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A B S T R A C T   

Learning from near misses has a large potential for improving operations especially in high-risk sectors, such as 
Seveso industries. A comprehensive analysis of near miss reports requires processing a large volume of data from 
various sources, which are not standardized and seemingly disconnected from each other. A knowledge graph is 
here used to provide a comprehensive safety perspective to near miss data. In particular, this paper presents an 
analysis of a knowledge graph for near miss reports with the objective to measure systematically their 
completeness based on an integrated multi-criteria decision-making technique. The reports completeness fosters 
a meta-analysis of available data, highlighting systems’ strengths and vulnerabilities, as well as disseminating 
best practices for industry stakeholders.   

1. Introduction 

The study of major failures is a valuable aspect of any safety man-
agement process. Traditionally, these analyses focus on identifying 
hazards to be anticipated to prevent or to mitigate possible adverse 
events (Dekker, 2019). However, as severe industrial accidents become 
less common, it is increasingly important to consider other data sources. 
In addition to major accidents, there are numerous minor failures, 
known as “near misses”, that have the potential to cause accidents, 
which did not lead to catastrophic outcomes. Formally, a near miss re-
fers to an event that could have caused an incident, or a damage to 
health, or even a fatality, but for some reasons, it did not (Phimister 
et al., 2003). In many cases, near misses go unreported, and their po-
tential value in improving safety or preventing future incidents is lost. 
Learning from near misses may be crucial for the identification of po-
tential larger system failures, for the analysis of causal factors, and for 
testing the effectiveness of safety barriers (Bugalia et al., 2021). Addi-
tionally, near misses provide an opportunity to learn about potential 
adaptations and response strategies to prevent the occurrence of more 
serious events. 

On this premises, near misses reporting becomes a proactive tool for 
safety management systems: if properly documented, near misses can 

provide information comparable to that obtained from major accidents 
(Caspi et al., 2023). 

The significance of near misses is particularly relevant in critical 
industrial settings involving the storage, handling, manufacturing, or 
usage of hazardous substances. These industries are addressed by the EU 
Seveso III Directive (EU Council, 2012), i.e., a legislation that identifies 
industrial sectors with major safety, health, and environmental risks 
involving dangerous chemicals. The Seveso III Directive applies to 
various industries, such as oil and gas, refineries, chemical and petro-
chemical, pharmaceuticals, metal processing, and explosives, and it 
demands manager and practitioners to pay particular attention to near 
miss events, with periodic inspection made by competent authorities. It 
appears clearly how safety practices in Seveso establishment may 
benefit from tools enabling an integrated analysis of near miss data. 
However, these data, usually represented by text documents, remains 
hard to manage as they are represented by linguistic data, not stan-
dardized, and apparently disconnected from each other. The main 
problem in this sense is the lack of a comprehensive near miss man-
agement system and the subsequent presence of a large amount 
knowledge that remains tacit (Pedrosa et al., 2022). To cope with this 
challenge, a knowledge graph is here proposed as a technology for 
modelling knowledge in complex systems and integrating diverse data 
sources (Khan et al., 2022). 
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Newman (2010) defines a knowledge graph as a structure of objects 
that are related in pairs and shares a common knowledge which is 
represented as a simplified network of nodes and edges. To build a 
knowledge graph, an ontology is required, as a formal and explicit 
definition of a shared conceptualization (Studer et al., 1998). An 
ontology provides a semantic data model that describes the types of 
objects, their properties, and their relationships, all within a certain 
scope of analysis, as safety reporting may be (Hughes et al., 2019). By 
combining these concepts, a knowledge graph can be conceived as a 
large semantic net that brings together various and diverse sources of 
information to represent available knowledge. 

By engineering a knowledge graph, data from multiple sources can 
be integrated, in agreement with the structure imposed by the under-
lying ontology, as proven by a wide range of applications (Abu-Salih, 
2021). However, the application of knowledge graphs for safety man-
agement is still in its early stages and, by now, limited to the storage of 
data resulting from previous hazards and risks analyses (Li et al., 2021). 
For example, Zhu et al. (2021) proposed the usage of a knowledge graph 
to collect risks related to terrorist attacks on LNG storage tanks. How-
ever, risks were identified and analyzed through a Bayesian network and 
event trees, and the graph only served as a tool to visualize hazardous 
scenarios and their related risks. Similarly, Peng et al. (2023) built a 
knowledge graph for collecting operational hazards for utility tunnels. 
Starting from the definition of a custom ontology, the authors merged 
the data set containing possible hazard description, with the normative 
in force. The resulting graph relates hazardous scenarios with prescribed 
avoidance/control measures. 

In this work, we present a method to analyze a knowledge graph 
containing data from near miss reports collected in Seveso industries. 

The analysis is grounded on the concept of report completeness as a 
leading indicator of safety management systems performance. Accord-
ingly, the graph has been weighed by subject matter experts, involved as 
respondents to questionnaires designed based upon multi-criteria deci-
sion-making principles. 

The research question of this paper can be stated as: “To which extent 
knowledge graphs may support a safety meta-analysis of completeness for 
near miss reports in Seveso industries?”. We leverage on the notion of 
safety meta-analysis to identify a type of research that uses a systematic 
approach to statistically combine the findings of many near miss reports 
into a systemic overview of safety reporting systems. The meta-analysis 
is meant to analyze the tools (in this paper the safety reports) that are 
connected to the risk and safety analyses, but it has no direct connection 
with the amount of risk to be averted or reduced. 

The article is structured as follows. Section 1 just introduced the 
background and motivations for this work. Section 2 describes the 
methodological foundations and tools used for the analysis. In Section 3 
the completeness metric is computed by experts’ interviews. We present 
and discuss the results obtained by different perspectives of meta- 
analysis in Section 4. Finally, Section 5 provides concluding remarks, 
as well as limitations and potential future developments of the research 
in the context of safety management. 

2. Materials and methods 

In this section we present the methodological fundamentals to guide 
the analysis of near miss reports by means of the completeness of their 
informative content. The methodology makes use of the knowledge 
graph technology to model near miss data and extends it through a 

Nomenclature 

L set of criteria to be evaluated in the AHP 
L* subset of criteria 
N set of nodes (vertices) in the graph G 
N* subset of nodes (vertices) 
R set of relationships (edges) in the graph G 
H subset of nodes to be used for the average completeness 

calculation 
η completeness metric 
η̄ average completeness 
λmax maximum eigenvalue of the pairwise comparison matrix A 

(and the grouped pairwise comparison matrix B) 
A pairwise comparison matrix, it has dimension K× K 
B grouped pairwise comparison matrix, it has dimension K×

K 
CR consistency ratio related to a pairwise comparison matrix A 

(or a grouped pairwise comparison matrix B) 
D total number of pairwise comparison matrices (and related 

respondents) to be grouped in B 
G knowledge graph structure containing vertices and edges 
In maximum number of properties of the node Nn 
Jm maximum number of properties of the relationship Rm 
K total number of criteria to be evaluated through the AHP 
Lk generic criterion in L 

LN
n label of the n-th node (Nn) 

LR
m label of the m-th relationship (Rm) 

M total number of relationships in the graph structure G 
N total number of nodes in the graph structure G 
Nn generic node in N 

N′
m node from which the m-th relationship starts 

N″
m node from which the m-th relationship ends 

Rm generic relationship in R 

RIK estimated average consistency for matrices of dimension 
K× K 

YoY% year over year percentage change of a time-dependent 
variable v(t)

axy generic element of the pairwise comparison matrix A 
d identifier for the d-th pairwise comparison matrix (related 

to the d-th respondent), it varies from 1 to D 
e vector of K elements all equal to 1 
i identifier for the i-th property of the node Nn, it varies from 

0 to In 
j identifier for the j-th property of the relationship Rm, it 

varies from 0 to Jm 
k identifier for the k-th criterion in L, it varies from 1 to K 
m identifier for the m-th relationship in R, it varies from 1 to 

M 
n identifier for the n-th node in N, it varies from 1 to N 
pN

i,n i-th property of the n-th node (Nn) 
pR

j,m j-th property of the m-th relationship (Rm) 
v(t) value of a generic variable v at time t 
w vector of weights related to the K criteria 
wk generic element of the vector of weights w (i.e., weight of 

the k-th criterion in L) 
x row index for the pairwise comparison matrix A and the 

grouped pairwise comparison matrix B, it varies from 1 to 
K 

y column index for the pairwise comparison matrix A (and 
the grouped pairwise comparison matrix B), it varies from 
1 to K 

z generic index for the pairwise comparison matrix A (and 
the grouped pairwise comparison matrix B), it varies from 
1 to K  
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weighting mechanism to assign them proper relevance. Accordingly, 
this section presents a formalization of the knowledge graph structure, 
and the linked notions to ground the safety meta-analysis via a novel 
completeness metric. 

