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Abstract We describe pentaquarks as ‘baryo-charmonia’
with a color octet cc̄ core bonded to a color octet three-quark
system. Fermi statistics of the light quark cloud allows to
describe two pentaquark triplets: a lower one, well supported
by experiment, and a higher one with strangeness. For the
time being, the lowest line of the strange triplet has been
experimentally identified in a 3σ peak. Data also suggest
two different production mechanisms for pentaquarks. We
show how this can be described in the proposed scheme.

1 Introduction

Let the pentaquarks be formed by three light quarks in color
octet (qqq)8 orbiting in the mean color field of a charm-
anticharm heavy pair (cc̄)8, a sort of ‘baryo-charmonium’.
This is a different take with respect to [1], where the
heavy quarks are supposed to be far apart and the Born–
Oppenheimer (BO) method is used. In [2] the color configu-
ration (cc̄)1(qqq)1 is also considered.1 Another approach on
pentaquarks as compact particles is found in [3], where the
MIT bag model is adopted. In Sect. 7, we will highlight some
of the differences with our model. Pentaquarks are described
in terms of meson-baryon molecules in several papers [4–8].

We will show that the Fermi statistics of the light quarks
leads to a determination of the spectrum of the best ascer-
tained J/ψp pentaquarks, Pc(4312), Pc(4440) and Pc(4457)

[9,10], as well as to the prediction of two extra lines in the
strange sector, in addition to the observed one. The lighter
state in the strange pentaquark system is a 3σ peak, dubbed
Pcs(4459) by LHCb [11]. The two heavier ones we predict,
P ′
cs, P

′′
cs , see Fig. 2, have roughly a similar level of signif-

a e-mail: antoniodavide.polosa@uniroma1.it (corresponding author)
1 We do not consider the case of color singlets, as done in [2], because
we assume that pentaquarks can result only from quark color forces.
Namely, we assume here that the lightest narrow states are 8 − 8 and
the mixing with 1 − 1, if any, has to be negligible.

icance and are found in a region where present data show
fluctuations over the background. For both triplets we pre-
dict the same ordering of spins, namely J = 1/2, 3/2, 1/2,
for increasing masses.

The three Pc pentaquarks are observed in �0
b →

(J/ψp)K− decays and the Pcs(4459) peak is found in
�−

b → (J/ψ�)K−. Data suggest at least two different pro-
duction mechanisms for pentaquarks, idependently on their
strangeness content (Table 1).

In addition to the associated production with K in heavy
baryon decays, the P̃c(4337) has been reported by [12] in
the decay B0

s → (J/ψp) p̄. A strange partner of P̃c, the
P̃cs(4338), is found in [13] in associated production with
the anti-proton (B− → (J/ψ�) p̄). We use the tilde to dis-
tinguish the pentaquarks produced in association with the
anti-proton from those produced in association with the K .
We will show how we can describe this pattern comprising P
and P̃ pentaquarks and place the observed states P̃c(4337),
P̃cs(4338) in multiplets with their expected partners, which
we name P̃ ′

c, P̃
′′
c and P̃ ′

cs, P̃
′′
cs .

2 Fermi statistics in baryo-charmonia

The light quarks carry color, in the adjoint representation,
flavor, spin and orbital quantum numbers and are identical
particles obeying Fermi statistics. Let a, b, c be flavor indices
and α, β, γ color indices. Requiring both color and flavor to
be in the adjoint representation we can form the tensor

Ai jk
αβγ =ψ [a

α ψ
b]
β ψc

γ − ψ
[a
β ψb]

γ ψc
α =ψa

(αψ
b
β)ψ

c
γ −ψa

(βψb
γ )ψ

c
α,

(1)

which is anti-symmetric under the exchange of any two
quarks provided that

ψa
αψb

β = −ψb
βψa

α . (2)
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Fig. 1 The dotted line corresponds to the J/ψ� resonance Pcs(4459)

reported by LHCb. We take the fitting (red) curve to the Pcs peak from
LHCb as well [11]. The dashed lines, with uncertainty bands, corre-
spond to our predictions for P ′

cs and P ′′
cs . The state P ′′

cs is about 20 MeV
below the D̄∗�′

c neutral or charged threshold (which would give a radius
r ∼ 1/

√
2μB ∼ 0.96 fm, compatible with a compact state). For the

two predicted lines, there are no other nearby molecular thresholds with
the right quantum numbers

Parentheses in (1) indicate symmetrization (round brackets)
or anti-symmetrization (square brackets) of a certain pair
of indices. The tensor A has the symmetries given by the
following Young Tableaux in the color (8C ) and flavor (8F )

spaces respectively

α β

γ

a c
b

.

