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Glossary 
 
AD: Alzheimer’s disease is a progressive neurodegenerative disorder 
characterized by cognitive decline, memory loss, and changes in behavior, 
primarily affecting older individuals, and is the most common cause of 
dementia. The disease is associated with the accumulation of abnormal 
protein deposits, including beta-amyloid plaques and tau tangles, in the 
brain. 
 
ADNI: The Alzheimer's Disease Neuroimaging Initiative is a multi-site 
research study that collects and shares data, including genetics and 
cognitive tests, aiming to develop and validate biomarkers for the early 
detection and tracking of Alzheimer's disease (AD). 
 
AI: Artificial Intelligence refers to the development of computer systems 
that can perform tasks by learning from data or experience. 
 
AUC-ROC: Area Under the Receiver Operating Characteristic Curve is a 
metric used to evaluate the performance of a binary classification model. 
It represents the area under the curve created by plotting the true positive 
rate against the false positive rate across different classification 
thresholds. 
 
CNN: Convolutional neural networks are a class of deep learning models 
specifically designed for processing structured grid data, such as images. 
They use convolutional layers to automatically and adaptatively learn 
hierarchical representations, making them highly effective for tasks like 
image recognition and computer vision. 
 
CV: Cross-validation is a statistical technique used to assess the 
performance and generalizability of a machine learning model by 
partitioning the dataset into subsets, training the model on some subsets, 
and evaluating it on the remaining ones, helping to mitigate issues of 
overfitting or underfitting. 
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Cytoband: A cytoband is a distinct banding pattern on a stained 
chromosome, created through techniques like G-banding, and is used to 
identify and describe specific regions of chromosomes in cytogenetics. 
 
dbGaP: Database of Genotypes and Phenotypes is a publicly available 
repository of genetic and phenotypic data from human studies. 
 
DNA: Deoxyribonucleic acid carries the genetic instructions used in the 
development, functioning, and reproduction of all known living organisms 
and many viruses. DNA consists of two long strands forming a double 
helix, with each strand made up of nucleotides containing a sugar 
(deoxyribose), a phosphate group, and one of four nitrogenous bases: 
adenine (A), thymine (T), cytosine (C), or guanine (G). 
 
DE: Layer deeplift is a method used in the field of XAI that aims to provide 
insights into how input features in a deep learning model contribute to the 
model's output. 
 
DL: Deep learning is a subset of machine learning that involves the 
training of artificial neural networks with multiple layers (deep neural 
networks) to automatically learn hierarchical representations of data, 
enabling the extraction of complex features and patterns for diverse tasks. 
 
EOAD: Early onset Alzheimer’s disease refers to the occurrence of 
Alzheimer's disease symptoms in individuals under the age of 65. 
 
eQTL: Expression quantitative trait loci refer to genomic variants 
associated with changes in gene expression levels, indicating a genetic 
influence on the regulation of gene activity. 
 
ET: Extremely randomized trees is an ensemble learning method in 
machine learning that builds multiple decision trees during training and 
combines their predictions for increased accuracy and robustness. 
 
Features: They are the input variables or characteristics of the data that 
the machine learning model uses to make predictions or classifications. In 
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this work, features are synonymous with predictors in models, and consist 
in one sex feature and multiple genomic features.  
 
FL: Federated learning is a machine learning approach where a model is 
trained across decentralized edge devices or servers holding local data 
samples, allowing the model to learn patterns from diverse data sources. 
 
FFN: Feedforward neural networks are a type of machine learning model 
formed of layered networks of interconnected neurons, where information 
flows unidirectionally, without feedback loops. 
 
GB: Gradient-boosted decision trees are an ensemble learning method in 
machine learning that combines the predictive power of multiple decision 
trees sequentially, with each tree correcting the errors of the previous one. 
 
GBP: Guided backpropagation is a technique used in the field of XAI that 
modifies the backpropagation algorithm to highlight and interpret the 
contributions of specific input features in a neural network's output, 
providing insights into the features influencing a particular prediction. 
 
Genomic variant: A genomic variant refers to a specific alteration or 
difference in the sequence of DNA within an individual's genome, 
encompassing single nucleotide changes, insertions, deletions, and 
structural variants. 
 
Genotyping arrays: Genotyping arrays are platforms used in genetics to 
analyze and detect variations in DNA sequences at specific genetic 
markers across an individual's genome, providing information about the 
genetic variants present in a person. 
 
