more than 95% of the total mass of the RNA inside a cell [10]; rRNAs
derive from approximately 300–400 gene repeats organized in 5 clusters per human haploid
genome [11], producing millions of rRNA molecules per cell, while tRNAs are transcribed
by ca. 500 genes in H. sapiens [12], producing a few million transcripts.

Interestingly, “non-coding” RNAs were discovered before the coding ones, i.e., mRNAs
(messenger RNAs), the molecules physically conveying information between DNA and
proteins, whose identification occurred in 1961 [13–15]. Starting from the 1970s in the
twentieth century, several additional non-coding RNAs (ncRNAs) were identified, either
as single molecules performing a specific task (such as Xist, TERRA) or entire categories
performing similar tasks and sharing common structural characteristics; an incomplete list
of these molecules includes the following (in parentheses is the abbreviated name if present
and the approximate year(s) of first discovery): small nuclear RNA (snRNA, 1977), transfer
RNA-derived small RNA (tsRNA, 1977-79), ribozymes (1980), Y RNA (1981), antisense
RNA (1981-86), interfering RNA (1990), Xist (1992), small nucleolar RNA (snoRNA, 1992),
microRNA (miRNA, 1993), Tsix (1999), riboswitches (2002), Piwi-associated RNA (piRNA,
2006), TERC (2007), TERRA (2010), enhancer RNA (eRNA, 2010), circular RNA (circRNA,
2012), and ribosome-associated non-coding RNA (rancRNA, 2012) (reviewed in [16–23]). It
is now clear that the transcriptome largely outsizes the proteome in terms of the number
of different molecules: a large part of the human genome is transcribed into RNAs, but
the protein-coding loci account for just 3% of it [24]. To further complicate this scenario, in
recent years even the dichotomy of coding vs. non-coding RNAs has been weakening, due
to the discovery of bi-functional RNAs [25], which are RNA molecules that have an open
reading frame (ORF) but at the same time can also fulfill other cellular functions without
being translated.

2. Overview of Non-Coding RNAs: Abundance, Types and Classification

In the easiest scenario, non-coding RNAs (ncRNAs) are generally defined by the
absence of an ORF in their sequence. This class of RNAs is largely the most abundant
in the cell, exonic sequences covering a mere 1% of the total human genome [26]. Since
the first human genome draft [27], it has been clear that for the most part such RNAs
could not be just a background of the ORF transcription; in fact, the human genome
contains approximately 20,000 protein coding genes, while transcripts come from the
activity of ca. 93% of the human genome, with 53% of them coming from regions outside
the gene boundaries (intergenic sequences), thereby exceeding the 120,000 non-coding
transcriptional units [26,28]. However, an exact estimate of their number is extremely
hard to obtain because a locus may encode for more than one ncRNA (up to dozens in a
row in the case of microRNAs), but not all have a biological function. For example, miRs
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derive from a precursor double-stranded RNA, but while in some cases only one strand is
biologically active, in other cases both strands are retained in the cell and perform different
functions. Moreover, it is also likely that a significant portion of them are devoid of any
biologically relevant function, and indeed are mere byproducts of the transcription of
nearby sequences [10].

The ncRNAs represent a highly heterogeneous group (Figure 1). Because of this, they
are arbitrarily classified into two broad categories according to their length, with a threshold
of approximately 200 nucleotides (nt). Those below the threshold are called short ncRNAs
(sncRNAs), and in most cases their length is below 30 nt; those above the threshold are
named long ncRNAs (lncRNAs), and may be as long as several kilobases [29]. The sncRNA
group includes subgroups such as microRNAs (miRs or miRNAs), which recognize and
bind partially complementary sequences located in other RNAs, either coding or non-
coding, altering protein expression; Piwi-interacting RNAs (piRNAs), which function
mainly in the germ line and inhibit the transcription and movement of retrotransposons,
retroviruses, repetitive sequences, and other mobile elements; small interfering RNAs (or
short interfering RNAs, siRNAs), double-stranded RNA molecules that promote target
mRNA degradation but also play a role in antiviral activity and chromatin remodeling;
small nuclear RNAs (snRNAs), involved in pre-mRNA splicing; and small nucleolar RNAs
(snoRNAs), involved in RNA modification [30,31]. A comparable classification for lncRNAs
is not possible, due to their ample variability in terms of their genome position (intragenic,
intergenic), direction of transcription (sense, antisense), length (starting at around 200
nt and up to several kb), function (acting as transcriptional or translational regulators,
chromatin modifiers, enhancers, decoys, ceRNAs, micropeptide templates, etc.), structure
(linear, circular), cellular localization (nucleus, cytoplasm), and so on [28,32].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 37 
 

 4 

 
Figure 1. Classification of non-coding RNAs. Due to their highly heterogeneous nature, ncRNAs 
are classified according to several distinct variables. Although the most common parameter is their 
length, several other classifications are used, according to the context in which they are described. 
In general, the most common classifications rely either on functional aspects (top) or on the basis of 
structural features (bottom), as indicated by the double-headed arrows on the right. The different 
means of classification are depicted in the left column of the figure, inside the circles, while the 
corresponding RNA denominations are inside squares. Means and denominations are indicated in 
matching colors to ease the figure readability. To further complicate this scenario, any ncRNA can 
be assigned to more than one of the illustrated boxes. For example, MALAT1 (see text) is at the 
same time long, linear, sense, trans, and regulatory in nature [29]. 

3. Competing Endogenous RNA Networks (ceRNETs): When lncRNAs and sncRNAs 
Interact 

Other than the abovementioned classification, in recent years a new category of 
ncRNAs has been identified based on functional assays. It has been repeatedly shown 
that miRs are able to interact not only with their target mRNA, but also with lncRNAs 
(Figure 2). In other words, the mRNA and lncRNA “compete” for the binding of the miR. 
On this basis, competing endogenous RNAs (ceRNAs) have been named to indicate this 
interaction. In this scenario, the lncRNA acts as a sponge for the miR and prevents its 
action on the mRNA, allowing its expression at the protein level. The deregulation of 
such interactions may cause alterations in cell homeostasis and be a cause of disease with 
an epigenetic basis. This deregulation has been found in several human diseases, 
including cardiovascular anomalies [33], neurodegenerative disorders [34,35], and 
various types of cancer [36–38], such as those of the urogenital apparatus [39–42]. This 
has a deep effect in cancer; in fact, if the target mRNA encodes for an oncosuppressor, the 
miR that targets it acts as an oncogene (because it inhibits the expression of an 
oncosuppressor), and in turn the lncRNA that sponges the miR acts as an anti-oncogene 
(and functionally as an oncosuppressor as well); the same logic but with opposite effects 

Figure 1. Classification of non-coding RNAs. Due to their highly heterogeneous nature, ncRNAs are
classified according to several distinct variables. Although the most common parameter is their length,
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several other classifications are used, according to the context in which they are described. In general,
the most common classifications rely either on functional aspects (top) or on the basis of structural
features (bottom), as indicated by the double-headed arrows on the right. The different means of
classification are depicted in the left column of the figure, inside the circles, while the corresponding
RNA denominations are inside squares. Means and denominations are indicated in matching colors
to ease the figure readability. To further complicate this scenario, any ncRNA can be assigned to more
than one of the illustrated boxes. For example, MALAT1 (see text) is at the same time long, linear,
sense, trans, and regulatory in nature [29].

3. Competing Endogenous RNA Networks (ceRNETs): When lncRNAs and
sncRNAs Interact

Other than the abovementioned classification, in recent years a new category of
ncRNAs has been identified based on functional assays. It has been repeatedly shown
that miRs are able to interact not only with their target mRNA, but also with lncRNAs
(Figure 2). In other words, the mRNA and lncRNA “compete” for the binding of the miR.
On this basis, competing endogenous RNAs (ceRNAs) have been named to indicate this
interaction. In this scenario, the lncRNA acts as a sponge for the miR and prevents its
action on the mRNA, allowing its expression at the protein level. The deregulation of such
interactions may cause alterations in cell homeostasis and be a cause of disease with an
epigenetic basis. This deregulation has been found in several human diseases, including
cardiovascular anomalies [33], neurodegenerative disorders [34,35], and various types of
cancer [36–38], such as those of the urogenital apparatus [39–42]. This has a deep effect
in cancer; in fact, if the target mRNA encodes for an oncosuppressor, the miR that targets
it acts as an oncogene (because it inhibits the expression of an oncosuppressor), and in
turn the lncRNA that sponges the miR acts as an anti-oncogene (and functionally as an
oncosuppressor as well); the same logic but with opposite effects applies if the mRNA is
an oncogene. This represents a further step in gene expression control at the translational
level in eukaryotic cells.