If we first symmetrize ψa
αψb

βψc
γ with respect to αβ and

then antisymmetrize the result with respect to αγ (YT on the
left) we obtain the middle term Eq. (1). If we first symmetrize
ψa

αψb
βψc

γ with respect to ac and then antisymmetrize the
result with respect to ab (YT on the right) we obtain the right
hand side of (1).

Similarly the tensor S can be formed

Sabcαβγ = η[a
α η

b]
β ηcγ − η

[a
β ηb]γ ηcα = ηa[α ηbβ]η

c
γ − ηa[β ηb

γ ]η
c
α (3)

with

α β

γ

a c
b

,

the bar on the table indicating that we first anti-symmetrize
with respect to αβ and then symmetrize with respect to αγ .
This is symmetric under the exchange of any two quarks,
provided that

ηaαηbβ = +ηbβηaα. (4)

Let us derive the standard baryon octet from Sabcαβγ . Assume
for the moment that tensor S in (3) represents the flavor-
spin configuration of three quarks in the (8F ) baryon octet,
so that α, β, γ are spin indices rather than color indices.
Assign the additional color indices i, j, k to quarks: i in
association with (a, α), j with (b, β) and k with (cγ ). Anti-
symmetrize indices i, j, k, (so that we can eventually con-
tract with εi jk in order to form a color-singlet). From (4) and
anti-symmetrizing i j

ηaiα η
bj
β = ηbiβ ηajα = −η

bj
β ηaiα (5)

so that we can use the symbol η → ψ , as in (2). Symmetry
in spin-flavor space combined with anti-symmetry in color
space gives Fermi statistics and the standard baryon octet.
Indeed contracting S with the Levi-Civita εi jk to form the
singlet gives

S abc
αβγ = εi jk(ψ

ai
[α ψ

bj
β]ψ

ck
γ + ψai

[γ ψ
bj
β]ψ

ck
α ) = Bacb

αγβ (6)

Table 1 Pentaquarks discovered by the LHCb collaboration [9–13]. The first 4 states have light quarks content uud, the last two have uds. For
P0
cs(4338), the experimentally preferred J P is indicated next to the name

State Mass (MeV) Width (MeV) Observed process Year

Pc(4312) 4311.9 ± 0.7+6.8
−0.6 9.8 ± 2.7+3.7

−4.5 �0
b → (J/ψ p) K− 2019

P̃c(4337) 4337+7 +2
−4 −2 29+26 +14

−12 −14 B0
s → (J/ψp) p 2022

Pc(4440) 4440.3 ± 1.3+4.1
−4.7 20.6 ± 4.9+8.7

−10.1 �0
b → (J/ψ p) K− 2019

Pc(4457) 4457.3 ± 0.6+4.1
−1.7 6.4 ± 2.0+5.7

−1.9 �0
b → (J/ψ p) K− 2019

P̃cs(4338)
1
2

−
4338.2 ± 0.7 ± 0.4 7.0 ± 1.2 ± 1.3 B− → (J/ψ �) p 2022

Pcs(4459) 4458.9 ± 2.9+4.7
−1.1 17.3 ± 6.58.0

−5.7 �−
b → (J/ψ �) K− 2021

123
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Fig. 2 Possible diagram for the decay �0
b → Pc K−

where the baryon octet is indeed usually reported in the form2

Babc
αβγ (for example the proton is p = B121

αβγ the neutron is

n = B122
αβγ and so on). The property Babc

αβγ = −Bbac
αβγ allows

to construct the dual Bc
d = 1/2 εabd Babc which can be rep-

resented in the well known baryon matrix form. The anti-
symmetric pairings [α, β] and [γ, β] correspond to the j = 0
representation of SU(2), so that each baryon component is
in the j = 1/2 representation of SU(2): the baryon octet has
spin 1/2.

Coming back to pentaquarks, differently from baryons, the
qqq system can either be in a color-flavor state A, Eq. (1),
or in S, Eq. (3). In the first case the spin-orbital state must
be symmetric whereas in the second case it must be anti-
symmetric, to enforce Fermi statistics. In our brief discus-
sion on baryons we took S and antisymmetrized the color
labels. In pentaquarks light quarks are in a flavor octet, like
in baryons, but can have both spins 1/2 and 3/2, differently
from octet baryons, since they are not in an antisymmetric
color configuration like (6).

Consider pentaquarks produced in the decay of a baryon
in association with a K− meson. In the �0

b baryon, the ud
diquark is in the antisymmetric spin zero state, symmetric
in color-flavor space. This is called the “good” diquark, as
opposite to the spin one bad diquark in the �Q . In the simplest
decay process, the initial light quarks propagate to the final
state as in Fig. 1. Assuming that the color-flavor symmetry of
the ud pair is maintained in the formation of the final state,
we choose S in Eq. (3), for the description of the light quarks
in the pentaquark. �Q baryons carry good diquarks as well.

