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Abstract Merging beliefs depends on the relative reliability of their sources.
When this is information is absent, assuming equal reliability is unwarranted.
The solution proposed in this article is that every reliability profile is possi-
ble, and only what holds according to all of them is accepted. Alternatively,
one source is completely reliable, but which one is not specified. These two
cases motivate two existing forms of merging: maxcons-based merging and
disjunctive merging.

Keywords belief merging, knowledge representation, nonmonotonic reason-
ing, artificial intelligence

1 Introduction

Most of the literature on belief merging concerns sources of the information
of equal reliability (Lin and Mendelzon 1999; Chopra et al. 2006; Everaere
et al. 2010a; Konieczny and Pino Pérez 2011). Such a scenario occurs, but not
especially often. Two identical temperature sensors produce readings that are
equally likely to be close to the actual value, but a difference in made, age,
or position changes their reliability. Two experts hardly have the very same
knowledge, experience and ability. The reliability of two databases on a certain
area may depend on factors that are unknown when merging them.

Merging under equal and unequal reliability are two scenarios, but a third
exists: absent reliability. Most previous work in belief merging is about the
first (Lin and Mendelzon 1999; Konieczny and Pino Pérez 2002a; Chopra et al.
2006; Everaere et al. 2010a; Konieczny and Pino Pérez 2011; Haret et al. 2020;
Everaere et al. 2020); some is about the second (Revesz 1997; Lin 1996; Cholvy
1998; Konieczny et al. 2004); this one is about the third.
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The difference between equal and absent reliability is clear when its impli-
cations on some examples are shown.

example equal reliability absent reliability

two experts

they have the very same
knowledge, experience
and ability

they differ in knowledge,
experience and ability, but
how much of these they
possess is unknown

two sensors

they are of the same kind
and are in the same condi-
tion (temperature sensors
located next to each other,
distance sensors with the
same orientation)

they are of different kind,
or are in different con-
ditions, and which one
is more reliable in the
current situation is not
known

two databases

they cover the very same
domain, and are equally
likely to be correct

they cover different do-
mains, so that a certain
piece of information may
have been crucial to one
but a detail in the second

The assumption of equal reliability is quite strong in the example of the
two experts; rather, there may be some reason to believe one more than the
other; not knowing who, this scenario falls in the case of absent reliability. For
the two sensors and the two databases equal reliability is not unlikely, but so
is absent reliability.

If reliability is absent, can it be assumed equal?

When merging preferences, yes. When merging beliefs, no.

Merging preferences (List 2013; Lang 2004; Mata Dı́az and Pino Pérez
2017) aims at obtaining a result that best reflects the collective opinion of a
group. A common premise is that all members of the group have the same
weight on the final decision, as formalized by the condition of anonymity. In
lack of information telling otherwise, equal weights are a valid assumption.

A technical example shows why not when merging beliefs instead. Three
scenarios are possible: A, B and C; two sources of information rank their
unlikeliness on a scale from 0 to 3, with 0 being the most likely and 3 the least
(unlikeliness scales are common in belief revision (Katsuno and Mendelzon
1991; Darwiche and Pearl 1997; Rott 2006), in spite of likeliness being more
intuitive). The first source grades A as the most unlikely scenario, the second
as the most likely; numerically, unlikeliness are 3 and 0. Both sources grade B
as kind of likely (1), and C in the opposite way of A (0 and 3).

scenario unlikeliness according unlikeliness according
to the first source to the second source

A 3 0
B 1 1
C 0 3

Two different cases are considered: in the first case, the first source is twice
as reliable as the second; in the second, no reliability information is present.
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If the first source is twice as reliable as the first, the overall unlikeliness
of the three scenarios are 2 · 3 + 0 = 6, 2 · 1 + 1 = 3 and 2 · 0 + 3 = 3. The
minimum is 3: the least unlikely scenarios are B and C.

scenario unlikeliness according unlikeliness according
to the first source, weighted to the second source, weighed

A 2 · 3 0
B 2 · 1 1
C 2 · 0 3

If some fact x holds in B but not in C, its truth is uncertain since it differs
in the two most likely scenarios.

The second considered case is when reliability information is absent. The
table of overall unlikeliness can no longer be computed since it requires not
only the unlikeliness of the scenarios according to the sources but also the
reliability of the sources. A tempting solution is: “since the relative reliability
of the sources is absent, it is assumed equal”. This allows to compute the table
again, this time with multipliers 1 and 1.

scenario unlikeliness according unlikeliness according
to the first source, weighted to the second source, weighed

A 3 0
B 1 1
C 0 3

The most likely scenario is now B, and B only: its overall unlikeliness 2
beats those of A and of C, both 3. If the fact x holds in B but not in C, it is
deemed true.

The two cases differ both in their initial information and in their conclu-
sions. In the first case, reliability information is present, and x is not concluded.
In the second case, reliability information is absent, but x is concluded. Start-
ing from more information leads to less information.

Knowing that x is true is more information than not knowing the value of
x. That the first source is twice as reliable as the second is more information
than an unspecified relative reliability.

Information is not just different. It is strictly more in one case than in the
other: knowing that the first source is twice more reliable than the second is
strictly more information than no given reliability; knowing that x is true is
strictly more information than not knowing it. The case starting from strictly
more information ends up with strictly less information.

This example is inspired by the “penny z” of Popper (1959, pp. 425–426): a
coin is initially assumed fair in lack of information indicating otherwise; adding
the confirmation of fairness does not change its probability of falling heads or
tails. In the interpretation of probability as degree of belief (Hájek 2012),
the probabilities are the epistemic state. Adding information should alter the
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epistemic state, but the addition of fairness (which is new information) changes
nothing.

This example was used by Popper against the subjective interpretation
of probabilities, but relies on the principle of indifference: events of unknown
probability are assumed equally probable (Keynes 1921; Shackel 2007). The
Bertrand paradox (Bertrand 1889; Keynes 1921; Shackel 2007) shows it is
problematic; the coin example by Popper (1959) shows another contradictory
aspect of it (Gärdenfors and Sahlin 1982).

The belief merging version of the principle of indifference is the assumption
of equal reliability in lack of information about the relative reliability of the
sources. In the subjective interpretation of probability, the probability of an
event is the degree of belief in that event happening (Hájek 2012); in belief
merging, the weight of a source is the likeliness of the formulae it provides
being true, or at least close to truth (Revesz 1997; Lin 1996; Cholvy 1998;
Konieczny et al. 2004; Darwiche and Marquis 2004). The event “formula F is
true in the real world” provides a qualitative connection of probability with
merging. The principle of indifference translates into the assumption of equal
reliability.

The probability version of sources of unknown reliability is the lack
of knowledge of the probability of events. Economists distinguish between
risk (known probability) and Knightian uncertainty (unknown probabil-
ity) (Nishimura and Ozaki 2007). An often-used example is the urn containing
twenty yellow balls and forty balls of another color, which may be either blue
or green; these forty balls are either all blue or all green, but which of the two
is not known. This scenario involves both risk (the probability of yellow or
not yellow is known) and Knightian uncertainty (the presence of blue balls is
unknown).

This urn suggests a way to deal with the problem in belief merging. The
probability of drawing a yellow ball is always one third, but assuming the same
for blue and green is as if the urn contained twenty balls for each color. This is
acceptable for a single drawn, but not in general. The probability of drawing
two balls of the same color (putting the first ball back in the urn) under the
assumption of equal probability is 1

3 instead of 1
3
1
3 + 2

3
2
3 . The first value is

obtained by selecting from the nine possible outcomes of probability 1
9 each

(random first ball and random second ball) only the three where the balls
have the same color: 3 1

9 = 1
3 . The second value can be obtained by considering

the second drawn not independent of the first, but also by calculating the
probability under the assumption of forty blue balls: the probability of the
two balls being both yellow is 1

3
1
3 , that of being both blue is 2

3
2
3 . Importantly,

the very same value is obtained for forty green balls instead. Not only this
probability holds in both cases, it resists the addition of information. It holds
even if it is later discovered that the urn is made in a factory that normally
produces forty green balls, and the blue ball version is a rare collector’s edition.

In terms of belief merging, two sources of unspecified reliability may be
equally reliable, or one may be more reliable than the other. All cases are
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considered, and only what holds in all of them is taken. This is analogous to
reasoning from multiple probability distributions (Halpern and Tuttle 1993).

How does this solution work in the example of the three scenarios A, B
and C respectively ranked [3, 0], [1, 1] and [0, 3]? Scenario A is preferred if the
second source is much more reliable than the first, scenarioB if they are equally
reliable and scenario C if the first is much more reliable than the second. If
reliability information is absent, none of the three scenarios can be considered
more likely than the others. If the first source is much more reliable than the
second, scenario A is much less likely than the others. More information (the
relative reliability of the sources) leads to more information (from all three
scenarios to only B and C).

A result in this article is that the disjunction of all maxcons (Brewka 1989;
Baral et al. 1992; Benferhat et al. 1997; Konieczny and Pino Pérez 2011; Am-
moura et al. 2015; Grant and Hunter 2011; Dubois et al. 2016) is the result of
merging formulae of unknown reliability using the drastic distance. This result
invalidates the view that maxcons are unsuitable for merging since they do not
take into account the distribution of information (Konieczny 2000; Konieczny
and Pino Pérez 2011). This may be the case under equal or otherwise specified
reliability, but maxcons do exactly what they should when reliability informa-
tion is absent.

Another result is a motivation for disjunctive merging, the kind that only
selects models of the formulae (Liberatore and Schaerf 1998; Everaere et al.
2010a). It results from assuming that one of the sources is completely reliable,
but which one is not specified.

Technically, merging is defined by selecting the models at a minimal
weighted distance from the formulae provided by the sources. The drastic
and the Hamming distances are considered as two relevant examples. After
Section 2 fixes the formal language used and other notions related to merging,
Section 3 defines merging when reliability is completely or partially absent;
this definition is based on the concept of weighted distance between mod-
els and formulae. Section 4 shows results about a property of models that
makes them relevant to merging. Section 5 and Section 6 analyze the case
of the drastic and the Hamming distance. Section 7 shows which postulates
are satisfied, while Section 8 concentrates on a specific condition of merging.
Section 9 considers alternative ways of merging: sum of powers, leximax and
leximin. Section 10 briefly considers the case of sources providing more than
one formula. Section 11 discusses the results obtained in this article. An
appendix contains all proofs of theorems and lemmas.

2 Preliminaries

The formulae in this article are propositional over a finite alphabet. Models are
represented by the set of literals they satisfy; for example, I = {a,¬b, c} is the
model assigning false to b and true to a and c. The notation I |= F indicates
that the model I satisfies the formula F . The same symbol is also used to
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indicate that all models of a set satisfy the formula; for example, {I, J} |= F
tells that both I and J satisfy F . The set of all models that satisfy a formula
F is denoted Mod(F ).

The formulae to merge are denoted F1, . . . , Fm; a single other formula µ
contains all integrity constrains — what is known for certainty. Contrary to
most previous studies in belief merging, the formulae to be merged are not
assumed equally reliable, nor they are assumed to have a certain relative reli-
ability either. The aim of merging is to draw as many conclusions as possible.

Merging is formalized by a function from µ and F1, . . . , Fm to something
that represents information. In this article, this function produces the propo-
sitional interpretations that model the scenarios that are considered possible
as the result of merging. In other words, the codomain of this function is the
set of all sets of propositional models over the given alphabet. As an example,
merging x∧z and y∧¬z under the integrity constraint x∧y may result in two
scenarios considered possible: one where x, y and z are all true and another
where x and y are true while z is false; the result of the function is the set of
the two models {x, y, z} and {x, y,¬z}.

Definition 1 A merging operator is a function ∆ from propositional formulae
µ and F1, . . . , Fm to sets of propositional models that satisfy µ.

The most general situation is when the reliability of the formulae is ab-
sent. Other cases are: the formulae are equally reliable; one is much more re-
liable than the others; none is so (this case was suggested by a referee). These
three cases are the implicit assumptions of respectively the usual definition of
merging, of disjunctive merging and of merging by majority. Unless otherwise
specified, merging with absent reliability means that no reliability information
is present at all, not even qualitatively like in the case of no formula being
much more reliable than the others.

Merging is often based on a distance measure between models. This is a
function from pairs of models to non-negative integers. If I and J are two
models, d(I, J) is a non-negative integer that tells how much they differ. This
integer is zero if I and J coincide, otherwise it is greater than zero.

Two intuitive and commonly used distances are the drastic and the Ham-
ming distance. The drastic distance is defined by dd(I, J) = 0 if I = J
and dd(I, J) = 1 otherwise. The Hamming distance dh(I, J) is the num-
ber of literals assigned different truth values by I and J ; for example,
dh({a,¬b, c}, {¬a,¬b,¬c}) = 2, since the two models differ on a and c.
Other distances can be defined; they are assumed to satisfy d(I, I) = 0 and
d(I, J) > 0 if I ̸= J .