2.1. Knowledge graph formalization 

A graph G can be formally defined as a data structure containing 
nodes (vertices), and relationships (edges): 

G(N,R) (1)  

where N is the set of nodes Nn with 1 < n < N, and R is the set of re-
lationships Rm with 1 < m < M. 

Each Nn node is defined as a multi-dimensional object: 

Nn =
(

LN
n , pN

i,n

)
, 0 ≤ i ≤ In (2)  

in which LN
n is the label to be assigned to the n-th node, and pN

1,n, pN
2,n,⋯ 

, pN
I,n are the properties of the n-th node. As long as a node can have 

multiple properties or even none, the i index can vary between 0 and In. 
Similarly, the relationships in R are defined as: 

Rm = (N′
m , N″

m, LR
m, pR

j,m) , 0 ≤ j ≤ Jm (3)  

where N′
m ∈ N is the node from which the m-th relationship starts, N″

m ∈

N is the node to which the m-th relationship ends, LR
m is the label 

assigned to the m-th relationship, and pR
1,m, pR

2,m,⋯, pR
J,m are the prop-

erties assigned to m-th relationship. A relationship can have multiple 
properties or even none, so j ranges between 0 and Jm. 

2.1.1. A knowledge graph to model near misses 
The knowledge graph used in this research leverages from a previous 

contribution by Simone et al. (2023), where the reader can find a 
complete explanation of the knowledge graph structure. This latter 
originates from the formal definition in Section 2.1, and combine it with 
the semantic rules of an near misses ontology (Ansaldi et al., 2021). 
Please note that hereafter, italic capital letters will refer to labels, while 
italic lower case will refer to properties. Concerning nodes, nine 
different labels (LN

n ) have been identified. Depending on their label, 
nodes have different properties (pN

i,n). Nodes’ labels and resulting prop-
erties are briefly summarized below:  

• INDUSTRIAL_SECTOR: nodes containing data about the industrial 
sector in which the establishment that redacts the near miss report 
operates. These nodes have a property industrial_sector_id that spec-
ifies a unique Seveso-related industrial sector.  

• ESTABLISHMENT: nodes containing data about the industrial 
establishment from which the near miss report has been collected. 
These nodes have three properties: (i) establishment_id, that is a 
unique identifier for a specific industrial establishment; (ii) loca-
tion_region, which contains the region in which the industrial plant 
operates; (iii) location_district, which contains the district within the 
region in which the plant operates.  

• DOCUMENT: nodes containing data about a specific near miss report 
document. Nodes with label DOCUMENT have three properties: (i) 
document_id, that is an unique identifier for a specific near miss report 
and consists in the name of the source pdf file; (ii) collection_date, 
which contains the year in which the near miss report was collected 
by controlling authorities; (iii) occurence_date, which contains the 
year of occurrence of the near miss that is described in the report.  

• EVENT: nodes containing data about an event that happened in the 
near miss. Nodes with label EVENT have two properties: (i) value 
which includes the actual word from the pdf file that has been 
identified to be an event, and (ii) type, which specifies the type of 

event that is described in the report, it can be “Loss”, “Failure”, 
“Deterioration”, “Major”, or “Success”.  

• ACTIVITY: nodes containing data about an activity that was carried 
out when the near miss happened. Nodes with label ACTIVITY have 
one property, namely, value which includes the actual word from the 
pdf file that has been identified to be an activity.  

• APPARATUS: nodes containing data about an industrial apparatus 
that was involved in the near miss. Nodes with label APPARATUS 
have two properties: (i) value which contains the actual word from 
the pdf file that has been identified to be an apparatus, and (ii) type, 
which specifies the type of apparatus that is described in the report, it 
can be “Equipment”, or “Component”.  

• SUBSTANCE: nodes containing data about a specific substance that 
was involved in the near miss. Nodes with label SUBSTANCE have 
the property value which includes the actual word from the pdf file 
that has been identified to be a substance.  

• PEOPLE: nodes containing data about the role of a person (or a group 
of people) who was involved in the near miss occurrence. Nodes with 
label PEOPLE have one property, namely, value which includes the 
actual word from the pdf file that has been identified to refer to 
human factors. 

• BARRIER: nodes containing data about a safety barrier (both tech-
nical or organizational) that worked (or not) when the near miss 
happened. Nodes with label BARRIER have two properties: (i) value 
which contains the actual word from the pdf file that has been 
identified to be a barrier, and (ii) type, which specifies the type of 
barrier that is described in the report, it can be “Technical”, or 
“Organizational”. 

Similarly, seven different labels for relationships (LR
m) have been 

identified, no properties have been considered for relationships. Re-
lationships labels can be:  

• BELONGS_TO: it identifies a connection between an industrial 
establishment and an industrial sector. 

• FROM: it maps the relationship between documents and establish-
ment in which they have been redacted/collected.  

• CONTAINS: it relates all the data (nodes) contained in a document to 
the corresponding node with label DOCUMENT. 

• RELATED_TO: it is a generic relationship between two nodes con-
tained in a report.  

• PART_OF: it describes a physical connection between two nodes in 
the report. Accordingly, it can be used to relate APPARATUS and 
BARRIER.  

• INVOLVES: it relates a node to a node with label SUBSTANCE. 
• CAUSES: it states a causal connection between two nodes, and al-

ways points at a node with label EVENT. 

2.2. Completeness assessment 

The completeness of a near miss reports can be seen as an i-th 
additional property pN

i,n to be assigned to specific nodes, i.e., the ones 
representing the report itself in the knowledge graph. The knowledge 
graph structure is able to map a large amount of data taking into account 
their source, and their content, in principle without apportioning scaled 
relevance. However, not all data have the same importance for safety 
reporting. For example: the substance involved may be more relevant 
than the activity performed when the near miss verified. Based on this 
assumption, the following paragraphs present a procedure to compute a 
measure of report completeness. The procedure relies on a multi-criteria 
decision making technique, namely, the Analytical Hierarchy Process 
(AHP) to systematically assign weights to different nodes (Saaty, 1990). 
Then, a metric that depicts the completeness of a collection of nodes (as 
a near miss report can be) is defined to map the informative content. 
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2.2.1. Analytical Hierarchy process (AHP) 
The AHP is meant to support a decision process in finding the best 

solution upon a finite set of K criteria L = {L1,⋯,Lk,⋯,LK}, with 1 < k <

K (please note that the L notation has been used for criteria since the 
nodes’ labels LN

n will be used as criteria afterwards). Accordingly, ex-
perts are asked to assign a score to each criterion, and, subsequently, to 
alternatives related to that criterion, permitting to choose the ones with 
higher values. For the set of criteria L, a corresponding vector of K 
weights w = {w1,⋯,wk,⋯,wK} must be provided, where wk is the value 
which coherently estimates the priority of the criterion Lk by means of a 
specific goal to be reached. The assignment of weights may be tricky 
when comparing several criteria at the same time, thus, to facilitate this 
process, pairwise comparison is used. For a given goal, the pairwise 
comparison values numerically detail the rate of importance of a crite-
rion over the other. These values are collected in a pairwise comparison 
matrix A: 

A =

⎛

⎝
a11 ⋯ a1K
⋮ ⋱ ⋮

aK1 ⋯ aKK

⎞

⎠ (4)  

that is the K × K matrix made of the elements axy, each one depicting the 
degree of preference of two k-th criteria: the one with k = x (i.e., Lx ∈ L) 
over the one with k = y (i.e., Ly ∈ L). The value of axy can be seen as an 
estimation of the ratio of the weights to be assigned at the two pairwise- 
compared criteria: 

axy ≈
wx

wy
; ∀x, y (5) 

