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Summary

In recent years, reinforcement learning (RL) has acquired a prominent position in health-related
sequential decision-making problems, gaining traction as a valuable tool for delivering adaptive
interventions (AIs). However, in part due to a poor synergy between the methodological and the
applied communities, its real-life application is still limited and its potential is still to be realised.
To address this gap, our work provides the first unified technical survey on RL methods,
complemented with case studies, for constructing various types of AIs in healthcare. In particular,
using the common methodological umbrella of RL, we bridge two seemingly different AI domains,
dynamic treatment regimes and just-in-time adaptive interventions in mobile health, highlighting
similarities and differences between them and discussing the implications of using RL. Open
problems and considerations for future research directions are outlined. Finally, we leverage our
experience in designing case studies in both areas to showcase the significant collaborative opportu-
nities between statistical, RL and healthcare researchers in advancing AIs.

Key words: dynamic treatment regimes; just-in-time adaptive interventions; mobile health; multi-armed
bandits; artificial intelligence; machine learning; reinforcement learning; optimal policy learning.

1 Introduction

In the era of big data and digital innovation, healthcare is going through a rapid and dramatic
change process, transitioning from the one-size-fits-all standard to the tailored approach of
precision or personalised medicine (Kosorok & Laber, 2019). Under this framework, the ‘indi-
vidual variability in genes, environment and lifestyle for each person’ is taken into account in an
effort to improve the ways we ‘anticipate, prevent, diagnose and treat’ a particular disease in a
particular patient (Collins & Varmus, 2015). This paradigm encompasses a broad range of
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scientific domains, ranging from genomics to advanced analytics and causal inference, all in
support of a data-driven, yet patient-centric, approach for delivering personalised care.

One of the key methodological lines of research within the domain of personalised medicine
is the development of adaptive interventions (AIs) (Almirall et al., 2014; Collins et al., 2004).
The fundamental goal of AIs is to operationalise sequential decision-making by tailoring inter-
ventions to individuals, so as to offer guidance on how to adapt them to an individual’s changing
status and needs. In clinical practice, a typical situation is represented by a clinician who needs
to use a set of treatment rules (i.e. a treatment regime) that recommend how to assign treatments
or doses to patients based on their individual characteristics. These characteristics can include
both baseline information (e.g. demographic data or pre-treatment clinical conditions) and
evolving health status (e.g. responses to previous treatments). For example, for patients who
do not improve on the first-line treatment over a prespecified period, the clinician may plan to
increase the dose, according to a dose–response relationship, or change treatment in the case
of a sensitive or drug-resistant patient. Due to changes in their health status, such a treatment
regime is therefore dynamic within a person. To the patient, this sequence of treatments seems
like standard treatment; to the clinician, it represents a series of prespecified decisions to make
according to the patient’s evolving history; and to the statistician, it constitutes an AI, alterna-
tively known as dynamic treatment regime or regimen (DTR) (Chakraborty & Murphy, 2014;
Lavori & Dawson, 2004; Murphy, 2003). The distinctive feature of AIs is their data-driven,
adaptive approach guided by and oriented towards individual data. Clearly, an ambitious goal
in AIs, or more specifically in DTRs, is how to construct the optimal DTRs, for example, treat-
ment regimes that result in an optimal mean response or outcome. Such a question has a long
history in statistics, and its study will occupy a central role in this work.

The traditional way of offering AIs to a patient mostly relies on rules created by experts,
based on factors such as domain theory and empirical experience with similar patients. How-
ever, the recent advances and the widespread application of artificial intelligence and machine
learning (ML) techniques (see, e.g. Deo, 2015; Oyebode et al., 2022; Rajkomar et al., 2019),
have shed light on their ability to enable clinicians to quickly, efficiently and accurately identify
the most appropriate course of action for their patients.

ML represents a hotspot in artificial intelligence, and health systems have recently tapped into
its expanding potential to complement classical statistical tools and support clinical decision-
making. There is no clear line between ML models and traditional statistical models (Beam
& Kohane, 2018). Yet, it is widely acknowledged that sophisticated ML models such as deep
learning models (Goodfellow et al., 2016) excel in learning, and automatically improving
through experience, from the high-dimensional and heterogeneous data generated from modern
clinical care. By matching a patient’s characteristics to a computerised clinical knowledge base,
such algorithms can suggest assessments or recommendations tailored to that patient’s charac-
teristics, even in very complex settings. Despite the potential to revolutionise decision-making,
the success of ML in healthcare strongly depends on the efforts of the theoretical and method-
ological communities to unravel and elucidate their intrinsic mechanism and processes (often
criticised for operating in a ‘black box’). In turn, this may foster broader acceptance among cli-
nicians and patients, thereby fostering greater confidence in the integration of ML technologies
into clinical practice.

Among the existing ML paradigms (Bishop, 2006; Mohri et al., 2018), reinforcement learn-
ing (RL) (Bertsekas, 2019; Sugiyama, 2015; Sutton & Barto, 2018) offers a natural framework
for the sequential decision-making problem encountered in AIs. In classical RL, a learning
agent has to decide which of one or more actions to take when interacting with an unknown en-
vironment. Based on the feedback or reward received from the environment for the selected
action(s), the agent learns how best to act to maximise the cumulative reward over time. This
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is done by trial-and-error, that is, by observing and inferring from the environment after actions
are taken. The RL framework is abstract and yet flexible enough to accommodate a variety of
domains where the problem has a sequential nature (Chakraborty & Moodie, 2013; Gottesman
et al., 2019); it does so by specifically characterising the environment’s (or domain’s) dynamics.
In AIs, RL can be applied by regarding the alternative interventions as the actions to be chosen
and the outcome of the intervention (e.g. patient’s response) as the reward; patient’s
time-varying context and status represent the environment.
Within biostatistics, RL was first introduced as a data analysis tool to discover optimal DTRs

in a variety of health domains including cancer (Goldberg & Kosorok, 2012; Zhao et al., 2009),
weight loss management (Forman et al., 2019; Pfammatter et al., 2019), substance use
(Chakraborty & Moodie, 2013; Murphy, Lynch, et al., 2007), mental health (Pike &
Robinson, 2022) and so on. More recently, there seems to be an unprecedented interest in the
application of RL in the rapidly expanding mobile health (mHealth) domain (Istepanian
et al., 2006; Kumar et al., 2013; Kumar et al., 2017). The mHealth area refers to the use of
mobile or wearable technologies to promote healthy behaviour changes in both clinical and
non-clinical populations. A high-level goal in mHealth is to deliver efficacious just-in-time
adaptive interventions (JITAIs) (Nahum-Shani et al., 2018) in response to the in-the-moment
changes in an individual’s internal state (e.g. health) and contextual state (e.g. location) (Kumar
et al., 2017). The challenge in JITAIs is thus to provide ‘the right individual with the right
intervention’, as well as ‘the right intervention at the right time’. Notably, despite the relatively
recent development of JITAIs compared with DTRs, research interest in both methodology and
applications has substantially skewed towards JITAIs; we refer to Figure S1 in Supplementary
Material A for a quantification of the volume of the literature. Given the increasing number of
mHealth studies and in tandem the ongoing interest among statisticians in DTRs, integrating
these two areas is a worthy objective. In the current article, we combine our methodological
background with our experience in designing case studies in the above two areas to extensively
review the state of the art of RL in AIs. To the best of our knowledge, this represents the first
comprehensive survey of RL methods for developing DTRs as well as JITAIs in mHealth,
informed by our experience with the challenges and successes of real-world applications. It
complements and adds to the extensively surveyed DTR literature (see, e.g. Chakraborty &
Moodie, 2013; Chakraborty & Murphy, 2014; Tsiatis et al., 2021), which we place together
with JITAIs under the same AI umbrella.
We believe that there is ample scope for important practical advances in these areas, and with

this survey, we aim to make it easier for theoretical and methodological researchers to join
forces to assist healthcare discoveries by developing the next generation of methods for AIs
in healthcare. We finally emphasise that we focus on healthcare and biostatistics due to the
central role statisticians play there traditionally. Notwithstanding, the concepts we review for
AIs extend far beyond: to education (Nahum-Shani & Almirall, 2019), policy making (Kasy
& Sautmann, 2021) and other domains such as population research, where RL has recently been
contextualised (Deliu, 2023).
The remainder of this work is structured as follows. In Section 2, we formally characterise the

problem of AIs, providing a common framework for applications to DTRs and JITAIs, and
explaining their similarities and differences. We then formalise the RL paradigm and its sub-
classes, relating it to the problems at hand and assimilating the different existing notations
and terminologies into a coherent framework (Section 3). This provides a foundation for con-
ducting research more easily in both methodological and applied aspects of AIs, enhancing
communication and synergy between them. Section 4 offers a review of RL methods for devel-
oping AIs, expanding on DTRs with both finite- and indefinite-time horizons and JITAIs for
mHealth. Insights on current methodological differences, along with their drivers, are discussed
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in Section 4.3 and considerations for future research are provided in Section 4.4. Section 5
grounds Section 4 by illustrating the development and application of the presented methodology
to two case studies. Section 6 concludes with some final remarks.

2 Adaptive Interventions in Healthcare

Adaptive interventions offer a vehicle to operationalise a sequential decision-making process
over the course of a program or a condition, with the aim of optimising individual outcomes.
Technically speaking, AIs are defined via explicit sequences of decision rules that pre-specify
how the type, intensity and delivery of intervention options should be adjusted over time in
response to individual progresses (Almirall et al., 2014; Nahum-Shani et al., 2018). The
prespecified nature of AIs increases their replicability in research and enhances the assessment
of their effectiveness (Nahum-Shani & Almirall, 2019).

The existing frameworks for formalising AIs (Almirall et al., 2014; Collins et al., 2004) are
based primarily on four key components:

i The decision points, specifying the time points or time intervals at which a decision
concerning intervention has been or has to be made; here, we assume a finite or countable
number of times t ∈  ¼ 0; 1; …f g;

ii The decisions or intervention options at each time t, that may correspond to different types,
dosages (duration, frequency or amount; Voils et al., 2012), or delivery modes, as well as
various tactical options (e.g. augment, switch and maintain); we denote them by At ∈ At,
where At is the decision or action space, generally discrete, at time t;

iii The tailoring variable(s) at each time t, say X t ∈ X t, with X t ⊆ ℝn; n ≥ 1, capturing indi-
viduals’ baseline and time-varying information for personalising decision-making;

iv The decision rules, d ¼ dtf gt ≥ 0, where, at each time t, dt links the tailoring variable(s) X t

and potentially any other previous information deemed important to a specific decision or
intervention At ∈ At.

A common illustrative way to describe an AI is through schematics such as the one shown in
Figure 1, where the ‘if-then’ statements clarify how the decision rule pre-specifies the interven-
tion options under various conditions.

Because an AI adaptation is aimed at optimising individual outcomes, these play an essential
role when defining an AI’s components (Nahum-Shani & Almirall, 2019). In particular, we can
distinguish between two types of individual outcomes:

Figure 1. Simplified schematic of a two-stage adaptive intervention and its key components, inspired by the weight loss man-
agement study in (Pfammatter et al., 2019).
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The intermediate or proximal outcome(s), say Y tf gt > 0, with Y t ∈ Yt, that is, easily observ-
able short-term outcome(s), expected to influence a longer-term outcome according to some
mediation theory (MacKinnon et al., 2007);
The final or distal outcome, representing the long-term outcome of interest and the ultimate
goal of the AI. To distinguish it from the intermediate stage-related outcomes Y tf gt > 0, which

may have a different meaning and nature, we denote it by Y
∞
.

Different AI problems would target different types of outcomes. For example, in some

contexts, there may only be a distal (end-of-study) outcome Y
∞
instead of multiple intermediate

outcomes (see, e.g. Pelham et al., 2002): in that case, we will use the conventionYT þ 1≐Y
∞
, with

T being the study’s last decision point or problem horizon. In other cases, only the intermediate
outcomes will define the AI problem, while the final outcome will have no formal role in
the decision-making problem. We also note that proximal outcomes can also be used as
tailoring variables to guide later-stage decisions. In Figure 1, for example, the response status
at time t ¼ 1 represents both the proximal outcome targeted by the intervention at the decision
point t ¼ 0 and the tailoring variable at the decision point t ¼ 1.
Development of AIs is based on the selection and integration of the aforementioned six com-

ponents, taking into account their relationship. Ideally, this is informed and guided by domain
theories, practical considerations, empirical evidence or some combinations thereof. Determin-
ing optimised decision rules typically involves more sophisticated data-driven statistical and
ML tools, with RL recognised as a current state-of-the-art tool.
The term AI is interchangeably used with adaptive treatment strategy (Murphy, 2005a;

Murphy, Collins, & Rush, 2007), treatment policy (Dawson & Lavori, 2012; Lunceford
et al., 2002; Wahed & Tsiatis, 2006) and dynamic treatment regime or regimen (Chakraborty
& Moodie, 2013; Laber, Lizotte, et al., 2014; Lavori & Dawson, 2004; Murphy, 2003), among
others. However, given its more generic nature, we use the term AI to refer to a general
framework for personalising interventions sequentially based on an individual’s time-varying
characteristics. This broader definition embraces a considerate number of applications, inclu-
ding non-healthcare (e.g. education; Nahum-Shani & Almirall, 2019) and the two healthcare
domains of DTRs and JITAIs, which we cover below.