3 Merge by weights

In this article, merging is done by minimizing the weighted distance of the
models obeying the integrity constraints from the formulae to be merged. The
integrity constraints are denoted µ, the formulae to be merged F1, . . . , Fm. This
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is the basic settings for belief merging, where each source provides exactly one
formula Fi; the case of multiple formulae is considered in a following section.
Formulae µ and F1, . . . , Fm are propositional over a finite alphabet.

Merging is based on the distance between models, denoted by d(I, J). Two
intuitive and commonly used distances are the drastic and the Hamming dis-
tance, defined in the previous section. Distance extends from models to for-
mulae: regardless of which distance is used, d(I, F ) is the minimal value of
d(I, J) for every J |= F . It further extends from a formula to a list of them:
the distance between a model and a list of formulae is the array of integers
d(I, F1, . . . , Fm) = [d(I, F1), . . . , d(I, Fm)].

Merging by weighted distance was the historically first way of integrating
formulae coming from sources of different reliability (Revesz 1997). Given a
vector of positive integers W = [w1, . . . , wm], the weighted distance of a model
I from the formulae F1, . . . , Fm is W · d(I, F1, . . . , Fm), where the dot stands
as usual for the scalar product:

[w1, . . . , wm] · d(I, F1, . . . , Fm) =
∑

1≤i≤m

wid(I, Fi)

This product defines a single integer telling the aggregated distance from I
to the formulae Fi, weighted by the relative reliability of each as represented by
the integer wi. Merging selects the models satisfying the integrity constraints
µ that have minimal weighted distance from the formulae.

∆d,W
µ (F1, . . . , Fm) = {I |= µ | W · d(I, F1, . . . , Fm) is minimal}

This function depends on two parameters: a model-to-model distance d
and a vector of weights W = [w1, . . . , wm].

Fixed weights are used when the relative reliability of the sources is given.
Weights W = [1, . . . , 1] make the scalar product the same as a sum, and
weighted merge the same as the usual operators based on the sum of the drastic
and Hamming distances. In the notation by Konieczny and Pino Pèrez (2011):

∆dd,[1,...,1] = ∆dD,Σ

∆dh,[1,...,1] = ∆dh,Σ

The dh distance was first used in belief revision by Dalal (1988); for this
reason, it is sometimes called “Dalal distance”. Revesz (1993; 1997) used it
with weights for belief merging, followed by Lin and Mendelzon (1996; 1999).
Weights reflect the reliability of the sources: the distance from a formula of
high weight affects the total more than the distance from a formula of low
weight.

When reliability is absent, all possible weight vectors are considered. The
set of all weight vectors of positive integers is the focus of this article:
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W∃ = {[w1, . . . , wm] | wi ∈ N, wi > 0}

Nevertheless, other sets of weight vectors are considered. In some scenarios
a source is correct; the others only provide refining information. For example,
a cardiologist, a pulmonologist and an allergist may have contrasting opinions
about the state of a patient; if the symptoms are caused by a heart disease
then the cardiologist is likely to be right on everything, for example on the
reason of the breathing problems, even if that contradicts the pulmonologist
and the allergist; their opinion only provide some additional insight. In the
same way, if the symptoms are caused by an allergy, the allergist is likely right
on everything. The same for the pulmonologist. In these cases, one source is
totally correct, but which one is unknown.

Wa = {[a, 1, . . . , 1], [1, a, 1, . . . , 1], . . . , [1, . . . , 1, a]}

The value of a for scenarios like that of the three doctors depends on the
maximal possible distance between a model and a formula. For the drastic
distance, a = m+1 suffices, where m is the number of formulae to be merged.
For the Hamming distance, a = nm + 1, where n is the number of variables.
The opposite case is that of no source deemed much more reliable than the
others. It can be formalized by bounding all weights by a constant.

Finally, merging with fixed weights falls into this generalization as the set
comprising a single vector. For example, equal reliability is captured by:

W= = {[1, . . . , 1]}

In all these cases, a set of weights W. represents all possible reliability
the sources are considered to have. Three relevant such sets are W∃, Wa or
W=. The set W= is for equally reliable sources; W∃ is the other extreme: no
reliability information on the sources is present. Every W ∈ W. is an encoding
of the reliability of the sources. All of these are plausible alternatives. Every
scenario (every model) that is possible when merging with some W ∈ W. is
possible when merging with W.:

∆d,W.
µ (F1, . . . , Fm) =

⋃
W∈W.

∆d,W
µ (F1, . . . , Fm)

Merging on a set of weights generates all models obtained by merging with
one of these weights. This is different from obtaining a single ordering on the
models as done by Benferhat, Lagrue and Rossit (2014) to solve the related
problem of commensurability that occurs when the sources themselves assess
the reliability of the formulae they provide.
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4 Dominance

If a model is farther from every formula than another, the latter is always
preferred to the former regardless of the weights. The second model dominates
the first. Despite the seeming triviality of the concept, a number of relevant
results follow:

– if a model has minimal weighted distance for some weights, it is not strictly
dominated by another;

– if the codomain is binary, the converse also holds: a model that is not
strictly dominated by another has minimal weighted distance for some
weights;

– for a ternary codomain, there exist two formulae such that their merge
does not include an undominated model;

Dominance could be defined over models with respect to formulae, but is
simpler to formalize over vectors of integers. It can then be carried over to the
distance vectors of two models.

Definition 2 A vector of integers D dominates another D′, denoted D ≤ D′,
if every element of D is less than or equal to the element of the same index in
D′. Strict dominance is the strict part of this ordering: D < D′ holds if both
D ≤ D′ and D′ ̸≤ D hold.

The dominance between the distance vectors of two models is the same
as the weak Pareto dominance used in multi-objective decision making (Gi-
agkiozis and Fleming 2014) when the objectives to minimize are the distances
between the models and the formulae.

If the distance vector of a model is strictly dominated by that of another,
the first is never minimal regardless of the weights. This fact holds because
weights are strictly positive.

Lemma 1 For every distance d, vector of weights W ∈ W∃ and model I of µ,
if I ∈ ∆d,W

µ (F1, . . . , Fm) then d(J, F1, . . . , Fm) < d(I, F1, . . . , Fm) holds for
no model J of µ.

This result is almost trivial, since merging selects the models that have
a minimal value of the sum of the distances, each multiplied by a positive
weight. The converse does not hold in general, but does in a relevant case:
when d(I, Fi) can only be 0 or 1, or more generally when the codomain of d
has size two.

Lemma 2 If the codomain of the distance function d is a subset of cardinality
two of N, I is a model of µ, d(I, F1, . . . , Fm) is not strictly dominated by
the vector of distances of any other model of µ, then there exists W such that
I ∈ ∆d,W

µ (F1, . . . , Fm).
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The last two lemmas imply that the minimal models with arbitrary weights
W∃ according to a distance of binary codomain are exactly the models whose
distance vectors are not dominated by others. Since dominance is the same as
weak Pareto dominance, these minimal models are exactly the Pareto set (Gi-
agkiozis and Fleming 2014). This is therefore the result of merging, but only
when reliability information is completely absent and the codomain of the
distance function is binary.

Theorem 1 If the codomain of the distance d is a subset of cardinality two of
N, then ∆d,W∃

µ (F1, . . . , Fm) is the set of all models of µ of minimal distance
vector according to the dominance ordering.

The next question is whether this condition holds for every fixed-size
codomain, or whether a codomain of size three is sufficient for making some
undominated model to be excluded from merge. The latter is indeed the case
in general. A preliminary lemma will be useful in the sequel.

Lemma 3 If µ has three models of distance [3, 0], [2, 2] and [0, 3] from F1 and
F2, then ∆d,W∃

µ (F1, F2) does not contain the model at distance [2, 2].

This is almost the proof of the claim, but the codomain of the Hamming
distance has size unbounded, not three. However, a slightly different distance
function fixes the problem.

Theorem 2 For some distance d with codomain of size three, there exists
I, µ and F1, . . . , Fm such that I |= µ and I ̸∈ ∆d,W∃

µ (F1, . . . , Fm), but
d(J, F1, . . . , Fm) < d(I, F1, . . . , Fm) does not hold for any J |= µ.

5 Drastic distance

Merging with all possible weights and the drastic distance dd generates all
models of all maximal subsets of F1, . . . , Fm that are consistent with µ. This
is proved in three steps:

– dominance with the drastic distance is the same as the containment of the
set of formulae F1, . . . , Fm satisfied by the models;

– the models of the maxcons are the models that are minimal according to
that containment;

– therefore, the models of the maxcons are exactly the undominated models;
by the results in the previous section, they are the models of minimal
weighted distance according to some weights.

Maximal consistent subsets (maxcons) have a general definition over lists
of sets of formulae, but what is necessary for this article is only the version
with a list of two sets, the first comprising a single consistent formula µ and the
second F1, . . . , Fm. With this limitation, the (possibly non-maximal) consistent
subsets and the maximal consistent subsets are defined as:
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conµ(F1, . . . , Fm) =

{S ⊆ {µ, F1, . . . , Fm} | µ ∈ S and S ̸|= ⊥}
maxconµ(F1, . . . , Fm) =

{S ∈ conµ(F1, . . . , Fm) |̸ ∃S′ ∈ conµ(F1, . . . , Fm) . S ⊂ S′}

Since µ is consistent, these sets cannot be empty. To establish the corre-
spondence between models and maxcons, the subset of formulae satisfied by a
model is needed.

Definition 3 The set of formulae satisfied by a model I is denoted
subsat(I, F1, . . . , Fm) = {Fi | I |= Fi}.

The basic brick in the proof construction is that dominance of the drastic
distance vectors is the same as containment of the subsets of formulae satisfied
by models.

Lemma 4 For every pair of models I and J and every formulae F1, . . . , Fm,
the following two conditions are equivalent:

dd(I, F1, . . . , Fm) ≤ dd(J, F1, . . . , Fm)

subsat(J, F1, . . . , Fm) ⊆ subsat(I, F1, . . . , Fm)

This lemma links the dominance ordering under dd and the containment
of subsat. The next links the latter with the maxcons.

Lemma 5 A model I of µ satisfies some element of maxconµ(F1, . . . , Fm) if
and only if subsat(I, F1, . . . , Fm) ⊂ subsat(J, F1, . . . , Fm) holds for no model
J of µ.

The lemma is the final link of the connection between maxcons and domi-
nance under the drastic distance.

Theorem 3 For every consistent formulae µ, F1, . . . , Fm, the following equal-
ity holds:

∆dd,W∃
µ (F1, . . . , Fm) =

⋃
S∈maxconµ(F1,...,Fm)

Mod (∧S)

Maxcons have been long used in belief revision (Fagin et al. 1983; Baral
et al. 1992; Benferhat et al. 1997; Konieczny and Pino Pérez 2011; Ammoura
et al. 2015; Grant and Hunter 2011; Dubois et al. 2016) and nonmonotonic
reasoning (Rescher and Manor 1970; Brewka 1989; Ginsberg 1986). Yet, they
are sometimes dismissed as “unsuitable for merging” because they do not take
into account the distribution of information among the sources (Konieczny
2000; Konieczny and Pino Pérez 2011). This criticism is grounded in the as-
sumption of equal or given reliability. This theorem blocks it from extending
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to absent reliability; maxcons are weighted merge with the drastic distance
when reliability information is completely absent. Not only they are suitable
for merging, they deal with the common situation where the credibility of the
sources cannot be assessed.

An example clarifies why. If reliability information is completely absent, a
formula ¬x provided by two sources cannot beat a formula x provided by one
source, since the one source may be much more reliable than the two. Merging
by maxcons collects as many formulae as possible while retaining consistency;
each maxcon may come from the most reliable sources, making the number of
formulae itself irrelevant.

This is not the case when some reliability information is present. A source
cannot beat all others when the formulae have comparable reliability, as for-
malized by weights bounded by a constant. It also cannot when all formulae
have the same reliability. This difference supports distinguishing absent relia-
bility from equal reliability.

6 Hamming distance

The Hamming distance dh has a codomain of more than two elements. There-
fore, the previous results about binary codomains do not apply. Some existence
results are proved:

– every given set of distance vectors is obtainable from some formulae
µ, F1, . . . , Fm;

– for some µ, F, F ′, merging with all possible weight vectors is not equivalent
to merging with subexponentially many weight vectors.

Merging with the Hamming distance does not have a simple equivalent form
like for the drastic distance, which selects the models that are not strictly
dominated by others. The same does not hold in general: a model that is
undominated may still be excluded in the merging. This was proved abstractly
by three distance vectors [3, 0], [2, 2] e [0, 3]. With the Hamming distance, these
distance vectors can be obtained from concrete formulae. So can every set of
distance vectors, actually. This existence result is analogous to a similar one
for maxcons (Liberatore 2015, Lemma 4.6).

Lemma 6 Given an arbitrary set of distance vectors of m elements each,
all bounded by an integer n, for some formulae µ and F1, . . . , Fm over nm
variables the vectors of Hamming distances from the models of µ to F1, . . . , Fm

are exactly the given set of distance vectors.