2 The baryon flavor octet is usually reported as

Babc
αβγ = εi jk(M

abc)
i jk
αβγ , (7)

where abc are flavor indices, i jk are color indices and αβγ

are spin indices. The symbol Mabc corresponds to symmetriz-
ing/antisymmetrizing the product ψai

α ψ
bj
β ψck

γ , in the flavor space abc,
as prescribed by the tableaux a b

c
. What is found in (6) corresponds to

Sabcαβγ = Bacb
αγβ , i.e. to a simultaneous renaming of indices b ↔ c and

β ↔ γ in B.

The different production mechanism of the P̃ pentaquarks
leads us to distinguish them from the P pentaquarks by using
A, as in Eq. (1), in place of S. This will be discussed in Sect. 5.

Each quark pair, say quark 1 and quark 2, can either be
in a anti-symmetric S = 0 state or in a symmetric S = 1
state. The orbital wave-function of the quark pair (we will
call � the spin wave-function, and 
 the orbital one) will be,
accordingly, symmetric or anti-symmetric


(r1, r2) = 1√
2

(φ1(r1)φ2(r2) ± φ1(r2)φ2(r1)) , (8)

where r1,2 are centered in the cc̄ core.

3 Exchange interaction

Let U be the color interaction potential between, say, quark
1 and quark 2. The expectation value

〈U 〉
 =
∫


∗(r1, r2)U (r1 − r2)
(r1, r2) d
3r1 d

3r2 (9)

can be written as C± J , with the ± signs corresponding to 


being symmetric/anti-symmetric. This in turn can be written
as 〈U 〉
 = C + 〈V 〉� provided that 〈V 〉� = ±J depending
on � being anti-symmetric (S = 0) or symmetric (S = 1)
respectively. The potential V is given by [14]

V = −
∑
pairs

Jab

(
1

2
+ 2Sa · Sb

)
(10)

where

Jab =
∫

(φa(ra)φb(rb))∗ U (ra − rb)

×(φa(rb)φb(ra)) d3ra d
3rb. (11)

Using the basis of states | − ++〉, | + −+〉, | + +−〉 (in
Appendix A, we provide a demonstration of the following
equations using 6j-Wigner symbols) one obtains that 〈V 〉�
splits the two spin 1/2 states, obtained by the combination
of three spins 1/2, by

�E1/2 = ±
√
J 2

12 + J 2
13+ J 2

23− J12 J13− J12 J23− J13 J23.

(12)

The spin 3/2 shift is readly obtained by |+++〉 (or |−−−〉)
to be

�E3/2 = −J12 − J13 − J23. (13)

In the case of baryons, where a full color anti-symmetry
holds, we have J12 = J13 = J23 = J so that �E1/2 = 0
and, as commented above, there is no 3/2 spin.

Orbital wave functions are not known. As for the color
potential U , we might use the one-gluon exchange interac-
tion concluding that if the i, j quark pair were in a color-

123
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symmetric configuration we would get a positive, repulsive
coupling JS , which, in modulus, is half the negative coupling
JA of the color anti-symmetric configuration3

JS = −1

2
JA. (14)

Let us consider the case qqq = uud in the color-flavor
configuration S. Then from (3)

S121
αβγ = u[α dβ]uγ + u[γ dβ]uα (15)

since the uu cannot be anti-symmetric in flavor space. The
pentaquark contains the light quarks uα, dβ and uγ with the
u quarks, uα and uγ , in a color symmetric (repulsive) repre-
sentation andud in color attractive, anti-symmetric pairings.4

Therefore from (14) we require

JuuS = −1

2
JudA (17)

and we can write

J12 = JuuS > 0 J13 = J23 = JudA < 0. (18)

The pentaquarks discovered in the J/ψp channel, from
�b decays, are found at mass values [9,10]

MPc (4312) = 4311.9+7
−0.9 MeV,

MPc (4440) = 4440+4
−5 MeV,

MPc(4457) = 4457.3+7
−1.8 MeV. (19)

The spins are not known so far. Assume that the ordering in
mass corresponds to the lower one being spin 1/2 and the
higher two being 3/2 and 1/2 respectively. Then we have to
solve the simultaneous equations

MPc (4457) − MPc (4312) = 2|JuuS − JudA |,
(20)

MPc (4440)− 1

2
(MPc (4312) + MPc(4457))=−JuuS −2JudA

(21)

The first equation corresponds to the �E1/2 splitting in (12)
with the conditions (18) and the second to the �E3/2 shift
in (13). This system of equations has two sets of solutions,
but only one is compatible with the condition of having one
positive and two negative couplings. These are found to be