2.1 Dynamic Treatment Regimes

In medical research, DTRs define a sequence of treatment rules tailored to each individual
patient based on their baseline and time-varying (dynamic) state. Traditionally, treatment assign-
ment is based on single-stage decision-making. Specifically, one observes a set of baseline or
pre-treatment information X 0 ∈ X0 , based on which a treatment A0 ∈ A0 is selected. The
treatment rule, say d0, is a mapping from X 0 to A0. If more stages are involved, at each stage t
, the treatment rule dt is again an (independent) mapping from the stage-t information set X t

to a stage-t action space At . Unlike single-stage protocols, where dt ¼ dτ :X τ→Aτf gτ¼0;…; t ,
DTRs explicitly incorporate the heterogeneity in treatment effect among individuals and across
timewithin an individual, and regardsdt as a (nested)multistage regimewith eachdτ, τ ¼ 0; …; t
, depending on the individual evolving history of covariates, treatments and outcomes up to time
τ ; that is, dt ¼ dτ :Hτ→Aτf gτ¼0;…; t , with Hτ≐X0 �A0 � Y1 �…�Aτ � 1 � Yτ �X τ . As
such, it provides an attractive framework for personalised treatments in longitudinal settings. Be-
yond personalisation, DTRs can identify and evaluate delayed effects, that is, effects that do not
occur immediately after treatment but may affect a person or their disease later in time. It should
also be noted that, by treating only those who show a need for treatment, DTRs hold the promise
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of reducing non-compliance due to overtreatment or undertreatment (Lavori & Dawson, 2000).
At the same time, they are attractive to public policy makers, allowing a better allocation of pub-
lic and private funds (Murphy, 2003).

For developing DTRs, data sources include both longitudinal observational data, such as
electronic health records (EHRs), and randomised studies, such as randomised-controlled
trials (RCTs) and sequential multiple assignment randomised trials (SMARTs) (Lavori &
Dawson, 2000; Murphy, 2005a). Although observational sources are much more common,
SMARTs represent the current gold standard (Lei et al., 2012). A SMART is characterised
by multiple stages of treatment, typically ranging from two to four, where each stage corre-
sponds to one of the critical decision points. A concrete example is provided in Figure 2,
which illustrates the first two stages of the weight loss management study in (Pfammatter
et al., 2019). At study entry, all individuals are uniformly randomised to one of two
first-line interventions: mobile app (APP) or APP + Coaching. Participants are assessed at
weeks 2, 4, 8, and those ‘responding’ to their initial treatment (i.e. losing at least 0.5 lbs.
on average per week) continue receiving the same treatment. As soon as an individual is clas-
sified as a ‘non-responder’, they are re-randomised to one of two augmentation tactics: modest
augmentation (supportive text message; TXT) or vigorous augmentation (TXT + Coaching, or
TXT + meal replacement (MR), depending on the first-stage treatment). Rerandomisation oc-
curs only once per participant, with the newly assigned treatment continuing through the end
of the study. Because different intervention options are considered for responders (continue)
and non-responders (modest or vigorous augmentation), the response status is embedded as
a tailoring variable. Such multistage restricted randomisation generates several DTRs embed-
ded in the SMART; we refer to (Chakraborty & Moodie, 2013) for details on embedded
regimes.

2.2 Just-In-Time Adaptive Interventions in Mobile Health

The ubiquitous use of mobile technologies has facilitated the development of a new area of
health promotion in both clinical and non-clinical populations, known as mHealth (Istepanian
et al., 2006). A key objective inmHealth is to deliver efficacious real-timeAIs in response to rapid
changes in individual circumstances, while avoiding overtreatment and its consequences on user
engagement (e.g. low adherence to recommendations or discontinued usage of the mobile de-
vice). This specialised AI is termed just-in-time adaptive intervention (JITAI) (Nahum-Shani
et al., 2018). JITAIs are nowadays gaining an increased popularity across various behavioural
domains, spanning from physical activity (Figueroa et al., 2022; Hardeman et al., 2019) and
weight management (Pfammatter et al., 2019) to addictive disorders (Garnett et al., 2019;

Figure 2. Schematic of the weight loss SMART design in (Pfammatter et al., 2019).
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Goldstein et al., 2017; Naughton, 2017) and mental health (Kumar et al., 2024). Moreover, there
has also been recent interest in leveraging JITAIs to enhance public health on a broader scale (Liu
et al., 2023).
In mHealth, JITAIs refer to a sequence of decision rules that use continuously collected data

through mobile technologies (e.g. wearable devices, accelerometers or smartphones) to adapt
intervention components in real time in order to support behaviour change and to promote
health. The peculiarity of JITAIs is that they deliver interventions according to the user’s in-
the-moment context or needs, for example, time, location or current activity, including consid-
erations of whether and when the intervention is needed. Compared with DTRs, JITAIs are
more flexible in terms of location and timing of interventions delivery. In fact, while the adap-
tation and delivery of a DTR usually take place at a pre-defined clinical appointment and under
the direct guidance of a clinician, JITAIs often adapt and assign interventions as dictated by the
mobile system or individual users, while they go about their daily lives in their natural environ-
ments. For this reason, unless otherwise designed, the time interval between decision points can
vary significantly between and within subjects, dictated by randomness in individual needs and
engagement with the mHealth device. Furthermore, unlike DTRs, the number of decision points
in JITAIs can be hundreds or even thousands, and the intervention can be delivered each
minute, hour or day (as in the case of the DIAMANTE study, which will be shortly discussed
and illustrated in Figure 3).
In JITAIs, the time between decision points is often too short to capture the (distal) clinical

outcome of interest, and they rely on a weak surrogate, that is, the proximal outcome. Unlike
DTRs—which target the distal outcome and may or may not have an intermediate (proximal)
outcome—in JITAIs, proximal outcomes represent the direct and in-the-moment target of the
intervention. The distal outcome is expected to improve only based on domain knowledge about
its relationship with the proximal outcome, but is not formally included in the optimisation
problem. We refer to Table 1 for a hand-to-hand comparison between JITAIs and DTRs under
the AI framework.
Typical experimental designs for building JITAIs are represented by factorial experiments

(Collins et al., 2009), or most notably, micro-randomised trials (MRTs) (Klasnja
et al., 2015). In MRTs, individuals are randomised hundreds or thousands of times over the
course of the study, and in a typical multicomponent intervention study, the multiple

Figure 3. Schematic of the DIAMANTE micro-randomised trial (Aguilera et al., 2020).
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Table 1. Differences between DTRs and JITAIs in terms of the key characteristics defining an AI.

Characteristic

Type of adaptive intervention

DTRs JITAIs in mHealth

Data sources RCTs, SMARTs, longitudinal observational
data including EHRs, dynamical systems
models

MRTs, RCTs, factorial designs, single-case
experimental designs

AI component: (i) decision points t ∈ 
Number of decision

points
In SMARTs, generally small (e.g. two to
four); in EHRs (defined over indefinite
horizons) an increased number is seen

Generally very large (hundreds or even
thousands for each single unit)

Alignment of decision
points across subjects

In SMARTs, these are expected to occur at
some regular and fixed time points; in EHRs,
these can reflect different protocols and a
higher variability between individuals, with
less regular patterns

Because decision points reflect user’s specific
needs and availability, in JITAIs, these are
often random (as requested by the user)

Distance between
decision points

Sufficiently long according to the expected
time to capture a potential effect (including a
delayed effect) of the intervention on the
primary outcome of interest or a strong
intermediate surrogate

Quite short according to the expected ‘in-the-
moment’ effect of the intervention on the
proximal outcome (e.g. every few minutes,
hours or daily)

AI component: (ii) decisions or intervention options At ∈ At; t ∈ 
Type of intervention Mostly drugs or behavioural interventions Generally behavioural interventions (e.g.

motivational/feedback messages, coaching,
reminders) with few exceptions (e.g. insulin
adjustments)

Intervention delivery Assigned by the care provider during an
appointment or through digital devices

Assigned through digital/mobile devices
according to an automatic algorithm or/and
under care provider’s guidance

AI component: (iii) tailoring variable(s) X t ∈ X t ⊆ ℝn; n ≥ 1; t ∈ 
Type of tailoring

variable
Can include the full or partial history of
baseline and time-varying patients’
information. An external context can also be
considered, but it has secondary relevance

Current users’ information and any type of
variable related to their momentary context
(e.g. availability and weather), which plays a
major role and can be very granular

AI component: (iv) decision rules d ¼ dtf gt ∈ 
Main strategy to

optimise decision rules • Offline methods for finite-horizon decision

problems, with some exceptions (e.g. for
EHRs-based DTRs an indefinite horizon may
be considered)

• While finite-horizon problems in general

account for the full individual history over
time, indefinite horizon problems assume a
Markov structure

• Online methods over indefinite-time

horizons

• Considering the expected ‘in-the-moment’

effect of the intervention, typically, only the
current or last observed information is
accounted for, with a pre-dominant use of
Markov, partially observed Markov, or
simpler structures

AI component: (v)-(vi) outcomes
Proximal outcome

Y t ∈ Yt ∈ ℝ; t ¼ 1; 2; …
• Optional short-term outcomes expected to

impact the distal (long-term) outcome

• While not being the primary target of the

intervention, they may be part of the
adaptation/optimisation process

•Short-term outcomes directly targeted by the

intervention and expected to mediate the
effect on the distal outcome

• They guide the definition of just-in-time in

the context of the identified problem, as well
as the formulation of the adaptation strategy

Distal outcome Y
∞

• The outcome directly and formally targeted

by the intervention

• The primary criterion that guides the

adaptation/optimisation of the DTR, although
intermediate outcomes are often part of the
optimisation

• Long-term goal of a JITAI, expected to be

influenced by an intervention through the
mediating role of proximal outcomes
(domain knowledge)

• Typically, they do not guide the adaptation/

optimisation of the learning strategy
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components can be randomised concurrently, making micro-randomisation a form of a sequen-
tial full factorial design. The goal of these trials is to optimise mHealth interventions during the
trial while offering a basis to assess the causal effects of each intervention component and to
evaluate whether the intervention effects vary with time and/or with the individual contexts.
To better understand the characteristics and value of MRTs, let us now consider the

DIAMANTE study for promoting physical activity, illustrated in Figure 3. In this study, the in-
tervention components include whether or not to send a text message, which type of message to
deliver, and at which time. The latter thus has a central role in this type of AI, as it defines the
intervention set. The proximal outcome is the change in the number of steps a participant
walked today from yesterday; and the context is given by a set of variables such as health infor-
mation and study day. To assess the effectiveness of the optimised JITAI, users are assigned to
different study groups: (A) a static (non-optimised) group, (B) an adaptive group based on RL
and (C) a control group. In the two intervention groups, users are randomised every day to
receive a combination of categories of the different intervention components, delivered within
different time intervals. The adaptive RL-based optimised group will be briefly discussed in
Section 5, after introducing the RL framework.

3 The Reinforcement Learning Framework

Generally speaking, RL is an area of ML concerned with determining optimal action selec-
tion policies in sequential decision-making problems (Bertsekas, 2019; Sutton & Barto, 2018).
This framework is based on repeated interactions between a decision maker or learning agent
and the environment it wants to learn about, to take better decisions or actions. Before
characterising this process and formalising the RL problem(s), it is paramount to set out clearly
the fundamental prerequisites that enable RL to solve decision-making problems such as in AIs
with rigour.

3.1 A Preliminary Note: Causal Inference and Reinforcement Learning

While in this work our focus is primarily on RL, we note that this is neither a necessary nor
generally a sufficient solution for building valid AIs. As we will mention in passing in Section
4.1.1, a variety of other traditional statistical approaches, mostly confined to the causal inference
literature, exist and have a substantial relevance in the field. In fact, for developing AIs, one
needs to assess the causal relationship between interventions and outcomes, thus, requiring an
adequate framework for causality.
Causal inference provides a set of tools and principles that allows one to combine data and

causal assumptions about the environment to reason with questions of counterfactual nature.
Through considerations on study designs, estimation strategies and certain fundamental
assumptions (e.g. no unmeasured confounders), it provides the building blocks that enable
researchers to draw causal conclusions based on the observed data. On a different tangent,
RL is concerned with efficiently finding a policy that optimises an objective function (e.g. the
expected cumulative reward) in interactive and uncertain environments. In practice, despite be-
ing causal by nature—any system looking to advise on interventions in some way quantifies
their effects—the classical RL does not conduct causal inference. We can think of at least
two reasons. First, RL practitioners often consider problems in which the data are uncon-
founded (e.g. robotics), because these are collected through direct interactions with a relatively
well-understood environment, governed by physical laws, and actions are taken by the learning
agent depending only on the data available (experimental data). To illustrate, this is the case of
current JITAI practices. Second, and most importantly, the fundamental problem of RL, rather

9Reinforcement Learning in Modern Biostatistics: Constructing Optimal Adaptive Interventions
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than dealing with causal effects estimation, is oriented towards causal-decision making. We
note that the two are not the same, and counterintuitively, accurate estimation is not essential
for accurate decision-making (Fernández-Loría & Provost, 2022). While these two areas have
evolved independently over different aspects of the same building block and with no interaction
between them, disciplines such as AIs can be developed only under an integrated framework
that permits causal conclusions.

Our attention in the current work is devoted to RL rather than causal inference, and we point
the readers to the seminal works of Neyman and Rubin (Neyman, 1923; Rubin, 1974) for the
potential outcomes framework, and to Pearl (Pearl, 2009) for the causal graphical model per-
spective. For a comprehensive treatment of both, we refer to (Hernan & Robins, 2023). Further-
more, recent attempts in the ML community have worked towards a unified framework called
causal RL, which embeds the causal graphical approach within sample efficient RL algorithms
(Zhang & Bareinboim, 2020). For simplicity of exposition, in this work, we assume that the
main assumptions of causal inference (see, e.g. Chakraborty & Murphy, 2014) hold and that
the conditional distributions of the observed data are the same as the conditional distributions
of the potential outcomes, given the assigned treatment. It follows that RL can operate in a sim-
plified causal inference problem (in which actions are unconfounded) and that optimal AIs may
be obtained using the observed data.