This theorem allows for an easy way of building counterexamples: rather
than providing d and µ, F1, . . . , Fm that have a certain property, that property
is shown directly on the set of distance vectors. This method was already used
to prove that some undominated models are not selected by merging, for some
distance. In particular, it shows this being the case for the Hamming distance.
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Another application is the proof that exponentially many weight vectors
have to be considered when merging. The definition itself requires all weight
vectors to be taken into account: a model is selected if and only if it is selected
by at least one of the infinitely many weight vectors in W∃. The next lemma
shows that at least exponentially many have to be considered. It will be later
proved that exponentially many suffice.

Lemma 7 There exist three formulae µ, F, F ′ on an alphabet of six variables
such that every Wr such that ∆dh,Wr

µ (F, F ′) = ∆dh,W∃
µ (F, F ′) contains at least

two weight vectors.

This lemma shows a pair of formulae that requires at least two weight vec-
tors. This technical result has an abstract implication: since each weight vector
encodes a specific way to compare the reliability of the formulae, merging with
absent reliability cannot be reduced to merging with any specific reliability de-
gree of the formulae. This makes sense, as reliability is not objective, like for
example the values of variables, but subjective, since it is the strength of be-
lieving that a formula is true. If merging were always possible with a single
weight vector, that weight vector could be considered as part of reality rather
than beliefs.

The lemma requires two formulae of six variables. The claim actually holds
for three variables, but the proof would be ad-hoc rather than simply referring
to a previous lemma, and is therefore omitted. The claim does not hold for
two variables, as proved by exhaustive analysis on the four possible models.

The construction in the lemma can be replicated over many distinct al-
phabets of six variables each. Each alphabet doubles the number of necessary
weight vectors, leading to exponentiality.

Lemma 8 There exists µ, F1, . . . , Fm such that the size of every Wr for which
∆dh,Wr

µ (F, F ′) = ∆dh,W∃
µ (F, F ′) is exponential in the size of the formulae.

This result relies on an unbounded number of formulae to be merged. With
two formulae, a number of weight vectors linear in the number of variables
suffices.

7 Postulates

Merging with unknown weights depends on the distance function and the set
of weight vectors. Some postulates for belief merging hold for all sets of weights
vectors (IC0-IC2 and IC7), others only for some including W∃ (IC3-IC6), and
one does not hold for W∃ (IC8). Merging with W∃ cannot be expressed as a
preorder, not even a partial one.

Postulates IC0-8 (Konieczny and Pino Pérez 2002a) cannot all hold, since
a merging operator satisfying all of them can be expressed as a selection of
models of µ that are minimal according to some total preorder that depends
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only on F1, . . . , Fm. Actually, not even a partial preorder expresses merging
with all possible weight vectors.

Theorem 4 No partial preorder ≤ depending on F1 and F2 only is such that
∆dh,W∃

µ (F1, F2) = min(Mod(µ),≤).

A consequence of this theorem is that merging with all possible weight
vectors W∃ does not satisfy all postulates, since that would imply that merging
could be expressed by a preorder. Some postulates are not satisfied. Others
are.

Some postulates hold for every set of weight vectors, others only for some.
Some postulates hold only if the distance function satisfies the triangle in-
equality, others hold even if d(I, F ) is not defined in terms of a distance among
models d(I, J). The latter requires d(I, F ) ∈ N and d(I, F ) = 0 if and only if
I |= F . In the following summary, this case is described as “a model-formula
distance”. In this section, E is sometimes used in place of F1, . . . , Fm follow-
ing the notation by Konieczny and Pino Pèrez (2011). This simplifies some
formulae.

IC0 ∆d,W.
µ (E) ⊆ Mod(µ)

holds for every model-formula distance and non-empty set of weight vectors
IC1 if µ is consistent, then ∆µ(E) is not empty

holds for every model-formula distance and non-empty set of weight vectors
IC2 if

∧
E is consistent with µ, then ∆d,W.

µ (E) = Mod(µ) ∩Mod(
∧
E)

holds for every model-formula distance and non-empty set of weight vectors
IC3 if E1 ≡ E2 and µ1 ≡ µ2, then ∆d,W.

µ1
(E1) = ∆d,W.

µ2
(E2)

holds for every model-formula distance and non-empty set of weight vectors
that contains every permutation of every vector it contains (W∃ has this
property, as well as Wa for every a ∈ N with a > 0.

IC4 if F1 |= µ and F2 |= µ then ∆d,W.
µ (F1, F2)∩Mod(F1) is not empty if and

only if ∆d,W.
µ (F1, F2) ∩Mod(F2) is not empty.

holds if W. contains every permutation of every vector it contains and
d satisfies the triangle inequality: d(I,K) + d(K,J) ≥ d(I, J) (both dd
and dh have this property); if any of these two conditions do not hold, a
counterexample shows that the postulate does not hold

IC5 ∆d,W.′

µ (F1, . . . , Fk) ∩∆d,W.′′

µ (Fk+1, . . . , Fm) ⊆ ∆d,W.
µ (F1, . . . , Fm)

requires W. to be the Cartesian product of two sets of weight vectors W.′

and W.′′ whose vectors have size k and m− k, respectively
IC6 if ∆d,W.′

µ (F1, . . . , Fk) ∩ ∆d,W.′′

µ (Fk+1, . . . , Fm) is not empty, it contains

∆d,W.
µ (F1, . . . , Fm)

requires W. to be the Cartesian product of two sets of weight vectors W.′

and W.′′ whose vectors have size k and m− k, respectively
IC7 Mod(µ′) ∩∆d,W.

µ (E) ⊆ ∆d,W.
µ∧µ′(E)

holds for every model-formula distance and non-empty set of weight vectors
IC8 if Mod(µ′) ∩∆d,W.

µ (E) is not empty, then ∆d,W.
µ∧µ′(E) ⊆ ∆d,W.

µ (E)
does not hold for the Hamming distance dh and the set of all weight vectors
W∃
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The formal proofs of these claims follow. First, postulates IC0, IC1, IC2
and IC7 hold for every non-empty set of weight vectors W. and model-formula
distance.

Lemma 9 For every model-formula distance d and non-empty set of weight
vectors W., the merging operator ∆d,W. satisfies postulates IC0, IC1, IC2 and
IC7.

Postulate IC3 includes the case where the order of the formulae is changed.
This affects the weight vectors: they must be allowed to change their internal
order accordingly.

Lemma 10 If W. contains every permutation of every vector it contains, then
IC3 holds. For some set of weight vectors that does not include a permutation
of one of its elements, IC3 does not hold.

These lemmas do not require d(I, F ) to be defined in terms of a distance
between models d(I, J). The next one does, and additionally needs the triangle
inequality.

Lemma 11 If W. contains every permutation of every vector it contains and
d satisfies the triangle inequality ∀I, J,K.d(I,K) + d(K,J) ≥ d(I, J), then
IC4 holds. For some set of weight vectors that does not include a permutation
of one of its elements IC4 does not hold. The same for some distance not
satisfying the triangle inequality.

Since W∃ is symmetric and both dd and dh satisfy the triangle inequality,
Postulate IC4 holds in these two cases. Actually, for W∃ the distance does not
matter, and ∆d,W∃

µ (F1, . . . , Fm) always contains some models of every Fi that
is consistent with µ. If the maximal value of the distance from F1 and from
F2 is k, the weight vectors [k+ 1, 1] and [1, k+ 1] suffice. The first guarantees
that every model of F1 is always better than one of ¬F1, no matter how close
the second is to F2. The same for the second weight vector.

This lemma shows an effect of the triangle inequality on belief merging.
It is a quite natural requirement and is obeyed by both the drastic and the
Hamming distance, but is mostly useless in belief merging (Konieczny and
Pino Pérez 2011). Besides proving that a certain merging operator satisfies an
additional postulate (Konieczny and Pino Pérez 2002a), so far it only seemed
to affect the infinite-alphabet case (Chacón and Pino Pérez 2006) and the
application of belief revision to case-based reasoning (Cojan and Lieber 2012).

Postulates IC5 and IC6 require special care even to be formulated. Infor-
mally, they tell that merging F1, . . . , Fk, Fk+1, . . . , Fm is the same as merging
F1, . . . , Fk, merging Fk+1, . . . , Fm and then conjoining the two results if they
do not conflict. This is simple to express if no weights are involved, other-
wise each of these three mergings is defined over its set of weights. If these
are unrelated, like [1, . . . , 1, 1 . . . , 1] for the overall merge and [10, 1, . . . , 1] and
[1, . . . , 10] for merging the two parts, the three results cannot be expected to
be coherent.
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This is why Postulates IC5 and IC6 cannot be said to be obeyed plain and
simple. Rather, they are satisfied only when the sets of weights are related in
the appropriate way.

Lemma 12 If ∆d,W.′

µ (F1, . . . , Fk) ∩ ∆d,W.′′

µ (Fk+1, . . . , Fm) is not empty, it

coincides with ∆d,W.
µ (F1, . . . , Fm), where W. is the Cartesian product of W.′

and W.′′ (postulates IC5 and IC6).

IC8 does not hold. The following counterexample shows that for the Ham-
ming distance dh and the set of all weight vectors W∃.

Theorem 5 There exist µ, µ′, F1 and F2 such that Mod(µ′)∩∆dh,W∃
µ (F1, F2)

is not empty but ∆dh,W∃
µ∧µ′ (F1, F2) ̸⊆ ∆dh,W∃

µ (F1, F2).

This counterexample completes the analysis of the basic postulates IC0-
IC8. Two additional ones exist: majority and arbitration. The first tells that a
formula repeated enough times is entailed by the result of merging; the second
was initially defined as the irrelevance of the number of repetitions, and has a
newer definition that is difficult to summarize in words.

Majority does not hold with W∃. Not that it should. No matter how many
times a formula is repeated, regardless of how many sources supports it, its
negation may come from a single source that is more reliable than all the
others together. When reliability is uncertain, this case has to be taken into
account. It is not even uncommon in practice: many commonly held belief are
in fact false.

Many commonly held beliefs are in fact false: Napoleon was short (Dunan
1963); diamonds had been typical gemstones for engagement rings since a long
time (Epstein 1982), the red telephone is a telephone line, and one of its end
is in the White House (Clavin 2013); meteorites are always hot when they
reach the Earth’s surface; flowering sunflowers turn to follow the sun (only
the gems do); the Nazis issued an ultimatum before the Ardeatine massacre
(something even witnesses of the time believe) (Mazzoni 2003, p. 155); fans
in closed rooms kill people (many people in Korea believed this). A page on
Wikipedia lists more than a hundred of commonly believed facts that are in
fact false (Wikipedia 2017b). The material was enough for a 26-episodes TV
show (Wikipedia 2017a).

A view of belief merging is that it formalizes the process of information
aggregation by human agents. The above scenarios indicate that unanimity
is often a driving mechanism of believing: hearing and reading many times
that Napoleon was short leads to believing he was without questioning. Yet,
unanimity is not majority. A single person with a funny haircut on TV may
at least cast a doubt.

All of this shows that no matter how many times a fact is repeated, when
no reliability information is present, it may still be falsified by a single reliable
source. This is what the following theorem formally proves.

Theorem 6 There exists F1, F2 such that ∆d,W∃
true (F1, F2, . . . , F2) ̸⊆ Mod(F2),

where F2 is repeated an arbitrary number of times.
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Majority does not hold in the most unconstrained case W∃ where weights
are arbitrary. This does not mean that majority never applies. It means that
it does not apply when no information about the reliability of the sources is
present. In many other cases, it applies. When sources are considered equally
reliable, it applies. It holds for W= = {[1, . . . , 1]}, which formalizes exactly
this situation. The operator ∆d,W=

µ (F1, . . . , Fm) coincides with the operator

∆d,Σ
µ (F1, . . . , Fm) defined by Konieczny and Pino Pèrez (2011), which satisfies

majority (Konieczny and Pino Pérez 2002a).
Where is the boundary between majority and non-majority operators? The

majority condition tells that no source is arbitrarily more reliable than the
others. Since reliability is formalized by weights, it tells that no weight is
arbitrarily large.

Theorem 7 If all weights in the vectors in W. are lower than a constant
and d is an arbitrary distance, for every µ and F1, . . . , Fo, Fo+1, . . . , Fm,
there exists n such that ∆d,W.

µ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) ⊆
∆d,W.

µ (Fo+1, . . . , Fm), where the formulae from Fo+1 to Fm are repeated n
times.

Weights bounded by a constant indicate that no source is ever considered
arbitrarily more reliable than the others. This is a relevant case. So it is the
case where a source may be much more reliable than the others, as motivated
above by the example of the commonly believed facts that are in fact false and
previously by the example of the three doctors.

Arbitration was initially defined as the opposite condition of irrelevance of
the number of repetitions (Konieczny and Pino Pèrez 1998; Meyer 2001). This
property holds forW∃. The following theorem proves an equivalent formulation
of it.