Accordingly, the matrix A from Eq. (4) can be simplified as: 

A =

⎛

⎝
1 ⋯ a1K
⋮ ⋱ ⋮

1/a1K ⋯ 1

⎞

⎠ (6) 

Because of Eq. (5) holding true: (i) there will be no preference upon a 
criterion and itself, and (ii) the importance rate of a first criterion over a 
second one will be the inverse of the importance rate of the second one 
over the first, coherently. Pairwise comparisons may result in inconsis-
tency for the evaluation of singular weights. Specifically, for a triplet of 
criteria Lx,Ly,Lz ∈ L, the following condition should be verified to ensure 
consistency: 

azy = axyayz; ∀x, y, z (7) 

Or, in other words, that the maximum eigenvalue λmax of the pairwise 
comparison matrix A is equal to the dimension of the matrix itself (i.e., 
λmax = K). Accordingly, the consistency ratio (CR) can be evaluated to 
check the trustworthiness of elements in A: 

CR =
1

RIK
⋅
λmax − K

K − 1
(8)  

where RIK is the estimated average consistency obtainable from a large 
set of K × K pairwise matrices. In practical applications, the threshold 
condition CR ≤ 0.1 has been commonly accepted to depict consistent 
judgments (Brunelli, 2015). 

The last step consists of aggregating the relative weights coming 
from the different elements axy, to find the components of the vector of 
criteria weights w. Above all, the eigenvector method is simple yet 
effective, identifying the priority vector w in the principal eigenvector 
(the one with highest eigenvalue) of A. Thus, given a pairwise matrix A, 
the vector w results from: 
{

Aw = λmaxw
wT e = 1 (9)  

where e is the vector of size K defined as e = (1,⋯, 1)T. 
Please note that the concepts presented above can be extended to any 

number of respondents (i.e., multiple pairwise comparison matrices) by 
deriving a grouped pairwise comparison matrix B with elements: 

bxy =
∏D

d=1
axy

d (10)  

where 1 < d < D identifies the d-th matrix compiled by the d-th decision 
maker, who is part of the group of D people. Please note that both B and 
A are K × K matrices. 

Summarizing: one (or a group of D) expert(s) is asked to compare 
couples of criteria Lx, Ly ∈ L. Consequently, the responses of each d-th 
expert fill a pairwise decision matrix A. Multiple matrices can be 
aggregated through the grouped pairwise comparison matrix B. The 
condition CR ≤ 0.1 must be verified to ensure consistency among data, 
and the vector of weights w can be computed defining priorities among 
the given criteria. Similarly, the process is repeated for the lower level of 
the multi-criteria decision problem by evaluating alternatives related to 
each criterion. Finally, alternatives’ priorities are computed averaging 
over the weights of correspondent criteria. In this paper we assume all 
alternatives to be equally important in reaching the goal of the problem, 
this assumption is further detailed in Section 3. 

2.2.2. Completeness metric 
The vector of weights w is used to define a completeness metric for 

reports. A near miss report is seen as a collection of elements, each one 
with its corresponding weight. Specifically, the different labels that can 
be assigned to a node represent the criteria to be evaluated in terms of 
their contribution to make a report complete. In this perspective, the set 
of possible criteria within the whole graph becomes: 

L = {Lk = LN
n ∀ n = 1,⋯,N : LN

n′ ∕= LN
n″ , n′, n″ = 1,⋯,N} (11)  

that is the set including only the unique values among all the n-th labels 
assigned to the N nodes in N. Being L the set of criteria, each element Lk 
will be uniquely related to one exact element in w (Lk ↔ wk). Please note 
that both w and L will count the same number of elements, i.e., K. 
Similarly, one can define the unique values in a subset N* ⊆ N as L*. 
This latter includes all the different labels of nodes contained in N*,

please note also that L* ⊆ L. Accordingly, the completeness metric 
referred to a subset of nodes N* is defined as: 

ηN* =
∑

Lk∈L*

wk (12) 

The metric is built by considering the recognition of at least one node 
with label Lk to be a sufficient condition to increase the metric value of 
the corresponding wk. Accordingly, the completeness metric ranges from 
0 to 1: it equals 0 if no nodes are present in N*, and it equals 1, instead, 
when all the labels in L have been recognized a least once in the sub- 
graph of N* nodes. 

3. Computing the completeness metric 

In this section the completeness metric assessment for near miss re-
ports is instantiated on a dataset of almost 4,000 near miss reports, 
collected from more than 250 Seveso industrial establishments oper-
ating in the 26 Seveso industrial sectors. The resulting knowledge graph 
counts more than 45,000 nodes and 75,000 relationships. These di-
mensions motivate the need for a computational process to ground the 
proposed safety meta-analysis. 

To frame the AHP decision problem, a goal, a criterion, and the al-
ternatives must be selected. The goal is to maximize the completeness of 
a near miss report (as a proxy measure of the usefulness that the near 
miss document acquires for safety analyses); the criteria are the different 
types of information a compiler can insert; and the alternatives are the 
terms the compiler can use to represent that information. Accordingly, 
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being each term modeled as a node in the knowledge graph, nodes labels 
are the possible criteria, while all the distinct occurrences of the value 
property represent the possible alternatives. In this work, the alterna-
tives level has been neglected, since more than 2000 alternatives are 
present in the knowledge graph, making it operationally impossible to 
evaluate them through interviews with experts. 

Each instance of value property have been considered to be equally 
important for its respective criterion. This latter assumption reflects the 
alternatives (i.e., the values) being dependent from the specific indus-
trial process, and would inhibit the possibilities of sharing knowledge 
among Seveso industrial sectors. For instance, consider the SUBSTANCE 
label, which possesses varying value properties across different in-
dustries (e.g., Liquified Petroleum Gas, Ammonia). Nonetheless, each of 
these properties holds equal significance, as they contribute to classi-
fying industries under the Seveso directive. 

On these premises, the ontology model described in Section 2.1.1 
gives the total number of criteria K that is equal to 9. However, in terms 
of report completeness, it is worthy to consider only the labels regarding 

the report content (i.e., EVENT, ACTIVITY, APPARATUS, SUBSTANCE, 
PEOPLE, BARRIER) imposing K = 6. Fig. 1 summarizes the structure of 
the AHP decision problem. 

A group of D = 6 experts was asked to individually compile the 
pairwise comparison matrix through a questionnaire. Some descriptive 
user data related to the six respondents are summarized in Table 1. 

Since Eq. (6) holds true, the resulting questionnaire counts 15 
questions which are meant to quantify the importance of one criterion 
over the other. The Saaty scale have been used to perform the quanti-
tative comparison with multiple choice verbal judgement, cf. Table 2. 

The Saaty scale enabled the completion of six different A matrices. 
Following Eq. (10), these latter have been grouped in an overall pairwise 
comparison matrix B. The resulting matrix is presented below: 

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.00 1.38 0.86 0.36 1.63 0.84
0.72 1.00 1.18 0.44 2.18 1.25
1.16 0.84 1.00 0.51 1.07 0.68
2.81 2.29 1.97 1.00 5.52 1.90
0.61 0.46 0.93 0.18 1.00 0.36
1.18 0.80 1.48 0.53 2.81 1.00

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13) 

Fig. 1. Schematization of the AHP decision problem. The lower level in grey (i.e., occurrences of the value property) has not been considered in the analysis.  

Table 1 
Data about the experts involved in the AHP questionnaire.  

ID Affiliation Description 

d1 Supervisory authority 
institute 

Seveso inspector with more than 25 years of 
experience in the field of industrial health and 
safety 

d2 Supervisory authority 
institute 

Seveso inspector with more than 10 years of 
experience in the field of environmental 
protection 

d3 Academia Researcher with more than 10 years’ experience 
in the field of safety and resilience 

d4 National research center Researcher with more than 25 years of 
experience in the field of industrial health and 
safety 

d5 Petroleum additives 
manufacturing plant 

Health and Safety department director with 
more than 20 years of experience in the field of 
chemical industries 

d6 LNG treatment and storage 
plant 

Health and Safety department director with 
more than 10 years of experience in the field of 
safety and environmental protection  

Table 2 
Saaty’s scale, as adopted by the authors.  