3.2 Formalisation of the General Reinforcement Learning Problem

Consider a discrete time space indexed by t ∈  ¼ 0; 1; …;f g. In RL, at each decision time
point or simply time t, an agent faces a decision-making problem in an unknown environment.
After receiving some representation of the environment’s state or context, say X t ∈ X t, it selects
an action, denoted by At, from a set of admissible actionsAt. As a result, one step later, the en-
vironment responds to the agent’s action by making a transition into a new state X t þ 1 ∈ X t þ 1

and (typically) providing a numerical reward Y t þ 1 ∈ Yt þ 1 ⊂ ℝ. By repeating this process
over time, the result is a trajectory of states visited, actions pursued and rewards received. In
a medical context, this trajectory can be viewed as the individual history (of covariates, treat-
ments and responses to treatments) of a patient over time. Note that in some settings there
may be only one terminal reward (or a final outcome, e.g. overall survival or school perfor-
mance at the end of the study; Pelham et al., 2002); in this case, rewards at all previous time
points are taken to be 0 . In other settings (e.g. multi-armed bandits; Section 3.3.2), states
may be ignored, thus leading to a trajectory of actions and rewards only.

DefineXt≐ X 0;…;X tð Þ,At≐ A0;…;Atð Þ,Yt þ 1≐ Y 1;…; Y t þ 1ð Þ, and similarly xt, at and yt þ 1,
where the upper- and lower-case letters denote random variables and their particular
realisations, respectively. Define historyHt as all the information available at time t prior to de-
cision At, that is,Ht≐ At � 1;Xt;Ytð Þ; similarly ht. The historyHt at time t belongs to the product
setHt ¼ X0 � ∏t

τ¼1X τ �Aτ � 1 � Yτ. Note that, by definition, H0 ¼ X 0. We assume that each
longitudinal history is sampled independently according to a distribution PFull � RL

π (with the
superscript clarified later in Section 3.3), given by

PFull � RL
π ≐p0 x0ð Þ ∏

t ≥ 0
πt atjhtð Þpt þ 1 xt þ 1; yt þ 1jht; at

� �
; (1)

where

• p0 is the probability distribution of the initial state X 0.
• π≐ πtf gt ≥ 0 represents the exploration policy that determines the sequence of actions gener-
ated throughout the decision-making process. More specifically, πt maps histories of length
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t, ht, to a probability distribution over the action spaceAt, that is, πt � jhtð Þ. The conditioning
symbol ‘∣’ in πt � jhtð Þ reminds us that the exploration policy defines a probability distribution
over At for each ht ∈ Ht. Sometimes, At is uniquely determined by the history Ht, therefore,
the policy is simply a function of the form πt htð Þ ¼ at . We call it deterministic policy, in
contrast with stochastic policies that determine actions probabilistically.

• ptf gt ≥ 1 are the unknown transition probability distributions and they completely characterise
the dynamics of the environment. At each time t ∈ , the transition probability pt assigns to
each trajectory xt � 1; at � 1; yt � 1ð Þ ¼ ht � 1; at � 1ð Þ at time t � 1 a probability measure over
X t � Yt, that is, pt � ; � jht � 1; at � 1ð Þ.
At each time t, the transition probability distribution pt þ 1 xt þ 1; yt þ 1jht; at

� �
gives rise to

i pt þ 1 xt þ 1jht; atð Þ, the state-transition probability distribution, representing the probability of
moving to state xt þ 1 having observed history ht and taking action at;

ii pt þ 1 yt þ 1jht; at; xt þ 1

� �
, the immediate reward distribution, specifying the reward Y t þ 1

after transitioning to xt þ 1 with action at.
Generally, in DTRs, the immediate reward Y t þ 1 is conceptualised as a known function of the

history Ht, the current selected action At and the new state X t þ 1; that is, conditional on Ht, the
reward function is deterministic and Y t þ 1 is uniquely determined. To give a concrete example,
one can think of a dose-finding trial, where the level of toxicity is one of the state variables,
among others. In this setting, at each time t, the immediate rewardY t þ 1 of a patient with history
Ht and administered dose At could be defined as a binary variable assuming value�1 if the ob-
served toxicity level (X t þ 1) is higher than a certain prespecified threshold, and 0 otherwise.
The cumulative sum (often time-discounted) of immediate rewards is termed return, say Rt,

and is given by

Rt ≐ Y t þ 1 þ γY t þ 2 þ γ2Y t þ 3 þ… ¼
X
τ ≥ t

γτ � tY τ þ 1; (2)

for t ∈ . The discount rate γ ∈ 0; 1½ � determines the current value of future rewards: a reward
received τ time steps in the future is worth only γτ times what it would be worth if it were re-
ceived immediately. If γ < 1, the potential infinite sum in Equation (2) has a finite value as long
as the reward sequence Y τ þ 1f gτ ≥ t is bounded. If γ ¼ 0, the agent is myopic in being concerned
only with maximising the immediate reward, that is, Rt ¼ Y t þ 1; this is often the case of the
multi-armed bandit framework (see Section 3.3.2). If γ ¼ 1, the return is undiscounted and it
is well defined (finite) as long as the time horizon is finite, that is, t ∈ 0; T½ �, with T < ∞
(Sutton & Barto, 2018). If T is fixed and known in advance, for example, in clinical trials,
the agent faces a finite-horizon problem; if T is not prespecified and can be arbitrarily large
(the typical case of EHRs), but finite, we call it an indefinite-horizon problem; finally, we use
the term infinite-horizon problem when T ¼ ∞. In this case, we need γ ∈ 0; 1ð Þ to ensure a
well-defined return. As preliminarily outlined in Table 1, DTRs mainly deal with finite-horizon
problems (exception made for EHRs), while JITAIs involve indefinite-horizon problems.

3.2.1 Online and offline reinforcement learning

Solving an RL task means learning an optimal way to choose the set of actions, or learning an
optimal policy, so as to maximise the expected future return. This process may follow two learn-
ing strategies: online or offline. In online learning, an agent learns and improves/optimises the
exploration policy π while following it, that is, from experiences sampled directly from π .
The policy π represents both the data-generating policy and the target policy, say d, the agent
wants to learn about ( π ¼ d ). However, in many decision problems, for example, in

11Reinforcement Learning in Modern Biostatistics: Constructing Optimal Adaptive Interventions
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observational settings, the agent has to learn from previously collected data. In this case, the tar-
get policy d is learned from samples collected with a policy that can be either the exploration
policy (when known, e.g. in randomised studies), or, more generally, an observed or behaviour
policy (that is, π ≠ d). In the AI space, the DTR literature has predominantly focused on offline
learning strategies (typically from observational data), while the mHealth domain has often
adopted online RL (under a randomised setting).

In a general RL problem, where the exploration/behavioural policy and the target policy of
interest d can differ, the goal is to find an optimal policy d�t ≐ d�t

� �
τ ≥ t

at any time t, such that

d�t ¼ arg max
dt

Ed Rt½ � ¼ arg max
dt

Ed

�X
τ ≥ t

γτ � tY τ þ 1

�
; (3)

where the expectation is meant with respect to a trajectory distribution analogous to
Equation (1), say Pd, with π replaced by a general target policy d.

To estimate optimal policies, various methods have been developed so far in the RL literature
(see Sugiyama, 2015; Sutton & Barto, 2018, for an overview). A traditional approach is through
value functions, which are classified into two main types: (i) state-value or simply value
functions, representing how good it is for an agent to be in a given state, and (ii) action-value
functions, indicating how good it is for the agent to perform a given action in a given state.

More specifically, the time-t state-value function of policy d gives us the expected return of
following policy d from time t onward, conditional on history ht. Formally, we denote it by
V d

t :Ht→ℝ and define it as

V d
t htð Þ ≐ Ed RtjHt ¼ ht½ � ¼ Ed

�X
τ ≥ t

γτ � tY τ þ 1

����Ht ¼ ht

�
; ∀ht ∈ Ht; ∀t ∈ : (4)

To ensure that the conditional expectation in V d
t htð Þ is well defined, each history ht ∈ Ht

should have a positive probability to occur, that is, ℙ Ht ¼ htð Þ > 0. Note that, by definition,
at time t ¼ 0, V d

0 h0ð Þ≐V d
0 x0ð Þ; while for the terminal time point, if any, the state-value function

is 0.
It is interesting to note that value functions define a partial ordering over policies with in-

sightful information on the optimal ones. In fact, according to the definition of optimal policies
given in Equation (3), a policy d is better than or equal to a policy d’ if its expected return is
greater than or equal (denoted as ⪰) to that of d’ for all possible histories. Equivalently, d⪰d’

if and only if V d
t htð Þ ≥ V d’

t htð Þ for all ht ∈ Ht . As a result, optimal policies share the same
(optimal) value function. Efficient estimation of the value function represents one of the
most important components of almost all RL algorithms, with a central place in the
decision-making paradigm. In DTRs, for example, evaluating the value function of a treatment
regime is equivalent to evaluating the average outcome if the estimated treatment rule were to be
applied to a population with the same characteristics (state or history) in the future (Zhu
et al., 2019). Comparing the estimated value functions of different candidate treatment regimes
offers a way to understand which regime may offer the greatest expected outcome.

Similar insights are given by the action-value function. The time-t action-value function for
policy d, denoted byQd

t , where ‘Q’stands for ‘Quality’, is the expected return when starting from
history ht at time t, taking an action at and following the policy d thereafter. Formally, ∀t ∈ ,
Qd

t :Ht �At→ℝ is defined as

Qd
t ht; atð Þ ≐ Ed Rt jHt ¼ ht; At ¼ at½ � ¼ Ed

�X
τ ≥ t

γτ � tY τ þ 1

����Ht ¼ ht; At ¼ at

�
; ∀at ∈ At; ∀ht ∈ Ht: (5)
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This is also known as Q-function, and as in Equation (4), Ht and At are such that
ℙ Ht ¼ htð Þ > 0 and ℙ At ¼ atð Þ > 0.
At time t , the optimal value function V �

t ≐V
d�
t yields the largest expected return for each

history with any policy d, and the optimal Q-function Q�
t ≐Q

d�
t yields the largest expected return

for each history-action pair with any policy d, that is,

Q�
t ht; atð Þ ≐ max

dt
Qd

t ht; atð Þ; ∀ht ∈ Ht; ∀at ∈ At; (6)

V �
t htð Þ ≐ max

dt
V d

t htð Þ ¼ max
at ∈ At

Q�
t ht; atð Þ; ∀ht ∈ Ht: (7)

Because an optimal action-value function is optimal for any fixed ht ∈ Ht, it follows that the
optimal policy at time t must also satisfy

d�t htð Þ ∈ arg max
at ∈ At

Q�
t ht; atð Þ: (8)

A fundamental property of the value functions used throughout RL is that they satisfy partic-
ular recursive relationships, known as Bellman equations (Bellman, 1957). For any policy d, the
following consistency condition, expressing the relationship between the value of a state and the
values of the successor states, holds:

V d
t htð Þ ¼ Ed Y t þ 1 þ γV d

t þ 1 ht þ 1ð Þ jHt ¼ ht
	 


; ∀ht ∈ Ht; ∀t ∈ : (9)

Based on this property and Equations (6)–(7), at each time t, ∀ht ∈ Ht and ∀at ∈ At , with
discrete state and action spaces, the following rules, known as Bellman optimality equations (9),
are satisfied:

V �
t htð Þ ¼ E Y t þ 1 þ γV �

t þ 1 ht þ 1ð ÞjHt ¼ ht
	 


; (10)

Q�
t ht; atð Þ ¼ E Y t þ 1 þ γ max

at þ 1 ∈ At þ 1

Q�
t þ 1 ht þ 1; at þ 1ð ÞjHt ¼ ht; At ¼ at

� �
: (11)

Here, the expectation E is taken with respect to the transition distribution pt þ 1 only, which
does not depend on the policy; thus, the subscript d can be omitted. This property allows for the
estimation of (optimal) value functions recursively, from T backward in time. In finite-horizon
dynamic programming (DP), this technique is known as backward induction and represents one
of the main methods for solving the Bellman equation, also referred to as the DP equation or
optimality equation (Sutton & Barto, 2018). In infinite- and indefinite-horizon problems, using
traditional backward induction is not possible, given the impossibility of extrapolating beyond
the time horizon in the observed data. To overcome this issue, alternative methods and
additional assumptions (e.g. discounting and boundedness of rewards) are typically taken into
account. Common strategies focus on time-homogeneous Markov processes to eliminate the de-
pendence of value functions on t (see, e.g. Ertefaie & Strawderman, 2018; Luckett et al., 2020),
or revisit the Bellman optimality equation (Zhou et al., 2022).

3.3 Formalisation of Specific Reinforcement Learning Problems

The RL problem can be posed in a variety of different ways depending on the assumptions
about the level of knowledge initially available to the agent. The framework is abstract yet flex-
ible enough to be applied to many different (sequential) problems by specifically characterising

13Reinforcement Learning in Modern Biostatistics: Constructing Optimal Adaptive Interventions
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the state and action spaces, the reward function, and other general domain (or environment) as-
pects, such as the time horizon or the dynamics of the process. The general framework intro-
duced in Section 3.2 does not make any simplifying assumptions about the dependency between
rewards, actions and states: by carrying over all the available history from t ¼ 0, it considers a
full dependency between them. We name this framework full reinforcement learning (full-RL).

Often, specific domains of application may have an underlying theory about the potential re-
lationships between the key elements of an RL problem. For example, one may find it plausible
to ignore the overall history and consider only the current state in the decision-making process.
Furthermore, in some applied problems (e.g. indefinite-horizon problems), a full-RL
formalisation may be infeasible and/or intractable for both optimisation and inference purposes.
Thus, some forms of simplification in the distribution of the longitudinal histories may be
needed. For example, in JITAIs, the ‘just-in-time’ nature of decision-making requires a compu-
tationally feasible estimation and application of the decision rule continuously in time.