The binding of the miR onto the mRNA occurs at the 3′UTR of the messenger, while the
interaction between miRs and lncRNAs may also occur in other regions [43]. This creates a
circuit in which the increase in cellular concentration of an miR represses the translation—
and hence, the expression—of its target mRNA; instead, the increase in concentration of
the competing lncRNA allows this molecule to act as a sponge for the miR, decreasing the
miR–mRNA interaction, and in turn promoting mRNA translation, i.e., protein expression.
However, things are more complex than this. In fact, any given miR may have several target
mRNAs, an mRNA may be bound by more than one miR, and a given lncRNA may sponge
several different miRs. As a consequence, metabolic pathways under ceRNA control are
usually very complex and ceRNAs create a complex system of crossed interactions called
ceRNA networks (ceRNETs) [44,45]. Thus, a ceRNET may be represented as a network
composed of several subnetworks, where nodes are ceRNAs (lncRNAs and mRNAs), while
miRs represent their connections [46,47]. This complex organization allows the cell to
fine tune the mRNA expression due to these intricate relations, and at the same time the
deregulation of even one of the actors in this network may impair the function of several
target molecules, causing disease. In physiological conditions, the optimal control and
best tuning of ceRNETs occur when the miR and interacting lncRNA are at equimolar
concentrations [48], so small differences in their amounts may drive cell metabolism;
instead, an evident imbalance of this equilibrium is typical of disease when one of the two
mRNA controllers (either the miR or lncRNA) is over-expressed or depleted. It is then
reasonable to assume that such networks can be influenced in order to diagnose and treat
human conditions.
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Figure 2. Competing endogenous RNA network. Top panel: In the easiest (and less common) 
situation, a basic ceRNET is composed of three actors: the mRNA, lncRNA, and miR (or miRNA). 
The interactions among them are sketched with the orange arrows. The long RNA molecules 
compete for the binding of the miR, and the relative concentration of these two decides the fate of 
target gene expression. If the concentration of the lncRNA is higher, all miR molecules are 
sequestered (sponged) and the mRNA can be translated into a protein; instead, if the lncRNA 
concentration is low, miR molecules can bind the target mRNA (usually at their 3′-UTR end), 
promoting either its degradation or translation block. The binding occurs thanks to sequence 
homology (black sequences). Additional color codes: blue is the mRNA 5′-UTR; green is the mRNA 
coding sequence; black is the mRNA 3′-UTR, the miR, and the region of homology on the lncRNA; 
red is the part of the lncRNA that does not take part in the competition. For the sake of simplicity, 
the length of the described sequences is not in scale. Bottom panel: in most cases, the competition is 

Figure 2. Competing endogenous RNA network. Top panel: In the easiest (and less common) situa-
tion, a basic ceRNET is composed of three actors: the mRNA, lncRNA, and miR (or miRNA). The
interactions among them are sketched with the orange arrows. The long RNA molecules compete for
the binding of the miR, and the relative concentration of these two decides the fate of target gene
expression. If the concentration of the lncRNA is higher, all miR molecules are sequestered (sponged)
and the mRNA can be translated into a protein; instead, if the lncRNA concentration is low, miR
molecules can bind the target mRNA (usually at their 3′-UTR end), promoting either its degradation
or translation block. The binding occurs thanks to sequence homology (black sequences). Additional
color codes: blue is the mRNA 5′-UTR; green is the mRNA coding sequence; black is the mRNA
3′-UTR, the miR, and the region of homology on the lncRNA; red is the part of the lncRNA that does
not take part in the competition. For the sake of simplicity, the length of the described sequences is
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not in scale. Bottom panel: in most cases, the competition is far more complex because of multiple
interactions occurring at the same time. The same miR can target more than one mRNA (miR-1
targets both mRNA-1 and mRNA-2); an mRNA can be bound by more than one miR (both miR-1 and
miR-3 bind mRNA-2); an miR can be sponged by more than one lncRNA (miR-2 can bind both lnc-1
and lnc-2) and a lncRNA may bind multiple miRs in different places (lnc-2 binds both miR-1 and
miR-2). The sum of all these contemporary interactions drives gene expression. Color codes are the
same as used in the top panel.

4. Effects of Lifestyle on ncRNA Expression and Cancer

The efforts aimed at identifying the genetic and epigenetic causes of cancer are enor-
mous, yet it should be borne in mind that the human genome can be considered the main
cause of this disease only in a minority of cases. Internal factors, such as mutations in genes,
hormone imbalances, or immune system-related conditions can account for only 5–10% of
cancer cases; the remaining can be directly related to external factors, such as tobacco or
alcohol consumption, dietary factors, infections, and how these factors interact with the
genetic and epigenetic variability of humans [49]. In this perspective, understanding the
genetic background of a patient, and placing this into the environmental context in which
they live, is crucial for switching from traditional to personalized medicine.

4.1. Tobacco and Alcohol

Tobacco smoking has long been associated with several types of cancer, either due
to direct contact of the tissues with the over 70 carcinogenic chemicals produced [50]
(oral, head and neck, esophagus, and lung cancers) or after their penetration into the
blood stream, mainly through the lungs (liver, bladder, pancreas, stomach, bowel, cervix
and ovary cancers, leukemia). Despite the advent of smokeless tobacco and e-cigarettes,
the situation has not significantly improved, since most carcinogens are still present in
these products [51,52]. For example, it has been shown that e-cigarettes can alter the user’s
epigenome [51] and their aerosol exposure could lead to the dysregulation of hundreds of
miRNAs, such as miR-126 [52]. Moreover, the chemicals contained in the liquid—especially
nicotine and its derivatives—have been associated with the dysregulation of several other
sncRNAs and of their target mRNAs, including miR-33, miR-330, and miR-10b [53], miR-
506 [54], miR-9 and miR-101 [55], miR-622 [56], miR-133b and miR-206 [57], miR-21 [58],
miR-200c [59], and miR-30a and miR-379 [60]. Notably, all of them have been linked to
neoplastic transformation or tumor progression in various human cancers. Several other
chemicals present in e-cigarettes may potentially alter the miR expression as well [51]; how-
ever, the direct evidence of their action through this method of administration needs further
investigation. Similarly, the evidence is growing regarding the role of the smoke-related
dysregulation of lncRNAs, such as CCAT1 [61], linc-RoR [62], linc00152 [62], linc00460 [63],
LCPAT1 [64], linc00673 [65], H19 [66], and lncAC007255.8 [67]. In addition to smoking,
alcohol consumption, another well-established cause of cancer, has been reported in a
relatively high number of patients [68]. Chronic alcohol abuse has been linked to cancer in
various organs, either by direct interactions with the upper aerial and digestive ways (oral
cavity, pharynx, hypopharynx, larynx, and esophagus) and lower digestive tract (stomach,
bowel) or by indirect effects on more distant organs, such as the liver, pancreas, and breast.
Also in the latter case, several ncRNAs, either long [69–71] or short [72,73], have been found
to be altered. Specific research on individual lncRNAs has found a correlation between
drinking habits and cancer; examples include linc01133 [74] and AC012456.4 [75]. Notably,
some studies are specifically focused on ceRNETs. For example, Du and collaborators
recently published a study, performed in silico on data available in public databases, aimed
at identifying deregulated ceRNETs in esophageal cancer (EC) [76]. They found at least
four possible candidate gene modules deemed to be closely related to EC progression.
Although these are only predictions, they provide a compelling framework for the further
analysis of these mechanisms in lifestyle-related cancer formation. Other than alcohol, diet
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has long been known as a major factor in cancer [76]. In fact, it is estimated that up to
35% of cancers deaths in USA are caused by dietary factors, although such an estimation
varies considerably among different countries and cultures [77]. Several chemicals can
reportedly cause such effects, including nitrates, nitrosamines, pesticides, and dioxins,
either ingested accidentally or being part of food additives. Because of their extremely
high heterogeneity in their composition, method of action, and routes of intake (air, water,
food, skin contact) [78–80], such aspects fall beyond the scope of this review here. Looking
at the relationship among food, cancer, and epigenetics, numerous interesting findings
collected over the years show the importance of food intake and eating habits in preventing
cancer [81,82]. The importance and beneficial potential of some plant-based foods and
compounds in cancer prevention has in fact long been researched and documented.