Verbal description Numerical 
value 

Indifference. The two possible answers have the same contribution 
on report completeness. 

1 

Moderate preference. An answer is moderately more important 
than the other to complete the report. 

3 

Strong preference. An answer is more important than the other to 
complete the report. 

5 

Very strong or demonstrated preference. An answer is definitely 
more important than the other to complete the report. 

7 

Extreme preference. The answer is the most important to ensure 
report completeness. 

9  

Table 3 
Pseudo-code to embed the completeness metric in the knowledge graph.  

for n’:= 1 to N : Cycle over source nodes 

if LNn’ = DOCUMENT then: Select node with label DOCUMENT 

pN4,n’= 0; Initialize completeness 

property value 

for k := 1 to K : Cycle over labels (AHP criteria) 

counter = k; Initialize counter variable 

for n’’ := 1 to N : Cycle over target nodes 

if (LNn’’ = Lk and Ǝ Rm : N’
m =

N’
n’, 

Select node connected to 

DOCUMENT and 

N’’
m = N’’

n’, L
R
m = CONTAINS 

and 

verify no target with same 

label has 

counter = k) then: been already visited 

pN4,n’= pN4,n’ + wk; Update completeness property 

value 

counter = counter + 1; Update counter variable 

n’’ = n’’ + 1; Continue cycling over target 

nodes 

else: Logic to deal with not selected 

targets 

pN4,n’= pN4,n’; Not update completeness property 

value 

n’’ = n’’ + 1; Continue cycling over target 

nodes 

end for  

k = k + 1; Continue cycling over labels 

end for  

n’ = n’ + 1; Continue cycling over source 

nodes 

else:  

n’ = n’ + 1; Continue cycling over source 

nodes 

end for  

return G with updated 

properties 

Return graph with updated 

properties  
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where the rows (and the column) are respectively referred to: L1 =

ACTIVITY, L2 = APPARATUS, L3 = BARRIER, L4 = EVENT, L5 =

PEOPLE, L6 = SUBSTANCE. The matrix B in Eq. (13) is checked for 
consistency through Eq. (8), which becomes: 

CR =
1

1.25
⋅
6.13 − 6

6 − 1
≅ 0.02 (14)  

depicting a consistent result since CR < 0.1. The vector of weights w is 
finally computed through Eq. (9), obtaining: 

w =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.41
0.45
0.38
1.00
0.23
0.50

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.14
0.15
0.13
0.34
0.08
0.17

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15)  

where, again, rows are respectively referred to: L1 = ACTIVITY, L2 =

APPARATUS, L3 = BARRIER, L4 = EVENT, L5 = PEOPLE, L6 =

SUBSTANCE. Please note that a normalization has been performed on w 
elements to ensure the completeness metric η to range between 0 and 1. 

4. Analysis and discussion 

Once the weights for each report element have been computed, the 
completeness metric for each report must be integrated in the knowl-
edge graph. Accordingly, the pseudo-code in Table 3 formalizes the 
calculation of the completeness metric, which is added as an additional 
property pN

4,n (namely completeness) to nodes with label DOCUMENT. 
Where the counter variable has been used to ensure labels to be 
counted only once in the metric calculation, in accordance with Eq. (12). 

The knowledge graph model enables the analysis of changes in the 
completeness metric in relation to different dimensions. Report 
completeness can be investigated by means of: (i) occurrences of the 
value property nodes can assume, (ii) industrial sector of provenience (i. 
e., connections with nodes with label INDUSTRIAL_SECTOR), (iii) 
establishment of provenience (i.e., connections with nodes with label 
ESTABLISHMENT), (iv) date of collection (i.e., collection_date property in 
nodes with label DOCUMENT), (v) date of redaction (i.e., occurence_date 
property in nodes with label DOCUMENT), (vi) location (i.e., loca-
tion_region and location-district properties in nodes with label ESTAB-
LISHMENT), or any combination of the above. 

The assumptions for the calculation are:  

• Some affinities between Seveso-related industrial sectors exist, by 
means of the reasons they must comply with the Seveso legislation. 
Accordingly, the outcome of the analysis is obtained considering 6 
macro-sectors. Details about each macro-sector definition are re-
ported in Table 4. This stratification is presented to reflect the 
assumption that the macro-sectors are assumed to be homogeneous 
in terms of reporting peculiarities. 

• Data related to the establishments have been anonymized to guar-
antee companies’ privacy.  

• The date of collection and the date of redaction of the near miss 
reports only consider the corresponding year. This choice was forced 
since ca. 70% of available reports do not contain data about the 
month and the day of collection/redaction. 

Aggregated measures of the completeness metric η have been used, 
too. Specifically, the average value of η with respect to a set of reports is 
calculated under different query conditions. For example, the 
completeness capacity of an industrial establishment can be seen as the 
average value of completeness of all the reports it submitted. In general, 
the value of average completeness can be defined as: 

η̄ =

∑
Nn∈HpN

4,n

|H|
(16)  

where H is the set of all the nodes with label DOCUMENT obtained 
because of queries applied to the graph database, |H| is the cardinality of 
H (i.e., number of resulting nodes), and pN

4,n is the value of η assigned to a 
node with label DOCUMENT. The definition of queries follows the 
ontological explorative analysis presented by Simone et al., (2023). 

Based upon the six dimensions defined above, in the following par-
agraphs we show four different dimensions to guide the meta-analysis of 
near miss reports completeness:  

(i) the first one will investigate the completeness of reports by 
considering the different occurrences of the value property (i.e., 
reports’ terms) each label can assume  

(ii) the second one will account the average completeness of reports 
grouped by establishment and industrial macro-sector 

(iii) the third one will consider the date of collection and the indus-
trial macro-sector 

(iv) the fourth one will investigate the date of redaction and the in-
dustrial macro-sector. 

Each dimension will be grounded on a distinct definition of the H set 

Table 4 
Seveso industrial macro-sectors definition. The right column includes all the 26 
industrial sectors as defined by the Seveso legislation.  

ID Description Sectors included 

MS1 The main hazards associated with 
these industrial activities are not 
directly connected with the Seveso 
legislation. Their main business is not 
Seveso-related 

Mining activities 
Metal processing 
Ferrous metalworking 
Non-ferrous metalworking 
Chemical/electrolytic metal 
treatment 
Pottery manufacturing 
Others (not directly specified)  

MS2 All the activities related to these 
industrial sectors involve oil and 
petroleum 

Petrochemical and oil refineries 
Energy production, supply, and 
distribution (fossil fuel power 
stations) 
Storage of fuels (no LPG and LNG) 
Fuels wholesale and retail storage 
and distribution (no LPG)  

MS3 All the activities related to these 
industrial sectors involve explosives 

Production, destruction, and 
storage of explosives 
Production and storage of 
pyrotechnical goods  

MS4 All these industrial sectors work with 
gases 

Production, bottling, and 
distribution of LPG 
Storage of LPG 
Storage and distribution of LNG  

MS5 All these industrial sectors work with 
chemicals or related products 

Production and storage of 
pesticides and biocides 
Production and storage of 
fertilizers 
Pharma manufacturing 
Chemical plants 
Production of basic organic 
chemicals 
Plastics and rubber manufacturing 
Chemicals manufacturing (not 
directly specified)  

MS6 All the activities related to these 
industrial sectors are connected to 
waste management 

Storage, treatment, and disposal of 
waste 
Collection, supply, and treatment 
of water and wastewater  
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obtained following an ontological explorative path analysis on the graph 
(Simone et al., 2023). The spatial dimension (i.e., establishment loca-
tion) has not been detailed in this paper to avoid privacy concerns. 
However, there could be the possibility to define a proper H set grouping 
nodes with label ESTABLISHMENT by means of their location_region or 

location_district properties. 

4.1. Semantical overview 

The first ontological path is meant to explore how the completeness 
of reports is influenced by the value property. This analysis is proposed 
to partially overcome the operational limitation which has prevented 
the possibility of evaluating the value property as an alternative in the 
AHP questionnaire. Accordingly, the different instances of the value 
property are extracted from the graph and the average completeness of 
reports containing them is evaluated. 