Common examples of specific formalisations of an RL problem include Markov decision
processes (MDPs) and multi-armed bandit (MAB) or contextual MAB problems. Although
we discuss the MAB problem as a subclass of—or a special way of formalising—the RL prob-
lem (as in Sutton & Barto, 2018), we want to point out that some key researchers in the domain
(see, e.g. Lattimore & Szepesvári, 2020) distinguish between the two. According to them, RL is
mostly associated with ML, whereas MABs are with mathematics. One driver of this choice
may be related to the major focus and attention to theoretical guarantees on regret bounds that
MAB algorithms seek to satisfy.

In what follows, we illustrate these two specific formalisations, starting with the MDPs, the
main framework for indefinite-horizon DTR problems. A graphical illustration of the different
settings is given in Figure 4.

Figure 4. Graphical representation of the states, actions and rewards relationship in a full-RL, MDP-based RL (MDP-RL),
and stochastic (both contextual and context free) MAB. Solid and dashed lines indicate a direct and indirect (e.g. time-de-
layed) effect, respectively.
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3.3.1 Markov decision processes

An MDP is a stochastic process used to define the dynamics of an environment and to model
the interaction between the agent and the environment. It provides a convenient mathematical
framework for modelling decision-making in situations where the environment is deemed to
evolve according to theMarkov model (Puterman, 1994). Notably, it is the most common setting
assumed in RL (Van Otterlo & Wiering, 2012).
What distinguishes an MDP-based RL (MDP-RL) from the full-RL framework is the envi-

ronment’s random memoryless characteristic. More specifically, assuming that the current state
X t contains all the information of the past historyHt � 1 relevant to future predictions, it allows
us to ignore the past when modelling future states and rewards. This property, known asMarkov
property, leads to a low-dimensional representation of the past, exemplifying the trajectory
distribution in Equation (1) as follows:

PMDP
π ≐ p0 x0ð Þ ∏

t ≥ 0
πt atjxtð Þpt þ 1 xt þ 1; yt þ 1jxt; at

� �
¼ p0 x0ð Þ ∏

t ≥ 0
πt atjxtð Þpt þ 1 xt þ 1jxt; atð Þpt þ 1 yt þ 1jxt; xt þ 1; at

� �
:

Note that under the Markov property, the agent’s decisions can be entirely determined based
on the current information only, as it fully determines the environment’s transition-probability
distributions, that is, pt þ 1 � ; � jHt;Atð Þ ¼ pt þ 1 � ; � jX t;Atð Þ , for all t . When the transition
probabilities pt þ 1

� �
t ≥ 0 are also time independent, that is, pt þ 1 ¼ p, for all t, the process is

called time-homogeneous or stationary MDP. In light of this additional assumption, states,
rewards and actions are now time independent, given the information of previous time points.
In the context of DTRs as well as JITAIs, time-homogeneous MDPs were proposed in
indefinite-time horizons, as they simplify the problem by working with time-independent quan-
tities, which do not require a backward induction strategy (see Section 4.1.3).
While both full-RL and MDP-RL are typically formulated as problems with states, actions,

rewards and transition rules that depend on previous states, an exception is made for MABs,
whose original formulation can be viewed as a stateless variant of RL. In a typical MAB
problem, either the actions and the rewards are not associated with states or they are assumed
to depend only on the current state. This feature enables faster learning in settings such as
JITAIs where RL is continuously implemented in an online fashion. This aspect will be
discussed in more detail in Section 4.3.

3.3.2 Multi-armed bandits

MAB problems, often identified as a special subclass of RL (Sutton & Barto, 2018), have a
long history in statistics. They were introduced in 1933 by (Thompson, 1933) and extensively
studied under the heading sequential design of experiments (Lai & Robbins, 1985;
Robbins, 1952).
Generally speaking, the MAB problem (also called theK-armed bandit problem) is a problem

in which a limited set of resources (e.g. a group of individuals) must be allocated between com-
peting choices in order to maximise the total expected reward over time. Each of the K choices
(i.e. arms or actions) provide a different reward, whose probability distribution is specific to that
choice. If one knew the expected reward (or value) of each action, then it would be trivial to
solve the bandit problem: they would always select the action with the highest value. However,
as this information is only partially gained for the selected actions, at each decision time t the
agent must trade-off between optimising its decisions based on acquired knowledge up to time
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t (exploitation) and acquiring new knowledge about the expected rewards of the other actions
(exploration).

MAB strategies were originally proposed to solve stateless problems, in which the reward de-
pends uniquely on actions. Subsequently, a ‘stateful’ variant of MABs, named contextual MAB
(C-MAB), in which actions are associated with some state, or context, was introduced. How-
ever, unlike full-RL and MDP-RL, in contextual MABs, actions do not have any effect on the
next states. In addition, generally, there are no transition rules from one state to another in sub-
sequent times. This implies that states, actions and rewards can be treated as a set of separate
events over time. The most typical assumption is that contexts X tf gt ∈  are independent and
identically distributed (IID) with some fixed but unknown distribution. This means that action
At at time t has an in-the-moment effect on the proximal reward Y t þ 1 at time t þ 1, but not
on the distribution of future rewards Y τf gτ ≥ t þ 2 , for which the IID property holds as well.
Under this assumption, one can be completely myopic and ignore the effect of an action on
the distant future in searching for a good policy. This problem is better known as stochastic
MABs, in contrast to adversarialMABs (Lattimore & Szepesvári, 2020), in which no indepen-
dence assumptions are made on the sequence of rewards. In stochastic contextual MABs, and
further in the context-free MAB problem, the trajectory distributions are simplified as follows:

PC � MAB
π ≐ p0 x0ð Þ ∏

t ≥ 0
πt atjxtð Þpt þ 1 xt þ 1; yt þ 1jxt; at

� � ¼ p0 x0ð Þ ∏
t ≥ 0

πt atjxtð Þpt þ 1 xt þ 1ð Þpt þ 1 yt þ 1jxt; xt þ 1; at
� �

;

PMAB
π ≐ ∏

t ≥ 0
πt atð Þpt þ 1 yt þ 1jat

� �
:

(12)

Note that, because the effect of an action in the stochastic MAB is in-the-moment, the bandit
problem is formally equivalent to a one-step/state MDP, wherein the states progression is not
taken into account. Thus, compared with MDP-RL and full-RL, MABs provide a simplified
structure of the relationships between the components of RL within time. For a graphical sum-
mary, see Figure 4.

As in the general RL problem, the goal of an MAB problem is to select the optimal arm at
each time t so as to maximise the expected return, alternatively (and with a slightly different
nuance) expressed in the bandit literature in terms of minimising the total regret. Indeed, in
(online) real-world problems, until we can identify the best (unique) arm, we need to make
repeated trials by pulling the different arms. The loss that we incur during this learning
phase (i.e. the time spent for learning the best arm) represents what is called regret, that
is, how much we regret not picking the best arm. Formally, denoted by
A�
t ≐ argmaxat ∈ AE Y t þ 1j; jX t ¼ xtj; ;At ¼ atð Þ the optimal arm at time t, we define the imme-

diate regret Δ Atð Þ of action At as the difference between the expected reward of the optimal arm
A�
t and the expected reward of the ultimately chosen arm At, that is,

Δ Atð Þ ≐ E Y t þ 1jX t;A
�
t

� � � E Y t þ 1jX t;Atð Þ: (13)

Given a horizon T , the goal of the learner is to minimise the total regret given by
Reg Tð Þ≐PT

t¼0Δ Atð Þ. Note that the agent may not know ahead of time how many time points
T are to be played. Therefore, the goal is to perform well not only at the final time point T ,
but also during the learning phase. For example, in a dose-finding problem as the one men-
tioned in Section 3.3.1, the objective may not only be to minimise the sum of toxicities over
time, but also to ensure that these toxicities have a proper upper limit—thus, limiting extremely
harmful adverse events—uniformly over time. For this reason, as we will see later in Section
4.2, theoretical works on regret bounds occupy a central place in the bandit literature.
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3.4 Reinforcement Learning and Adaptive Interventions: A Joint Overview

So far, we have introduced the RL as a mathematical framework for sequential
decision-making problems and discussed its characterisation in illustrative AI examples of
interest. Before diving deep into the rich literature of existing RL methods for building
(optimised) AIs, we provide the reader with a joint overview of the different problems, which
notably share the same key elements and a common optimisation objective. As such, they can
be unified under a unique formal framework and solved with techniques developed under the
RL paradigm.
Table 2 outlines the terminologies of reference in each setting, with a unified notation

adopted from the general RL. Note that, while we report only the most common terminology
employed in each setting, lexical borrowing is widely used across the different theoretical and
applied domains. To illustrate, the term ‘treatment policy’, or just ‘policy’ is often used in place
of ‘treatment regime’ in the DTR literature. Also note that, in general, the terminology adopted
in a specific application is guided by the RL method and framework used in that application;
see, for example the similarity between the terms used in JITAIs and MABs such as ‘contextual
variables’ and ‘context’ (i.e. the state of the environment). Both contextual and tailoring vari-
ables represent the set of baseline and time-varying information that is used to personalise
decision-making. Alternative terms such as covariates or features (which we use with slightly
different meaning, as we discuss in Section 4.2.1) are also common. To help the reader navigate
the different terminologies, an extended version of Table 2, detailing all the notation and acro-
nyms used in the main manuscript, is provided in Supplementary Material B.
We anticipate that most (if not all) of the methods to construct JITAIs would generally belong

to the MAB class, although the applied literature commonly refers to it with the generic
‘reinforcement learning’ name (see, e.g. Figueroa et al., 2021; Liao et al., 2020; Yom-Tov
et al., 2017). In DTRs, the predominant class of methods is full-RL, followed by MDP-RL pro-
posed specifically for indefinite-horizon (e.g. EHR-based) DTR problems. In fact, the underly-
ing theory of DTRs—characterised by potential delayed or carried-over effects of treatment over
time—and the importance of the evolving history of a patient for predicting future outcomes re-
quires accurate consideration of information from previous time points. Generally, the meaning-
ful relationship between the different variables of a patient’s history does not allow simplifying
or ignoring the (state-)transition rules, making full-RL (and occasionally MDP-RL) the ideal
option. On the other hand, the behavioural theory of a momentary effect of an intervention
on the proximal outcome makes MABs a suitable framework in mHealth settings. In addition,
the reduced computational burden from carrying through all the historical information allows
MAB strategies to be applied continuously in time, for example, every hour, and efficiently
construct JITAIs.

Table 2. Notation and terminology of reference of the key elements in RL, MAB, DTR and JITAI problems.

Notation Terminology

RL MABs DTRs JITAIs

i Trajectory Trajectory Patient User
t Time point Round, time point Stage, interval, time point Time point
X State Context Tailoring variable Contextual variable
A Action Arm Treatment, intervention Intervention option
Y Reward Reward Intermediate outcome Proximal outcome
H History History, filtration History History
π, d Policy Policy (Dynamic) treatment regime Policy
π�, d� Optimal policy Optimal policy Optimal DTR Optimal policy
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4 A Survey of Reinforcement Learning Methods for Adaptive Interventions

Methodology for constructing optimal AIs, that is, the ones that, if followed, would yield the
most favourable (typically long-term) mean outcome, is of considerable interest within the
domain of precision medicine, and comprises a large body of research within theoretical and
applied sciences (Chakraborty & Moodie, 2013; Kosorok & Laber, 2019; Laber, Lizotte,
et al., 2014). Although their relevance has been long documented within statistics and causal
inference (see Section 4.1.1), recently it has generated a lot of interest within the computer
science and engineering communities, due to the similarity between the mathematical
formalisation of AIs and the RL framework.

4.1 Methods for Dynamic Treatment Regimes

4.1.1 A historical overview

Perhaps due to the need to identify causal relationships, the study of AIs originated in causal
inference with the pioneering works of Robins (see, e.g. Robins, 1986; Robins, 1994, for
DTRs). Over an extended period of time, the author introduced three basic approaches for find-
ing effects of time-varying regimes in the presence of confounding variables: the parametric
G-formula or G-computation (Robins, 1986), structural nested mean modelswith the associated
method of G-estimation (Robins, 1989; Robins, 1992; Robins, 1994), and marginal structural
models with the associated method of inverse probability of treatment weighting (IPW)
(Robins, 2000).

A number of methods have subsequently been proposed within statistics, including both
frequentist and Bayesian approaches (Lavori & Dawson, 2000; Thall et al., 2000; Thall
et al., 2002; Thall et al., 2007). However, all estimate the optimal DTR based on distributional
assumptions on the data-generation process via parametric models, and, as such, can easily
suffer from model misspecification (Zhao et al., 2015). The first semiparametric method for
estimating optimal DTRs was proposed by Murphy (Murphy, 2003), immediately followed by
Robins (Robins, 2004), who introduced two alternative approaches using G-estimation. These
methods use approximate dynamic programming, where ‘approximate’ refers to the use of an
approximation of the value or Q-function introduced in Equation (5), or parts thereof. Thus,
they can be considered as the first prototypes of RL-based approaches in the AIs literature.