4.2. Phytochemicals
4.2.1. Curcumin

Curcumin is a molecule belonging to the family of phenols; it comes from the rhizomes
of turmeric (Curcuma longa). It has widely been used as a spice for Asian recipes and
as a drug in traditional Indian (Ayurveda) and Chinese (TCM) medicine for centuries.
Its properties include the inhibition of cell proliferation, invasion, migration, angiogen-
esis, and inflammation; in addition, it also promotes cell cycle arrest and apoptosis on
various cancers, such as breast, cervical, oral, gastric, melanoma, pancreatic, colon, and
prostate cancers [83]. Moreover, curcumin has been shown to exert its functions through
the regulation of miR expression. In breast cancer, it acts by upregulating miR-34a [83],
miR-132 and miR-502c [84], miR-181b, miR-34a, miR-16, miR-15a, and miR-146b-5p, and
by downregulating miR-19a and miR-19b [85], while in recent studies several other miRs
were added to the list, either involving curcumin or its synthetic analogs [86–88]. In gastric
cancer cells, similarly to breast cancer, curcumin enhances miR-34a expression [89] but
inhibits miR-21 [90], which has also been reported in other cancer types (see below); in
lung cancer it downregulates miR-186 [91] and circ-PRKCA [92] but upregulates miR-142-
5p [93], miR-206 [94], and miR-192-5p [95]; in chronic myelogenous leukemia curcumin
induces the miR-21-mediated modulation of the PTEN/AKT pathway, causing the in-
hibition of leukemic cell growth, both in vitro and in vivo [96], while in acute myeloid
leukemia it inhibits the expression of the lncRNA HOTAIR and enhances the expression
of miR-20a-5p [97]; in multiple myeloma it upregulates miR-101, thereby inhibiting EZH2
expression [98]; in colon cancer it downregulates both miR-130a [99] and miR-491 [100]
but upregulates miR-137 [101], miR-200c [102], and miR-409-3p [103]; in melanoma it
enhances the expression of miR-222-3p [104]; in pancreas cancer cells curcumin down-
regulates miR-199a and upregulates miR-22 [105]; in human prostate cancer stem cells,
curcumin influences the expression of both miR-143 and miR-145 [106,107], and similarly
to breast and gastric cancer it upregulates miR-34a [108]; in ovarian cancer, a curcumin
derivative (ST09) deregulated the miR-199a-5p/DDR1 axis [109], while curcumin itself
upregulates the lncRNA circ-PLEKHM3, promoting the intracellular depletion of miR-
320a and suppressing cell proliferation and enhancing apoptosis [110]; in hepatocellular
carcinoma it downregulates the expression of circ_0078710 (and consequently enhances
miR-378b expression) [111] and downregulates miR-21-5p [112] and miR-21 [113]; in renal
carcinoma, curcumin acts on the circ-FNDC3B/miR-138-5p/IGF2 axis [114]; in lymphoma,
miR-28-5p is upregulated by curcumin treatment [115] while miR-21 is repressed [116]; in
nasopharyngeal carcinoma, curcumin regulates the circRNA_102115/miR-335-3p/MAPK1
pathway [117], and other circRNAs have been identified as well [118]; in osteosarcoma it
downregulates miR-21 [119]; in glioma, curcumin regulates the intracellular amounts of
both the lncRNA H19 and miR-675 [120]; in bladder cancer it downregulates miR-1246 [121].
All together, these data show the enormous potential of curcumin as an anticancer agent,
also thanks to the multiple ncRNA targets and the wide array of potentially treatable cancers.
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4.2.2. Garcinol

Another phenolic compound and Ayurveda medical component of vegetable origin is
garcinol (camboginol), another Indian spice isolated from the kokum tree (Garcinia indica)
and used in food consumption. The first relationship among garcinol, human cancer treat-
ment, and ncRNA was identified in relatively recent times—10 years ago—meaning the
data, although promising, still require further validation. In breast cancer, garcinol reverses
the epithelial-to-mesenchymal transition (EMT) through its action on miR-200b, miR200c,
and let-7 [122]; in pancreatic cancer, garcinol enhances the efficiency of gemcitabine treat-
ment by modulating a number of miRs (miR-21, miR-196a, miR-495, miR-605, miR-638, and
miR-453) and promoting apoptosis [123], and similarly to what happens in breast cancer,
it upregulates several miRs, including miR-200c [124]; in lung cancer it inhibits the EMT
through the upregulation of various miRNAs, such as miR-200b, miR-205, miR-218, and
let-7c [125]; in glioblastoma, garcinol suppresses the actions of STAT3 and STAT5A thanks
to the upregulation of miR-181d [126].

4.2.3. Genistein

Genistein (prunetol) is a flavonoid compound and a phytoestrogen extracted from the
dyer’s broom, Genista tinctoria; it is present in several foods of vegetable origin, including
lupin, fava beans, soybeans, kudzu, psoralea, and coffee. Also in this case, in the last years
several connections have been found linking cancer, ncRNA expression, and genistein
assumption. In kidney cancer cells, genistein lowers miR-21 [127], miR-23b-3p [128], and
miR-1260b [129] expression. A similar action on miR-1260b is exerted also in prostate
cancer [130], where genistein also downregulates miR-151 [131], miR-221, miR-222 [132],
and miR-223 [133] but upregulates miR-34a, miR-574-3p, and miR-1296 [134–136] and
enhances the expression of miR-200c and miR-141 by promoting the demethylation of
the CpG sites closest to the miR-200c/miR-141 loci [137]; miR-27a downregulation by
genistein is a hallmark in uveal melanoma (C918) [138], pancreatic cancer [139], lung can-
cer [140], and ovarian cancer (SKOV3) cells [141]. In breast cancer cells, genistein suppresses
miR-155 expression and acts as an antiproliferative and pro-apoptotic molecule [142] but
promotes the expression of miR-23b, causing a similar effect on cells [143]; in lung cancer
it regulates the circ_0031250/miR-873-5p/FOXM1 axis [144]; in head and neck cancer, it
can block the EMT by activating the miR-34a/RTCB axis [145]; in retinoblastoma cells,
genistein promotes apoptosis by upregulating miR-145 [146]; in multiple myeloma cells,
it upregulates miR-29b, thereby halting cell proliferation [147]; in pancreas cancer cells, it
upregulates miR-34a [148], miR-200, let-7 [149], and miR-146a [150]. Genistein has been also
tested in isoflavone mixtures, showing that the G2535 mixture (70.54% genistein, 26.34%
daidzein, 0.31% glycitein) downregulates miR-221 in pancreas cancer cells [151].

4.2.4. Epigallocatechin-3-Gallate (EGCG)

EGCG is the major polyphenol compound present in green tea. In hepatoma, EGCG
enhances the cancer cell sensitivity to ionizing radiation treatment via miR-34a/Sirt1/p53
signaling pathway regulation [152]; in hepatocellular carcinoma, the tumor suppressors
let-7a and miR-34a are upregulated [153], and in HepG2 cells it has been shown that
this molecule acts on several miRs, causing either their up- (13 miR) or down- (48 miR)
regulation [154]. A similar situation occurs both in neuroblastoma cells, where oncogenic
miRs are downregulated and oncosuppressor miRs are upregulated [155], as well as in
nasopharyngeal carcinoma CNE2 cells, where a total of 66 signaling pathways, primarily
involved in cancer development and lipid and glucose metabolism, were shown to be
regulated by EGCG-specific miRNAs [156]; in oral squamous cell carcinoma cells, EGCG
significantly inhibits the proliferation rate and self-renewal capacity by upregulating miR-
204 [157]; in lung cancer cells, EGCG downregulates miR-98-5p and miR-125a-3p, thereby
promoting apoptosis via the enhancement of the effects of cisplatin [158]; in prostate cancer
cells it increases miR-330 (an oncosuppressor) and contemporarily inhibits miR21 (an
oncomir) [159]; in gastric cancer it regulates the LINC00511/miR-29b/KDM2A axis [160];
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in breast cancer it promotes apoptosis by downregulating miR-25 [161]; in colorectal cancer
cells, EGCG enhances the sensitivity to 5-FU by inhibiting the GRP78/NF-κB/miR-155-
5p/MDR1 pathway [162]; in lung cancer it inhibits cancer stem cell-like properties by
targeting mir-485-5p/RXRα [163].

4.2.5. Resveratrol

Resveratrol (3,5,4-trihydroxystilbene) is a phenol produced by several plants in re-
sponse to injury or infection; in food, it can be found in the skins of grapes, blueberries,
raspberries, mulberries, and peanuts. It mainly acts as a strong antioxidant, and in general
it promotes or enhances apoptosis in several types of cancer. Several papers exist linking
this molecule to ncRNA expression and cancer. In the lung cancer A549 cell line, it has
been shown that resveratrol influences the regulation of tens of miR [164], and comparable
numeric results were obtained in colon and prostate cancer cells [165]. Venkatadri and col-
laborators found the upregulation of miR-122-5p, miR-542-3p, miR-16, miR-141, miR-143,
and miR-200c in breast cancer [166]; miR-21 downregulation characterizes resveratrol’s
effects in pancreatic cancer cells [167], as it blocks the malignant behavior of gastric cancer
cells by downregulating miR-155-5p [168] and altering the expression of several lncRNAs,
including MEG3, PTTG3P, GAS5, BISPR, MALAT1 and H19 [169]. The lncRNAs are also tar-
gets in HT-29 colon adenocarcinoma cells, where it has been found that the downregulation
of CCAT1, CRNDE, HOTAIR, PCAT1, PVT1, and SNHG16 occurs [170], which lowers the
levels of miR-3687 and miR-301a-3p while upregulating miR-3612 in TGF-β-induced HT-29
cells [171]. In liver cancer, it is able to suppress several malignant phenotypes through
miR-185-5p upregulation [172]. Beyond the other compounds described here, resveratrol
is able to upregulate miR-34a to suppress the proliferation, induce the apoptosis, and
inhibit the invasion and migration of OV-90 and SKOV-3 ovarian cancer cell lines [173]; in
skin squamous cell carcinoma, resveratrol inhibits proliferation, migration, and invasion
through upregulating miR-126 [174]; in malignant melanoma cells, resveratrol induces
apoptosis by regulating the miR-492/CD147 pathway [175]; in osteosarcoma, resveratrol
blocks the tumor progression via miR-139-mediated NOTCH1 regulation [176].