An example for the ontological explorative analysis to be made is 
graphically summarized in Fig. 2. A specific label LN

n is set and nodes 
with that label are set as starting points. Green nodes (i.e., nodes with 
label BARRIER) are used as an example. A second step extracts the 
property pN

1,n (i.e., value) from the selected nodes. This property repre-
sents the unique key for the analysis. The last step involves the navi-
gation of the relationships with label CONTAINS to move to the 
corresponding nodes with label DOCUMENT (i.e., light blue nodes in 
Fig. 2). This step permits to relate each instance of the value property to 
the corresponding completeness property of DOCUMENT nodes by 
extracting pN

4,n. The H sets, and their cardinalities |H|, are defined by 
comparing values of pN

1,n: DOCUMENT nodes that have been navigated 
from nodes with same pN

1,n belong to the same H set. Through Eq. (16), a 
value of η̄ can be assigned to each instance of the value property aver-
aging over the matching completeness values. The resulting extracted 
data comprehends: all the value occurrences, their corresponding labels, 
and each value resulting average completeness. 

Results obtained from the knowledge graph query are summarized in 
the flower plot in Fig. 3, showing only instances of the value property in 
the range 0.9 < η̄ ≤ 1. The proposed flower plot can be interpreted as it 
follows:  

• the petals represent the six different labels. 
• the size of each petal is proportional to the numerosity of the in-

stances of the value property satisfying the condition on η̄.  
• the center of the flower plot reports a pie-chart containing the weight 

of each label as obtained from the AHP questionnaires. Convex petals 
(lighter ones) show a reduction in the importance from expert 
judgement by means of actual numerosity spotted in data, concave 
petals (darker ones) show an increase, instead. 

Fig. 2. Schematization of the ontological explorative analysis to investigate completeness based upon the value property. Light blue nodes identify DOCUMENT 
labels, green nodes identify BARRIER labels, the other colors are referred to the other labels (ACTIVITY, APPARATUS, EVENT, PEOPLE, SUBSTANCE), grey areas 
identify the H sets. Solid black arrows represent existing graph relationships. Nodes’ numbering in the figure is purely exemplary. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Flower plot showing numerosity of different terms (i.e., value instances) 
for each label, referred to an average completeness between 0.9 and 1. 

Table 5 
Nodes’ labels numerosity by means of different occurrences of the value prop-
erty with respect to average completeness ranging between 0.9 and 1. The 
central column includes the labels’ weights as obtained from the AHP ques-
tionnaires. The right column reports the difference between the two.   

Weight by % numerosity 
of terms 

Weight by AHP 
results 

Variation on 
weight 

ACTIVITY  11.77%  14.00%  − 2.23 
APPARATUS  16.58%  15.00%  +1.58 
BARRIER  21.77%  13.00%  +8.77 
EVENT  25.06%  34.00%  − 8.94 
PEOPLE  0.76%  8.00%  − 7.24 
SUBSTANCE  24.05%  17.00%  +7.05  

F. Simone et al.                                                                                                                                                                                                                                  



Safety Science 168 (2023) 106305

8

Numerical values of the resulting investigation are reported in 
Table 5. It is clear how the weight of some labels as obtained from their 
frequency is not matching the AHP results. The EVENT label remains the 
most important but it registers a significant reduction ( − 9%), being 
almost equaled by the SUBSTANCE label (less than 1% difference). An 
impressive result is the one related to the BARRIER label, which shows 
an increase of almost 9% in weight. Accordingly, they may play a central 
role in telling what went well (or wrong) avoiding the near miss to 
evolve into a major adverse event. 

It is worth noticing that the tagging algorithm may have paid a role 
in these results, since its performance in classifying terms may have been 
not completely uniform (Ansaldi et al., 2021). However, this result 
shows how practitioners actually stress the need to give information 
about the events which occurred, the substances involved, and the 
barriers which worked/failed. At a deeper level of analysis, the terms 
contained in the value property can be investigated, too, pointing out 
the topics in which the system showed a more punctual storytelling. 
Analogous plots and analyses can be made for different ranges of 

Fig. 4. Schematization of the ontological explorative analysis to investigate completeness of industrial establishments. Blue nodes identify ESTABLISHMENT labels, 
red nodes identify INDUSTRIAL_SECTOR labels, light blue nodes identify DOCUMENT labels, grey areas identify the H sets. Solid black arrows represent existing 
graph relationships. Nodes’ numbering in the figure is purely exemplary. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 5. Industrial establishment analysis per macro-sector by means of average completeness and number of reports submitted (on a logarithmic scale).  
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completeness to spot (e.g.,) which are the actual terms (or even topics) 
contained in uncomplete reports. These latter can be seen as a symptom 
of the challenges emerging from the management of such narratives, or 
can point at possible weaknesses in reporting systems. 

4.2. Establishments overview 

The second path is set to assess the ability of each industrial estab-
lishment to complete a near miss report. An example for the ontological 
explorative analysis to be made is graphically summarized in Fig. 4. The 
nodes with label ESTABLISHMENT (blue nodes in Fig. 4) are set as 
starting points and they are identified by the property establishment_id (i. 
e., pN

1,n in nodes with label ESTABLISHMENT). Such property is never 
repeating over different industrial establishments and represents the 
unique key for the analysis. From the ESTABLISHMENT nodes, the 
relationship towards the INDUSTRIAL_SECTOR nodes are explored. For 
these latter, the industrial_sector_id property (i.e., pN

1,n in nodes with label 
INDUSTRIAL_SECTOR) is initially stored. This step permits to relate each 
industrial establishment to the industrial sector it belongs to, enabling a 
parallel analysis of industrial sectors, too. The third and last step navi-
gates the relationships with label FROM to match all the nodes with label 
DOCUMENT related to each industrial establishment. 

This results in the definition of the H sets, and their corresponding 
cardinalities |H|. Thus, through Eq. (16), a value of η̄ can be assigned to 
each industrial establishment averaging over the matching completeness 
values (i.e., pN

4,n in nodes with label DOCUMENT). The resulting 
extracted data comprehend: all the establishment_id, the establishments 
corresponding industrial_sector_id, and each establishment corresponding 
H set. 

Data obtained from the knowledge graph is used to characterize each 
industrial establishment with its ability to compile reports in a complete 
way. The result is shown in the scatter plot in Fig. 5. An industrial 
establishment is identified by a point in the plot by means of its average 
completeness η̄, and the number of reports this average was computed 
on (i.e., |H|), which is plotted on a logarithmic scale. A total of 260 

industrial establishments have been analyzed, the number of establish-
ments belonging to each macro sector is summarized in Table 6, along 
with the total number of reports submitted by the macro-sector, and 
subsequent average number of reports submitted by a single establish-
ment. The color code of the points relates them to the corresponding 
macro-sector (cf. Table 4). The additional plots that are positioned 
above and left to the scatter plot, show the normalized frequency of 
values the points assume, grouped by macro-sectors. It is clear how some 
macro-sectors are made up of establishments that have a better ability in 
ensuring a complete storytelling of near misses. Specifically, MS2 and 
MS5 are shown to be the best two macro-sectors by means of the average 
completeness their establishments can guarantee.MS5 also has the 
higher scores by means of reports submitted. This result may depict a 
strong sensibility of MS5 in managing near misses, but it is also clearly 
related to the higher number of establishments belonging to this macro- 
sector. A particular case is the one of MS6, which can guarantee a quite 
constant completeness value, that is majorly condensed between 0.6 and 
0.8, with a scarce presence of establishment. This result suggests a 
proved tendency in the sector in avoiding some specific type of details in 
the near miss reports. On the other hand, MS1 and MS4 show a wide 
distribution of the average completeness, stressing the presence of in-
ternal differences between actors in the same sector. This result can be 
seen as an inner characteristic of MS1 since it has been built by grouping 
different industries that falls under the Seveso legislation for some side 
processes they perform. Nevertheless, it is also an indicator that some 
establishments of both MS1 and MS4 may benefit from lessons learned 
from other actors in their field to improve their ability in managing near 
misses. The worst performance is given by MS3 both by means of 
number of reports and average completeness. If the first result can be 
partially explained by the scarce presence of industries in this macro- 
sector, the second one is depicting a clear overall low completeness of 
MS3 reports, that may be improved through the few establishments in 
MS3 with positive scores. These latter may then be used as leading ex-
amples to improve the macro-sector performance in managing near 
misses. 