RL methods represent an alternative approach to estimating DTRs that have gained popular-
ity due to their success in addressing challenging sequential decision-making problems, without
the need to fully model the underlying generative distribution. The connection between statistics
and RL (previously confined to the computer science and control theory literature) was bridged
by Murphy (Murphy, 2005b), who proposed estimating optimal DTRs with Q-learning (Sutton
& Barto, 2018; Watkins, 1989). Promptly, a large body of research has embraced the use of
Q-learning, integrating various parametric, semiparametric and non-parametric strategies
(Chakraborty & Moodie, 2013; Chakraborty & Murphy, 2014; Laber, Linn, & Stefanski, 2014;
Murphy, 2005b) to model the Q-function. Q-learning and the semiparametric strategies of
Murphy (2003) and Robins (2004) are considered indirect methods: optimal DTRs are indi-
rectly obtained by first estimating an optimal objective function (e.g. the Q-function), and then
getting the associated (optimal) policy. In contrast, IPW-based strategies (Murphy et al., 2001;
Robins, 2000; Wang et al., 2012) seek optimal policies by directly looking for the policy
(within a prespecified class of policies) that maximises an objective function (e.g. the expected
return), without postulating an outcome model (Zhao et al., 2012); they are regarded as direct
methods.
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In what follows, we review existing RL techniques for developing DTRs focusing on the
indirect methods, while an up-to-date review including direct methods can be found in Deliu
& Chakraborty (2022). We cover both finite- and indefinite-horizon settings. We emphasise that
most of the current work in DTRs deals with finite-horizon problems and offline learning pro-
cedures that assume access to a collection of observed trajectories. This opposes to the JITAIs
tradition—originated with the practical need to deliver AIs in real time—which uses an online
learning approach for performing data collection and policy optimisation simultaneously. Such
procedures can be deployed indefinitely, conditional on practical limitations. In DTRs, the
indefinite-horizon setting, particularly suitable for chronic diseases where the number of stages
can be arbitrarily large, has been addressed only recently. Nevertheless, it remains relatively
understudied.

4.1.2 Finite-horizon problems

Finite-horizon DTR problems are designed to identify optimal treatment policies d� ¼
d�t
� �

t¼0;…; T
over a fixed and known period of time T < ∞. Learning methods typically use

offline RL based on finite (experimental or observational) data trajectories of a sample of say
N patients, and causal assumptions about the data (see, e.g. Deliu & Chakraborty, 2022). Each
patient trajectory has the form X 0;A0; Y 1;…;XT ;AT ; YT þ 1ð Þ, with X 0 and X 1; …; XT the
pretreatment and evolving information, respectively, A0; …; AT the assigned treatments, and

Y 1; …; YT þ 1 the intermediate outcomes. When a single distal (end-of-study) outcome Y
∞
is

considered, all intermediate quantities Y tf gt¼1;…; T are taken as 0, and YT þ 1 ¼ Y
∞
, as discussed

in Section 2. Note that, especially in observational settings, the decision points t can exhibit
greater variability and display less consistent patterns across subjects. In this case, the specific
time points t can substantially differ among different individuals, requiring an accurate defini-
tion of the admissible time intervals, therefore the N data trajectories, when conducting a
DTR analysis.
In finite-horizon problems, RL methods are mainly based on DP or approximate DP proce-

dures. These include Q-learning (Murphy, 2005b), with the Q-function as the objective, and
A-learning (Murphy, 2003; Robins, 2004), which focuses on contrasts of conditional mean out-
comes. We now discuss the former, assuming throughout this section deterministic policies, that
is, policies that map histories h directly into actions or decisions, that is, d hð Þ ¼ a.

Q-learning with function approximation In Section 3, we showed that optimal value func-
tions can be obtained by iteratively solving the Bellman optimality relationship in
Equations (10)–(11). In finite-horizon DP problems, this procedure is known as backward
induction. However, the iterative process may be memory and computationally intensive,
especially for large state and action spaces. Furthermore, traditional DP procedures assume
an underlying model for the environment, which is often unknown due to unknown transition
probability distributions. Q-learning (Watkins, 1989) offers a powerful and scalable tool to
overcome the modelling requirements as well as the computational burden of traditional
DP-based methods and constitutes the core of modern RL.
The general idea of Q-learning is that, at each new t, the Q-function is updated based on a

previous value and the new acquired information:

Qd
t ht; atð Þ←Qd

t ht; atð Þ þ αt Y t þ 1 þ γ max
at þ 1 ∈ At þ 1

Qd
t þ 1 ht þ 1; at þ 1ð Þ � Qd

t ht; atð Þ
� �

;
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with αt a constant that determines to what extent the newly acquired information overrides the
old information or how fast learning takes place, and γ a discount factor that balances immediate
and future rewards (in finite-horizon problems, it is generally set to one).

The original version of this approach is known as tabular Q-learning (Sutton & Barto, 2018).
This is based on storing the Q-function values for each possible state and action in a lookup ta-
ble and choosing the one with the highest value. As the agent selects the actions based on their
maximum associated Q-function value, this is equivalent to exploiting (recall the notion of ex-
ploitation introduced in Section 3.3.2). However, the tabular approach is slow and impractical
for large state and action spaces. A powerful and scalable solution to this problem is a more re-
cent version of Q-learning, known as Q-learning with function approximation (Murphy, 2005b;
Sutton & Barto, 2018). This version first assumes an approximation space for each of the
Q-functions in Equation (5), for example, Qt≐ Qd

t ht; at; θtð Þ:θt ∈ Θt

� �
, with parameter space

Θt a subset of the Euclidean space, and then estimates the optimal stage-t Q-functions Q�
t back-

ward in time for t ¼ T ; T � 1; …; 0 (Bather, 2000). According to Equation (8), estimating an

optimal regime bd� ¼ d�0 x0ð Þ; ; ; ; d�1 h1ð Þ;…; ; ; ; d�T hTð Þ� �
is equivalent to getting estimates of the

optimal Q-functions, or in this case, getting an estimatebθt, t ¼ 1; …; T, of the parameters, that is,

bd�t htð Þ ¼ argmax

at ∈ At

bQ�
t ht; atð Þ≐argmax

at ∈ At
Q�

t ht; at;bθt� �
≐d�t ht;bθt� �

:

Noticing, for example, that the Q-function is a conditional expectation, we can get the
optimal Q-functions as

Q�
t ht; at;bθt� �

≐bEN Y t þ max
at þ 1 ∈ At þ 1

Q�
t þ 1 ht þ 1; at þ 1;bθt þ 1

� �
jHt ¼ ht; At ¼ at

� �
;

with bEN denoting the empirical mean over a sample of N units. The procedure is illustrated in
Supplementary Material E, and a more specific implementation with linear regression is given
in Supplementary Material C.

It is important to recognise that the estimated regime bd� may not be a consistent estimator for
the true optimal regime d�, unless all models for the Q-functions are correctly specified. A strat-
egy that may offer robustness to Q-function misspecification is A-learning (Murphy, 2003;
Robins, 2004), where ‘A’stands for the ‘advantage’ incurred if the optimal treatment were given
as opposed to what was actually given. A-learning represents a class of alternative methods to
Q-learning, predicated on the fact that it is not necessary to specify the entire Q-function to es-
timate an optimal regime. A more in-depth discussion is provided in Supplementary Material D.
Schulte et al. (2014) showed that A-learning outperforms Q-learning under misspecifications of
Q-function models.

Given that a linear regression model may be quite simple and prone to misspecification, more
sophisticated approximators can be used both in Q-learning and in A-learning. These include
support vector regression (Zhao et al., 2009) and deep neural networks (Atan et al., 2018),
among others.

Deep Q-network The tremendous success achieved in recent years by RL has been greatly
enabled by the use of advanced function approximation techniques such as deep neural net-
works (DNNs) (Jonsson, 2019; Mnih et al., 2015; Silver et al., 2017), giving rise to the deep
Q-network algorithm (Mnih et al., 2015). Specifically, at a given time t, a DNN (see Goodfellow
et al., 2016, for an overview of existing DNN architectures) is used to fit a model for the
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Q-function in a supervised way and then estimate the optimal Q-function: histories

Ht; i

� �
i¼1;…; N

are given as input, and the predicted Q-function values Qd
t Ht; at;cW; bb� �

asso-

ciated with each actionat ∈ At, for example, withAt ¼ a1;…; aKf g, are generated as output.W
andb represent the unknown weight and bias parameters of a typical DNN; see, for example, the
schematic of a feed-forward neural network in Figure 5.
Once Q-function estimates are obtained with the DNN, the algorithm proceeds with execut-

ing, in an emulator, an action according to an exploration scheme named ϵ-greedy (Sutton &
Barto, 2018). This probabilistically chooses between the optimal action so far (i.e. the one with
the highest estimated Q-function value) and a random action. Specifically, ϵ is the exploration
probability for a random action. At the end of the execution sequence, first the Q-function is
re-estimated based on the observed reward, and then the DNN parameters are updated using
the last Q-function estimates. The pseudo-algorithm is given in Supplementary Material E.
A DNN offers a more flexible and scalable approach, particularly suitable for real-life com-

plexity, high dimensionality and high heterogeneity. Compared with their shallow counterparts,
they enable automatic feature representation and can capture complicated relationships (see, e.g.
the application in the graft-versus-host disease of Liu et al., 2017). A general limitation of in-
direct methods such as Q-learning, is that the optimal DTRs are estimated in a two-step proce-
dure: first, the Q-functions are estimated using the data, and then these are optimised to infer the
optimal DTR. In the presence of high-dimensional information, even with flexible
non-parametric techniques such as DNNs, it is possible that these conditional functions are
poorly fitted, with the derived DTR far from optimal. Furthermore, as demonstrated by (Zhao
et al., 2012), indirect approaches may not necessarily result in the maximum long-term clinical
benefit, motivating direct methods. We refer to (Deliu & Chakraborty, 2022; Tsiatis et al., 2021)
for a survey of direct approaches.
Nonetheless, we emphasise that here we present indirect methods in some detail because they

are somewhat similar to well-known regression methods that most readers can relate to. Further-
more, many of the methods for developing JITAIs (e.g. Thompson sampling, among the other
methods discussed in Section 4.2) are also regression-based methods. Thus, by focusing on
regression-type methods across apparently disjoint application domains, we help enhance the
synergy between them.

Figure 5. Schematic of a feed-forward neural network. It is characterised by a set of neurons, structured in four layers (L ¼ 4),
where each neuron processes the information forward from one layer to the next one. Information is non-linearly transformed
according to unknown weights W lð Þ and bias b lð Þ parameters, l ¼ 1; …; L � 1.

21Reinforcement Learning in Modern Biostatistics: Constructing Optimal Adaptive Interventions

International Statistical Review (2024)
© 2024 The Author(s). International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12583 by N

ina D
eliu - U

niversity D
i R

om
a L

a Sapienza , W
iley O

nline L
ibrary on [13/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.1.3 Indefinite-horizon problems

While in computer science there is a vast literature on estimating optimal policies over an
increasing time horizon (Sugiyama, 2015; Szepesvari, 2022), that is not the case in DTRs. In
fact, by adopting backward induction, most existing methods cannot extrapolate beyond the
time horizon in the observed data. Nevertheless, for some chronic conditions or those with very
short time steps, including mHealth applications (see Section 2), the time horizon is not definite.
Treatment decisions are made continuously throughout the life of a patient, with no fixed time
point for the final treatment decision.

To the best of our knowledge, only a limited number of statistical methodologies have been
developed for the indefinite-horizon setting. These include the indirect greedy gradient Q-
learning method of Ertefaie & Strawderman (2018), and the direct V-learning approach of
Luckett et al. (2020), who proposed to search for an optimal policy over a prespecified class
of policies. More recently, a minimax framework called proximal temporal consistency learning
was proposed (Zhou et al., 2022). We now detail the first two approaches, while for the third, we
refer the reader to the original work in Zhou et al. (2022).

Greedy gradient Q-learning The first extension to indefinite-time horizons in DTRs was
proposed in Ertefaie & Strawderman (2018), under the time-homogeneous Markov assumption
(see Section 3.3.1). Although not imposed by general DTR methods, such assumption
overcomes the need for backward induction, and exemplifies inference by working with
time-independent Q-functions.

We adopt the notation of the previous sections and introduce an absorbing state c, represent-
ing a loss-to-follow-up, for example, death, event. We assume that at each time t, covariates X t

take values in a finite state space X ⋆≐X∪ cf g, with X∩ cf g ¼ ∅. Let the action space Ax be
finite and defined by covariate information such that Ax consists of 0 < Kx ≤ K treatments,
with K being the total number of treatments over the time horizon. For any t such that X t ¼
c , let Ax ¼ Ac ¼ uf g , where u stands for ‘undefined’. Now, denoting a stopping time (e.g.
death) by eT≐inf t > 0:X t ¼ cf g; individual trajectories are of the form

X 0;A0;R1;…;XeT � 1;AeT � 1;ReT ;XeT� �
. Note that ℙ eT < ∞jX 0;A0

� �
¼ 1, regardless of

X 0;A0ð Þ. Based on these specifications, the indefinite time-t Q-function for regime d htð Þ ¼
d xtð Þ ¼ d xð Þ, for x ∈ X, is given by:

Qd x; að Þ≐Ed Rt jX t ¼ xt; At ¼ at½ � ¼ Ed

X∞
τ¼0

γτ � tY τ þ 1

�����X t ¼ xt; At ¼ at

" #
:

We set Q� c; að Þ ¼ 0 because the return is 0 after an individual is lost to follow-up.
For estimating an optimal DTR, Q-learning is proposed. Let Q x; a; θ�ð Þ be a parametric

model for Q� x; að Þ indexed by θ� ∈ Θ ⊆ ℝn, with n ≥ 1, and postulate a linear model with
interactions, that is, Q x; a; θ�ð Þ ¼ θ�T f x; að Þ , with f x; að Þ being a known feature vector
summarising the state and treatment pair. To ensure Q� c; að Þ ¼ 0, we also need f c; að Þ ¼ 0.
Now, defining f X t;Atð Þ≐∇θ�Q X t;At; θ�ð Þ , with ∇ the gradient, Bellman optimality suggests
and motivates the following unbiased estimating function for θ�:

bD θ�ð Þ ¼ bℙN

XT � 1

t¼0

Y t þ 1 þ γ max
a ∈ AXt þ 1

Q X t þ 1; a; θ�ð Þ � Q X t;At; θ�ð Þ
 !

f X t;Atð Þ
( )

: (14)

Note that the estimating function in Equation (14) is a non-convex and non-differentiable
function of θ� , which complicates the estimation process. Under regularity conditions, the
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authors suggested that any solution bθ� can be equivalently defined as a minimiser ofbM θ�ð Þ≐bD θ�ð ÞTbS�1bD θ�ð Þ, with bS ≐ bℙN

XT � 1

t¼0
f X t;Atð Þ⊗2

n o
, and x⊗2 ≐ xxT , for any vector

x. If bθ� ¼ argminθ� ∈ Θ bM θ�ð Þ is the unique solution, then bQ� x; að Þ ¼ Q x; a; bθ�� �
, and the cor-

responding optimal regime is given by bd� ¼ argmaxa ∈ AxQ x; a; bθ�� �
.