4.2.6. Quercetin

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a bioflavonoid found in fruits (mainly
citrus), plant seeds, grains, olive oil, apples, kale, capers, and onions; variable amounts can
also be found in beverages and seasonings, such as beer, wine, and vinegar. In pancreatic
cancer cells, quercetin upregulates let-7c, thereby inhibiting cancer progression [177]; in
gastric cancer cells, quercetin upregulates miR-143 [178]; in lung cancer cells, quercetin
upregulates miR-16 [179] and promotes radio-sensitivity through the overexpression of miR-
16-5p [180]; in ovarian carcinoma cells it acts by upregulating the expression of microRNA-
145 [181]; in breast cancer cells it inhibits proliferation and invasion by upregulating miR-
146a [182]; in hepatocellular carcinoma cells, quercetin promotes apoptosis by activating the
p53/miR-34a/SIRT1 signal feedback loop [183]; in osteosarcoma cells, quercetin enhances
the toxic effects of methotrexate by decreasing, among others, the anti-apoptotic miR-
223 [184]; in triple negative breast cancer cells, a methoxylated quercetin glycoside isolated
from Cleome droserifolia is able to repress the cellular proliferation, colony-forming ability,
migration, and invasion capacities by modulating a ceRNA network, where it reduces the
oncogenic lncRNA MALAT-1 and induces TP53 and its downstream miRNAs, miR-155
and miR-146a [185]. Interestingly, the same substance from this plant is also able to limit
the cellular viability and anchorage-independent growth of hepatocellular carcinoma cells
in a TP53/miR-15/miR-16-dependent manner [186]. In esophagus cancer cells, quercetin
inhibits growth and metastasis by modulating the miR-1-3p/TAGLN2 pathway [187];
in lung cancer, quercetin inhibits the survival, proliferation, migration, and invasion of
NSCLC cells and enhances their apoptosis by targeting the lncRNA SNHG7/miR-34a-5p
pathway [188]; in oral squamous cell carcinoma it significantly suppresses the proliferation
and invasion of CAL-27 cells in a dose-dependent manner, while upregulating the miR-
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1254/CD36 cascade [189]; in HBL-52 meningioma cells, quercetin promotes apoptosis by
over-expressing miR-197 [190].

4.2.7. Other Compounds

Tens of other natural substances have been studied over time for their action on ncRNA
expression in cancer, but to date there are limited data available as to their method of action.
Readers interested in broadening their knowledge of such correlations can draw upon the
currently available specific research studies [191–195].

4.3. Obesity

Obesity is a complex, multifactorial condition that is caused by the interaction of
genetic, metabolic, social, behavioral, and cultural factors. Obesity has a significant impact
on health, psychosocial well-being, life expectancy, and quality of life. The multiple compo-
nents of this condition do not allow one to group patients together, beyond the common
BMI (body mass index, kg/m2) being over a set threshold, which is, however, a very limited
criterion [196]. For this, subclassifications of obesity exist to reflect its complexity [197]. The
spectrum of diseases linked to obesity are equally complex, and frequently associated with
specific geographic regions [198]. The most common conditions associated with obesity
are diabetes, hepatic steatosis, cardiovascular diseases, stroke, dyslipidemia, hyperten-
sion, gallbladder problems, osteoarthritis, sleep apnea, and other breathing problems; in
addition, obese people also show an increased risk of getting some types of cancer, such
as endometrial, breast, ovary, prostate, liver, gallbladder, kidney, and colon cancers [197].
It is widely accepted that this increased risk is linked to chronic inflammation caused by
excessive weight [199], although several other links can be drawn, such as microbiome
alterations, diabetes, and an altered steroid metabolism [200]. Losing weight and keep-
ing it off, through a diet with nuts, fruits, vegetables, and olive oil; increasing physical
exercise; and cutting down on alcohol consumption are all known to enhance life quality,
reduce cancer risk, and improve health overall [201]. Several lncRNA have been shown
to be involved in adipogenesis and lipid homeostasis [202,203]. In mice, a specific reg-
ulation of lncRNAs by nutrients, hormones, and transcription factors in vitro has been
highlighted [204], and circulating lncRNAs in obese patients are different from those in
controls [205]. Interestingly, some of these lncRNAs (such as ANRIL, H19, and HOTAIR)
are also dysregulated in cancer, creating a link between the ncRNA expression profile and
cancer risk in obese people, as reported by Yau and colleagues [206]. As expected, this
is equally true also for sncRNAs (mainly miRs). A recent study compared the ncRNAs
in obese people, colorectal cancer patients, and healthy controls, showing that there is a
significant overlap in dysregulated ncRNAs in obese people and cancer patients [207]. More-
over, another group showed that dysregulated miRs (especially miR-31 and miR-215) are a
hallmark of obesity, and that weight loss can change the expression profile of these patients,
showing a highly dynamic response of miR expression related to weight [208]. Leptin is a
hormone that is predominantly made by adipose cells and enterocytes in the small intestine;
it helps to regulate energy balance by inhibiting hunger, which in turn diminishes fat storage
in adipocytes. It has recently been demonstrated that exposure to leptin downregulates
the expression of miR-628 and increases cell proliferation and migration in prostate cancer
cells [209]. Another group showed that platelets from patients with visceral obesity can
strongly promote colon cancer growth, likely via the activation of miR-19a [210], while
Su and collaborators recently demonstrated that miR-27a promotes obesity-associated
hepatocellular carcinoma by mediating mitochondrial dysfunction [211]. Several other
reports can be found in the literature, reaching similar results. However, it is important to
emphasize here that the link between oncogenic miR expression and obesity is strong, and
that weight-related miR patient profiling is advisable when planning a cancer therapy.
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4.4. Physical Activity