JuuS = 29.9+2.5
−2.8 MeV,

JudA = −42.8+2.4
−1.6 MeV, (22)

3 The quadratic Casimir in the repulsive, symmetric, 6 representation
is C(6) = 10/3 so that 2(C(6) − 2C(3)) = −(C(3̄) − 2C(3))).
4 The cc̄ core has color cAc̄DεDBC = MABC and the color neutral
pentaquark is obtained by

Puud ∝ MABC ε(αβA εγ )BC S121
αβγ (16)

symmetrizing the αγ pair as in S

which gives

JuuS
J udA

= −0.7 ± 0.1, (23)

not far from the −1/2 factor in (14) we aimed to. To conclude,
let’s define M0 as the degenerate mass of the triplet, i.e., the
mass that the three particles analyzed in this section would
have if we turned off the exchange interactions. The value of
M0 is given by the average mass of the particles with spin
1/2.

M0 = 1

2
(MPc(4312) + MPc(4457)) = 4384+4

−1 MeV. (24)

If we consider the spin ordering 1/2, 1/2, 3/2 for increas-
ing mass values, we would get S/A � −0.32+0.05

−0.07. This
gives a preference to (23) and to the ‘inverted’ spin order-
ing 1/2, 3/2, 1/2 which we will apply also to the strange
pentaquarks in the next section.

We will take this S/A � −0.7 ratio as a benchmark in
pentaquarks (also in the case of strange pentaquarks) and
assume that Jud = Juu = Jdd ≡ Jqq in both A or S
symmetries.

4 Strange pentaquarks

In addition to the three pentaquark lines described above, a
strange J/ψ� pentaquark has been discovered, with a mass
value of [11]

MPcs (4459) = 4458.8+6
−3.1 MeV. (25)

Its mass difference with MPc (4312) is approximately equal
to the baryon mass difference M(�) − M(p). This suggests
to assume that Pcs is also a spin 1/2 state, and like the P+

c , it
is the first of a higher strange triplet. In the following we will
determine the triplet with strangeness extending the analysis
done above.

Along the same lines we consider the �-like color-flavor
symmetric combination

S123
αβγ = u[αdβ]sγ + u[γ dβ]sα. (26)

From this we can infer that u and s are in a symmetric,
repulsive, pairing JusS and u, d are in an anti-symmetric
pairing JudA , which will be taken from (22). As for ds, we
can symmetrize and anti-symmetrize color indices so that
Jds = (JusS +JusA )/2 where we assume JusS,A = JdsS,A = JqsS,A.
We will derive JusA from JusS using the same S/A = 1/k ratio
given in (23) so that

Jds = 1 + k

2
JqsS , (27)

where k � −1.43, i.e. the inverse of the number in (23).
We know from data on baryons that the ratio of chro-

momagnetic couplings in the constituent quark model is
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κ
qs
A /κ

qq
A ∼ 0.6 [15]. Applying the same scaling law to JA’s,

and consequently to JS’s, we have JqsS = 17.9 ± 2 MeV
which leads to Jds = −3.9 ± 2 MeV. The splitting formulae
then give

�E1/2 = 53.3 ± 2.3 MeV, (28)

�E3/2 = 28.7 ± 3.5 MeV. (29)

The degenerate mass of this new triplet is

Ms
0 = MPcs + �E1/2 = 4512 ± 6 MeV, (30)

with �s = Ms
0 − M0 = (127 ± 6) MeV to be compared to

the analogous �s � 177 MeV known from the baryon octet.
The mass spectrum is

MP ′
cs (3/2) = Ms

0 + �E3/2 = 4541 ± 6 MeV,

MP ′′
cs (1/2) = Ms

0 + �E1/2 = 4565 ± 6 MeV. (31)

Therefore the strange pentaquark spectrum is superimposed
on available data in Fig. 2. The predicted states end up in a
region of ∼ 2σ fluctuations over the background, so that it
is difficult to make any definite conclusion different from an
hint to look better at this region.

5 Pentaquarks produced in association with
anti-protons

There are two more pentaquarks reported by experiment as
of today. These are found at the mass values [12,13]

MP̃c
(4337) = 4337+7

−4 MeV,

MP̃cs
(4338) = 4338.2 ± 0.8 MeV.

(32)

We use the P̃ notation to underscore the fact that these
two resonances have a different production mechanism with
respect to the pentaquarks discussed above. For example, P̃cs
is found in B− → (J/ψ�) p̄, differently from its Pcs partner
observed in �b → (J/ψ�)K . The P̃cs(4338) pentaquark,
differently from all other states, has also an experimental
spin assignment, namely J P = 1

2
−

. The P̃c(4437) is found
in B0

s → (J/ψp) p̄. We attempt a description of these two
pentaquarks as belonging to a different spectroscopic series,
which in our picture is characterized by the antisymmetric A
color flavor configuration (1).