V-learning The greedy gradient Q-learning approach based on Equation (14) involves a
non-smooth max operator that makes estimation difficult without large amounts of data (Laber,
Linn, & Stefanski, 2014; Linn et al., 2017). Motivated by an mHealth application, where policy
estimation is continuously updated in real time as data accumulate (starting with small sample
sizes), an alternative method is proposed in Luckett et al. (2020). Under the same
time-homogeneous MDP assumption, provided that interchange of the sum and integration is
justified, the authors consider the value function

V d
t xtð Þ ¼

X
τ ≥ t

E γτ � tY τ þ 1 ∏
τ

v¼t

d AvjXvð Þ
πv AvjXvð Þ

 �����X t ¼ xt

� �
;

and follow a direct approach to directly maximise estimated values over a prespecified class of
policies. In light of the Bellman equation in Equation (9), it follows that, for any function f
defined on the state space X t, the following importance-weighted variant is satisfied:

0 ¼ E d AtjX tð Þ
πt AtjX tð Þ Y t þ 1 þ γV d X t þ 1ð Þ � V d X tð Þ� �

f X tð Þ
� �

:

Let V d x; θð Þ, with θ ∈ Θ ⊆ ℝn, be a model for V d xð Þ. Assume that V d x; θð Þ is differentiable
everywhere in θ for fixed x and d. Then, the proposed estimating equation is given by

bΛ θð Þ ¼ bℙN

XT
t¼0

d AtjX tð Þ
πt AtjX tð Þ Y t þ 1 þ γV d X t þ 1; θð Þ � V d X t; θð Þ� �

∇θV
d X t; θð Þ

" #
:

Again, bθ can be obtained by minimising bM θð Þ≐bΛ θð ÞTbS�1bΛ θð Þ þ λP θð Þ, with bS a positive
definite matrix inℝn � n, λ a tuning parameter, andP :ℝn→ℝþ a penalty function. The estimated

optimal regime bd� is the argmax of V d x;bθ� �
. Compared with greedy gradient Q-learning,

V-learning requires modelling both the policy and the value function, but not the
data-generating process. In addition, by directly maximising the estimated value over a class
of policies (see Luckett et al., 2020, for more details), it overcomes the issues of the
non-smooth max operator in Equation (14). The method is applicable over indefinite horizons
and is suitable for both offline and online learning, which is typical in JITAIs.

4.2 Just-in-time Adaptive Interventions in Mobile Health

Unlike DTRs, where the number of decision points is generally small, JITAIs are defined
upon a random and indefinitely large number of times. They are carried out in dynamic environ-
ments with the scope of capturing rapid changes in an individual user’s context and needs
(Nahum-Shani et al., 2015; Nahum-Shani et al., 2018). Methodologies for optimising JITAIs
require the ability to learn nearly continuously, with no definite time horizon. Furthermore,
learning is performed online as data accumulate, often using trajectories defined over very short
time periods. Note that in such settings, the exploration policy π used to collect the samples
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corresponds to the target policy d we want to improve and optimise; that is, π ¼ d . Thus,
existing methods for DTRs, which mainly target a finite-time horizon problem and are imple-
mented offline (e.g. Q-learning), are not directly applicable to JITAIs. Furthermore, by carrying
over an entire history of an individual, they may not be feasible from a computational
perspective.

As discussed in Section 3, the standard approach for developing JITAIs is given by
contextual MABs (Tewari & Murphy, 2017), an intermediate solution between MABs
(Auer et al., 2002) and the full-RL approach used in DTRs. With a few exceptions, contextual
MAB algorithms applied in mHealth rely on two fundamental bandit strategies, originally
implemented in advertising: the linear upper confidence bound (LinUCB) (Li et al., 2010)
and the linear Thompson sampling (LinTS) (Agrawal & Goyal, 2013).

4.2.1 Contextual bandits with upper confidence bound exploration

So far, optimal AIs have typically been identified by finding the optimal Q-functions
recursively with the Bellman relationships. In contrast, LinUCB (Chu et al., 2011;
Li et al., 2010) employs the underlying idea of MABs, where the optimal policy is the set
of the optimal stage- t arms, for all t , defined individually for each time t as:
d�t ≐A

�
t ≐argmaxat ∈ AE Y t þ 1j; jX t ¼ xtj; ;At ¼ atð Þ . Notice that this objective function

represents a myopic version of the Q-function in Equation (5) by taking γ ¼ 0 and reflects a
stochastic MAB setting where contexts are IID and one can ignore the previous history given
the last state xt (see also Equation (12)), that is,

Qπ
t ht; atð Þ ¼ Qπ

t xt; atð Þ ¼ E Y t þ 1 jX t ¼ xt; At ¼ at½ �; ∀at ∈ At; ∀xt ∈ X t; ∀t ∈ :

The specific solution of LinUCB is based on performing an efficient exploration by favouring
arms for which a confident value has not been estimated yet and avoiding arms which have
shown a low reward with high confidence. This confidence is measured by the upper confidence
bound of the expected reward value for each arm. The underlying assumption is that the condi-
tional expected reward is a linear function of a context-action feature f , that is,E Y t þ 1jX t;At½ � ¼
f X t;Atð ÞTμ, with μ ∈ ℝn the unknown coefficient vector associated with the feature f . In this
work, we consider general features f (constructed via linear basis, polynomials or splines expan-
sion, among others; see, e.g. Marsh & Cormier, 2002) rather than a standard linear function that
may fail to capture non-linearities in the data.

Under the linear model assumption, the LinUCB idea is to estimate at each time t an upper
bound, say Ut atð Þ, for the expected reward of each arm at. The LinUCB estimator is defined as

bUt atð Þ ≐ bQπ
t xt; atð Þ þ αst atð Þ ¼ f X t ¼ xt; At ¼ atð ÞTbμt þ αst atð Þ; (15)

where α > 0 is a tuning parameter that controls the trade-off between exploration and exploi-
tation: small values of α favour exploitation while larger values of α favour exploration. The first
part f X t; ;At ¼ atð ÞTbμt, with bμt ≐ B�1

t bt being an estimate of μt, reflects the current point esti-
mate of the expected reward of the arm at. The second term represents the confidence we have in

this estimate, resembling a typical confidence interval: st atð Þ≐
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f xt; atð ÞTB�1

t f xt; atð Þ
q

reflects

the uncertainty, or the standard deviation, and α can be viewed as a generalisation of the critical

value. Note also that B�1
t and bt are analogous to the terms ‘ XTX

� ��1
’ and ‘XTY’, respectively,

appearing in the ordinary least squares estimator for a standard linear regression model with
E Y jX½ � ¼ XTμ . If we assume a ridge penalised estimation strategy, with penalty parameter
λ ≥ 0 , these values are recursively computed at each time t taking into account previously
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explored arms: Bt≐λIn þ
Xt � 1

τ¼0
f xτ;eaτð ÞT f xτ;eaτð Þ and bt≐

Xt � 1

τ¼0
f xτ;eaτð ÞTY xτ;eaτð Þ, whereeaτ≐argmaxaτ ∈ AU τ aτð Þf gτ¼0; 1;…; t � 1 are the optimal arms estimated at previous times and

In is the identity matrix of order n . A schematic of the LinUCB approach is provided in
Supplementary Material E.
Several variations of LinUCB were proposed in the bandit literature. These include (i) the lin-

ear associative RL strategy (Auer, 2003), based on singular value decomposition rather than
ridge regression; (ii) generalised linear models, aiming to accommodate more complex models
either for the reward (Filippi et al., 2010; Li et al., 2017) or the environment (Urteaga &
Wiggins, 2019); (iii) non-parametric modelling of the reward function, such as Gaussian
processes (Srinivas et al., 2012); and (iv) a neural network-based feature construction which
overcomes the linear reward assumption (Zhou et al., 2020). More recently, in addition to the
(bandit) optimisation goal, attention has been given to statistical objectives. To illustrate, in a
similar context as ours, that is, behavioural science, Dimakopoulou et al. (2019) introduced
balancing methods from the causal inference literature. Specifically, to make the algorithm less
prone to bias, authors proposed to weight each observation with the estimated inverse probabil-
ity of a context being observed for an arm. This algorithm helps to reduce bias, particularly in
misspecified cases, at the cost of increased variance.
Successful applications of LinUCB in mHealth can be found in Forman et al. (2019) and

Paredes et al. (2014). The former developed a LinUCB-based intervention recommender system
for delivering stress management strategies (upon user’s request in a mobile app), with the
goal of maximising stress reduction. After 4 weeks of study, participants who received
LinUCB-based recommendations demonstrated to use more constructive coping behaviours.
Similarly, in Forman et al. (2019), a pilot study was conducted to evaluate the feasibility and
acceptability of an RL-based behavioural weight loss intervention system. Participants were
randomised between a non-optimised group, an individually-optimised group (individual re-
ward maximisation), and a group-optimised (group reward maximisation) group. The study
showed that the LinUCB-based optimised groups have strong promise in terms of the outcome
of interest, not only being feasible and acceptable for participants and coaches, but also achiev-
ing desirable results at roughly one-third the cost.

4.2.2 Contextual bandits with Thompson sampling exploration

Although Thompson sampling (TS) (Thompson, 1933) has been introduced more than
80 years ago, it has only recently reemerged as a powerful tool for online decision-making,
due to its optimal empirical and theoretical properties. Under the same linear reward assumption
as in LinUCB, Agrawal and Goyal (Agrawal & Goyal, 2013) proposed a generalisation of TS to
a contextual setting. Rooted in a Bayesian framework, the idea of TS is to select arms according
to their posterior probability of being optimal, that is, by maximising the posterior reward
distribution, at each time t. The policy π at each time t is thus explicitly defined as:

πt að Þ ¼ ℙ Qπ
t xt; að Þ ≥ Qπ

t xt; a
0ð Þ; ∀a0 ≠ aHt ¼ ht

� �
¼ ℙ E Y t þ 1 jX t ¼ xt; At ¼ a½ � ≥ E Y t þ 1 jX t ¼ xt; At ¼ a0½ �; ∀a0 ≠ aHt ¼ htð Þ; t ¼ 0; 1; …;

(16)

where the conditioning term Ht ¼ ht reflects the posterior nature of this probability and should
not be confused with the conditioning terms of the Q-function. The TS policy has been shown
to be asymptotically optimal, meaning that it matches the asymptotic lower bound of the regret
introduced by Lai and Robbins (Lai & Robbins, 1985).
The typical way to implement TS is iterative and involves a posterior sampling procedure

(see, e.g. Chapelle & Li, 2011). For example, in the common case of a Gaussian reward model
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with variance ν2, that is, Y t∣μ; f X t;Atð Þ ∼ N f X t;Atð ÞTμ; ν2
� �

, considering a Gaussian prior

for the regression coefficients vector μ, for example, μ ∼ N 0n; ; σ2Inð Þ, at each time t, the op-
timal arm is the one that maximises the posterior estimated expected reward, or f X t;Atð ÞTeμt.
The posterior nature is reflected in eμt , which represents a sample from the estimated posterior
distribution, given by N bμt; ; ν

2B�1
t

� �
; here bμt ≐ B�1

t bt is the posterior mean, with Bt and bt
defined in the same way as for LinUCB. The iterative LinTS procedure is given in
Supplementary Material E.

Given the history up to time t and f X t;Atð Þ, the LinUCB allocation policy is deterministic, in
the sense that the t-step arm or intervention at is uniquely determined as the one that maximises
the upper confidence bound in Equation (15); all the other arms have a null probability of being
assigned. In contrast, LinTS can be regarded as a randomised scheme, where each of
the admissible arms has a positive probability of being assigned to an individual, independent
of their history. In other words, given the history up to time t and f X t;Atð Þ , the LinTS
allocation policy, as defined in Equation (16), is still random. In terms of exploration, LinUCB
allows exploration through the uncertainty term st atð Þ , while LinTS achieves it through the
random draws from the posterior distribution, or, equivalently, through the probability πt atð Þ
in Equation (16). Note that the standard deviation of LinUCB and LinTS is of the same order.

In fact, in LinTSY t∣μt; f xt; atð Þ ∼ N f xt; atð ÞTbμt; ν
2f xt; atð ÞTB�1

t f xt; atð Þ
� �

, and by definition

f xt; atð ÞTB�1
t f xt; atð Þ ¼ st atð Þ.