The research findings from various epidemiological studies have pointed to the piv-
otal role played by physical exercise in reducing the risk of developing cancer. Physical
training has in fact been investigated as a non-pharmaceutical strategy to counter breast
cancer [212,213], thanks to a wide array of benefits arising from improvements in outcomes
such as muscle hypertrophy and strength levels, cardiorespiratory health, and body mass
composition, all of which have been linked to an improved quality of life and reduced
mortality risk in cancer patients [213–215]. The World Health Organization itself has high-
lighted the importance of structured exercise for public health, so much so that inadequate
levels of physical activity have been deemed to be a major risk factor in breast and colon
cancers (21–25% of cases), diabetes (27% of cases), and ischemic heart disease (30% of
cases) [216,217]. Several epidemiological studies have stressed the beneficial effects of
regular and moderate structured exercise (i.e., forms of exercise in adherence to interna-
tional guidelines such as those proposed by the American College of Sports and Medicine),
particularly in terms of protection [218,219]. Such beneficial effects involve the prevention
of cancer onset (i.e., primary prevention) and prevention of relapse (tertiary prevention), as
well as a degree of effectiveness against chronic degenerative diseases [220]. The mounting
scientific evidence points to exercise and its ability to directly affect cancer (particularly
breast tumor) through alterations in exercise-induced c-miRNA dynamics, which play a
key role in the molecular interactions between skeletal muscle and cancer cells [221,222].
A 2016 study, which relied on the inbred female BALB/c mice (6–8 weeks old) model of
breast cancer, showed how a 5-week exercise training protocol along with neoadjuvant
hormone therapy led to higher levels of miRNA-206 and let-7a expression (both of which
are linked to tumor suppression) and lower expression of the oncomiR miR-21 in cancer
tissue [223]. Lower ERα and HIF-1 mRNA levels, associated with tumor growth and
angiogenesis [224,225], and lower Ki67 expression (a nuclear marker pointing to cell prolif-
eration and linked to lower survival rates in women with breast cancer) were also observed.
Such findings are indeed relevant, even though the role of c-miRNAs triggered by regular
exercise in breast cancer patients is still inconclusive. Such dynamics may be explained in
light of the fact that the expression modulation of a rather broad array of miRNAs such
as miR-1, -21, -23a, -133a, -133b, -181a, -206, -378, and -486 takes place in skeletal muscle
tissue [226–228] and in the bloodstream [229,230] after various exercise-based approaches.
The expression of miR-133a has been found to be considerably lower in five cell lines of
breast cancer (MCF-7, MDA-MB-231, BT-549, SK-BR-3, and T47D) as opposed to the normal
line HBL-100, and in human breast cancer tissue versus adjacent non-cancerous breast tis-
sue. Such findings seem to point to the possibility that miR-133a can act as a systemic factor
downregulating tumor progression and following physical exercise, after migrating from
the skeletal muscle to the bloodstream and ultimately to cancer cells [231]. It is worth point-
ing out that several such miRNAs can inhibit or slow down cancer development, metastasis,
and progression. Studies have highlighted noteworthy variations in the c-miR-133a-3p in
high responders relative to low ones following supervised sessions of resistance training in
breast cancer [232]. Moreover, alterations in the expression of c-miRNAs, lower expression
levels of c-oncomiRs, and a more considerable enhancement of tumor suppressor miRNAs
in the control group undergoing hormonal therapy-exercise training (aerobic exercise-based
training three times per week over a 12-week period, via a high-intensity interval training
protocol) were reported in a recent study [233]. Exercise-based approaches have recently
been shown to impact the rno-miRNA-regulated target cancer gene candidates ITPR3,
SOCS6, ITGA6, and NKX2-1 as biomarkers for cancer prognosis in rheumatoid arthritis
diagnoses in pristane-induced arthritis (PIA) rat models [234]. Overall, the research points
to as many as 14 miRNAs involved in pathways relevant to cancer whose expression can
be modulated by regular structured exercise, while the most noteworthy effects include
the different expression levels of two miRNAs that affect breast cancer progression, in
addition to the already mentioned upregulation of miR-206 and downregulation of anti-
miR-30c. Such effects are indeed relevant in light of the fact that miR-206 transfection and
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anti-miR-30c silencing can inhibit cell growth and enhance MCF-7 cells apoptosis [235–237].
In addition, apoptosis and induced growth arrest in the G1/S phase of the cell cycle can
be further driven by the combined use of these two miRNAs, which can be assessed and
used as non-invasive biomarkers for breast cancer [220,238]. The regulation of the cellular
immune system constitutes another noteworthy association between cancer and exercise,
as cytotoxic immune cells have been observed to be mobilized to the circulation during
exercise via blood-flow-induced shear stress and adrenergic signaling [239]. Studies on
animal models observed how the tumors from running mice exhibited higher mRNA
expression levels of receptor ligands capable of mobilizing NK cells (namely H60a, MULT1,
Clr-b), in addition to IL-2, IL-15, and IFNγ cytokines and CCL3, CXCL10, CX3CL1, and
chemerin chemokines, all associated with natural killer (NK) cell activation and chemotaxis.
No changes in the expression of markers of angiogenesis (i.e., CD31 and VEGF-A) were
observed [240]. The cytotoxic immune cells, thus, “scan” the system in order to recognize
and eliminate altered cells. A noteworthy capability for the suppression of tumor growth
mediated by exercise has been reported in animal-based studies, possibly linked to the
epinephrine-dependent mobilization of NK cells, followed by higher levels of immune cell
infiltration into cancerous tissues [241]. The adrenergic signaling was shown to be at the
heart of the exercise-induced cancerous growth suppression. Immune cell stimulation and
mobilization fostered by exercise were investigated in depth in a recent study involving
cancer patients, which concluded that breast cancer survivors were capable of mobilizing
NK cells to the circulation to the same extent as healthy controls of the same age [240].

5. Analyzing ceRNETs for Diagnosis and Targeting Them for Therapy: The State of the Art

The deregulation of several ncRNAs in most—if not all—cancers is a well-known and
proven fact; for example, in the abovementioned case of endometrial cancer (EC), it has
been reported that hundreds of ncRNAs are potentially deregulated [242–244], and this
holds true for all tumors investigated so far. The levels of ncRNAs in cancer are dramatically
altered by stress from the tumor microenvironment. The stress conditions include defined
characteristics of cancer, such as hypoxia, chronic inflammation, and the deprivation of
nutrients, including some that are essential in cancer metabolism, such as glucose or glu-
tamine [4]. The microenvironment of the tumor presents significant differences compared
to healthy tissues, including in terms of oxygenation and the metabolic status. Indeed,
hypoxia is a hallmark characteristic of the tumor microenvironment and plays a crucial
role in growth and metastasis. Upon hypoxia, hypoxia-inducible factors (HIFs) modulate
many ncRNAs [245,246], including MALAT1 [247], the lncRNA HOTAIR in non-small cell
lung cancer (NSCLC) [248], and the lncRNA H19 in glioblastoma [249]. An interesting
aspect of this relationship between the tumor microenvironment and ncRNAs is that it is
a reciprocal relationship. If on the one hand, as described, the tumor microenvironment
modulates the expression of ncRNAs, it is also true that circulating ncRNAs have the
ability to strongly modulate the behavior of cells populating the tumor microenvironment,
thereby remodeling the metastatic niche and eventually favoring carcinogenesis [250].
Indeed, carcinogenesis appears as a multistage process to which both exogenous and en-
dogenous factors contribute [251,252]. The lncRNAs, and particularly circRNAs, are found
to act as ceRNAs that play critical roles in the development and progression of cancers.
Abnormally expressed ncRNAs may have repercussions on many processes related to
tumorigeneses, such as cell proliferation, metastasis formation, and drug resistance, by
regulating different intracellular pathways. In several types of cancer, most lncRNAs
are either up- or downregulated. These lncRNAs favor all stages of tumor development
through the promotion of mRNA expression and constancy [253], by favoring mRNA
stability [254], or by modulating miR [254–300]. The aberrant phenotype is the result of
the modulation of typical pathways playing key roles in cell survival [255,259,263,265,283],
apoptosis [256,258,272,276,286,289,297], or glucose metabolism [253,294,295,300]. For exam-
ple, a recent study [255] demonstrated the molecular mechanisms of action of the lncRNA
named MALAT1, which was found t be upregulated in osteosarcoma. This study showed



Int. J. Mol. Sci. 2022, 23, 9353 13 of 34

that MALAT1, via the downregulation of miR-376a, accelerates osteosarcoma via the
Wnt/β-catenin pathway [255], which is a conserved signaling axis participating in diverse
physiological processes such as proliferation, differentiation, apoptosis, migration, and
invasion [301]. The Wnt/β-catenin signaling pathways is also activated in colorectal cancer
by the lncRNA NEAT1 (nuclear-enriched abundant transcript 1), which modulates the
miR-34a/SIRT1 axis [281]. Another important pathway in cancer is the phosphoinositide
3-kinase-AKT-mammalian target of the rapamycin (PI3K-AKT-mTOR) pathway, which is
frequently hyperactivated in cancer and is essential for tumor cell growth and survival [61].
Indeed, several lncRNAs such as HOTAIR, HOXD-AS1, LINC00511, H19, and LINC01554,
by targeting specific miRs, increase the expression of AKT and mTOR, promoting aberrant
phenotypes [262,264,271,274,278,287,296].