Lemma 13 For every µ, F1, . . . , Fm it holds:

∆d,W∃
µ (F1, . . . , Fm) = ∆d,W∃

µ (F1, . . . , Fm, Fm)

A newer version of the arbitration postulate is expressed in terms of the
preorder between models as: if I <F1

J , I <F2
J ′ and J ≡F1,F2

J ′ then
I <F1,F2

J . As proved by Theorem 4, merging with absent reliability cannot
be expressed as a preorder, total or otherwise. The expression of the postulate
in terms of formulae is even more convoluted, and is not clear whether it makes
sense when merging is not expressible in terms of a preorder.

8 One reliable source

The case of one reliable, unspecified source is captured by the set of weights
Wa when the number a is large enough: more than the maximal distance
between a model and the formulae. For these weight vectors, a single source
may take over all other ones. Such a situation is not unlikely in practice, as
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exemplified by the scenario of the three doctors: the one specialized in the field
of the actual illness is almost certainly right, but the actual illness is debated.
Another example is that of the facts commonly held true, where the opinion of
a real expert may confute them regardless of how many people believe them.

The assumption of one reliable source gives rise and motivates a condi-
tion already in the literature: the disjunctive property. Technically, merging
by the weight vectors Wa with a sufficiently large a ensures the disjunctive
property. Conceptually, the disjunctive property formalizes the assumption of
one reliable source.

The disjunctive property was defined on two formulae as Postulate 7 by
Liberatore and Schaerf (1998) and later generalized to an arbitrary number
of formulae with integrity constraints by Everaere et al. (2010a). In terms
of models, it has a simple and intuitive expression. Every model is a possible
state of the world; merging only selects the ones that at least one of the sources
considers possible. In formulae, a model I is in the result of merging only if
I |= Fi for at least one of the merged formulae Fi. Since I must also satisfy the
integrity constraints µ, this requirement is lifted when none of the formulae
Fi is consistent with µ.

Definition 4 A merging operator ∆ is disjunctive if it satisfies the disjunctive
property: ∆µ(F1, . . . , Fm) ⊆ Mod(F1 ∨ · · · ∨ Fm) holds if at least one of the
formulae F1, . . . , Fm is consistent with µ.

This condition is not satisfied by ∆dh,W= . As a result, is not satisfied by
∆dh,W∃ either, since W= ⊂ W∃.

The disjunctive property fails in the case of equal reliability (formalized by
W=) and completely absent reliability information (formalized by W∃). This
is one part of the claim that the disjunctive property is a formalization of
the assumption of one reliable source. The other is that it succeeds when one
unspecified source is much more reliable than the others, formalized by Wa

with a large value of a.

Definition 5 ((Liberatore and Schaerf 1998))
Merging by closest pairs of models is defined from the ordering between

pairs of models ⟨I, J⟩ ≤dh ⟨I ′, J ′⟩ if and only if dh(I, J) ≤ dh(I ′, J ′) by
selecting the models in all minimal pairs:

F1∆DF2 = {I, J | ⟨I, J⟩ ∈ min({⟨K,L⟩ | K ∈ Mod(F1), L ∈ Mod(F2)},≤dh)}

This definition is framed in the general framework of merging with the
set of weights Wn+1 = {[1, n + 1], [n + 1, 1]}, the specific form of Wa when
a is the number of variables increased by one and merging is between two
formulae. Since n is the maximal value of the Hamming distance, this set Wa

characterizes exactly the assumption that one of the two formulae is reliable,
but no information about which is present. This assumption leads to merging
by closest pairs of models.
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Theorem 8 For every pair of satisfiable formulae F1 and F2 over an alphabet

of n variables, it holds F1∆DF2 = ∆
dh,Wn+1

true (F1, F2).

A disjunctive operator on m formulae is obtained similarly when all for-
mulae are consistent and the integrity constraints are void: µ = true.

Theorem 9 For every distance d bounded by k, if F1, . . . , Fm are satisfiable
then ∆d,Wkm

true (F1, . . . , Fm) is a disjunctive merging operator.

The weight vectors in these theorems provide an alternative view of the
disjunctive property. Rather than being a principle by itself, it is a formaliza-
tion of the assumption that a single source is fully reliable, but which one is
not specified. What the other sources tell is kept into account, but not as much
as contradicting the reliable source. In terms of formulae, the other formulae
help in selecting some of the models of the reliable formula, but do not drive
the choice outside the set of these models. The result of this selection is always
a group of these models, a subset of the models of the reliable formula. How-
ever, which formula is reliable is not specified. It may be every one of them.
For each one, merging may only select some of its models. Overall, only the
models of the formulae can be in the result of merging.

This mechanism interprets the principle of indifference in belief merging in
the right way: rather than assuming that all sources are equally reliable, one
of them is taken as completely right, but this is done for each of them in turn.
Indifference is realized by symmetry, not equality.

Many interesting operators are not disjunctive (Konieczny and Pino Pérez
2011; Everaere et al. 2010a). An operator may not be disjuncive because it
interprets the principle of indifference in a different way, or because it does
not follow the principle of indifference at all. Indifference is not a universal
rule. It is the formalization of the absence of reliability information. When the
credibility of the sources are given, or is believed to be equal or comparable,
the principle of indifference does not apply. Forcing it on all operators would
be a gross mistake.

9 Other aggregator functions

Merging selects models of minimal sum of weighted distances. The sum was
historically the first way of combining distances. Others were later invented.
Few of the properties studied in this article change when switching to other
mechanisms: sum of powers, leximax and leximin ordering (Konieczny and
Pino Pérez 2011). The main differences are that leximax produces all undom-
inated models even if the codomain of the distance function is not binary
and that leximin produces the models of maximal-size maxcons instead of all
maxcons when using the drastic distance.
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9.1 Merging by sum of powers

Instead of adding the weighted distances, merging by sum of powers adds their
weighted powers (Konieczny and Pino Pérez 2002b). The power could be the
square (power 2) or an arbitrary positive integer n. The ordering between two
weighted vector distances is:

[v1, . . . , vm] <n [u1, . . . , um] iff
∑

1≤i≤m

wiv
n
i <

∑
1≤i≤m

wiu
n
i

This order defines merging by a single weight vector:

∆d,W,Σn

µ (F1, . . . , Fm) =

{I ∈ Mod(µ) |̸ ∃J ∈ Mod(µ) . W · d(I, F1, . . . , Fm) <n W · d(J, F1, . . . , Fm)}

Merging by a set of weight vectors is the union of merging by each:

∆d,W.,Σn

µ (F1, . . . , Fm) =
⋃

W∈W.

∆d,W,Σn

µ (F1, . . . , Fm)

Given any distance function d, the function defined by d′(I, Fi) = d(I, Fi)
n

is also a distance function. It is binary if and only if d is binary. Therefore,
all results involving arbitrary distance functions or arbitrary binary distance
functions carry over from merging by sum to merging by sum of powers:

Lemma 1: merging only produces models that are not strictly dominated by
others;

Theorem 1: if the distance function has binary codomain, merging produces
exactly the models that are not strictly dominated by others;

Theorem 3: merging by the drastic distance produces the union of the models
of all maxcons.

The latter holds because dd is binary, which implies that d′(I, Fi) =
dd(I, Fi)

n is binary as well. Therefore, merging produces exactly the undomi-
nated models. This is the same as the result of merging by the drastic distance
without powering the distances. The latter is proved by Theorem 3 to be the
union of the models of all maxcons.

The results requiring specific values may not carry over when powering
the distances. For example, the proof of Theorem 2 involves three models with
vector distances [3, 0], [2, 2] and [0, 3], where the second is not dominated by the
others but is not in the result of merging. This is not the case when squaring
the distances, as [4, 4] is less than [9, 0] and [0, 9]. Yet, this lost property is
found in the distance vectors [4, 0], [3, 3] and [0, 4].

Theorem 10 For some distance d with codomain of size three, there exists I,
µ and F1, . . . , Fm such that I |= µ and I ̸∈ ∆d,W∃,Σ

2

µ (F1, . . . , Fm) hold, but
d(J, F1, . . . , Fm) < d(I, F1, . . . , Fm) does not hold for any J |= µ.
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The preconditions of this theorem are satisfied by the Hamming distance,
since this distance produces every possible set of distance vectors by The-
orem 6. As a result, merging by squared distances may not generate some
models of µ that are not dominated by others.

9.2 Leximax merging

The leximax ordering is the lexicographic order between two vectors sorted
in descending order (Konieczny and Pino Pérez 2002a). The vectors W ·
d(I, F1, . . . , Fm) are sorted so that each element is less than or equal to
the previous, and compared according to the lexicographic order. The min-
imal models form the result of leximax merging with a single weight vector
∆d,W,leximax

µ (F1, . . . , Fm). The result of merging with a set of weight vectors

∆d,W.,leximax
µ (F1, . . . , Fm) is the union of merging with each.
The dominance ordering is maintained when sorting vectors in descending

order. If the first vector is less than or equal to the second, it remains so after
sorting both.

Lemma 14 If v = [v1, . . . , vm] and u = [u1, . . . , um] are two vectors of inte-
gers such that vi ≤ ui holds for every index i, the same holds for the result of
sorting v and u in descending order.

This result only proves that the ordering before sorting implies that after.
The following results require the ordering to be strict. This case is covered by
the following lemma.

Lemma 15 If v = [v1, . . . , vm] and u = [u1, . . . , um] are two vectors of inte-
gers such that vi ≤ ui holds for every index i and vi < ui for some index i,
the same holds for the result of sorting v and u in descending order.

This result allows extending Lemma 1 to leximax merging: it does not
generate any model dominated by another.

Lemma 16 For every distance d, vector of weights W ∈ W∃ and model I, if
I ∈ ∆d,W,leximax

µ (F1, . . . , Fm) then d(J, F1, . . . , Fm) < d(I, F1, . . . , Fm) holds
for no model J of µ.

Leximax merging generates exactly the undominated models. This is anal-
ogous to Lemma 2, but does not require the codomain of the distance function
to be binary.

Lemma 17 If I is a model of µ and d(I, F1, . . . , Fm) is not strictly dominated
by the vector of distances of any other model of µ, then there exists W such
that I ∈ ∆d,W,leximax

µ (F1, . . . , Fm).

Combining the last two results: leximax merging generates exactly the
models of µ that are not dominated by others. This links leximax to maxcons.
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Theorem 11 For every consistent formulae µ, F1, . . . , Fm, the following
equality holds:

∆d,W∃,leximax
µ (F1, . . . , Fm) =

⋃
S∈maxconµ(F1,...,Fm)

Mod (∧S)

9.3 Leximin merging

The leximin ordering is similar to the leximax ordering, but sorts vectors
in ascending order instead of descending (Everaere et al. 2010a). Leximin
merging generates the minimal weighted vectors ∆d,W,leximin

µ (F1, . . . , Fm)
according to this ordering. The union of these for all W ∈ W. defines
∆d,W.,leximin

µ (F1, . . . , Fm).
A model dominated by another is not selected by leximin merging. Its

distance vector is greater than that of the other. This property weathers mul-
tiplying each distance by the same weight. It also weathers sorting the two
vectors in descending order by Lemma 15. It again weathers inverting the or-
der of the two vectors. Therefore, the dominated model is greater than another
in the leximin order, and is therefore not selected by leximin merging.

The converse is however not the case even if the distance function has
binary codomain. Yet, maxcons are still related to leximin merging with the
drastic distance.

The counterexample is based on three models of distance vectors
[1, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1]. Multiplying these vectors by the weights
[w1, w2, w3, w4] results in [w1, w2, 0, 0], [0, 0, w3, 0] and [0, 0, 0, w4]. Since all
weights are larger than zero, ordering these vectors produces [0, 0, w1, w2],
[0, 0, 0, w3] and [0, 0, 0, w4] if w1 ≤ w2, otherwise [0, 0, w2, w1], [0, 0, 0, w3]
and [0, 0, 0, w4]. Regardless, the first vector is not minimal because both w1

and w2 are larger than zero.
Model selection is primarily based on the length of the initial string of

zeros. The drastic distance gives zero when the model satisfies the formula.
Therefore, the number of zeros is the number of satisfied formulae. The selected
models are therefore those of the largest-size maxcons.

Theorem 12 For every consistent formulae µ, F1, . . . , Fm, the following
equality holds

∆dd,W∃,lexmin
µ (F1, . . . , Fm) =

⋃
S∈cardconsµ(F1,...,Fm)

Mod (∧S)

where

cardconsµ(F1, . . . , Fm)

= {S ∈ maxconµ(F1, . . . , Fm) |̸ ∃S′ ∈ maxconµ(F1, . . . , Fm) . |S| < |S′|}

This theorem implies that leximin merging does not generate all models of
all maxcons. Therefore, it may not produce all undominated models.
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10 Sources providing multiple formulae

The previous sections are about combining a number of independent formulae.
This is the basic problem of belief merging: each formula comes from a different
source; therefore, their reliabilities are independent. This is formalized by the
weights being unconstrained in the set W∃.

When a source provides more than one formula, each of them is as reliable
as its source. The same mechanism employing the weighted sum of the drastic
or Hamming distance can be used, but the weights are associated to the sources
rather than to the formulae. All formulae from the same source have the same
reliability and therefore the same weight. This condition is close in spirit to
the unit partitions by Booth and Hunter (2018).