4.3. Temporal overview 

The next analysis is meant to investigate how the ability of industrial 
sectors in reporting near misses changed over time. This temporal 
analysis can be twofold: (i) using the date in which the near miss report 
was collected by the competent authority (i.e., pN

2,n in nodes with label 
DOCUMENT, namely, collection_date property), or (ii) using the date in 
which the near miss event happened (i.e., pN

3,n in nodes with label 

Table 6 
Number of establishments per macro-sector.   

MS1 MS2 MS3 MS4 MS5 MS6 

Number of establishments 32 49 12 47 111 9 
Number of reports 483 538 94 328 2286 94 
Average number of reports 

per establishment 
15.09 10.98 7.83 6.98 20.59 10.44  

Fig. 6. Schematization of the ontological explorative analysis to investigate completeness by collection and occurrence year. Red nodes identify INDUSTRI-
AL_SECTOR labels, blue nodes identify ESTABLISHMENT labels, light blue nodes identify DOCUMENT labels, grey areas identify the H sets. Solid black arrows 
represent existing graph relationships. Nodes’ numbering in the figure is purely exemplary. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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DOCUMENT, namely, occurrence_date property). The corresponding 
ontological explorative analysis is graphically summarized in Fig. 6. The 
nodes with label INDUSTRIAL_SECTOR (red nodes in Fig. 6) is set as 
starting points and they are identified by the property industrial_sector_id 
(i.e., pN

1,n in nodes with label INDUSTRIAL_SECTOR). The analysis then 
moves from the INDUSTRIAL_SECTOR nodes towards the ESTABLISH-
MENT nodes (blue nodes in Fig. 6). This is an intermediate step, and no 
property is stored at this stage. The third step navigate from the nodes 
with label ESTABLISHMENT to the nodes with label DOCUMENT (light 
blue nodes in Fig. 6), matching the documents related to each industrial 
sector and extracting their completeness property (i.e., pN

4,n in nodes with 

label DOCUMENT). At this point a comparison between DOCUMENT 
nodes referring to the same INDUSTRIAL_SECTOR is made by means of 
their collection_date or occurrence_date property. Nodes with matching 
values are grouped in the same H set. Please note that each INDUSTRI-
AL_SECTOR can be related to more than one H set. Thus, the unique key 
for the analysis is the combination of INDUSTRIAL_SECTOR and a spe-
cific value the collection_date/occurrence_date property can assume. 

The definition of the H sets, and their corresponding cardinalities |H|

permits the calculation of η̄ through Eq. (16). The resulting extracted 
data comprehend: all the unique combinations of industrial_sector_id and 
collection_date/occurrence_date, and their corresponding H sets. Extrac-
ted data enable two temporal analyses of reports completeness and 
numerosity of the industrial macro-sectors by means of collection_date 
and occurrence_date, respectively. Fig. 7 reports the temporal behaviour 
of the macro sectors with respect to collection_date. The arrows in the plot 
depict the variation of reports completeness and numerosity year by 
year, starting from 2016 to 2020. Results show an overall tendency of all 
macro sectors in diminishing the number of reports to be submitted to 
the competent authority. To explain this fact, it is important to point out 
that the implementation of the Seveso III directive has improved the 
inspections’ scheduling guaranteeing that all upper-tier establishments 

Fig. 7. Temporal analysis by collection_date by means of average completeness and number of reports submitted (on a logarithmic scale).  

Table 7 
Average number of reports submitted in a year by an industrial establishment 
per macro-sector. This table specializes Table 5 providing an average yearly 
estimate.   

MS1 MS2 MS3 MS4 MS5 MS6 

Reports submitted by an 
establishment in a year  

1.34  0.61  0.67  2.00  0.22  3.33  

Fig. 8. Temporal analysis by collection_date. Year over year percentage change of the average completeness by macro-sectors.  
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Fig. 9. Temporal analysis by collection_date. Year over year percentage change of the number of reports collected by macro-sectors.  

Fig. 10. Temporal analysis by occurence_date by means of average completeness and number of reports submitted. While the vertical axes are left unchanged, one 
should pay attention to the scale on the horizontal axis for comparison purposes. 
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would be involved by three years. Before 2015, some establishments had 
not been inspected for a while; thus, they have accumulated the near 
miss reports over time. Accordingly, the diminishing number of reports 
may be an indicator of a stabilization in the number of near miss events 
submitted, cf. the number for each macro-sector to be lower than 100 
reports per year. This result should be evaluated with respect to the 
number of analysed establishments belonging to each macro sector. 
Accordingly, Table 7 summarizes the average number of near misses 
that an industry in each macro-sector submits in a year. MS1, MS4, and 
MS6 are the only sectors made up of establishments submitting more 
than one report per year. Accordingly, to the analysis of industrial 
establishment in Section 4.2, the first one (i.e., MS1) has a distribution of 
frequency of number of reports that tend to higher numbers (cf. Fig. 5), 
depicting a particular attention of industries on the theme of near mis-
ses. Nevertheless, the yearly need for submitting report is slightly higher 
than 1, that, accordingly, depicts few near misses happening and overall, 
a safe performance of the sector. On the contrary, MS4 and MS6 have the 
distributions of frequencies of number of reports that tend to lower 
numbers (cf. Fig. 5), stressing the possibility to improve safety in oper-
ations of such sectors. 

Concerning the value of average completeness, the best performance 
is the one of MS5, which shows a continuous improvement in 
completeness. MS2, MS4, and MS6 keep an almost constant performance 
overall, while MS1 and MS3 present a decrease. Such result is coherent 
with the analysis in Section 4.2 which already highlighted the critical-
ities linked to MS3. 

For clarity purposes, an additional visualization of the temporal 
analysis is proposed. The year over year percentage change (YoY%) in 
number of reports and completeness is calculated for each macro sector 
as: 

YoY% =
v(t) − v(t− 1)

v(t− 1)
⋅100 (17)  

where v(t) is the value of the analyzed variable in a specific year of 
collection t. Please note that YoY% ranges between − 100% to +∞. YoY% 
tends to 0 if no reports are collected in v(t), or the average completeness 
in v(t) is strongly minor than the average completeness in v(t− 1); YoY% 

tends to its upper limit instead, if the reports collected in v(t) are much 
more than the reports collected in v(t− 1), or the average completeness in 
v(t) is strongly major than the average completeness in v(t− 1). 

Fig. 8 and Fig. 9 reports the YoY% of completeness and number of 
reports respectively. It is clear how the number of reports (cf. Fig. 9) is 
affected by a higher year over year change, and it has a diminishing 
trend for most recent years, as discussed previously. Overall, by 
considering the average YoY% over the whole time period considered, 
MS1, MS3, and MS4 are the only macro-sectors reporting positive de-
viations. Nevertheless, MS3 results to be the more critical by means of 
the variance of its YoY%. Concerning the average completeness change, 
all macro-sectors have negligible variances. MS1, MS2, and MS4 have, 
on average, a negative deviation over the five years considered, with 
MS1 being the most critical, with an average loss of more than 5% on 

Fig. 11. Temporal analysis by occurence_date. Year over year percentage change of the average completeness by macro-sectors.  
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completeness. Numerical values referred to the analyses in Fig. 8 and 
Fig. 9 are reported in Appendix A. 

An analogous analysis is conducted on the property occurrence_date. 
Please note that the ontological exploration from Fig. 6 is applied 
equivalently with the only difference that H sets have been built by 
grouping over the pN

3,n property of nodes with label DOCUMENT. Fig. 10 
reports the temporal behaviour of the macro sectors with respect to 
occurence_date. The arrows in the plot depict the variation of reports 
completeness and numerosity year by year, starting from 2000 to 2020. 
Results confirms MS1 and MS3 to be the more variable in terms of 
average completeness, with MS4 following. 

Additionally, the year over year percentage change (cf. Eq. (17) in 
number of reports and completeness is calculated for each macro sector, 
and it is presented in Fig. 11 and Fig. 12. Precise numerical values are 
reported in Appendix B. 

It is possible to notice how all macro-sectors show an increasing and 
then decreasing trend in the number of reports if analyzed by the 
occurrence_date field. This distinctive phenomenon may be caused by 
different aspects that emerge from an analysis or meta-analysis 
perspective. Firstly, this result might be partially unreliable due to the 
incompleteness of the dataset. 