VEGF has been proposed to serve as a crucial gene promoting angiogenesis during
tumor metastasis. The lncRNA NUTM2A-AS1 (an antisense transcript) positively regulates
ROS production, and finally VEGF expression, favoring gastric cancer progression and
drug resistance [269]. Additionally, LINC00173.v1 in NSCLC, by downregulating miR-511-
5p [270], and NEAT1 in colorectal cancer, by downregulating miR-205-5p [282], increased
VEGFA expression. Circular RNAs (circRNAs) are a novel class of endogenous covalently
closed RNA molecules that function as microRNA sponges. Several circRNAs were upreg-
ulated in cancer-promoting proliferation, migration, and invasion [284,285,291,293]. The
deregulation lncRNAs provides important advantages in cancer diagnosis. First, this is a
way to understand the mechanism of the formation of a good fraction of neoplasms for
which an evident mutation in the coding sequence of a tumor suppressor gene or oncogene
cannot be found. Secondly, usually only a subset of these ncRNAs is deregulated in a given
tumor, and this provides a way to identify not only different tumor subtypes, but even
different cell populations inside the same lesion. Third, on the basis of the altered panel
of ncRNAs, and knowing or guessing (through an in silico approach) the possible mRNA
targets, it is possible to identify the molecular pathway(s) altered in the transformed cells,
allowing one to foresee whether a tumor can be treated with a certain drug instead of
another, or to evaluate the tumor resilience to radio- or chemotherapy or the ability of
the tumor to escape apoptosis or the immune system. Fourth, the analysis of the altered
target genes, coupled with other investigations such as cytology and histology, may allow
the oncologist to evaluate the malignancy of the tumor, as well as its chance of relapsing.
With a systematic approach involving molecular biology, biochemistry, high-throughput
sequencing, and artificial-intelligence-assisted data analysis, and coupling these approaches
with well-established diagnostic tools currently used in the everyday medicine, the road
towards personalized medicine is at hand. The identification of ncRNAs as fundamental
players in gene expression raises the possibility of using them as both diagnostic markers
and possible therapeutic targets [302–306]. Indeed, numerous clinical trials of ncRNAs are
ongoing [307]. When we consider ncRNA-based therapies, we should take into account two
important aspects: (1) the RNA target and (2) the delivery methods of RNA therapeutics.
Regarding the first aspect, among the ncRNAs, miRNAs are the most extensively investi-
gated as therapeutic targets. The two major therapeutic forms used are miRNA mimics and
inhibitors of miRNAs, known as anti-miRs/antagomiRs. The first group are used to mimic
the function of endogenous tumor suppressor miRNAs, and the latter to deplete oncogenic
miRNAs. Among the miRNA mimic therapeutics, we recall here MRX34, which is a syn-
thetic double-stranded mimic of the miR-34a and was the first miRNA-based therapy to be
introduced into the clinic. In 2020, the final phase 1 results for the pharmacodynamics and
determination and evaluation of the recommended phase 2 dose (RP2D) of MRX34 were
reported [308]. Patients with advanced solid tumors refractory to standard treatments were
enrolled to receive MRX34, with oral dexamethasone premedication, intravenously daily
for 5 days in 3-week cycles. MRX34 demonstrated a manageable toxicity profile; the phar-
macodynamic results showed the delivery of miR-34a to tumors and the dose-dependent
modulation of target gene expression in white blood cells. The trial was closed early due to
serious immune-mediated adverse events [308], indicating that although very promising,
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the use of these molecules in cancer therapy is still an issue, and in many cases needs deeper
analyses and testing. The miRNA inhibitors include several groups, such as (1) antisense
oligonucleotides (ASOs), which are single-stranded RNAs with lengths ranging from 18
to 30 base pairs (bp). They function by modifying the expression of a target mRNA, by
either altering the splicing or by recruiting RNase H, leading to target degradation [309];
(2) the CRISPR/Cas system, the use of which is an innovative strategy showing robustness,
specificity, and stability in the modulation of miRNA expression [310]. CRISPR genome-
editing technology has been successfully used to modulate the expression of miRNAs
in several types of tumors [311–313]. For example, Zhou et al. [311], in a hepatocellular
carcinoma (HCC) cell line, knocked out miR-3188, which is markedly overexpressed in
HCC tissues. They demonstrated that the miR-3188 knockdown successfully decreased
cell growth, invasion, and migration [311]. The CRISPR/Cas system was also widely
used to modulate the expression of lncRNAs [300,314–316]. Ali et al. [314] performed the
CRISPR/Cas9-mediated knockout of lncRNA-RP11-156p1.3 in an HCC cell line, resulting
in decreases in the cell count and viability [314]. CRISPR/Cas9 gene editing was also used
to knockout lncRNA XLOC_005950, which works as a molecular sponge of hsa-miR-542-2p
in osteosarcoma [300]. The results showed that the lncRNA XLOC_005950 knockout, by
decreasing the PFK muscle (PFKM) activity, reduced the intracellular glucose, lactic acid
content, and cell proliferation in osteosarcoma cells [300]. Other significant approaches to
target lncRNAs are double-stranded RNA-mediated interference (RNAi) approaches and
ASOs. For example, the effect of the knockdown of MALAT1 using ASOs was observed
in a mouse model of breast cancer, the MMTV-PyMT model (mouse mammary tumor
virus–polyoma middle tumor antigen), which develops spontaneous mammary tumors
that closely resemble the progression and morphology of human breast cancers [317]. The
MALAT1 loss results in slower tumor growth by inducing alterations in the gene expression
and changes in the splicing patterns of the genes involved in differentiation and protumori-
genic signaling pathways [318]. The positive effects were confirmed later by Gong and
colleagues, who constructed a MALAT1-specific ASO that reduced the MALAT1 expression
levels, decreased the migration ability in lung cancer cells, and significantly reduced the
metastatic tumor nodule formation in vivo [319]. MALAT1 was also the target in preclinical
studies with short interfering RNAs (siRNAs) to overcome the anti-androgen enzalutamide
(Enz) resistance (EnzR) in castration-resistant prostate cancer. The administration of the
MALAT1 short interfering RNA (10 mg/kg) for 2 weeks in xenograft mice, injected with
EnzR cells, significantly suppressed the EnzR tumors [320]. Even if these RNA-based
therapeutic modalities have great potential to generate a new therapeutic approach in
disease in general, and in cancer in particular, to reach their full potential they first need to
overcome the lipid bilayer of the cell wall to deliver RNA into cells. Indeed, the delivery
methods remain the major problem to solve for the widespread development of RNA ther-
apeutics [321]. Besides the cellular barrier, specific pharmacological barriers should also be
improved. Indeed, synthetic ncRNA mimics and inhibitors generally degrade rapidly in bi-
ological fluids, absorb poorly into the intracellular space, and often may fail to reach specific
target locations [305]. The delivery of drugs with nanoparticles can overcome many of these
limitations. Indeed, nanocarriers encapsulate drugs and control their pharmacokinetic
properties by regulating the drug release and increasing the half-life. To date, the delivery
approaches with nanoparticles include lipid-based nanoparticles (LNP), polymer-based
nanoparticles (PNP), and lipid–polymer hybrids. LNP are vesicles with a diameter range of
10–500 nm composed of multiple lipid layers stabilized in aqueous media by a single layer
of surfactants (phospholipids, poly(ethylene glycol)-based surfactants). LNPs represent a
well-established delivery system for gene therapies and are approved by the FDA for liver
siRNA delivery [322]. LNPs offer several advantages, including enhanced drug stability,
reduced toxicity, and control of the release rate [323,324]. Despite these promising aspects,
several drawbacks remain to be addressed. For example, small molecules are encapsu-
lated with low efficiency; moreover, cytotoxicity and systemic toxicity problems remain
to be solved [324]. The other RNA delivery systems include polymer-based nanoparticles.
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These are between 20 and 1500 nm in particle size and made up of natural or synthetic
polymers [325]. Even if they present increased stability compared to LNPs and technical
advantages due to several fabrication methods, the aspects related to their toxicity have not
yet been fully clarified. Finally, lipid–polymer hybrids were synthesized by adding lipids
to polymeric nanoparticles, improving their delivery [326,327]. Such hybrid systems rely
on the specific characteristics of lipid-based and polymer-based nanoparticles but also over-
come their limits, such as their structural disintegration, limited circulation time, and loss
of content [328]. Structurally, they are composed of a polymer core encapsulating the drug,
surrounded by a lipid monolayer and an outer lipid–PEG layer. This structure ensures
many advantages, including enhanced stability and controlled drug delivery [328,329];
however, as the use of lipid–polymer hybrids represents an innovative method, the research
remains open to verifying their applicability in clinical practice. Furthermore, it is also
necessary to identify lipid–polymer hybrids with the highest quality for specific uses [329].
There are several major challenges that stand in the way of treating human conditions
by ncRNAs, which explains why only a very limited number of molecules are available
as therapeutic agents to date. First, the choice of the target molecule is fundamental; as
already mentioned, a tumor is a disease that is heterogeneous not only in different patients,
but also in its cell subpopulations. Targeting one mRNA may not be sufficient to obtain
relevant results. Second, the administration route is challenging as well. In some cases the
therapeutic may be administered locally and directly (for example, inside a bladder cavity),
but in other cases it should reach its destination through indirect routes, such as the blood
flow. Third, the choice of the vector responsible for delivering the therapeutic to its target
cells is far from trivial. The ncRNA may be conjugated with other molecules such as anti-
bodies, cell-penetrating peptides (or other polymers), or metal nanoparticles; alternatively,
it can be embedded in lipid nanoparticles, exosomes, or viral or mini-bacterial vectors. Each
possibility has pros and cons, and deciding which one is the better in a particular situation
is very complex. Fourth, the escape of the vector from the host immune system, which may
recognize both the vector and the therapeutic RNA as exogenous substances and promote
their degradation before they reach their target organ, may impair the whole approach. Fifth,
the specificity of the target is pivotal; the vector should discriminate between healthy and
sick cells inside the same organ, and frequently the adhesion molecules used by the vector
to recognize their target are shared between tumor and normal cells. In addition, off-target
binding to different cell types, either inside or outside the target organ, must be avoided,
further complicating this setup. Sixth, the efficiency of the penetration of the vector inside
the cell, a problem closely related to the preceding point, might make the therapy inefficient.
Seventh, the efficacy of the therapeutic once it is inside the target celli s important; in this
case, several variables should be considered—its half-life before full and possibly constant
expression; the specificity of the mRNA target (avoiding off-target binding to mRNAs
not involved in the disease, which is especially true for miRs and siRNAs); the use of a
suitable promoter to allow sustained expression over time; and its shape (circular vs. linear,
which impacts on its stability and function). Table 1 summarizes ncRNAs in terms of their
tumorigenesis and drug resistance, in addition to their regulation of different intracellular
pathways. In several types of cancer, most lncRNAs are either up- or downregulated. Table 2
outlines the delivery approaches via nanoparticles, including lipid-based nanoparticles
(LNP), polymer-based nanoparticles (PNP), and lipid–polymer hybrids.
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Table 1. The ncRNAs involved in tumorigenesis and drug resistance.

ncRNAs Expression miRNAs
Target

mRNAs
Target

Downstream
Effectors or
Pathways

Aberrant
Phenotype Cancer Type Ref.