Similarly to LinUCB, many extensions have been considered. In the mHealth literature,
specifically addressing complex likelihood functions, Eckles and Kaptein (2019) formulated a
Bootstrap TS version to replace the posterior by an online bootstrap distribution of the point es-
timate bμt at each time t. The approach offers improved robustness to model misspecifications
(due to the robustness of the bootstrap approach), and it can be easily adapted to dependent ob-
servations, a common feature of behavioural sciences. Tackling a different issue, namely, sparse
and noisy data, Tomkins et al. (2021) introduced Intelligent Pooling, a generalised version of
LinTS with a Gaussian mixed-effects linear model for the reward. By explicitly modelling het-
erogeneity between individuals and within an individual over time, the method demonstrates a
better promise of personalisation, even in small groups of users.

Action-centered Thompson sampling Motivated by potential non-stationarities in mHealth
problems, Greenewald et al. (2017) generalised the stationary linear model of LinTS to a
non-stationary and non-linear version, where the expected reward model is formalised as

E Y t þ 1 jX t ¼ xt; At ¼ atð Þ ¼ f xt; atð ÞTμI at ≠ 0ð Þ þ gt xtð Þ; t ∈ ; (17)

with gt xtð Þ being the main non-stationary component that can vary based on past information,
but not on current action, and I �ð Þ denoting the indicator function. Compared with LinTS, here
the reward is conceived as a combination of a baseline reward (associated with a ‘do nothing’ or
control arm, say at ¼ 0), which is entirely determined by gt xtð Þ, and a treatment or action effect
(associated with non-control arms, say at ≠ 0 ). The latter is a linear function of the
context-action feature f xt; atð Þ ∈ ℝnwithμ ∈ ℝn the unknown parameters (resembling the fixed
component characterising LinTS), but consider contextsX t chosen by an adversary based on the
history up to time t. The term adversarial in contextual MABs can refer to the context and the
reward generation mechanism: when both contexts and rewards are allowed to be chosen arbi-
trarily by an adversary, no assumptions on the generating process are made (see also Section
3.3.2), and data can be non-IID.

26

International Statistical Review (2024)
© 2024 The Author(s). International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12583 by N

ina D
eliu - U

niversity D
i R

om
a L

a Sapienza , W
iley O

nline L
ibrary on [13/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



To avoid user habituation, caused, for example, by the delivery of too many interventions,
and to prevent the algorithm from converging to an ineffective deterministic policy, a stochastic
chance constraint on the size of the probabilities of delivering the non-control arm is consid-
ered. That is, given two fixed probability thresholds πmin and πmax, with 0 < πmin < πmax <
1, the probability of assigning a non-control arm is given by

πt að Þ ¼ max πmin; min πmax; ℙ f xt; að ÞTμ > 0
� �� �

; a ≠ 0;
�

where ℙ f xt; að ÞTμ > 0
� �

represents the expected treatment effect of a non-control arm a,

while μ reflects the parameter posterior distribution as in LinTS. The proposed strategy, named
action-centered TS, can be viewed as a hierarchical two-step procedure, where the first step in-
volves estimating the optimal non-control arm, that is, the one that maximises the expected
treatment effect or reward as in classical LinTS, and the second step is to randomly select
between a control and non-control arm At ≠ 0. To allow for better comparability with LinTS,
both algorithms are described with their pseudo-code in Supplementary Material E.
The specific use of the term ‘action-centered’ reflects the estimation procedure for the

unknown parameters μ : Due to the arbitrarily complex baseline reward gt xtð Þ , the authors
propose to work with the differential reward, defined as Y t þ 1 X t;Atð Þ � Y t þ 1 X t; 0ð Þ ¼
f X t;Atð ÞTμI At > 0ð Þ þ εt þ 1 , which has the scope to eliminate the component gt xtð Þ; this
allows the derivation of an unbiased estimator, and we refer to (Greenewald et al., 2017) for
further details. The authors also showed that the action-centered TS achieves performance guar-
antees similar to LinTS, while allowing for non-linearities in the baseline reward. Additional
theoretical improvements are given in Kim & Paik (2019) and Krishnamurthy et al. (2018).
Here, a relaxation of the action-independent assumption of the component gt xtð Þ in
Equation (17) is considered, making the reward model entirely non-parametric.
From a practical viewpoint, the algorithm has been empirically evaluated in the HeartSteps

study (Klasnja et al., 2015; Liao et al., 2020), an mHealth physical activity study of great
interest both in biostatistics and in the RL/bandit literature. In this context, Liao at el. (Liao
et al., 2020), for example, incorporated into the differential reward model an ‘availability’
variable, stating whether the user is available to receive an intervention or not.

4.3 Insights on Current Methodological Differences and Their Drivers

So far, a broad literature documented and demonstrated the premise of RL in both types of
AIs. However, the practical methodological realities of the two remain apparently disjoint or
with little commonalities. Why does Q-learning, a popular algorithm for estimating DTRs, have
no practical use in JITAIs, where simplified frameworks are used? Is it reasonable to adopt sim-
plified RL formulations given the nature of mHealth applications? Can we expect Thompson
sampling, largely employed in JITAIs, to dictate the next generation of DTRs? Or ultimately,
should we expect a convergence, dictated, for example, by a greater synergy between the two
areas, or should we regard them as unrelated?
Although these questions were partially covered throughout the previous sections, here we

offer a systematic synthesis of the main differences and their drivers. We propose a number
of insights that may guide the thinking about the future of the two areas and their potential
relationship (or lack thereof), convergence, or complementarity. In Section 5, case studies
supporting this discussion will be illustrated.
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4.3.1 Offline versus online learning: a different primary objective

One of the main differences between the DTR and JITAI settings is in the role optimising
schemes such as RL have from the data acquisition to the data analysis. In DTRs, RL is typically
(we will mention a few exceptions shortly) implemented in an offline manner: we assume data
have already been collected, and RL serves for estimating an optimal regime from a batch of N
IID data trajectories. RL does not guide the treatment decisions as new data arise, and thus has
no role in the data collection process. Data are typically generated based on routine clinical
practice (leading to observational data such as EHRs), or according to a randomised study
where interventions are assigned with, for example, fixed and equal probability at each stage.
On the contrary, in JITAIs, RL is often the main determinant of data collection: its scope is
to determine and deliver, based on accumulating data, the right interventions in real time so
as to benefit the most of the study participants. Clearly, while this process will not directly affect
the sample, it will affect the intervention assignment and thus the final data.

This difference is mainly driven by the typical primary objective in each AI area, especially in
the case of experimental studies, where an intervention decision can bemadewithin the study. For
DTR studies, the purpose of a potential experimental trial is generally to evaluate and compare
treatments; only in subsequent analyses/phases, the goal embraces identifying and eventually
assigning (to a future population) an optimal estimated regime. Nonetheless, it is worth noting
that data arising from experimental studies, in particular SMARTs, are still limited. In fact, due
to cost and complexity in the design and implementation, SMARTs are relatively few in number.
In this landscape, the availability of observational data has guided a broad literature onDTR, leav-
ing space for offline learning only. Yet most of the literature has focused on illustrating the appli-
cation of statistical methodology, rather than informing clinical practice (Mahar et al., 2021). One
of the main challenges for an adequate translation into practice is given by the difficulty in veri-
fying the necessary conditions for causal inference, in addition to the high heterogeneity of both
patient populations and treatment implementation, which requires accurate pre-analysis consid-
erations. We refer to section 15.3.1.1 of Deliu & Chakraborty (2022) for two relevant examples
on constructing DTRs with observational data.

Unlike DTRs, in JITAIs, delivering optimal AIs during the course of a program or the trial in
order to optimise users’ experience and engagement with themHealth device remains the primary
goal. Clearly, this trend is facilitated by the use of mobile devices and by the type of intervention
(more behavioural and less clinical). Nonetheless, an increasing amount of population is using
mobile devices for behavioural health support outside of experimental contexts in their everyday
life. This anticipates a large amount of observational-type of data for estimating JITAIs, along
with several challenges for analyses, spanning from the large portion of missing data to the high
heterogeneity in terms of users’ behaviour in using the mHealth tool (e.g. number and distance
between decision points or availability to interact with the device).

There are some exceptions, and these may indicate a potential convergence. For example, in
the context of infectious diseases, the application of a fixed randomisation strategy for a pro-
longed period is neither ethical nor feasible. To this end, the use of TS has been proposed to
learn and assign an optimal treatment strategy online (Laber et al., 2018). Notably, the MAB
choice in this setting addresses some challenges that cannot be directly addressed with offline
methods such as Q-learning, including: (i) scarsity of data at the onset of an epidemic, (ii) high
dimensionality and scalability with respect to state and action spaces, and (iii) a long and indef-
inite time horizon. Similarly, there have been theoretical works (see, e.g. Cheung et al., 2015;
Wang et al., 2022) that tried to incorporate online adaptations within a SMART to skew the
randomisation probabilities towards the most promising treatments.
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4.3.2 Simplifying assumptions and domain aspects

Delivery of JITAIs in mHealth is carried out primarily through the simplified RL framework
of contextual MABs. This simplification is essentially dictated by the strong assumption that ac-
tions At have a momentary effect on rewards Y t þ 1, but do not affect the distribution of the next
states X τf gτ ≥ t þ 1. Essentially, one sets the discount parameter γ to 0, and looks for the optimal
in-the-moment action. Domain knowledge envisions that such an assumption is reasonable in
many mHealth applications, where information such as weather, time of the day and GPS loca-
tion, among others, is momentary, as is also its effect. However, one may certainly question the
validity of such a choice or whether we should use a larger γ, full- or MDP-RL, or other strat-
egies. In clinical conditions, this is often unrealistic: the effect of a treatment may be observed at
different times and may be affected by delayed or carryover effects. In mHealth, the study of
phenomena such as habituation and delayed rewards is becoming increasingly common.
Incorporating these considerations, in addition to allowing for non-stationarities (as in the
action-centered TS (Greenewald et al., 2017)), may favour the RL methods used in DTRs
and advance knowledge discovery.

4.3.3 Learning efficiency

Clearly, solving a full-RL or an MDP-RL problem is much more computationally demanding
than solving a contextual MAB problem. The discount rate γ is strongly related to computational
expense: the larger is the γ, or the farther we look ahead, the higher is the computational burden.
By choosing small values of γ, one trades off the optimality of the learned policy for computa-
tional efficiency, which is a critical aspect in high-dimensional problems. Notably, contextual
data in many mHealth applications is highly private. For this reason, much of the computation
has to be done locally on mobile devices, with the risk of severely impacting battery life.

4.3.4 Inference and real-time inference

A key aspect that has been extensively studied in DTRs is the problem of inference (see Deliu
& Chakraborty, 2022; Tsiatis et al., 2021, for a recent overview). This aspect has been neglected
in JITAIs, where the primary goal is oriented towards reward optimisation, or alternatively, partic-
ipants’ benefit. Learning about intervention regimes and drawing generalised conclusions is often
beyond the scope of their delivery. However, even when the focus is on the ongoing study itself,
how can we support the development of high-quality JITAIs without adequately assessing the ef-
fectiveness of the sequence of interventions delivered by the mobile device? Clearly, compared
with (mostly behavioural) JITAIs, delivering DTRs involves a higher risk, as each intervention
(often a drug) can have a substantial impact on patients’ lives. Thus, among other critical points,
including cost, this ethical aspect has long limited the learning and delivery of DTRs online.
We emphasise that adaptive data-collection settings driven by RL present major challenges for

statistical inference due to potential strong imbalances in arms allocations and the underlying se-
quential nature of the data. The problem is nowadays well documented (Deliu et al., 2021; Hadad
et al., 2021), and recent solutions have borrowed tools from causal inference (Zhang et al., 2021).
While this discussion is motivated by the apparent differences between the DTR and JITAI

methods, we have shown that there are exceptions, and that the use of a specific RL method
should be driven by the applied problem at hand and its peculiarities (population, disease or
condition, underlying domain characteristics and ethical concerns). We acknowledge that com-
putational costs (memory and time), as well as technological limitations, still play a dominant
role in JITAIs; whereas in DTRs, the main drivers relate to ethical aspects and the costs asso-
ciated with running high-quality intervention studies such as SMARTs.
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Going beyond methodology, we conclude this section by suggesting that, despite the fact that
DTRs and JITAIs originated and developed within two different domains while following a
similar—if not the same—goal, they could often have a complementary role. In fact, if con-
struction of an optimised DTR is part of the objectives of an experimental study (even if second-
ary), JITAIs could be utilised to deliver behavioural interventions to enhance both adherence to
treatment and engagement with the health study, all in support of high-quality data collection,
with limited deviations from study protocol.

4.4 Further Considerations and Future Directions

We notice that our focus in this work has been mainly devoted to the development of optimised
AIs and, more specifically, to the use of RL to solve this dynamic optimisation problem. Several
other aspects are crucial for rigorously, validly and ethically operating in the space of AIs.

First, an adequate framework for causal inference is necessary. In this work, we only men-
tioned it in passing (see Section 3.1) and assumed that this foundational block and the underlying
assumptions (such as unconfounding) hold. Although RL practitioners often consider problems
in which the data are unconfounded, healthcare practitioners often need to make inferences using
offline RL from observational data, where unconfouness is a major concern. Thus, many RL
methods may not be directly applicable in practice, and learning optimal DTRs/JITAIs should
account for the fact that observed actions might be affected by unobserved confounders. To ad-
dress this issue, a growing literature is studying confounding bias and possible corrections under
a partially observed Markov decision process (POMDP) (Bennett & Kallus, 2023; Miao
et al., 2018; Uehara et al., 2023). This states that there exist unobserved (hidden or latent) state
variables, sayZt ∈ Zt, such that X t; Zt; Y tð Þ forms an MDP in the sense outlined in Section 3.3.1,
with t ∈ ; that is, X t þ 1; Zt þ 1; Y t þ 1ð Þ ⊥ X τ; Zτ; Y τð Þf gt � 1

τ¼0 ∣ X t; Zt;Atð Þ, leading to a trajec-
tory distribution:

PPOMDP
π ≐ p0 x0; z0ð Þ ∏

t ≥ 0
πt atjxt; ztð Þpt þ 1 xt þ 1; zt þ 1; yt þ 1jxt; zt; at

� �
:

Note that a POMDP allows some state variables Zt to remain unobserved by the agent; there-
fore, it is a weaker assumption compared with a Markovian structure. Furthermore, the unob-
served state can be regarded as a source of unobserved confounding. Within the POMDP frame-
work, and drawing upon prior research on causal identification utilising proxy variables (Miao
et al., 2018), Bennett and colleagues (Bennett & Kallus, 2023) introduced the so-called proxi-
mal reinforcement learning. This method aims to address confounding by employing two inde-
pendent proxies for confounders, one assumed to be conditionally independent from treatments
given confounders, and the other assumed to be independent from outcomes given treatment
and confounders. This strategy conforms to the proximal causal inference literature, which ac-
commodates unmeasured confounding within specific causal structures. Interested readers can
explore further discussions in the works of Miao et al. (2018) and Zivich et al. (2023).