Consider the P̃cs(4338). For this we have an experimental
determination of J = 1

2 . We consider that the color-flavor
state is described as in (1)

Auds
αβγ = u(αdβ)sγ − u(γ dβ)sα, (33)

with Auds
αβγ = −Auds

γβα . The spin-orbit in this case works in the
opposite way with respect to what we did above: a quark pair
with S = 0 has to have an anti-symmetric orbital, i.e. 〈V 〉
 =
−J . So the overall sign of the V in (10) changes to positive.

Following the same steps as before we have: JudS , JusA , Jds

and we will use the same k = A/S factor. Adopting the same
couplings we already computed it is found

�E3/2 = (JudS + JusA + Jds) = ±4 MeV,

�E1/2 = 48.5 ± 2.1 MeV.
(34)

Given that M̃s
0 = MP̃cs

+ �E1/2 = 4386 ± 2.2 MeV, the
two additional states in the spectrum would be

MP̃ ′
cs (3/2)

= M̃s
0 + �E3/2 = 4387 ± 4 MeV,

MP̃ ′′
cs (1/2)

= M̃s
0 + �E1/2 = 4435 ± 4 MeV. (35)

However in B decays, both are kinematically forbidden, so
they must be searched for in other decay channels.

Let us move to the analysis of P̃c(4337). We consider
color-flavor is described by

Audu
αβγ = u(αdβ)uγ − u(γ dβ)uα (36)

The combination Auud = 0 and Audu
αβγ = −Aduu

αβγ . From
this we have that the ud pair is found in a symmetric color
pairing, JudS , whereas uu in in a anti-symmetric JuuA pairing.
This allows to determine the shifts

�E3/2 = 2 JudS + JuuA = 2 JqqS + JqqA = 17 ± 6 MeV,

�E1/2 = 72.7 ± 4 MeV.
(37)

We will asume that M̃0 = M̃s
0 − �s = 4259 ± 6 MeV, with

the same �s computed above. The mass spectrum is:

M̃0 + �E3/2 = 4276 ± 12 MeV = MP̃ ′
c(3/2)

,

M̃0 + �E1/2 = 4332 ± 7 MeV −→ P̃+
c (4337),

M̃0 − �E1/2 = 4187 ± 7 MeV = MP̃ ′′
c (1/2)

. (38)

We want to point out that, contrary to previous cases, for
the spectrum of P̃c, we did not take the observed particle
P̃c(4337) as a reference point to obtain other predictions.
Instead, we relied on the spectrum of P̃cs and on the previ-
ously determined couplings.

6 P̃ production channels

Assuming that the color-flavor of the spectator ud pair is
maintained in the final state, the process �0

b → P̃c K−
is expected to be suppressed, as suggested by observation,
because in the diagram in Fig. 1 the initial [ud] diquark is in
a color-flavor symmetric configuration as opposite to the ud
pair in P̃ , which has to be in a antisymmetric configuration
as concluded in Eq. (36).

The assumption above suggests in turn that since baryons
belonging to the sextet, namely �b, �′

b and �b, carry a color-
flavor antisymmetric light quark pair, the process �′−

b →
P̃cs K− should be allowed. The �b baryon predominantly
decays strongly, whereas observed pentaquarks are produced

123
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Table 2 Possible new decay processes of sextet baryons into a pen-
taquark and a meson. We divide the processes into dominant and
Cabibbo suppressed

Dominant Cabibbo suppressed

– �′0
b → P̃c K−

�′−
b → P̃cs K

−

�′0
b → P̃cs K

0

�′−
b → P̃cs π−

�′0
b → P̃cs π0

– �−
b → P̃cs K−

mainly in weak decays. We summarize in Table 2 the allowed
P̃ production processes initated by a baryon. We divide
them into dominant and Cabibbo suppressed. These pro-
cesses have large phase spaces allowing the production of
the pentaquarks P̃ ′

cs and P̃ ′′
cs .

The decay �−
b → P̃cs(4338)K− has not been observed

either. If we consider the decay process of �−
b , we have

another diagram, as shown in Fig. 3b, which is not possi-
ble in the case of �0

b. In absence of experimental evidence,
we conclude that both diagrams in Fig. 3a and b have to
be suppressed. In [16] Han et al. have studied the produc-
tion of pentaquarks through weak decays of b-baryons in the
SU(3)F symmetry. Following [16] it can be found that, if
the process in Fig. 3b is suppressed, then

R = |A (�0
b → Pc(4312) K−|2

|A (�−
b → Pcs(4338) K−)|2 = 6. (39)

If this is not confirmed by data, a strong SU(3)F breaking
effect would emerge, and the � should be effective at pro-
ducing P̃ pentaquarks.