MALAT1 Upregulated miR-376a NR
↑ Wnt3a/β-catenin
↓ Autophagy
↓ Oxidative stress

Proliferation
Invasion
Migration

Osteosarcoma [255]

Upregulated miR-485-5p MAT2A NR Proliferation HPV16 [266]

Upregulated miR-145 SMAD3
/TGFBR2 ↑ TGF-β1 EMT Prostate cancer [277]

HOTAIR Upregulated / HK2 ↑ glycolysis
Proliferation
Medication
resistance

Lung cancer [253]

Upregulated / CCL22 ↓ Immunity
Proliferation
Migration
Invasion

NSCLC [330]

Upregulated miR-130a-3p Suv39H1 ↑ Akt/mTOR Proliferation
Metastasis Breast cancer [288]

Upregulated miR-20b-5p RRM2 ↑ PI3K–Akt Proliferation RB [296]

Upregulated miR1/
miR-206 YY1 ↓ Apoptosis

Proliferation
Migration
Invasion
EMT

Medulloblastoma [297]

Upregulated miR-130a-5p ZEB1 NR EMT ESCC [298]

LINC00518 Upregulated / MITF EIF4A3

Proliferation
Migration
Invasion
EMT

Melanoma [254]

Upregulated miR-335-3p CTHRC1 ↑ Integrinβ3/
FAK

Proliferation
Metastasis LUAD [299]

XLOC_005950 Upregulated hsa-miR-
542-3p PFKM ↑ glucose

metabolism Proliferation Osteosarcoma [300]

HEIH Upregulated miR-3619-5p HDGF ↓ Apoptosis
Proliferation
Cisplatin
resistance

TSCC [256]

Upregulated miR-98-5p HECTD4 NR
Proliferation
Invasion
Migration

Cholangiocarcinoma [257]

Upregulated miR-939 NFκB/
Bcl-xL ↓ Apoptosis Proliferation Colorectal cancer [258]

HOXD-AS1 Upregulated miR-664b-3p PLAC8 NR
Proliferation
Invasion
Migration

Pancreatic cancer [259]

Upregulated miR-361-5p FOXM1 NR Metastasis CRPC [260]

Upregulated miR-877-3p FGF2 NR Invasion
Migration Cervical cancer [261]

Upregulated miR-186-5p PIK3R3 ↑ PI3K–Akt EMT Epithelial ovarian
cancer [262]

MEG3 DownregluatedmiR-499-5p CYLD
↑ E-cadherin
↓ N-caderin
↓ Cyclin D1

Proliferation
Invasion Melanoma [263]

LINC01554 DownregluatedmiR-1267 ING3 ↑ Akt/mTOR

Proliferation
Migration
Invasion
EMT

NSCLC [264]
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Table 1. Cont.

ncRNAs Expression miRNAs
Target

mRNAs
Target

Downstream
Effectors or
Pathways

Aberrant
Phenotype Cancer Type Ref.

FOXD2-AS1 Upregulated miR-31 PAX9 NR Proliferation
Migration RB [265]

Upregulated miR-324-3p PDRG1 NR
Proliferation
Migration
Invasion

Hemangioma [267]

Upregulated miR-7-5p TERT NR Anoikis
resistance Tyroid cancer [268]

NUTM2A-
AS1 Upregulated miR-613 VEGFA ↑ Oxidative stress Cell viability

Proliferation Gastric cancer [269]

LINC00173.v1 Upregulated miR-511-5p VEGFA NR Proliferation
Migration NSCLC [270]

LINC00511 Upregulated miR-126-5p
miR-218-5p COL1A1 ↑ Akt/mTOR

Proliferation
Migration
Invasion

Lung
adenocarcinoma [271]

Upregulated miR-625 LRRC8E ↓ Apoptosis Cisplatin
resistance NSCLC [272]

Upregulated miR-29c-3p NFIA NR Colorectal cancer [273]

H19 Upregulated 6 miRNAs 38
mRNAs ↑ PI3K–Akt Metastasis Colorectal cancer [274]

Upregulated miR-491-5p ERN1 ↑ LC3
↑ Beclin

Tumor
development Glioblastoma [331]

Upregulated miR-326 BCL-2 ↓ Apoptosis Leukemogenesis
Acute
lymphoblastic
leukemia

[276]

NEAT1 Upregulated miR-342-3p CUL4B ↑ PI3K-Akt Proliferation CSCC [278]

Upregulated miR-10a-5p SERPINE1 ↑ Immune cells
infiltration

Proliferation
Migration Kidney Cancer [279]

Upregulated miR-23a-3p GLS ↑ Glutamine
Metabolism

Cisplatin
resistance Medulloblastoma [280]

Upregulated miR-34a SIRT1 ↑ Wnt/β-catenin Proliferation
Metastasis Colorectal cancer [281]

Upregulated miR-205-5p VEGFA NR
Proliferation
Migration
Invasion

Colorectal cancer [282]

HAS2-AS1 Upregulated miR-137 LSD1 NR Proliferation Gliobastoma [283]
circRNA
hsa_circ_000
1429

Upregulated miR-205 KDM4A NR
Proliferation
Migration
Invasion

Breast cancer [284]

circRNA
hsa_circ_
0000285

Upregulated miR-582-3p CCNB2 NR Proliferation
Migration

Hepatocellular
carcinoma [285]

Upregulated miR-1278 FN1 ↓ Apoptosis Proliferation Gastric cancer [286]

Upregulated miR-127-5p CDH2 NR Proliferation
Migration Thyroid cancer [287]

Upregulated miR197-3p ELK1 ↓ Apoptosis
↓ Autophagy

Tumor
growth Cervical cancer [289]

Upregulated miR-197-3p CKS1B NR Proliferation
Invasion Glioma [290]

circRNA
ARAP2 Upregulated miR-761 FOXM1 NR EMT

Esophageal
squamous cell
carcinoma

[291]

circRNA-
MAT2B Upregulated miR-431 ZEB1

↑ E-cadherin
↓ N-caderin
↓ Vimentin

EMT NSCLC [292]

Upregulated miR-610 E2F1 Proliferation Colorectal Cancer [293]
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Table 1. Cont.

ncRNAs Expression miRNAs
Target

mRNAs
Target

Downstream
Effectors or
Pathways

Aberrant
Phenotype Cancer Type Ref.

Upregulated miR-515-5p HIF-1α ↑ glycolysis Tumor
growth Gastric cancer [294]

Upregulated miR-338-3p PKM2 ↑ glycolysis Tumor
progressione

Hepatocellular
carcinoma [295]

Legend: CCL22: C-C motif chemokine ligand 22; CCNB2: cyclin B2; CDH2: cadherin 2; CKS1B: CDC28 protein
kinase regulatory subunit 1B; COL1A1: collagen type I alpha 1 chain; CSCC: cutaneous squamous cell carcinoma;
CTHRC1: collagen triple helix repeat-containing 1; CYLD: cylindromatosis; CUL4B: cullin 4B; EIF4A3: eukaryotic
translation initiation factor 4A3; CRPC: castration-resistant prostate cancer; EMT: epithelial–mesenchymal transi-
tion; ERN1: endoplasmic reticulum-to-nucleus signaling 1; ESCC: esophageal squamous cell carcinoma; FGF2:
fibroblast growth factor 2; FN1: fibronectin 1; FOXM1: forkhead box M1; GLS: glutaminase; HDGF: heparin-
binding growth factor; HK2: hexokinase 2; HECTD4: HECT domain E3 ubiquitin protein ligase 4; HPV16: human
papillomavirus 16; ING3: inhibitor of growth family member 3; KDM4A: lysine demethylase 4A; LRRC8E: leucine-
rich repeat-containing 8 VRAC subunit E; LSD1: lysine-specific demethylase 1; LUAD: lung adenocarcinoma;
MALAT 1: metastasis-associated lung adenocarcinoma transcript 1; MAT2A: methionine adenosyltransferase
2A; MITF: microphthalmia-associated transcription factor; NFIA: nuclear factor IA; NSCLC: non-small-cell lung
cancer; NR: not reported; PAX9: paired Box 9; PDRG1: P53 end DNA-damage-regulated 1; PFKM: phosphofruc-
tokinase, muscle; PIK3R3: phosphoinositide-3-kinase-regulatory subunit 3; PLAC8: placenta-associated 8; RB:
retinoblastoma; ROS: reactive oxygen species; RRM2; ribonucleotide reductase regulatory subunit M2; SERPINE1:
serpin family E member 1; SIRT1: Sirtuin 1; TERT: telomerase reverse transcriptase; TGFβ 1: transforming growth
factor β 1; TGFBR2: transforming growth factor beta receptor 2; TSCC: tongue squamous cell carcinoma; VEGFA:
vascular endothelial growth factor A; ZEB1: zinc finger E-box binding homeobox 1. ↑ increased; ↓ decreased.