GLM: Generalized linear models are a class of statistical models that 
extend linear regression to accommodate non-normally distributed 
response variables. 
 
GWAS: Genome-wide association studies is a statistical approach in 
population genomics that aim to identify associations between specific 
genetic variants, and traits or diseases on a genome-wide scale. 
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HLA: Human leukocyte antigens are proteins on the surface of human 
cells that play an important role in the immune system by presenting 
antigens and regulating immune responses. 
 
HPC: High-performance computing refers to the use of advanced 
computing systems, typically involving parallel processing and large-scale 
computational resources, to solve complex problems or perform data-
intensive tasks at a significantly faster rate than conventional computing 
environments. 
 
HWE: Hardy-Weinberg equilibrium is a genetic principle stating that, under 
specific conditions including random mating and the absence of 
evolutionary forces, the frequencies of alleles and genotypes in a 
population remain constant across generations. 
 
IMSGC: International Multiple Sclerosis Genetics Consortium is a global 
research collaborative consortium that aims to identify and understand the 
genetic factors that contribute to multiple sclerosis. 
 
LD: Linkage disequilibrium refers to the non-random association or 
correlation between genetic variants at two or more loci on a chromosome, 
indicating that these variants are inherited together more frequently than 
expected by chance. 
 
LIG: Layer integrated gradients is a technique in explainable artificial 
intelligence (XAI) that attributes the predictions of a deep neural network 
to its input features by integrating gradients throughout the network's 
layers, offering insights into the importance of each feature across different 
levels of abstraction in the model. 
 
LOAD: Late onset Alzheimer’s disease refers to the occurrence of 
Alzheimer's disease symptoms in individuals aged 65 or older, typically 
manifesting later in life, and is characterized by progressive cognitive 
decline, memory loss, and changes in behaviour. 
 
LR: Logistic regression is a statistical method used in machine learning 
for binary classification tasks, where it models the probability of an event 
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occurring as a function of input features, and employs the logistic function 
to map the output to a probability range between 0 and 1 for predicting 
categorical outcomes. 
 
MAF: Minor allele frequency is a measure in population genetics that 
represents the frequency at which the less common allele of a genetic 
variant occurs in a given population. 
 
MCI: Mild cognitive impairment is a condition characterized by noticeable 
cognitive decline that is greater than expected for an individual's age but 
not severe enough to be classified as dementia. 
 
Missense variant: A missense variant, also called a nonsynonymous 
variant, is a type of genetic variant in which a single nucleotide change in 
the DNA sequence results in the substitution of one amino acid for another 
in the corresponding protein, potentially affecting the protein's function. 
 
MDR: Multifactor dimensionality reduction is a statistical method used in 
genetic epidemiology to detect and model interactions among multiple 
genetic and environmental factors that contribute to complex traits or 
diseases, helping identify high-dimensional combinations of variables 
associated with the outcome of interest. 
 
MHC: Major histocompatibility complex is a set of genes that encode cell 
surface proteins essential for the immune system's recognition of self and 
non-self entities. This region is also known as the HLA complex in humans. 
 
ML: Machine learning is a branch of artificial intelligence that involves the 
development of algorithms allowing computers to learn patterns and make 
decisions from data, enabling them to improve performance and adapt to 
new information over time. 
 
MS: Multiple sclerosis is a chronic autoimmune disease of the central 
nervous system where the immune system mistakenly attacks the 
protective covering of nerve fibers (myelin), leading to communication 
disruptions between the brain and the rest of the body. This can result in 
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a wide range of symptoms, including fatigue, difficulty walking, numbness 
or tingling, and problems with coordination and balance. 
 
NGS: Next generation sequencing is a high-throughput DNA sequencing 
technology that enables the rapid and parallel sequencing of millions of 
DNA fragments, allowing for comprehensive analysis of genomic 
information, including the identification of genetic variants, gene 
expression levels, and other genomic features. 
 
PC: Principal components are the key axes or directions in a dataset that 
capture the most significant variation. In data analysis, principal 
component analysis (PCA) is a technique that identifies and orders these 
components, enabling the reduction of data dimensionality while retaining 
as much of the original variability as possible. 
 
PD: Parkinson's disease is a neurodegenerative disorder that primarily 
affects movement. It is characterized by the progressive loss of dopamine-
producing neurons in the brain, leading to symptoms such as tremors, 
rigidity, and impaired balance and coordination. 
 