One should note that the near miss reports inserted in the graph are 
the ones collected during the Seveso inspection procedures. Accord-
ingly, Table 8 contains the rate of completion of the number of expected 
Seveso inspections that are contained in the database. The years 2019 
and 2020 (this latter being influenced by the COVID-19 outbreak, too) 
suffer from increasingly missing data, which have an impact on the 
subsequent analyses. 

Another possible explanation can be related to the absence of a 
prescription in submitting reports until 2015, resulting in a temporary 
amplification of the industry concern in reporting near misses. This 
aspect may be a symptom of potential under-reporting by industries that 
may perceive limited benefit in reporting. Moreover, further explanation 
may refer to the fact that Seveso industries are becoming increasingly 
virtuous in managing industrial safety, reducing the occurrence of 
adverse events over recent years. In line with the purpose of this work, 
the analysis is not delving into the operational causes for this behavior, 
rather suggesting a methodological support for highlighting underlying 
behaviors as emerged from safety reporting. 

5. Conclusion 

This paper examines the importance of near misses and highlights 
how they can be utilized as a key indicator to improve industrial safety 
in Seveso establishments. On this basis, the information load of near 
miss reports must be maximized to help organizations identify and 
mitigate risks before they escalate towards more serious epilogues. The 
paper presents a meta-analytic safety perspective that updates the 
knowledge graph of near miss reports (Simone et al., 2023) adding 
weights to graph nodes. These latter permit to calculate a completeness 
metric that assesses the informative content of each report. This meta- 
analytic metric suggests hotspots to be further investigated, but does 
not directly connect its findings to traditional safety and risk analyses. 
Future works may investigate this relation with further attention. 

Answering the research question of this paper, the knowledge graph 
enables different meta-analysis declinations permitting to: (i) analyze 
the terms that have been used in the reports and connect them with 
reports’ completeness, (ii) characterize industrial establishments and 
their corresponding industrial sector through the completeness of re-
ports they submitted, and (iii) have an understanding of the reports’ 
completeness over time. 

Nevertheless, the presented results suffer from some limitations, that 
are majorly related to: (i) the partial incompleteness of the dataset that 
have been used, (ii) the ontology that has been tailored on near miss 
data, remaining to some extent limited to this specific domain, and (iii) 
the computational costs that are in our case negligible, but they may 
represent a limitation in larger-scale investigations. Accordingly, some 
open questions are left to be answered. For example, future works may 
address the problem of the later decreasing in number of near miss oc-
currences by interviewing industries and defining whether – if any – the 
measures they implemented were truly effective. The prioritization of 
areas to be investigated, the identification of potentially critical or best- 
in-class sectors or specific enterprises could complement the usage of 
this completeness metric. 

Nonetheless, this approach can be further extended. In particular, the 
currently defined metric only considers the presence or not of a partic-
ular type of data, without considering its actual value, and its topolog-
ical properties. A more accurate completeness metric that overcomes 
this limitation can be computed by embedding mechanisms, e.g., the 
nodes’ page rank (Zhang et al., 2022). A more precise analysis should 
also detail weights for the value property, which was shown to be a 
parameter of interest by means of reports’ completeness. Specifically, 
Section 4.1 highlights the importance of the terms classified through the 
BARRIER label, and it is consistent with several studies detailing the 
importance of different safety barriers (Casson Moreno et al., 2022; 
Misuri et al., 2021). Further developments may integrate the meta- 
analysis with more sophisticated weight to be assigned to value prop-
erties for specific labels of interest. 

The presented meta-analysis is, at this stage, purely descriptive (i.e., 
how things have been done?). However, these outcomes open the path to 
the development of a prescriptive tool (i.e., how things should be 
done?). This latter may support both safety managers from industries in 
writing highly informative reports, and regulatory authority inspectors 
in spotting criticalities and suggesting areas of improvement. Starting 
from this basis, graph embedding may be used to enable the usage of 
machine learning algorithms to perform edges completion or classifi-
cation of missing nodes (Wang et al., 2017). 

Viewing near misses as opportunities for improvement can make 
organizations build a culture of continuous improvement, trust, and 
accountability that fosters a safer and more resilient working environ-
ment. As such, the meta-analysis proposed in this research is expected to 
support industries in encouraging safety reporting and providing a 
robust basis for critical reflections. 
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Appendix A 

(See Tables A1-A2).  

Table A1 
Year over year percentage change in average completeness per macro-sector (by collection_date).   

MS1 MS2 MS3 MS4 MS5 MS6 

2016 – N/A N/A N/A N/A N/A N/A N/A 
2017 – 2016 − 0.06% − 6.17% +29.50% +3.00% +0.19% N/A 
2018 – 2017 − 14.32% +2.22% − 19.84% − 7.80% +5.50% − 11.45% 
2019 – 2018 +24.56% − 2.14% +27.70% − 2.16% +3.34% +14.52% 
2020 – 2019 − 30.39% − 0.13% − 34.87% N/A +14.47% N/A 
Average − 5.05% − 1.55% +0.62% − 2.32% +5.87% +1.53% 
Variance 0.04 0.00 0.08 0.00 0.00 0.02 

Fig. 12. Temporal analysis by occurence_date. Year over year percentage change of the number of reports by macro-sectors.  
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Table A2 
Year over year percentage change in number of reports per macro-sector (by collection_date).   

MS1 MS2 MS3 MS4 MS5 MS6 

2016 – N/A N/A N/A N/A N/A N/A N/A 
2017 – 2016 +137.78% +18.47% +400.00% +41.03% − 2.98% N/A 
2018 – 2017 +103.74% − 52.15% − 91.67% +154.55% 40.44% − 11.76% 
2019 – 2018 − 67.89% − 14.61% +80.00% –32.86% − 69.74% 0.00% 
2020 – 2019 − 38.57% − 60.53% − 11.11% − 100.00% − 90.36% − 100.00% 
Average +33.76% − 27.20% +94.31% +15.68% − 30.66% − 37.25% 
Variance 0.78 0.10 3.48 0.89 0.27 0.20  

Appendix B 

(See Tables B1-B2).  

Table B1 
Year over year percentage change in number of reports per macro-sector (by occurence_date).   

MS1 MS2 MS3 MS4 MS5 MS6 

2000 – N/A N/A N/A N/A N/A N/A N/A 
2001 – 2000 N/A +20.92% N/A − 4.84% − 8.60% +55.04% 
2002 – 2001 − 1.56% − 2.36% N/A − 15.68% − 8.89% − 29.00% 
2003 – 2002 − 13.10% +13.51% N/A − 17.39% +25.34% N/A 
2004 – 2003 − 57.53% − 9.04% − 12.79% +25.15% − 20.77% N/A 
2005 – 2004 +116.13% − 1.80% +22.67% +14.02% +6.18% +16.46% 
2006 – 2005 − 10.55% +8.81% − 38.91% +0.67% − 6.02% − 14.13% 
2007 – 2006 +5.18% − 19.89% − 35.35% +9.31% +17.29% 0.00% 
2008 – 2007 +7.36% − 1.67% +89.91% − 16.08% − 8.19% +3.38% 
2009 – 2008 +18.11% +16.03% − 1.81% − 5.46% +3.94% − 14.04% 
2010 – 2009 − 13.24% +3.70% − 4.80% +4.66% − 2.23% +9.69% 
2011 – 2010 +4.82% − 3.46% − 18.60% − 7.88% − 3.68% − 8.44% 
2012 – 2011 − 3.89% − 2.57% +40.95% +2.55% +4.08% +15.60% 
2013 – 2012 − 0.52% +1.42% +10.06% +7.34% − 4.33% –22.30% 
2014 – 2013 +7.97% +1.08% − 6.38% +4.81% − 0.08% +25.96% 
2015 – 2014 +3.99% − 4.43% − 37.29% − 6.46% +0.64% +10.16% 
2016 – 2015 − 15.51% − 6.66% +20.36% +6.26% +3.28% − 26.66% 
2017 – 2016 +19.79% +4.40% +14.86% − 13.10% − 0.98% +11.63% 
2018 – 2017 − 9.60% +7.86% − 31.43% − 3.93% +9.31% +5.65% 
2019 – 2018 +11.86% − 6.29% − 14.71% − 9.03% − 10.81% N/A 
2020 – 2019 − 34.51% − 2.39% +69.40% N/A +20.86% N/A 
Average +1.85% +0.86% +3.89% − 1.32% +0.82% +2.44% 
Variance 0.10 0.01 0.12 0.01 0.01 0.04   

Table B2 
Year over year percentage change in number of reports per macro-sector (by occurence_date).   