Technically, each source is represented by a set of formulae Si. Its reliability
is encoded by a positive integer wi. Given a set {S1, . . . , Sm} of such sources,
merging is done by selecting the minimal models of the integrity constraints
µ according to this evaluation:

v(I) =
∑
Si

wi

∑
Fi∈Si

d(I, Fi)

This is the DA2 operator (Konieczny et al. 2004) with the sum as intra-
source aggregation and the weighted sum as the inter-source aggregation. The
sum is subject to the problem of manipulation: a source may provide the same
formula multiple times in order to influence the final result (Chopra et al.
2006); this is a problem especially when merging preferences, but not when
merging beliefs from sources of unspecified reliability. Even if a source provides
the same formula a thousand times, one of the considered alternatives is that
the weight of this source is a thousand times smaller than the others, making
such a manipulation ineffective.

The only technical result in this section is that merging with the drastic
distance is not the same as the union of the models of the maxcons. This is
proved by the following sources with µ = true.

S1 = {x, y, z}
S2 = {¬x,¬y}
S3 = {¬x,¬z}

One of the maxcons of {x, y, z,¬x,¬y,¬z} is {x,¬y,¬z}, which is not
obtained when merging with all possible weights. Intuitively, to include the
formula x from S1 in the result, that formula needs to count at least twice as
much as each formula ¬x from S2 and S3, but this implies the same for y and
z, which excludes ¬y and ¬z.

Formally, let the weights of the sources be w1, w2, w3. The weighted dis-
tances of some relevant models are:
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I = {x,¬y,¬z} v(I) = w12 + w21 + w31 = w12 + w2 + w3

J = {¬x,¬y,¬z} v(J) = w13 + w20 + w30 = w13

K = {x, y, z} v(K) = w10 + w22 + w32 = w22 + w32

In order for I to be minimal, v(I) must be less than or equal to v(J) and
v(K):

w12 + w2 + w3 ≤ w13

w12 + w2 + w3 ≤ w22 + w32

This system of inequalities is infeasible. The first implies w2 + w3 ≤ w1,
which makes the right-hand side of the second become less than or equal to
w12, while it should instead be greater than or equal to w12 + w2 + w3, and
therefore greater than w12. This proves that {x,¬y,¬z} is not a minimal model
for any weight vector.

A similar example shows that merging does not generate the models of
the conjunctions of the formulae of each source. Let S1 = {x, y} and S2 =
{¬x,¬y}. The only maxcons of {∧S1,∧S2} are x∧y and ¬x∧¬y, but merging
with all possible weights selects all four models over x and y, since this is the
result when W = [1, 1].

11 Conclusions

Sometimes the information to be merged comes from sources of equal reli-
ability. In such cases, merging with equal weights is correct. But when no
reliability information on the sources is present, assuming weights equal is un-
warranted. The difference is not only conceptual but also technical. Theorem 4
shows that merging with absent reliability cannot in general be reduced to a
preorder among models, not even a partial one.

A result emerged in the study of this setting is a motivation for merging
by maxcons (Baral et al. 1992). This mechanism has sometimes been con-
sidered unsuitable for merging because it disregards the distribution of in-
formation among sources (Konieczny 2000; Konieczny and Pino Pérez 2011).
Such a distribution is important when the sources have the same reliability,
or more generally their reliability is given. It is not when reliability informa-
tion is absent. Theorem 3 shows that merging with maxcons is the same as
merging with the drastic distance in absence of any reliability assessment on
the sources. The number of repetitions of a formula is irrelevant to this kind
of merging—as it should. A formula only occurring once may come from a
very reliable source, while its negation is supported only by unreliable sources.
Without any assumption on the reliability of the sources, this is a situation
to take into account. At the same time, Theorem 3 is limited to merging by
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the drastic distance. It does not apply when a finer distance would provide a
more informative result of merging.

This article not only backs merging by maxcons, but more generally merg-
ing by the (MI) postulate: the number of repetitions of a formula is irrelevant
to merging. Of course, there are many cases where this postulate should not
hold; when their reliability is equal, two sources providing a formula give twice
the support for it; the same if no source is arbitrarily more reliable than the
others, as formalized by weights bounded by a constant. But when reliabil-
ity information is completely absent, every numeric evaluation is irrelevant,
including doubling the support for a formula like in this case. As already
discussed by Meyer (2001), Postulate (MI) may sometimes be right; it is in-
consistent with the other postulates IC0-IC8, but the fault is on them. While
Meyer blames Postulate 4 of merging without integrity constraints (Konieczny
and Pino Pèrez 1998), merging with absent reliability conflicts with IC8.

The most significant outcome of this article is a motivation of choices made
in the past, uncovering the implicit assumptions they are based on: maxcons
come from completely absent reliability information; the disjunctive property
comes from the assumption that one formula is totally reliable, but which one
is not specified.

A minor technical contribution of this article is a case for the triangle
inequality of the distance function. This property had only a couple of appli-
cations in belief revision and merging so far (Konieczny and Pino Pérez 2002a;
Chacón and Pino Pérez 2006; Cojan and Lieber 2012), but is generally not re-
quired (Konieczny and Pino Pérez 2011). The new consequence of it shown in
this article is that it allows satisfying Postulate IC4 when merging in absence
of reliability information.

Most results in this article are on merging based on the weighted distances
of models from the formulae to merge. The overall picture does not change
much when switching to other ways of combining distances like the sum of
powers and the leximax and the leximin ordering.

A comparison with related work follows.

The weighted distance from a set of formulae was first used for merging
by Revesz (1997), and investigated by Lin (1996). Lin and Mendelzon (1999)
and Konieczny and Pino Pèrez (1998) used the unweighted sum. These articles
assume either equal or fixed weights, not varying weights like this one.

Benferhat, Lagrue and Rossit (2014) consider the related problem of com-
mensurability: when the sources themselves assess the reliability of the formu-
lae they provide, they may not use the same scale; this is related to a similar
issue in social choice theory. Their study and the present one differ in formal-
ism (ranked bases instead of formulae with distance functions), but they share
the principle of considering a set of alternative reliability assessments. There
is however an early point of departure: Benferhat, Lagrue and Rossit (2014)
distill a single preorder and then select the models that are minimal according
to it; Theorem 4 shows that the same cannot be done in the settings of the
present article. A point of contact is the case of the drastic distance: Theo-
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rem 1 could be alternatively proved from a result by Benferhat, Lagrue and
Rossit (2014, Propositions 1,2,8).

That reliability information may be partially absent is mentioned by
Konieczny (2004) as the starting assumption of his model of belief merging
as a game: “The hypothesis for those operators is that all the sources are a
priori reliable, or that we know that some sources are less reliable than the
others, but without knowing which ones.” The approach taken is however very
different, as it proceeds by iteratively assessing the reliability of the sources
based on the others.

A related question is what changes between the synthetic and epistemic
view of belief merging (Everaere et al. 2010b). When attempting to establish
the truth (the epistemic view of belief merging), a single opinion from an
expert may take over many other ones. When forming a unified opinion of a
group (the synthetic view), deciding by majority may look the only way to
proceed. As a matter of facts, majority influence research (Gardikiotis 2011)
shows otherwise. A minority view may end up prevailing. An example are trial
juries, where the opinion of few jurors sometimes forms the final judgment.

Accepting what is true according to all possible relative reliabilities is anal-
ogous to drawing the consequences that hold in all probability measures in a
set (Halpern and Tuttle 1993), and can be seen as the formal logic version
of the “worst scenario” in economics: “the firm may not be certain about the
“relative plausibility” of these boom probabilities. [...] if the firm acts in ac-
cordance with certain sensible axioms, then its behavior can be characterized
as being uncertainty-averse: when the firm evaluates its position, it will use
a probability corresponding to the “worst” scenario” (Nishimura and Ozaki
2007). Belief revision and merging aim at the most knowledge that can be
justifiably and consistently obtained; therefore, minimal knowledge takes the
place of the least profit, and the worst scenario for a formula is one where it
is false.

Acknowledgements The author thanks the reviewers for their valuable indications on the
previous versions of this article.

Proofs

Lemma 1 For every distance d, vector of weights W ∈ W∃ and model I of µ, if I ∈
∆d,W

µ (F1, . . . , Fm) then d(J, F1, . . . , Fm) < d(I, F1, . . . , Fm) holds for no model J of µ.

Proof The claim is proved in the opposite direction: d(J, F1, . . . , Fm) < d(I, F1, . . . , Fm)

entails I ̸∈ ∆d,W
µ (F1, . . . , Fm).

Since weights are all strictly positive, d(J, F1, . . . , Fm) ≤ d(I, F1, . . . , Fm) entails W ·
d(J, F1, . . . , Fm) ≤ W · d(I, F1, . . . , Fm) and d(I, F1, . . . , Fm) ̸≤ d(J, F1, . . . , Fm) entails
W · d(I, F1, . . . , Fm) ̸≤ W · d(J, F1, . . . , Fm). These two consequences together are W ·
d(J, F1, . . . , Fm) < W · d(I, F1, . . . , Fm), which proves that I is not a model of minimal

distance weighted by W , and is not therefore in ∆d,W
µ (F1, . . . , Fm). ⊓⊔
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Lemma 2 If the codomain of the distance function d is a subset of cardinality two of N,
I is a model of µ, d(I, F1, . . . , Fm) is not strictly dominated by the vector of distances of

any other model of µ, then there exists W such that I ∈ ∆d,W
µ (F1, . . . , Fm).

Proof Since d is a distance function, it holds d(I, I) = 0 for every model I. Therefore, one
of the two values of its codomain is 0. Since this codomain is a subset of N, the other value
b is greater than zero.

The weight vector W is [w1, . . . , wm], where wi = m + 1 if d(I, Fi) = 0, and wi = 1
otherwise.

For every other model J of µ, the weighted distance of J is proved to be greater than
or equal to that of I. Two cases are possible: either d(J, Fi) = 0 for every Fi such that
d(I, Fi) = 0, or this is not the case for at least one formula Fi.

The first case is that d(J, Fi) ≤ d(I, Fi) holds for every Fi, which implies
d(J, F1, . . . , Fm) ≤ d(I, F1, . . . , Fm). Since J does not dominate I by assumption,
d(I, F1, . . . , Fm) ̸≤ d(J, F1, . . . , Fm) is false, which means that d(I, F1, . . . , Fm) ≤
d(J, F1, . . . , Fm) is true. The distance vectors of I and J are the same. Therefore, mul-
tiplying both by W produces the same result. This proves that I is minimal.

The second case is that d(I, Fi) = 0 and d(J, Fi) = b holds for some Fi. If k > 0 is the
number of formulae Fi such that d(I, Fi) = 0, the weighted distance of I is:

W · d(I, F1, . . . , Fm) = (m+ 1)k0 + 1(m− k)b = (m− k)b < mb

Only d(J, Fi) = b is known, the distance of J from the other formulae may be either 0
or b. Assuming it is 0 for all of them leads to the minimal possible weighted distance, which
is:

– one formula has distance b; since d(I, Fi) = 0, the weight is m+ 1;
– the other formulae have all distance 0.

The weighted distance of J is therefore:

W · d(J, F1, . . . , Fm) ≥ (m+ 1)1b = mb+ b > mb

The weighted distance of I is proved above to be less than mb. ⊓⊔

Theorem 1 If the codomain of the distance d is a subset of cardinality two of N, then

∆
d,W∃
µ (F1, . . . , Fm) is the set of all models of µ of minimal distance vector according to the

dominance ordering.

Proof Lemma 1 proves that models of minimal weighted distance are never strictly domi-
nated by any other model of µ. By Lemma 2, if the codomain of d is binary, every model that
is not strictly dominated has a weight vector W that makes its weighted distance minimal.
Since W∃ contains all weight vectors, the claim is proved. ⊓⊔

Lemma 3 If µ has three models of distance [3, 0], [2, 2] and [0, 3] from F1 and F2, then

∆
d,W∃
µ (F1, F2) does not contain the model at distance [2, 2].

Proof If the model at distance [2, 2] were in the result of merging, it would be minimal. This
implies the following set of linear inequalities for some W = [w1, w2].

w12 + w22 ≤ w13 + w20

w12 + w22 ≤ w10 + w23

The first implies w22 ≤ w1, the second w12 ≤ w2: each weight is at least twice the
other. No positive values may satisfy this condition. ⊓⊔
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Theorem 2 For some distance d with codomain of size three, there exists I, µ and

F1, . . . , Fm such that I |= µ and I ̸∈ ∆
d,W∃
µ (F1, . . . , Fm), but d(J, F1, . . . , Fm) <

d(I, F1, . . . , Fm) does not hold for any J |= µ.

Proof This is shown on the codomain {0, 2, 3} and a formula µ with three models of distance
vectors [0, 3], [2, 2] e [3, 0] from F1 and F2. That such formulae exist is later proved by
Lemma 6 for the Hamming distance. To obtain the right codomain {0, 2, 3} the distance is
modified by setting dh′(I, Fi) = 3 for every model K such that dh(K,Fi) ̸∈ {0, 2, 3}. This
change does not affect the distance of the three considered models.