Table 2. Nanoparticle-based delivery systems: examples of advantages and drawbacks.

Delivery System Advantages Drawbacks

Lipid-based
nanoparticles

– Escape from mononuclear
phagocyte system
(MPS) uptake

– Prolongation of
circulating time

– Enhanced permeability and
retention time

– Increased local drug levels

– Low encapsulation
efficiency of
small molecules

– Cytotoxicity caused by
cationic lipids

– Systemic toxicity due to
liver penetration

Polymer-based
nanoparticles

– Facilitated incorporation of
hydrophobic drugs

– Increased stability compared to
lipid-based ones

– Poor encapsulation for
certain hydrophilic drugs

– Insufficient toxicological
assessments

Lipid–polymer
hybrid nanoparticles

– High encapsulation efficiency
– Well-defined release kinetics
– Active targeted drug delivery
– Well-tolerated serum stability

– Need to define the
application in
clinical practice

– Need to identify hybrids
with the highest quality
and specific uses

6. Ethical, Legal, and Social Issues of Personalized Medicine

Despite the potential and benefits of personalized medicine in terms of providing ther-
apeutic options better suited to each patient’s genetic profile, a set of standards is needed
to ensure the protection and fair treatment of individuals [332]. The issues concerning
personalized medicine range from individual privacy to the stratification and discrimina-
tion of sub-populations based on ethnicity, equality of access, and the fair allocation of
resources [333]. As such practices become mainstream, such ethical challenges need to be
dealt with in order to ensure that the opportunities and benefits provided by such new
scientific avenues are ethically implemented [334]. The European Union has acknowledged
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the importance of personalized medicine by issuing two policy papers arguing in favor of
a broader use of personalized medicine (focusing on cancer diagnostics or therapeutics in
particular) [335,336], while remarking that such a goal may be hampered by the still high
degree of uncertainty surrounding the outcomes [337]. The key factor that can enable and
unleash the full potential of personalized medicine is, according to the analysis laid out in
the EU papers, an effective synergy between health data and new technologies, which is
necessary to pave the way for the beneficial development of personalized medicine [338].
We can rely on its unique potential to confront cancer by means of prevention and treatment
strategies enabling patients to receive the therapies that can ultimately work best for them.
Such dynamics may entail considerable benefits for healthcare spending as well, since
less money would be wasted on trials and ineffective treatments. For 2022, the EU plans
to take further steps to harness the potential of new developing technologies such as AI,
big data, and genomics through a European Cancer Imaging Initiative aimed at fostering
the application of new computer-aided tools in order to improve the field of personalized
medicine and provide innovative solutions [339,340]. In addition, the new Partnership on
Personalized Medicine is scheduled to be launched in 2023 through funding provided by
Horizon Europe, the EU’s key funding programme for research and innovation, which can
tap into a budget of €95.5 billion. The partnership will aim to define priorities for research
and education in personalized medicine; support research projects on cancer prevention,
diagnosis, and treatment; and outline a set of recommendations for the establishment
of personalized medicine approaches in clinical practice and medical research. Those
goals have also been pursued by the International Consortium for Personalized Medicine
(ICPerMed), launched in November 2016 [341,342]. The ICPerMed has outlined a vision
for what personalized medicine will come to represent: the ultimate expression of medical
evolution in the era of biotechnology and big data. Such a change, however, does call for
broad-ranging adjustments and growth in the fundamental ways in which healthcare is
delivered, prioritizing training and new skills for healthcare professionals and innovative
tools for large-scale implementation [343]. The ICPerMed vision has been shaped and
endorsed by consulting European and international experts and specialists in key areas
of research, who have provided feedback on the opportunities and challenges related to
personalized medicine and highlighted specific concerns and possible solutions [344]. A
road map to tailored preventive strategies and approaches will be laid out by the Euro-
pean Commission as a preliminary step towards launching the partnership [345]. The
prospect that data will likely fundamentally change healthcare has been acknowledged
by established European policies, both at the individual patient level and as it pertains to
the healthcare system (noteworthy in that regard is the report from the European Alliance
for Personalized Medicine, “Cooperating on Data: The Missing Element in Bringing Real
Innovation to Europe’s Healthcare System” [346]). It is in fact worth bearing in mind that
medical records, patient information, clinical studies, and diagnostic results are but some
of the data sources available in healthcare. The digitization of patient records will be an
important contributor to this evolution. Big data gathered and elaborated from electronic
archives will also be needed, including data from digital applications, wearable devices,
and social media, providing informations on environment- and lifestyle-related factors,
socio-demographics, genomics, metabolomics, proteomics, radiomics, standardized elec-
tronic health records, or precision medicine platforms [347]. An ethically and legally tenable
path towards the mainstream use of personalized medicine can only be achieved by priori-
tizing the management of biobanking and informed consent, confidentiality [348], access to
treatment, clinical translation, and direct-to-consumer genetic testing, and by putting in
place measures to prevent the stratification and genetic discrimination of sub-populations
based on ethnicity [349,350]. An inadequate level of genetic literacy and an inadequate
understanding of personal and familial implications of germline and somatic genomic
testing among patients have been cited by specialists as sources of concern arising from
personalized medicine use, particularly when seeking informed consent [351]. Inequalities
in terms of access are also likely to arise according to the patient’s socioeconomic status,
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insurance provider (or level of coverage by the national healthcare system), and cancer
care facilities [352]. Although patients living in countries with publicly funded universal
healthcare are less likely to be affected by access inequalities, such systems often provide
coverage for procedures and treatments whose efficacy has already been established [353].
For the clinical applications of personalized medicine to be validated in terms of their
efficacy, they may require larger study samples vis-a-vis conventional treatments of already
acknowledged clinical value. Hence, such applications may take longer to be recognized
as evidence-based [354]. The fair and equitable distribution of healthcare resources can
be negatively affected by such aspects. The already cited 2022 European Union Com-
munication [335] mentions legal and ethical standards as some of the major barriers that
need to be overcome if personalized medicine and the European Digital Strategy are to be
harnessed to their full capacity. Litigation cases stemming from alleged negligence and
malpractice allegations [355] are in fact likely to grow as a result of personalized medicine
becoming more widespread [356]. As the degree of complexity of the medical interventions
grows, so does the risk that an error may do damage to the patient, leading to liability
and litigation [357]. The parties that could be held accountable include the manufacturers
of genome sequencers and medical devices, laboratories, pharmaceutical companies, and
healthcare facilities, but most of all the doctors responsible for diagnoses and therapeutic
interventions. The notion of “genetic malpractice” has been defined as the failure on the
part of doctors to recommend or properly interpret genetic testing, and such dynamics can
be further compounded by the still unsolved disagreements within the medical community
as to the scope and timing of the implementation of genetic testing in the clinical context,
or even whether such testing ought to be performed at all [343,356,357]. It is quite hard
at this stage to make predictions as to how the several novel liability risks (arising from
personalized medicine based on clinical genomics), which have been already explored in
scientific literature [355,356], will materialize in trial courts. The outcome of such lawsuits
will likely rest on the specific circumstances and facts surrounding each case, as well as
the approaches put in place by plaintiffs, attorneys, experts, and judges. It is, therefore,
safe to assume that the early court rulings will substantially affect the future feasibility,
attractiveness, and frequency of such litigation, as both medical and legal operators will look
at those rulings for guidance. Nonetheless, the need for harmonized and broadly shared
legislative, regulatory, and policy standards, i.e., up-to-date clinical guidelines specifying
when and where genetic testing can be useful and where it is not (at least for now), is even
more transparent, in order to help guide clinical judgment, provide a degree of objectivity
for judicial rulings to look at, and to partially shield doctors from malpractice lawsuits.

7. Conclusions

Overall, ncRNAs provide a powerful weapon against human diseases, but we are
still learning how to use them. The repertoire of ncRNAs is still growing, and the pro-
cess of understanding their mechanisms of action is ongoing. However, the promise of
finding cures for many diseases is in sight, and the advent of new computational tools
coupled with advanced massive sequencing and innovative techniques such as CRISPR-
Cas9 should speed up our race towards a healthier world. At the same time, it is of the
utmost importance to prioritize ethically, legally, and socially sound approaches when
undertaking such innovative pathways. Personalized medicine is information-intensive in
nature. The predictive, diagnostic, and therapeutic capabilities of personalized medicine
rely on high-dimensionality data created using genomics and other technologies. The legal
and regulatory frameworks governing such dynamics need to be adequately updated and
improved so as to meet the growing challenges and unique complexities arising from the
future mainstream application of personalized medicine and the vast array of technologies
on which it relies. A new ethical and legal set of standards aimed at avoiding inequalities in
healthcare access and genetic discrimination (which personalized medicine, with its ability
to draw ever-more subtle and precise distinctions among patients, could exacerbate) is all
the more necessary.
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