7 Summary

We summarize in Tables 3 and 4 the values of the J couplings
and the masses of the observed and predicted Pentaquarks.

Table 3 Couplings between light quarks. The ratio S/A is the same for
strange and non-strange pentaquarks S/A � −0.7 ± 0.1

Symmetric (MeV) Antysimmetric (MeV) No symmetry (MeV)

Jqq 29.9+2.5
−2.8 −42.8+2.4

−1.6 –

Jqs 17.9 ± 2 −25.7 ± 2 −3.9 ± 2

Table 4 In this table we summarize all the masses of the pentaquarks.
Pentaquarks in boldface, P, are predictions: six particles are predicted.
Experimental values are in parentheses and are taken as input to obtain
predictions on the J couplings and masses of the pentaquarks P. An
exception is the P̃c(4337) for which we have both the prediction and
the experimental value (see Sect. 5). Each triplet is ordered from top to
bottom with J = 1/2, 3/2, 1/2

Mass (MeV) Mass (MeV)

Pc(4312) (4311.9+7
−0.9) Pcs(4459) (4458.8+6

−3.1)

Pc(4440) (4440.0+4
−5) P′

cs 4541 ± 6

Pc(4457) (4457.3+7
−1.8) P′′

cs 4565 ± 6

P̃′′
c 4187 ± 7 P̃cs(4338) (4338.2 ± 0.8)

P̃′
c 4276 ± 12 P̃′

cs 4387 ± 4

P̃c(4337) 4332 ± 7 (4337+7 +2
−4 −2) P̃′′

cs 4435 ± 4

Up to this point we have not discussed the spin of the cc̄
pair. All the considerations made so far would hold for both
Scc̄ = 0, 1 although we have been tacitly assuming Scc̄ = 0.
The J/ψ − ηc mass splitting, δ = 283 MeV, would suggest
higher multiplets in the 300 MeV mass span. The splittings
due to Sq · Sc,c̄ couplings are known to be indeed hyperfine,
giving effects on the spectrum difficult to resolve [17].

Pentaquarks made of diquarks were first considered in
[18] and in [19,20]. For a review on the use of diquarks in
exotic spectroscopy see [15,21]. Pentaquarks as antiquark–
diquark–diquark systems have also been considered recently
in [22]. Since the time of those papers, the experimental situ-
ation of the observed spectrum has changed qualitatively and
the picture we have now is more complicated. It is the aim

Fig. 3 Possible diagrams for the decay �−
b → Pcs K−. The diagram on the left is analogous to the one in Fig. 2 and is suppressed for the P̃cs .

The diagram on the right, however, does not have an analogue in the case of the pentaquarks Pc but must be suppressed too since the process
�−

b → P̃cs K− is not observed
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Table 5 Comparison between the spin assignments predicted in this work and those in [2] for the observed pentaquarks. The spin of the Pc(4312)

in the second row is an assumption and the other spins are calculated accordingly

Pc(4312) Pc(4440) Pc(4457) P̃c(4337) Pcs(4459) P̃cs(4338)

This work 1/2 3/2 1/2 1/2 1/2 1/2

Li et al. [2] 3/2 1/2 3/2 1/2 1/2 1/2

of this letter to attempt a step in a unified description of the
states we have by now, including those whose final assess-
ment is still work-in-progress, as for the Pcs and its possible
partners.

Differently from [1], we consider the exchange interac-
tions among light quarks rather the color c(c̄) − q interac-
tions. These exchange interactions are supposed to generate
the observed mass splittings. No such splittings are occur-
ring in ordinary baryons. The exchange interaction leads us
to combine color-flavor quantum numbers instead of flavor-
spin, as done in [1]. We can also provide an assignment for
the spin and flavor of the observed and predicted pentaquarks,
as well as a hint on their masses.

Compared to [2] we consider only the 8 − 8 component
for the color part and not the singlet. In [2], it is assumed
that Pc(4312) has J P = 3/2− whereas we deduce it has to
be J P = 1/2−. Moreover we parametrize the chromomag-
netic interaction differently from [2]: the parameters of the
exchange-interaction are fitted from the observed spectrum
rather than taken from the baryonic spectrum. In Table 5, we
compare to the spin assignment obtained in [2].

In [3] the MIT bag model is used and the Young-
Yamanouchi basis for the wavefunctions. The spin interac-
tion is treated as in [2], using the chromomagnetic coeffi-
cients. Additionally a lower bound for the masses of cc̄uud
pentaquarks is found, suggesting that the Pc(4312) and
Pc(4337) cannot be compact states but rather molecular ones.