None of the three distance vectors is strictly dominated by another. However, the pre-
vious lemma shows that [2, 2] is not minimal for any weight vector. ⊓⊔

Lemma 4 For every pair of models I and J and every formulae F1, . . . , Fm, the following
two conditions are equivalent:

dd(I, F1, . . . , Fm) ≤ dd(J, F1, . . . , Fm)

subsat(J, F1, . . . , Fm) ⊆ subsat(I, F1, . . . , Fm)

Proof The inequality dd(I, F1, . . . , Fm) ≤ dd(J, F1, . . . , Fm) is the same as dd(I, Fi) ≤
dd(J, Fi) for each index i. The only possible values for dd(I, Fi) are 0 when I |= Fi and
1 when I ̸|= Fi. The same holds for dd(J, Fi). As a result, dd(I, Fi) ≤ dd(J, Fi) holds if and
only J |= Fi implies I |= Fi. Since this is the case for every index i, all formulae satisfied
by J are also satisfied by I. Since subsat(J, F1, . . . , Fm) is the set of formulae satisfied by J
and subsat(I, F1, . . . , Fm) is the set of formulae satisfied by I, the claim follows. ⊓⊔

Lemma 5 A model I of µ satisfies some element of maxconµ(F1, . . . , Fm) if and only if
subsat(I, F1, . . . , Fm) ⊂ subsat(J, F1, . . . , Fm) holds for no model J of µ.

Proof Let I be a model of µ such that subsat(I, F1, . . . , Fm) ⊂ subsat(J, F1, . . . , Fm)
holds for no model J of µ. The set subsat(I, F1, . . . , Fm) is proved to be a maxcon.
This set is consistent with µ because I satisfies both. It is also maximally so. Otherwise,
subsat(I, F1, . . . , Fm) ∪ {µ, Fi} would be consistent for some Fi ̸∈ subsat(I, F1, . . . , Fm).
Consistency implies the existence of a model J |= subsat(I, F1, . . . , Fm)∪{µ, Fi}. Since J sat-
isfies all these formulae, subsat(J, F1, . . . , Fm) contains all of them: subsat(I, F1, . . . , Fm)∪
{Fi} ⊆ subsat(J, F1, . . . , Fm). This implies subsat(I, F1, . . . , Fm) ⊂ subsat(J, F1, . . . , Fm)
for a model J that also satisfies µ, contrary to assumption.

Let J be a model of µ such that subsat(I, F1, . . . , Fm) ⊂ subsat(J, F1, . . . , Fm). The
claim is that I is not in any maxcon. By contradiction, let M be such a maxcon. Since
all its formulae satisfy I, it holds M ⊆ subsat(I, F1, . . . , Fm). By assumption, this set
is strictly contained in subsat(J, F1, . . . , Fm) for some J |= µ. Since J satisfies both
subsat(J, F1, . . . , Fm) and µ, this other set subsat(J, F1, . . . , Fm) is consistent with µ, con-
tradicting the assumption that M is maximally consistent with µ. ⊓⊔

Theorem 3 For every consistent formulae µ, F1, . . . , Fm, the following equality holds:

∆
dd,W∃
µ (F1, . . . , Fm) =

⋃
S∈maxconµ(F1,...,Fm)

Mod (∧S)
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Proof All elements S of maxconµ(F1, . . . , Fm) contain µ by definition. Therefore, all con-
junctions ∧S satisfy µ. All their models I satisfy µ. By Lemma 5, these are exactly the
models such that subsat(I, F1, . . . , Fm) ⊂ subsat(J, F1, . . . , Fm) holds for no other model
J of µ. This is equivalent to dd(J, F1, . . . , Fm) < dd(I, F1, . . . , Fm) by Lemma 4. There-
fore, these models I are the models of µ that are not strictly dominated by other models

of µ. Since the codomain of dd is binary, these are the models of ∆
dd,W∃
µ (F1, . . . , Fm) by

Lemma 1. ⊓⊔

Lemma 6 Given an arbitrary set of distance vectors of m elements each, all bounded by an
integer n, for some formulae µ and F1, . . . , Fm over nm variables the vectors of Hamming
distances from the models of µ to F1, . . . , Fm are exactly the given set of distance vectors.

Proof Formulae µ and F1, . . . , Fm are built over the set of variables {xi
j | 1 ≤ j ≤ n, 1 ≤

i ≤ m}. Each formula Fi is a conjunction of some of them.

Fi = xi
1 ∧ · · · ∧ xi

n

Given a model I, its closest model of Fi has all variables xi
1, . . . , x

i
n positive and the

same evaluation of I on the other variables. Therefore, dh(I, Fi) is the number of variables
xi
1, . . . , x

i
n assigned false by I.

For each distance vector [d1, . . . , dm] among the given ones, µ has the following model:⋃
1≤i≤m

{¬xi
j | 1 ≤ j ≤ di} ∪ {xi

j | di < j ≤ n}

For each i, this model has di negative variables among xi
1, . . . , x

i
n; therefore, dh(I, Fi) =

di. As a result, dh(I, F1, . . . , Fm) = [d1, . . . , dm]. Since µ has one such model for each of the
given distance vectors, the claim is proved. ⊓⊔

Lemma 7 There exist three formulae µ, F, F ′ on an alphabet of six variables such that

every Wr such that ∆dh,Wr
µ (F, F ′) = ∆

dh,W∃
µ (F, F ′) contains at least two weight vectors.

Proof By Lemma 6, given distances [3, 0], [1, 1] and [0, 3], there exist formulae µ, F1, F2 over
six variables such that the three models of µ have these distance vectors.

All three distance vectors are minimal for some W ∈ W∃. In particular, the first
two are minimal for W = [2, 4], the third is minimal for W = [4, 1]. This proves that

∆
dh,W∃
µ (F1, . . . , Fm) contains all three models of µ.
Contrary to the claim, a single weight vector is assumed to produce the same result.

Since the model at distance [3, 0] is minimal, its weighted distance is less than or equal to
that of the model at distance [1, 1], and the same for [0, 3]:

[w1, w2] · [3, 0] ≤ [w1, w2] · [1, 1]
[w1, w2] · [0, 3] ≤ [w1, w2] · [1, 1]

Expressing the two vector products explicitly:

w13 ≤ w1 + w2

w23 ≤ w1 + w2

Since all weights are positive, the left-hand and right-hand sides of these inequalities
can be added, leading to w13 + w23 ≤ w12 + w22, which is impossible for strictly positive
integers. This proves that no single weight vector produces the same merging of W∃. ⊓⊔
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Lemma 8 There exists µ, F1, . . . , Fm such that the size of every Wr for which

∆dh,Wr
µ (F, F ′) = ∆

dh,W∃
µ (F, F ′) is exponential in the size of the formulae.

Proof By Lemma 7, there exists formulae µ, F, F ′ on six variables X such that W∃ is only
equivalent to sets of weight vectors of cardinality greater than or equal to two. Since the
variables are six, these three formulae are equivalent to formulae of size at most 26, a
constant.

This construction is replicated on m disjoint alphabets X1, . . . , Xm of six variables
each, giving m triples µi, Fi, F

′
i of formulae with no shared variables among different triples

and size bounded by a constant each. These formulae are conjoined: µ = µ1 ∧ · · · ∧ µm,
F = F1 ∧ · · · ∧ Fm and F ′ = F ′

1 ∧ · · · ∧ F ′
m.

Since the triples are on different variables, the models of µ are combinations of models
of each µi, the distance between a model and F is the sum of the distance from every Fi,
and the same for F ′. As a result, the models of µ at minimal weighted distance from F
and F ′ are combinations of the models of each µi at minimal weighted distance from Fi

and F ′
i . For each triple, all sets of weight vectors Wr that make ∆dh,Wr

µ (Fi, F
′
i ) equal to

∆
dh,W∃
µi

(Fi, F
′
i ) contain at least two weight vectors by Lemma 7. The weight vectors that

make ∆dh,Wr
µ (F, F ′) equal to ∆

dh,W∃
µ (F, F ′) are their combinations, and are therefore

exponentially many in m. ⊓⊔

Theorem 4 No partial preorder ≤ depending on F1 and F2 only is such that

∆
dh,W∃
µ (F1, F2) = min(Mod(µ),≤).

Proof By Lemma 6, for every set of distance vectors there exists µ, F1 and F2 such that
the models of µ have these Hamming distance vectors from F1 and F2. The distance vectors
that prove the claim are [3, 0], [2, 2] and [0, 3]. Their corresponding models of µ are denoted
I, J and K.

Let µ′ be the formula satisfied only by the models I and J , the ones at distance [3, 0]
and [2, 2] from F1 and F2. They are both minimal with weights W = [2, 1]. As a result,
I ̸< J . By symmetry, K ̸< J . The ordering ≤ is the same since by assumption it does not
depend on µ but only on F1 and F2, which are the same. A consequence of I ̸< J and
K ̸< J is that J is a minimal model of µ. However, it is not in the result of merging with
constraints µ as proved by Lemma 3. ⊓⊔

Lemma 9 For every model-formula distance d and non-empty set of weight vectors W.,
the merging operator ∆d,W. satisfies postulates IC0, IC1, IC2 and IC7.

Proof The claim is proved one postulate at time.

IC0 ∆d,W.
µ (E) ⊆ Mod(µ)

by definition, ∆d,W.
µ (E) is a subset of the models of µ;

IC1 if µ is consistent, then ∆d,W.
µ (E) is not empty

by assumption, W. contains at least a vector of weights W ; for this vector, ∆d,W.
µ (E) is

the set of models of µ at minimal weighted distance from F1, . . . , Fm; if µ is consistent,
it has at least a minimal model;

IC2 if ∧E is consistent with µ, then ∆d,W.
µ (E) = Mod(µ) ∩Mod(∧E)

since d(I, Fi) = 0 when I |= Fi, the distance vectors of the models of ∧E are [0, . . . , 0];
regardless of the weights, the weighted distance is zero, and therefore minimal; all other
models have a strictly positive distance; since weights are strictly positive, their weighted
distance is greater than zero;
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IC7 Mod(µ′) ∩∆d,W.
µ (E) ⊆ ∆d,W.

µ∧µ′ (E)

the models in Mod(µ′)∩∆d,W.
µ (E), if any, are the models that satisfy µ′, and also satisfy

µ and no other model of µ has a lower distance from E weighted by some W ∈ W.; each
such model satisfies µ∧µ′, and no other model of µ∧µ′ has lower distance weighted by
W , since the models of µ ∧ µ′ are a subset of those of µ. ⊓⊔

Lemma 10 If W. contains every permutation of every vector it contains, then IC3 holds.
For some set of weight vectors that does not include a permutation of one of its elements,
IC3 does not hold.

Proof Postulate IC3 is: if E1 ≡ E2 and µ1 ≡ µ2, then ∆d,W.
µ1

(E1) = ∆d,W.
µ2

(E2), where
profiles are equivalent if there exists a bijection such that the associated formulae are equiv-
alent.

Since the definition of merging only involves the set of models of µ1 and not its syntax,
the result is the same when switching to an equivalent formula µ2.

The same holds for the formulae: the result of merging does not change if a formula
Fi is replaced by an equivalent one. This proves the claim when the bijection links each
formula of the first profile to the one of the same index of the second. This is generalized to
arbitrary bijections by showing that the result of merging does not change when swapping
the position of two arbitrary formulae.

Let F1, . . . , Fi, . . . , Fj , . . . , Fm and F1, . . . , Fj , . . . , Fi, . . . , Fm be the two profiles.
A model I is in the result of merging the first profile if there exists a weight vector W =

[w1, . . . , wi, . . . , wj , . . . , wm] in W. such that W · d(F1, . . . , Fi, . . . , Fj , . . . , Fm) is minimal.
The weight vector W ′ = [w1, . . . , wj , . . . , wi, . . . , wm] is obtained by swapping the

weights of index i and j in W . Since W. contains the permutation of every weight vector it
contains, and it contains W , it also contains W ′.

The distance from every model I to the first profile according to W and to the second
according to W ′ are the same:

W · d(I, F1, . . . , Fi, . . . , Fj , . . . , Fm) =

[w1, . . . , wi, . . . , wj , . . . , wm] · d(I, F1, . . . , Fi, . . . , Fj , . . . , Fm) =

w1d(I, F1) + · · ·+ wid(I, Fi) + · · ·+ wjd(I, Fj) + · · ·+ wmd(I, Fm)

W ′ · d(I, F1, . . . , Fj , . . . , Fi, . . . , Fm) =

[w1, . . . , wj , . . . , wi, . . . , wm] · d(I, F1, . . . , Fj , . . . , Fi, . . . , Fm) =

w1d(I, F1) + · · ·+ wjd(j, Fj) + · · ·+ wid(I, Fi) + · · ·+ wmd(I, Fm)

As a result, the minimal models are also the same; therefore, the results of merging are
also the same.