MS1 MS2 MS3 MS4 MS5 MS6 

2000 – N/A N/A N/A N/A N/A N/A N/A 
2001 – 2000 N/A − 50.00% − 100.00% +700.00% +233.33% − 50.00% 
2002 – 2001 +66.67% +75.00% N/A − 62.50% − 40.00% +100.00% 
2003 – 2002 − 80.00% 0.00% N/A –33.33% +83.33% − 100.00% 
2004 – 2003 0.00% − 14.29% 0.00% +200.00% − 27.27% N/A 
2005 – 2004 +500.00% –33.33% 0.00% 0.00% +125.00% 0.00% 
2006 – 2005 +150.00% +75.00% +400.00% +50.00% +122.22% 0.00% 
2007 – 2006 +113.33% +85.71% − 40.00% − 66.67% +127.50% 0.00% 
2008 – 2007 − 43.75% +46.15% –33.33% +633.33% +38.46% +200.00% 
2009 – 2008 –22.22% − 15.79% +100.00% –22.73% − 11.11% +66.67% 
2010 – 2009 +107.14% +118.75% − 50.00% +70.59% +36.61% − 80.00% 
2011 – 2010 − 6.90% +14.29% +200.00% − 55.17% +14.38% +300.00% 
2012 – 2011 +3.70% +15.00% +50.00% +7.69% +4.57% +150.00% 
2013 – 2012 +7.14% − 10.87% 0.00% +57.14% +10.38% +70.00% 
2014 – 2013 +30.00% +34.15% − 55.56% +9.09% +3.47% − 35.29% 
2015 – 2014 − 15.38% − 21.82% +175.00% +70.83% +18.18% − 27.27% 
2016 – 2015 +60.61% +44.19% − 18.18% +4.88% − 5.26% +25.00% 
2017 – 2016 +20.75% 0.00% 0.00% –23.26% +11.97% +10.00% 
2018 – 2017 –32.81% − 53.23% 0.00% − 24.24% − 40.46% − 54.55% 
2019 – 2018 − 27.91% − 62.07% –33.33% − 72.00% − 75.00% − 100.00% 
2020 – 2019 − 64.52% +109.09% − 66.67% − 100.00% − 97.44% N/A 
Average +40.31% +17.80% +29.33% +67.18% +26.64% +26.36% 
Variance 1.45 0.26 1.33 4.22 0.56 1.02  

F. Simone et al.                                                                                                                                                                                                                                  



Safety Science 168 (2023) 106305

16

References 

Abu-Salih, B., 2021. Domain-specific knowledge graphs: a survey. J. Netw. Comput. 
Appl. 185 https://doi.org/10.1016/j.jnca.2021.103076. 

Ansaldi, S.M., Agnello, P., Pirone, A., Vallerotonda, M.R., 2021. Near miss archive: a 
challenge to share knowledge among inspectors and improve seveso inspections. 
Sustainability 13. https://doi.org/10.3390/su13158456. 

Brunelli, M., 2015. Introduction to the Analytic Hierarchy Process, Springer Briefs in 
Operations Research. Springer Cham. 10.1007/978-3-319-12502-2. 

Bugalia, N., Maemura, Y., Ozawa, K., 2021. A system dynamics model for near-miss 
reporting in complex systems. Saf. Sci. 142 https://doi.org/10.1016/j. 
ssci.2021.105368. 

Caspi, H., Perlman, Y., Westreich, S., 2023. Managing near-miss reporting in hospitals: 
the dynamics between staff members’ willingness to report and management’s 
handling of near-miss events. Saf. Sci. 164, 106147 https://doi.org/10.1016/j. 
ssci.2023.106147. 

Casson Moreno, V., Marroni, G., Landucci, G., 2022. Probabilistic assessment aimed at 
the evaluation of escalating scenarios in process facilities combining safety and 
security barriers. Reliab. Eng. Syst. Saf. 228, 108762 https://doi.org/10.1016/j. 
ress.2022.108762. 

Dekker, S., 2019. Foundations of safety science: a century of understanding accidents and 
disasters. Routledge. https://doi.org/10.4324/9781351059794. 

EU Council, 2012. DIRECTIVE 2012/18/EU On the control of major accident hazards 
involving dangerous substances. Off. J. Eur. Union L197, 1–37. 

Hughes, P., Robinson, R., Figueres-Esteban, M., van Gulijk, C., 2019. Extracting safety 
information from multi-lingual accident reports using an ontology-based approach. 
Saf. Sci. 118, 288–297. 

Khan, N., Ma, Z., Ullah, A., Polat, K., 2022. Categorization of knowledge graph based 
recommendation methods and benchmark datasets from the perspectives of 
application scenarios: a comprehensive survey. Expert Syst. Appl. 206 https://doi. 
org/10.1016/j.eswa.2022.117737. 

Li, X., Lyu, M., Wang, Z., Chen, C.-H., Zheng, P., 2021. Exploiting knowledge graphs in 
industrial products and services: a survey of key aspects, challenges, and future 
perspectives. Comput. Ind. 129 https://doi.org/10.1016/j.compind.2021.103449. 

Misuri, A., Landucci, G., Cozzani, V., 2021. Assessment of risk modification due to safety 
barrier performance degradation in Natech events. Reliab. Eng. Syst. Saf. 212, 
107634. 

Newman, M., 2010. Networks: An Introduction, Networks: An Introduction. Oxford 
University Press. 10.1093/acprof:oso/9780199206650.001.0001. 

Pedrosa, M.H., Guedes, J.C., Dias, I., Salazar, A., 2022. New approaches of near-miss 
management in industry: a systematic review. Stud. Syst. Decis. Control 406, 
109–120. https://doi.org/10.1007/978-3-030-89617-1_10. 

Peng, F.-L., Qiao, Y.-K., Yang, C., 2023. Building a knowledge graph for operational 
hazard management of utility tunnels. Expert Syst. Appl. 223, 119901 https://doi. 
org/10.1016/j.eswa.2023.119901. 

Phimister, J.R., Oktem, U., Kleindorfer, P.R., Kunreuther, H., 2003. Near-miss incident 
management in the chemical process industry. Risk Anal. 23, 445–459. https://doi. 
org/10.1111/1539-6924.00326. 

Saaty, T.L., 1990. How to make a decision: the analytic hierarchy process. Eur. J. Oper. 
Res. 48, 9–26. https://doi.org/10.1016/0377-2217(90)90057-I. 

Simone, F., Ansaldi, S.M., Agnello, P., Patriarca, R., 2023. Industrial safety management 
in the digital era: constructing a knowledge graph from near misses. Comput. Ind. 
146, 103849 https://doi.org/10.1016/j.compind.2022.103849. 

Studer, R., Benjamins, V.R., Fensel, D., 1998. Knowledge engineering: principles and 
methods. Data Knowl. Eng. 25, 161–197. https://doi.org/10.1016/S0169-023X(97) 
00056-6. 

Wang, Q., Mao, Z., Wang, B., Guo, L., 2017. Knowledge graph embedding: a survey of 
approaches and applications. IEEE Trans. Knowl. Data Eng. 29, 2724–2743. https:// 
doi.org/10.1109/TKDE.2017.2754499. 

Zhang, P., Wang, T., Yan, J., 2022. PageRank centrality and algorithms for weighted, 
directed networks. Phys. A Stat. Mech. its Appl. 586 https://doi.org/10.1016/j. 
physa.2021.126438. 

Zhu, R., Hu, X., Bai, Y., Li, X., 2021. Risk analysis of terrorist attacks on LNG storage 
tanks at ports. Saf. Sci. 137 https://doi.org/10.1016/j.ssci.2021.105192. 

F. Simone et al.                                                                                                                                                                                                                                  