In addition we address the issue of the observed suppres-
sion of P̃ pentaquarks in the decays of �b and �b baryons.

The Fermi statistics of the light color-octet cloud qqq
bound to the compact cc̄ core to form a color singlet,
together with restrictions on the signs of J couplings
and the ratio S/A, repulsive/attractive coupling ratio in a
color pair, allows to accomodate the observed Pc(4312),
Pc(4440) and Pc(4457) and predict the full strange triplet
Pcs(4459), P ′

cs, P
′′
cs , as long as MPcs − MPc � M� −

Mp. Both triplets are preferred in the spin ordering J =
1/2, 3/2, 1/2 for increasing mass. The states observed in
association with anti-protons, P̃c and P̃cs may also be
accompained by partners. We identified two states, with no
strangeness, dubbed P̃ ′

c, P̃
′′
c having J = 3/2, 1/2 respec-

tively. The difference between the P and the P̃ series is traced
back to different color-flavor organization quarks, S for the
the P and A for the P̃ .
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Appendix A: Three fermions exchange interaction

In this appendix, we want to provide a demonstration of (12)
and (13) using the 6j-Wigner symbols. The interaction we
will study is given by (10):

V = −
∑
pairs

Jab

(
1

2
+ 2Sa · Sb

)
. (40)

V commutes with Stot , S
z
tot , and S2

i with i = 1, 2, 3.
Therefore, we can take the basis of the space as the kets
|S12, S3; Stot , Sztot 〉, where S12 = S1 +S2 = 0, 1. Explicitly,

∣∣∣∣1,
1

2
; 3

2
,+3

2

〉
,

∣∣∣∣1,
1

2
; 3

2
,+1

2

〉
,

∣∣∣∣1,
1

2
; 3

2
,−1

2

〉
,

∣∣∣∣1,
1

2
; 3

2
,−3

2

〉
; (41)

∣∣∣∣1,
1

2
; 1

2
,+1

2

〉
,

∣∣∣∣0,
1

2
; 1

2
,+1

2

〉
,

∣∣∣∣1,
1

2
; 1

2
,−1

2

〉
,

∣∣∣∣0,
1

2
; 1

2
,−1

2

〉
. (42)
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The matrix associated with V in this basis is a 2-block matrix:
one for the total spin 3/2 with size 4 × 4 and one for the
total spin 1/2 with the same size. Also, since there is no
dependence on Sztot , the eigenvalues are independent of this
value. Thus, the first block is a multiple of the identity, while
the second one can be decomposed into two 2 × 2 blocks,
one for Sztot = + 1

2 and one for Sztot = − 1
2 that have the same

eigenvalues. We can, therefore, omit Sztot in the notation as
it does not affect the eigenvalue calculation.

Stot = 3/2

For the total spin 3/2, there is only one matrix element to
calculate:〈

1,
1

2
; 3

2
| V |1,

1

2
; 3

2

〉
= −1

2
(J12 + J13 + J23)

−
∑
pairs

〈
1,

1

2
; 3

2
| 2Sa · Sb |1,

1

2
; 3

2

〉
. (43)

The matrix elements on the right-hand side are easily calcu-
lable. Starting with the case a = 1 and b = 2:

2S1 · S2 = S2
12 − 3

2
= S12 (S12 + 1) − 3

2

=
{

− 3
2 if S12 = 0
1
2 if S12 = 1

. (44)

So〈
1,

1

2
; 3

2
| 2S1 · S2 |1,

1

2
; 3

2

〉
= 1

2
J12. (45)

To calculate the other two matrix elements, it is neces-
sary to change the basis and switch to |S23, S1; Stot 〉 or
|S13, S2; Stot 〉. In the next section, we will see how to use
6j-Wigner symbols to make this change of basis. For spin
3/2, there is no need because to obtain Stot = 3

2 , the only
way is for the spin Sab = 1 for any pair a, b. Therefore,
〈
1,

1

2
; 3

2
| 2S2 · S3 |1,

1

2
; 3

2

〉
= 1

2
J23, (46)

〈
1,

1

2
; 3

2
| 2S1 · S3 |1,

1

2
; 3

2

〉
= 1

2
J13. (47)

This result was predictable considering that spin- 3
2 states are

completely symmetric under the exchange of any pair of par-
ticles.