An example of a set of weight vectors that does not include the permutation of every
vector it contains is {[1, 2]}. Merging the profile made of x and ¬x produces ¬x while merging
the profile made of ¬x and x produces x, using µ = true in both cases. ⊓⊔

Lemma 11 If W. contains every permutation of every vector it contains and d satisfies
the triangle inequality ∀I, J,K.d(I,K) + d(K, J) ≥ d(I, J), then IC4 holds. For some set
of weight vectors that does not include a permutation of one of its elements IC4 does not
hold. The same for some distance not satisfying the triangle inequality.

Proof Postulate IC4 is: if F1 |= µ and F2 |= µ then ∆d,W.
µ (F1, F2) ∩Mod(F1) is not empty

if and only if ∆d,W.
µ (F1, F2) ∩Mod(F2) is not empty.
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This postulate does not hold in general. For example, the single weight vector [2, 1] with
the drastic or Hamming distance and µ = true, F1 = x and F2 = ¬x would select the model
of F1 only. Both distances satisfy the triangle inequality.

This counterexample suggests that the postulate holds if the set W. has some sort of
symmetry: if it contains a weight vector, it also contains all its permutations. This is however
not sufficient, as shown by the following counterexample:

ds(I, J) =


0 if dh(I, J) = 0
1 if dh(I, J) = 1
2 if 2 ≤ dh(I, J) ≤ 4
5 if 5 ≤ dh(I, J)

W. = {[5, 2], [2, 5]}
F1 = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5

F2 = ¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5

µ = F1 ∨ F2 ∨ (x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5)

The distance ds may look unnatural, but has a rationale: instead of measuring the
distance between models by the exact number of differing variables, it roughly approximates
it by aggregating certain groups of consecutive values into one, so that only finitely many
different distances exist.

The models of µ have distance vectors [0, 5], [2, 1] and [5, 0]. The first and the third are
the models of F1 and F2, respectively. The weight vector [5, 2] turns these distance vectors
into the weighted distances [5, 2] · [0, 5] = 10, [5, 2] · [2, 1] = 12, [5, 2] · [5, 0] = 25; only the
model of F1 is minimal. For the weight vector [2, 5]: [2, 5] · [0, 5] = 25, [2, 5] · [2, 1] = 9,
[2, 5] · [5, 0] = 10; the only minimal model is the second, which is not a model of F2. This

is a case in which both F1 and F2 imply µ and ∆ds,W.
µ (F1, F2) contains some models of F1

but none of F2.
Note that Lemma 6 does not apply to this case. It tells how to obtain certain distance

vectors with formulae µ, F1, F2, but these do not necessarily obey F1 |= µ and F2 |= µ. To
the contrary, the proof of the lemma involves formulae F1 and F2 that have models that
falsify µ.

Postulate IC4 requires not only W. to be symmetric, but also d to satisfy the triangle
inequality: for every three models I, J and K, it holds d(I,K) + d(K, J) ≥ d(I, J).

Since ∆d,W.
µ (F1, F2) ∩ Mod(F1) is not empty, there exists a weight vector [a, b] and a

model I of F1 with distance vector [0, c] such that [a, b] · [0, c] is minimal (the zero is because
I |= F1).

By definition, d(I, F2) = c implies d(I, J) = c for some J ∈ Mod(F2). This implies
d(J, F1) ≤ d(J, I) = c; if d(J, F1) < c then d(J,K) < c for some K ∈ Mod(F1), which
implies d(K,F2) < c = d(I, F2), contradicting the assumption that I is minimal; therefore,
d(J, F1) = c.

Since J satisfies F2, it also satisfies µ. It is therefore a candidate for being in the result
of merging. If a < b, then the weighted distance of J is [a, b] · [c, 0] = ac < bc = [a, b] · [0, c].
Since [0, c] is the distance vector of I, this contradicts the assumption that I is minimal for
weights [a, b]. This proves a ≥ b.

Model J is now proved to have minimal distance weighted by [b, a]. The weighted dis-
tance of J is [b, a] · [c, 0] = bc. Contrary to the claim, let K be a model with distance vector
[e, f ] such that [b, a] · [e, f ] < bc.

The triangular property implies e+ f ≥ c. In details: e+ f < c implies the existence of
two models I′ and J ′ of respectively F1 and F2 such that d(K, I′) = e, d(K, J ′) = f and
d(I′, J ′) ≤ e + f < c. This contradicts the assumption of minimality of I. This property
e+ f ≥ c, together with a ≥ b, makes the following inequalities valid:

[b, a] · [e, f ] = be+ af

= be+ bf + (a− b)f
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= b(e+ f) + (a− b)f

≥ bc+ (a− b)f

≥ bc

Contrary to what assumed, [b, a] · [e, f ] ≥ bc. This proves that no such model K may
exist, and that J has minimal distance weighted by [b, a]. Since J |= F2, the intersection

∆d,W.
µ (F1, F2) ∩Mod(F2) is proved not empty as required. ⊓⊔

Lemma 12 If ∆d,W.′
µ (F1, . . . , Fk)∩∆d,W.′′

µ (Fk+1, . . . , Fm) is not empty, it coincides with

∆d,W.
µ (F1, . . . , Fm), where W. is the Cartesian product of W.′ and W.′′ (postulates IC5 and

IC6).

Proof Let I be a model of both ∆d,W.′
µ (F1, . . . , Fk) and ∆d,W.′′

µ (Fk+1, . . . , Fm). By
assumption, there exist W ′ ∈ W.′ and W ′′ ∈ W.′′ such that the distance vector
d(I, F1, . . . , Fk) weighted by W ′ is minimal among the models of µ, and the distance vector
d(I, Fk+1, . . . , Fm) weighted by W ′′ is minimal among the models of µ. This is equivalent to
d(I, F1, . . . , Fk, Fk+1, . . . , Fm) being minimal when weighted by W ′W ′′; this is the vector
obtained by concatenating W ′ and W ′′, and is therefore in W..

In the other way around, a model that is not minimal on its weighted dis-
tance to F1, . . . , Fk or to Fk+1, . . . , Fm is not minimal on its weighted distance to
F1, . . . , Fk, Fk+1, . . . , Fm. ⊓⊔

Theorem 5 There exist µ, µ′, F1 and F2 such that Mod(µ′) ∩ ∆
dh,W∃
µ (F1, F2) is not

empty but ∆
dh,W∃
µ∧µ′ (F1, F2) ̸⊆ ∆

dh,W∃
µ (F1, F2).

Proof Let µ, F1 and F2 be such that µ has three models with distance vectors d(I, F1, F2) =
[1, 0], d(J, F1, F2) = [0, 1] and d(K,F1, F2) = [0, 2]. Such formulae exist thanks to Lemma 6.

The models of∆
dh,W∃
µ (F1, F2) are I and J , since these two models have minimal distance

weighted by [1, 1]. Since J dominates K, by Lemma 1 K is not in the result of merging for
any weights.

Let µ′ be the formula with models I and K. Since I is also in ∆
dh,W∃
µ (F1, F2), this set

contains a model of µ′, as required. When merging under constraints µ ∧ µ′, model K is
minimal with weights [2, 1], since it and the other model I of µ ∧ µ′ have both weighted
distance 2. ⊓⊔

Theorem 6 There exists F1, F2 such that ∆
d,W∃
true (F1, F2, . . . , F2) ̸⊆ Mod(F2), where F2 is

repeated an arbitrary number of times.

Proof The formulae are F1 = a and F2 = ¬a. For every number of repetitions n, there

exists W such that ∆
d,{W}
µ (F1, F2, . . . , F2) contains the model {a}, which does not satisfy

F2. In particular, the weight vector is W = [n, 1, . . . , 1]. The weighted distance of {a} from
the formulae is n, the same as the weighted distance of the only other model {¬a}. As a
result, {a} is minimal. ⊓⊔

Theorem 7 If all weights in the vectors in W. are lower than a constant and d is an
arbitrary distance, for every µ and F1, . . . , Fo, Fo+1, . . . , Fm, there exists n such that

∆d,W.
µ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) ⊆ ∆d,W.

µ (Fo+1, . . . , Fm), where the
formulae from Fo+1 to Fm are repeated n times.
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Proof By definition, ∆d,W.
µ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) is the union of

∆d,W
µ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) for all weight vectors W ∈ W.. The same

holds for ∆d,W.
µ (Fo+1, . . . , Fm). The claim is proved by showing a number n that makes

∆d,W
µ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) contained in ∆d,W

µ (Fo+1, . . . , Fm) for
every W ∈ W..

The set ∆d,W
µ (Fo+1, . . . , Fm) comprises all models of µ at minimal weighted distance

from Fo+1, . . . , Fm. This minimal weighted distance is denoted by b. The minimal weighted
distance from these models to F1, . . . , Fo is denoted by a; this is the minimal weighted

distance to F1, . . . , Fo from the models of ∆d,W
µ (Fo+1, . . . , Fm) only, not from all models

of µ.
By definition, the weighted distance from a model to

F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm is the same as its weighted distance to
F1, . . . , Fo plus its weighted distance to Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm, which is n times

its weighted distance from Fo+1, . . . , Fm. As a result, some models of ∆d,W
µ (Fo+1, . . . , Fm)

are at weighted distance a+ nb from F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm.

The set ∆d,W
µ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) comprises all models of µ

at minimal weighted distance from F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm, which is
equal to the weighted distance from F1, . . . , Fo plus n times the weighted distance from
Fo+1, . . . , Fm.

If one of these models is not in ∆d,W
µ (Fo+1, . . . , Fm), its weighted distance

from Fo+1, . . . , Fm is at least b + 1, since b is the minimal weighted distance
from the models of µ to Fo+1, . . . , Fm. Therefore, its weighted distance from
F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm is at least n(b+ 1).

Since this model is at minimal weighted distance from
F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm, all other models of µ are at least at the
same weighted distance from these formulae. This includes the models that are the
closest to Fo+1, . . . , Fm, which have been proved to be at weighed distance a + nb from
F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm. The inequality n(b+ 1) ≤ a+ nb follows.

This is the same as nb + n ≤ a + nb. Removing the common addends from both
sides results in n ≤ a. In summary, if a model of µ at minimal weighted distance
from F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm is not at minimal weighted distance from
Fo+1, . . . , Fm then n ≤ a. In the other way around, if n > a then all models of µ at mini-
mal weighted distance from F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm are also at minimal
weighted distance from Fo+1, . . . , Fm.

The conclusion is that ∆d,W
µ (F1, . . . , Fo, Fo+1, . . . , Fo+1, . . . , Fm, . . . , Fm) is a subset

of ∆d,W
µ (Fo+1, . . . , Fm) if n > a, where a is the minimal weighted distance of a model of

∆d,W
µ (Fo+1, . . . , Fm) from F1, . . . , Fo. Since the weights in W. are bounded by a constant,

only a finite number of weight vectors are in W.. Therefore, the maximal value of a across
all W ∈ W. is finite. Every n larger than it satisfies the claim. ⊓⊔

Lemma 13 For every µ, F1, . . . , Fm it holds:

∆
d,W∃
µ (F1, . . . , Fm) = ∆

d,W∃
µ (F1, . . . , Fm, Fm)

Proof By definition, ∆
d,W∃
µ (F1, . . . , Fm) is the union of ∆d,W

µ (F1, . . . , Fm) for every
W ∈ W∃, and the same when Fm is duplicated. The claim is proved by showing that
for each W = [w1, . . . , wm−1, wm] there exists W ′ = [w′

1, . . . , w
′
m−1, w

′
m, w′′

m] such that

∆d,W
µ (F1, . . . , Fm) is equal to ∆d,W ′

µ (F1, . . . , Fm, Fm), and vice versa.
The distance of a model from F1, . . . , Fm weighted by W = [w1, . . . , wm−1, wm] is

exactly half of the distance of the same model from F1, . . . , Fm, Fm weighted by W ′ =
[2w1, . . . , 2wm−1, wm, wm], since each distance is multiplied by two. Therefore, the minimal
models are the same.

Vice versa, the distance of a model from F1, . . . , Fm, Fm weighted by W ′ =
[w1, . . . , wm−1, wm, w′

m] is exactly the same as the distance of the same model from
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F1, . . . , Fm weighted by W = [w1, . . . , wm−1, wm + w′
m]. In this case, the weighted dis-

tances are exactly the same, and the minimal models coincide. ⊓⊔

Theorem 8 For every pair of satisfiable formulae F1 and F2 over an alphabet of n vari-

ables, it holds F1∆DF2 = ∆
dh,Wn+1
true (F1, F2).

Proof By definition, I ∈ F1∆DF2 if and only I |= F1 and there exists J |= F2 such that
⟨I, J⟩ is minimal according to ≤dh, or the same with F1 and F2 swapped. What is now

proved is that the first condition is equivalent to I ∈ ∆
dh,[n+1,1]
true (F1, F2). By symmetry,

the condition with the two formulae swapped is equivalent to I ∈ ∆
dh,[1,n+1]
true (F1, F2).

The relevant cases are: I |= F1 and ⟨I, J⟩ is minimal for some J |= F2, I |= F1 and

⟨I, J⟩ is minimal for no J |= F2, and I ̸|= F1. The claim holds if I ∈ ∆
dh,Wn+1
true (F1, F2)

holds exactly in the first case.