Second, if on one side the increasing technological and computational sophistication has led
to new biomedical data sources (e.g. data from mobile devices and EHRs) and new algorithmic
solutions (e.g. DNN or RL), on the other side it has posed some unique new challenges to be
inclusively addressed. We refer to (Zicari, 2013) for a comprehensive survey. Among these, eth-
ical and societal concerns about fairness, accountability and transparency are becoming increas-
ingly relevant (see, e.g. the cross-disciplinary view adopted by top ML conferences such as the
ACM Conference on Fairness, Accountability, and Transparency). In the context of ML and RL,
fairness considerations are gaining a certain depth when it comes to decision-making in
healthcare and medical research (see, e.g. (Chen et al., 2023; Chien et al., 2022; Mitchell
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et al., 2021)). In particular, as optimal AIs are estimated by optimising an average cumulative
outcome, due to individuals’ diversity in their responsiveness to treatment and adverse effects,
the estimated optimal AI may be suboptimal, risky, or even detrimental to certain underrepre-
sented or disadvantaged subpopulations. Efforts to address this issue have been presented in
Fang et al. (2023), Li et al. (2023) and Zhu et al. (2024) for both single-stage and dynamic treat-
ment regimes. The typical approach is to work with a fairness or risk-aware optimisation prob-
lem, where a constraint is placed on the tail performance (fairness; Fang et al., 2023) or on some
unwanted side effect (risk; Li et al., 2023; Zhu et al., 2024). A detailed discussion on safe/risk-
sensitive RL in healthcare is provided in Appendix A of Li et al. (2023). Let interest be in a

single final outcome Y
∞
, and denote by Ld

r Y
∞
� �

≐inf y:F yð Þ ≥ rf g the r-th quantile of Y
∞
under

policy d, withF and r ∈ 0; 1ð Þ denoting the cumulative distribution function and a quantile level
of interest, respectively. Focusing on fairness, (Fang et al., 2023) proposed looking at the

following fairness-oriented optimisation problem for the population mean Ed Y
∞
� �

:

max
d

Ed Y
∞
� �

; subject to Ld
r Y

∞
� �

≥ q;

where q ∈ ℝ is a predefined threshold guarantee on the tail performance. Estimation of the ex-
pectation and quantile can be more or less complex depending on whether one considers a sin-
gle or a sequence of decision rules, and we refer to the original work in Fang et al. (2023) for
theoretical analyses in both cases.
Future work may also complement this project by covering and integrating from other health-

care domains that use RL. A non-exhaustive list of examples is given in Deliu (2021) and Yu
et al. (2023), which includes, among others, the design of adaptive clinical trials (U.S. Depart-
ment of Health and Human Services Food and Drug Administration, 2019). In such settings, by
utilising and processing accumulated data in an online fashion, RL and MAB methods could
contribute to making clinical trials more flexible, efficient, informative and ethical (Pallmann
et al., 2018; Villar et al., 2015). Fairness has also been the subject of recent debates (Chien
et al., 2022). All of these aspects may deserve a dedicated space, and we aim to pursue this re-
search direction as a separate piece of work in the near future.

5 Reinforcement Learning in Real Life: Case Studies

This section complements the methodological framework introduced so far with its real-world
implementation. Guided by two case studies we conducted in the space of DTRs and mHealth,
respectively, we: (i) illustrate the applicability of RL as well as the main challenges researchers
face in applying these methods in practice; and (ii) provide a concrete illustration of the main di-
vergence between RL methods in the two areas. We start with a brief introduction of the two
studies, before summarising and comparing their main characteristics side by side in Table 3.

5.1 Dynamic treatment regimes: PROJECT QUIT – FOREVER FREE

Based on a two-stage SMART design, this study aimed to develop/compare internet-based
behavioural interventions for smoking cessation and for relapse prevention. The primary objec-
tive, interesting the first stage, known as PROJECT QUIT, only, was to find an optimal multi-
factor behavioural intervention to help adult smokers quit smoking (see Strecher et al., 2008,
for details). The second stage, known as FOREVER FREE, was a follow-on study designed
to: (i) help PROJECT QUIT participants who quit smoking stay non-smoking and (ii) offer a
second chance to those who failed to give up smoking at the previous stage. These two stages
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Table 3. Summary of two case studies, in DTRs and JITAIs in mHealth, respectively, that used RL

Study design

PROJECT QUIT – FOREVER FREE DIAMANTE

SMART MRT

Primary objective To find an optimal internet-based
behavioural intervention for smoking
cessation and relapse prevention (based on
the first stage of the SMART only)

To develop and evaluate the effectiveness of
a JITAI solution for enhancing physical
activity, by means of an RL-based text-
messaging system

Secondary objective To find an optimal DTR (based on the entire
two-stage SMART design)

To assess the effectiveness of the JITAI
solution on the distal outcome (i.e.
depression)

Role of RL in the design and
analysis

Secondary, used offline for secondary
post-data collection analysis

Primary, used online in the design (data-
collection phase) during interim analyses

Number, frequency and
distance between decision
points

Two decision points at a minimum distance
of 6 months: one at the first-stage entry (the
6-month-long PROJECT QUIT) and one
after completion of the first stage at the
second-stage entry (the 6-month-long
FOREVER FREE)

Daily, with around 180 decision points over
a 6-month-long study: intervention
decisions are made at a random time interval
(Factor T in Figure 3) and can distance from
14 to 22 h.

Model choice: interventions
and tailoring variables

A parsimonious model with the statistically
significant elements of the primary
regression analyses:

• Stage-1 model included two intervention

factors (each at two levels) and three
covariates;

• Stage-2 model included two intervention

arms, the three stage-1 covariates and an
additional covariate represented by the
intermediate outcome (quit status at the end
of stage 1);

• Interactions between interventions and

covariates were included as well

A high-dimensional model including

• All baseline variables shown to be relevant

in the literature and other time-varying
covariates;

•An action space given by the combinations

of the 4� 5� 4 factor levels;

• Action-action and action-contextual

interactions were also included

Choice of the RL strategy for
optimising interventions

Offline learning based on

• Q-learning with a linear model, chosen for

its simplicity and interpretability;

• A soft-thresholding estimator (within the

Q-learning framework) to address the
vexing problem of non-regularity

Online learning based on

• The computationally efficient and

randomised TS algorithm to mitigate bias
and to enable causal inference (Rosenberger
et al., 2019);

• Self-regularisation (implemented within

TS) to deal with the high dimensionality and
avoid overfitting;

•An initial uniform random ‘burn-in’ period

or, more appropriately, an ‘internal pilot’ to
acquire some prior data to feed into the main
algorithm and speed up learning

Primary outcome, that is, the
reward variable directly
targeted by the intervention

A final distal outcome related to smoking
cessation and defined as the seven-day point
prevalence of smoking (i.e. whether or not
the participant smoked even a single
cigarette in the last 7 days prior to the end of
the study stages)

A proximal outcome related to physical
activity and defined as the steps change
from 1 day to another, starting the steps
count from the time an intervention message
is sent

Handling of missing data in
the reward variable • Descriptive checks, revealing a more or

less uniform dropout across the different
intervention arms, and

• Complete case analysis (Chakraborty

et al., 2010), as well as sensitivity analysis

• Online imputation with the last

observation carried forward, and

• Multiple imputation as a sensitivity

analysis,
To provide reliable final estimates and avoid
harmful impacts (due to technical errors in

(Continues)
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were then considered together with the goal of finding an optimal DTR over the entire SMART
study period; this was a secondary objective of the study. RL was not used in the design phase;
in other words, this is not an instance of online learning. The RL-type learning happened offline
on completion of the data collection. Detailed results from this secondary analysis can be found
in Chakraborty (2009) and Chakraborty et al. (2010).

5.2 Just-in-time Adaptive Inteventions in Mobile Health: DIAMANTE

Based on an MRT design (illustrated earlier in Section 2), the primary objective of the trial
was to evaluate the effectiveness of an RL-based text-messaging system for delivering JITAIs
to encourage individuals to become more physically active. In this case, RL was implemented
online, with interventions continuously optimised according to users’ time-varying individual
data. To evaluate the optimised JITAI solution, users were assigned to different study groups
(see Figure 3), including a static (non-optimised) group and the experimental RL-based adap-
tive group. For further details, we refer to Aguilera et al. (2020) and Figueroa et al. (2021).

6 Conclusions

In this work, under a unified framework that brings together DTRs and JITAIs in mHealth
under the area of adaptive interventions, we showed how these problems can be formalised as
RL problems. With a sincere hope to enhance synergy between the methodological and applied
communities, we provided a comprehensive state-of-the-art survey on RL strategies for AIs,
augmenting the methodological framework with real examples and challenges. Then, we
discussed the main methodological divergences in the two AI domains.
Notably, while the two areas are ideally sharing the same problem of finding optimal policies

(in line with the RL framework), their priorities are not always aligned due to historical links or
domain restrictions. DTRs are mainly focused on offline estimation and identification of causal
nexuses, while JITAIs are mainly engaged in online regret performances, neglecting the prob-
lem of inference. Only recently, a small body of literature started to examine the possibility
of inferential goals in JITAIs, questioning the validity of traditional statistics in
adaptively-collected data (Deliu et al., 2021; Hadad et al., 2021; Zhang et al., 2021). The ML
community has led the way in addressing such issues, often borrowing tools from causal infer-
ence. For example, the ‘stabilising policy’ approach of Zhang et al. (2021) is analogous to the
‘stabilised weights’ of the causal inference literature (Robins, 2000). Similarly, the

Table 3 (Continued)

Study design

PROJECT QUIT – FOREVER FREE DIAMANTE

SMART MRT

of multiply-imputed data
(Chakraborty, 2009),
To avoid sub-optimal policies due to
potentially different patterns across different
interventions

collecting observations) on online decision
making

Other study challenges Inference, high-dimensionality, feature
extraction, sample size considerations and
power analysis (see also Deliu &
Chakraborty, 2022; Laber, Lizotte,
et al., 2014)

Inference, non-stationarity and delayed
reward, model misspecification and noisy
data, users’ disengagement, sample size
considerations and power analysis (see also
Figueroa et al., 2021; Liao et al., 2020)
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adaptively-weighted IPW estimator in Hadad et al. (2021) is inspired by the IPW estimator in
Robins (2000). Furthermore, an increased attention is paid to real-time or online inference to
evaluate the effectiveness of JITAIs online (see, e.g. Dimakopoulou et al., 2019; Dimakopoulou
et al., 2021).

Despite the insufficiently mature field of mHealth, with a relatively small number of method-
ological studies for a rigorous evaluation of RL methods for JITAIs, their popularity in real life
has grown remarkably (see Supplementary Material A). In contrast, in DTRs, the use of RL has
been extensively evaluated in theoretical works, but its application in the real world is still very
limited. Most existing DTR studies use real data only as motivational or illustrative examples.
The few clinical studies focus mainly on offline learning based on observational data (e.g.
EHRs) and deep learning methodologies, which limits interpretability. The explanatory drivers
may be related to (1) the lack of existing guidelines for developing optimal, yet statistically
valid, DTRs; (2) the clinical setting itself, characterised by high costs, ethical concerns and
inherent complexities, which makes experimentation hard; (3) the lack of definition of AI com-
ponents and the RL dynamics for the specific disease. When defining the reward function, for
instance, one may need to account for multiple objectives and the presence of unstructured data,
among other prior knowledge. Even from an implementation perspective, while several soft-
ware packages exist for DTRs, these are often suitable only under simplified settings, for exam-
ple, continuous and positive rewards. We recognise that the area of mHealth, mostly related to
behavioural aspects rather than clinical, may have fewer concerns in terms of treatment costs
and risks.

To the best of our knowledge, this represents the first piece of work that bridges the domains
of DTRs and JITAIs under a unique umbrella intersecting RL and AIs. Our hope is that such a
unified common ground, where different methodological and applied disciplines can easily co-
operate, would help unlock the potential of exploring the opportunity RL offers in AIs and
benefiting from it in a statistically justifiable way. For example, by using the rich resources
on inference made available by the DTR literature, the JITAI literature may extend its goal be-
yond within-trial optimisation. Similarly, if SMARTs were to be used in practice more often, in
addition to collecting high-quality experimental data, decisions could also be optimised online,
benefiting trial participants as well (see, e.g. Cheung et al., 2015; Laber et al., 2018), as done in
JITAIs.

We also hope that our contribution may incentivise greater synergy and cooperation between
the statistical and ML communities to support applied domains in the conduct of high-quality
real-world studies. We recognise that this cooperation is very timely to support both the devel-
opment of real-world DTR studies and to assist the spread of mHealth applications with reliable
and reproducible workflows.
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