Combining (43) with (45), (46) and (47),

�E3/2 ≡
〈
1,

1

2
; 3

2
| V |1,

1

2
; 3

2

〉

= −1

2
(J12 + J13 + J23) − 1

2
(J12 + J13 + J23)

= −J12 − J13 − J23. (48)

.1 Stot = 3/2

The eigenvalues of Stot = 1
2 are obtained by diagonalizing

the 2 × 2 matrix:

V =
(〈1| V |1〉 〈1| V |0〉

〈0| V |1〉 〈0| V |0〉
)

. (49)

To calculate the matrix elements, we need to evaluate terms
of the form:

〈S12, S3; Stot | 2Si · S j |S′
12, S3; Stot 〉 (i, j) 
= (1, 2). (50)

A transition from one coupling scheme to another is per-
formed by a unitary transformation which relates the states
with the same total spin Stot . From [23], the unitary transfor-
mation we are looking for is

〈S12, S3; Stot |S23, S1; Stot 〉
≡ (−1)S1+S2+S3+Stot√(2S12+1)(2S23+1)

{
S1 S2 S12

S3 Stot S23

}
,

(51)

where the last term is called 6j-Wigner symbol. From this
relation, follows:

〈S12, S3; Stot |S13, S2; Stot 〉
≡ (−1)S2+S3+S12+S13

√
(2S12+1)(2S13 + 1)

{
S2 S1 S12

S3 Stot S13

}
,

(52)

〈S23, S1; Stot |S13, S2; Stot 〉
≡ (−1)S1+Stot+S23

√
(2S23+1)(2S23+1)

{
S1 S3 S13

S2 Stot S23

}
,

(53)

which collectively provide all possible relations for transi-
tioning from one basis to another. Specifically, the 6j-Wigner
symbols are defined from Clebsh–Gordan coefficients as:

∑
m1,m2,m3,
m12,m13

C jm ( j12m12, j3m3)C
j12m12 ( j1m1, j2m2)

C jm ( j23m23, j1m1)C
j23m23 ( j2m2, j3m3)

= (−1) j1+ j2+ j3+ j
√

(2 j12 + 1)(2 j23 + 1)

{
j1 j2 j12

j3 j j23

}
.

(54)

Now, let’s calculate the matrix element (50) explicitly. Start-
ing with the term 2S2 ·S3, we use (51) to transition to a more
convenient basis:

〈S12, S3; Stot | 2S2 · S3 |S′
12, S3; Stot 〉

=
∑
S23

(−1)2(S1+S2+S3+Stot )
√

(2S12 + 1)(2S′
12 + 1)

(2S23 + 1)

{
S1 S2 S12

S3 Stot S23

}
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{
S1 S2 S′

12
S3 Stot S23

} [
S23(S23 + 1) − 3

2

]
. (55)

For the term 2S1 · S3, we use (52):

〈S12, S3; Stot | 2S1 · S3 |S′
12, S3; Stot 〉

=
∑
S13

(−1)2S2+2S3+2S13+S12+S′
12

√
(2S12 + 1)(2S′

12 + 1)

(2S13 + 1)

{
S2 S1 S12

S3 Stot S23

}

{
S2 S1 S′

12
S3 Stot S23

} [
S13(S13 + 1) − 3

2

]
. (56)

For a numerical example, let’s calculate the matrix element
〈1| V |0〉 for which contributions come only from the terms
2S2 · S3 and 2S1 · S3〈

1,
1

2
; 1

2
| 2S2 · S3 |0,

1

2
; 1

2

〉

= √
3

∑
S23=0,1

(2S23 + 1)

{
S1 S2 1
S3 Stot S23

}

{
S1 S2 0
S3 Stot S23

} [
S23(S23 + 1) − 3

2

]

=√
3

[(
1

2

)(
−1

2

)(
−3

2

)
+3

(
1

6

) (
1

2

) (
1

2

)]
=

√
3

2
;

(57)

〈
1,

1

2
; 1

2
| 2S1 · S3 |0,

1

2
; 1

2

〉
= (−1)

√
3

∑
S13=0,1

(2S13 + 1)

{
S2 S1 1
S3 Stot S13

}{
S2 S1 0
S3 Stot S13

}

[
S13(S13 + 1) − 3

2

]

= −√
3

[(
1

2

) (
−1

2

) (
−3

2

)

+3

(
1

6

) (
1

2

)(
1

2

)]
= −

√
3

2
. (58)

NOTE: There is a minus sign between the two matrix ele-
ments due to the fact that in (52) the exponent of the factor −1
depends on the spins S12 and S13. The complete calculation
leads to the matrix

V =
(

−J12 + 1
2 (J23 + J13)

√
3

2 (J13 − J23)√
3

2 (J13 − J23) J12 − 1
2 (J23 + J13)

)
, (59)

which has eigenvalues

�E+
1/2 =

√
J 2

12+ J 2
23 + J 2

13−J12 J23−J12 J13−J23 J13, (60)

�E−
1/2 = −

√
J 2

12 + J 2
23+ J 2

13 − J12 J23− J12 J13− J23 J13.

(61)
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