1. I |= F1 and ⟨I, J⟩ is minimal for some J |= F2; since I |= F1, the distance from I
to F1 is zero: dh(I, F1) = 0; therefore, the weighted distance from I to the formulae is
[n+1, 1] · [0, dh(I, F2)] = dh(I, F2), which is at most n; the negation of the claim is that
the weighted distance (n+1)dh(K,F1)+1dh(K,F2) of some other model K is less than
that; for it being less than n implies dh(K,F1) = 0; as a result, the weighted distance of
K is dh(K,F2); if it were less than the weighted distance of I then dh(K,F2) < dh(I, F2);
by definition, this means that there exists K′ such that dh(K,K′) is less than dh(I, I′)
for every I′ |= F2, including I′ = J ; this implies dh(K,K′) < dh(I, J), contrary to the
assumption that ⟨I, J⟩ is minimal;

2. I |= F1 and ⟨I, J⟩ is minimal for no J |= F2; by assumption, there exists K,K′ such that
K |= F1, K′ |= F2 and dh(K,K′) < dh(I, J) for every J |= F2; this implies dh(K,F2) <
dh(I, F2); since both I and K satisfy F1, it also holds dh(I, F1) = dh(K,F1) = 0; as a
result, the weighted distances of these models are [n + 1, 1] · [0, dh(I, F2)] = dh(I, F2)
and [n + 1, 1] · [0, dh(K,F2)] = dh(K,F2); since dh(K,F2) < dh(I, F2), the model I is
not at a minimal weighted distance;

3. I ̸|= F1; since F1 is by assumption satisfiable, it has a model K; since dh(K,F1) = 0, the
weighted distance for this model is [n+1, 1] · [dh(K,F1), dh(K,F2)] = dh(K,F2), which
is at most n; the weighted distance of I is instead [n + 1, 1] · [dh(I, F1), dh(K,F2)] =
(n+ 1)dh(I, F1) + dh(I, F2), which is greater than n since dh(I, F1) > 0.

Since I has minimal weighted distance from F1 and F2 in the first case but not in the
second and in the third, the claim is proved. ⊓⊔

Theorem 9 For every distance d bounded by k, if F1, . . . , Fm are satisfiable then

∆
d,Wkm
true (F1, . . . , Fm) is a disjunctive merging operator.

Proof Let I be a model satisfying no formula Fi. The disjunctive property holds if I is not

in ∆
d,Wkm
true (F1, . . . , Fm). This holds if I is not in ∆d,W

true (F1, . . . , Fm) for any W ∈ Wkm.
By assumption, I does not satisfy any of the formulae. Therefore, its distance vector is

greater than or equal to [1, . . . , 1]. Multiplying [1, . . . , 1] by W results in km+ (m− 1).
Since W is in Wkm, one of its elements is km. Let i be its index. Since Fi is satisfiable,

it has a model J . The distance vector of J is at most [k, . . . , k, 0, k, . . . , k] where 0 is at index
i. The result of multiplying it by W is (m− 1)k.

The upper bound for the weighted distance of J is (m − 1)k, which is less than km +
(m − 1), the lower bound of the weighted distance of minimal I. This proves that I is not
minimal. ⊓⊔

Theorem 10 For some distance d with codomain of size three, there exists I, µ and

F1, . . . , Fm such that I |= µ and I ̸∈ ∆
d,W∃,Σ2

µ (F1, . . . , Fm) hold, but d(J, F1, . . . , Fm) <
d(I, F1, . . . , Fm) does not hold for any J |= µ.
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Proof The proof is based on three models of distance vectors [4, 0], [3, 3] and [0, 4]. Let
w = [w1, w2] be an arbitrary weight vector. The squared distance vectors are [16, 0], [9, 9]
and [0, 16]. Multiplying them by the weight vector [w1, w2] gives 16w1, 9w1 + 9w2 and
16w2.

In order for the second model to be generated by merging, the second number has to be
lower than or equal to both the first and the third.

9w1 + 9w2 ≤ 16w1

9w1 + 9w2 ≤ 16w2

These inequalities are the same as 9w2 ≤ 7w1 and 9w1 ≤ 7w2, or w2 ≤ 7
9
w1 and

w1 ≤ 7
9
w2. These imply w2 < w1 and w1 < w2, which are impossible together. ⊓⊔

Lemma 14 If v = [v1, . . . , vm] and u = [u1, . . . , um] are two vectors of integers such that
vi ≤ ui holds for every index i, the same holds for the result of sorting v and u in descending
order.

Proof Two vectors can be sorted by Bubblesort, which compares and possibly swaps pairs
of consecutive elements (Astrachan 2003). Running the algorithm in parallel on the two
vectors iterates over the same basic step: if vi is less than vi+1, these two elements are
swapped; the same for ui and ui+1.

If none of the two pairs is swapped, the vectors do not change; therefore, each ele-
ment of v is still less than or equal to the corresponding element of u. If both pairs are
swapped, the condition still holds because the element corresponding to vi is still ui and
that corresponding to vi+1 is still ui+1.

The same is proved when only one of the two pairs is swapped. The swap is assumed
done on v and not on u; the converse case is symmetric. The result of swapping is the
following.

[v1, . . . , vi+1, vi, . . . , vm]
[u1, . . . , ui, ui+1, . . . , um]

Since the two elements of v are swapped, they were not in the requested order: vi < vi+1

holds. Since the two elements of u are not swapped, they are already in the requested order:
ui ≥ ui+1. Before the swap, each element of v was less than or equal to the corresponding
elements of u before the swap: vi ≤ ui and vi+1 ≤ ui+1.

The claim is the same after the swap: vi+1 ≤ ui and vi ≤ ui+1. The first is a consequence
of vi+1 ≤ ui+1 and ui+1 ≤ ui. The second is a consequence of vi < vi+1 and vi+1 ≤ ui+1.

The conclusion is that the basic step of Bubblesort keeps each element of v less than or
equal to the corresponding elements of u. This condition holds for the two ordered vectors
since they result from iterating this step. ⊓⊔

Lemma 15 If v = [v1, . . . , vm] and u = [u1, . . . , um] are two vectors of integers such that
vi ≤ ui holds for every index i and vi < ui for some index i, the same holds for the result
of sorting v and u in descending order.

Proof Lemma 14 proves that each element of the first sorted vector is less than or equal to
the corresponding one of the second. The claim requires the comparison to be strict for at
least one element.

Proof is by contradiction. If the ordering is not strict, the two sorted vectors are the
same. This implies that their sum is the same. Since sorting only changes the order among
the elements of the vectors, this is also the case for the two unsorted vectors. Their sum
cannot be the same since vi ≤ ui holds for all elements and vi < ui for at least one. ⊓⊔
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Lemma 16 For every distance d, vector of weights W ∈ W∃ and model I, if I ∈
∆d,W,leximax

µ (F1, . . . , Fm) then d(J, F1, . . . , Fm) < d(I, F1, . . . , Fm) holds for no model
J of µ.

Proof The claim is proved by showing that d(J, F1, . . . , Fm) < d(I, F1, . . . , Fm) forbids I

from being in ∆d,W,leximax
µ (F1, . . . , Fm) for any W ∈ W∃.

Let W = [w1, . . . , wm] be an arbitrary element of W∃. Since all weights are greater than
zero, d(J, Fi) ≤ d(I, Fi) is the same as wid(J, Fi) ≤ wid(I, Fi). As a result, multiplying the
elements of d(J, F1, . . . , Fm) and d(I, F1, . . . , Fm) by their respective weights in [w1, . . . , wm]
results in two vectors V and U such that V < U .

Let V ′ be the result of sorting V in descending order and U ′ the result of sorting
U . Lemma 15 proves that V < U implies V ′ < U ′. Every element of V ′ is less than or
equal to the corresponding element of U ′, and one is strictly so. As a result, V ′ is less
than U ′ in the lexicographic order. As a result, I is not minimal, and is therefore not in

∆d,W,leximax
µ (F1, . . . , Fm). This holds for every set of weights W ∈ W∃. ⊓⊔

Lemma 17 If I is a model of µ and d(I, F1, . . . , Fm) is not strictly dominated by
the vector of distances of any other model of µ, then there exists W such that I ∈
∆d,W,leximax

µ (F1, . . . , Fm).

Proof Since I is not strictly dominated by any other model of µ, for every other model J of
µ two cases are possible: either I ≤ J or there exists i such that d(I, Fi) < d(J, Fi). In the
first case, I is always less than or equal to J according to the leximax ordering regardless of
the weights thanks to Lemma 14. For the models J of the second kind, a vector of weights
W making I less than all of them is shown.

Each distance d(I, Fi) such that d(I, Fi) < d(J, Fi) for at least one such model J may be
zero or greater than zero. Let the ones greater than zero be x, y and z. The other distances
are not important, except that their maximum value plus one is denoted v.

The distance vector of I therefore comprises three kinds of elements: the ones such
that d(I, Fi) < d(J, Fi) is not the case for any J , the ones such that d(I, Fi) = 0 and
d(I, Fi) < d(J, Fi) holds for some model J , and the ones such that d(I, Fi) < d(J, Fi) holds
for some J and d(I, Fi) is either x, y, or z.

Regarding the distance vectors of the models J , all that is known is that d(J, Fi) is
strictly greater than d(I, Fi) for some index i. The remaining elements are unknown, but
they are not necessary anyway.

The distance vectors can be rearranged as follows.
I [ < v . . . < v 0 . . . 0 x y z ]
J [ ≥ 1 ]
J ′ [ ≥ 1 ]
J ′′ [ > x ]
. . . [ > y ]
. . . [ > z ]
W [ 1 . . . 1 2vxyz . . . 2vxyz vyz vxz vxy ]

The last line of the table is a weight vector. Multiplying the distances each by its weight
produces the following table, where u = vxyz.

I [ < v . . . < v 0 . . . 0 u u u ]
J [ ≥ 2u ]
J ′ [ ≥ 2u ]
J ′′ [ > u ]
. . . [ > u ]
. . . [ > u ]

Since v is one plus the maximum of some nonnegative numbers, it is larger than zero.
Since x, y and z are also larger than zero, u = vxyz is larger than v. As a result, the
maximum element of the vector of I is u.
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Every other vector contains at least an element strictly greater than u. Its maximum
element is therefore strictly greater than u. It is therefore strictly greater than the vector of
I according to the leximax ordering. ⊓⊔

Theorem 11 For every consistent formulae µ, F1, . . . , Fm, the following equality holds:

∆
d,W∃,leximax
µ (F1, . . . , Fm) =

⋃
S∈maxconµ(F1,...,Fm)

Mod (∧S)

Proof Lemma 16 proves that leximax merging does not select models of µ dominated by
others. Lemma 17 proves that leximax merging selects all models of µ that are not dominated
by others. Overall, leximax merging selects exactly the models of µ that are not dominated
by others.

This is the same selection made by merging with the drastic distance and the

sum as the aggregation function. As a result, ∆
d,W∃,leximax
µ (F1, . . . , Fm) is the

same as ∆
dd,W∃
µ (F1, . . . , Fm). Theorem 3 proves that the latter is the same as⋃

S∈maxconµ(F1,...,Fm)
Mod (∧S). ⊓⊔

Theorem 12 For every consistent formulae µ, F1, . . . , Fm, the following equality holds

∆
dd,W∃,lexmin
µ (F1, . . . , Fm) =

⋃
S∈cardconsµ(F1,...,Fm)

Mod (∧S)

where

cardconsµ(F1, . . . , Fm)

= {S ∈ maxconµ(F1, . . . , Fm) |̸ ∃S′ ∈ maxconµ(F1, . . . , Fm) . |S| < |S′|}

Proof If a model of µ is dominated by another, the same ordering weathers multiplying
their weight distances by the weight vector, sorting them in descending order and inverting
the order of their elements. As a result, the dominated model is not minimal according to
leximin. Leximin merging only produces undominated models. Not all of them, however.

The drastic distance dd(I, Fi) is 0 if I |= Fi and 1 if I ̸|= Fi. Multiplying a distance
vector dd(I, F1, . . . , Fm) by the weights and sorting the result in ascending order produces
[0, . . . , 0, w, w′, . . .], where the number of zeros is the number of formulae satisfied by I. All
following weights are strictly greater than zero because they are weights.

If another model J of µ satisfies more formulae F1, . . . , Fm than I, its weighted and
sorted distance vector is [0, . . . , 0, w′′, w′′′, . . .], where the number of zeros is larger than
that of the vector of I. As a result, it contains a zero where the vector of I contains w.
It is strictly smaller than that according to the leximin ordering. This implies that leximin
merging does not generate I.

Leximin merging instead generates I if no other model µ satisfies more formulae than
I. This is proved by the weight vector [1, . . . , 1]. The weighted and sorted distance vector
of I is [0, . . . , 0, 1, . . . , 1]. That of any other model of µ is a vector [0, . . . , 0, 1, . . . , 1] with a
larger or equal number of zeros. As a result, I is minimal according to the leximin ordering.
Leximin merging generates it. ⊓⊔
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