PRS: Polygenic risk score is a numerical assessment that summarizes an 
individual's genetic predisposition to a particular trait or disease based on 
the cumulative effects of multiple genetic variants across the genome. It is 
calculated by combining the weighted contributions of various genetic 
markers associated with the trait or condition of interest. 
 
RF: Random forest is an ensemble learning method in machine learning 
that builds multiple decision trees during training and combines their 
predictions for improved accuracy and robustness. It introduces 
randomness by training each tree on a subset of the data and using 
random feature subsets, reducing overfitting and enhancing predictive 
performance. 
 
RFE: Recursive feature elimination is a feature selection technique in 
machine learning that recursively removes less important features from 
the dataset, typically based on the coefficients or feature importance 
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scores obtained from a model, aiming to improve model performance and 
interpretability. 
 
RFECV: Recursive feature elimination with cross-validation is a feature 
selection technique in machine learning that combines recursive feature 
elimination with cross-validation to iteratively identify the most relevant 
subset of features while assessing the model's performance. RFECV 
iteratively evaluates feature subsets, ranking them based on cross-
validated model performance, and eliminates features until an optimal 
subset is determined. 
 
RNA: Ribonucleic acid is a molecule composed of nucleotide units 
containing a sugar (ribose), a phosphate group, and one of four 
nitrogenous bases (adenine, guanine, cytosine, or uracil) and is essential 
for the flow of genetic information from DNA to protein. 
 
sQTL: Splicing quantitative trait loci refer to genomic variants associated 
with changes in splicing patterns of transcripts, indicating a genetic 
influence on the regulation of gene activity. 
 
SC: Schizophrenia is a severe mental disorder characterized by 
disturbances in thought processes, perceptions, and emotions. 
 
SM: Saliency maps are visual representations highlighting the most 
influential regions of an input data, such as an image, as identified by a 
machine learning model. They are commonly used in computer vision to 
interpret and understand which parts of the input contribute most to the 
model's predictions. 
 
SNP: Single nucleotide polymorphism is a type of genetic variant that 
occurs at a single position in the DNA sequence, where one nucleotide (A, 
T, C, or G) is replaced by another in a population. SNP refer to common 
genetic variants. 
 
SNV: Single nucleotide variant is a type of genetic variant that involves the 
substitution of a single nucleotide (A, T, C, or G) in the DNA sequence. 
SNV include both common SNP and rarer mutations. 
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UKB: UK Biobank is a large-scale biomedical database and research 
resource that includes genetic and health-related data from over half a 
million participants in the United Kingdom. 
 
XAI: Explainable AI refers to the development of tools applied to artificial 
intelligence systems in order to provide transparent and understandable 
insights into the decision-making processes, allowing humans to 
understand the rationale behind AI-driven outcomes. 
 



Magdalena Arnal Segura 

Pag 12  

Summary 
 
Complex diseases present challenges in disease prediction due to their 
multifactorial nature. Unlike single-gene disorders, these diseases result 
from the interplay of multiple genetic, environmental, and lifestyle factors. 
In parallel, Machine learning (ML) and deep learning (DL) techniques have 
gained popularity for predicting phenotypic traits and disease conditions 
based on different types of clinical data, including genomic data. In this 
work, sometimes I refer to ML and DL as separate methods, but it is 
important to note that, while DL is a more specialized and sophisticated 
branch of ML, it still falls under the broader umbrella of ML techniques. 
These methods have been proven to be powerful in detecting complex 
patterns, including epistasis in the data. Alternatively, one of the most 
common methods used in population genomics to estimate the genomic 
predisposition to develop a disease is the polygenic risk score (PRS). 
 
In my work I hypothesised that ML methods could be useful for classifying 
individuals with complex diseases, due to their ability to capture complex 
patterns and synergisms in the data. Consequently, I explored the 
prediction of four different complex diseases, multiple sclerosis (MS), 
Alzheimer’s disease (AD), schizophrenia (SC), and Parkinson’s disease 
(PD) using ML models with genomic data. 
 
The primary goal of this research was to investigate the robustness and 
variability of the ML methods. Different models were tested to classify 
affected and healthy individuals, and their performance was compared. 
The main results of this part are summarized below:  
 

• Logistic regression appeared to be the most robust method across 
folds and diseases. Alternatively, DL methods exhibited high 
variability across folds. These results may partially be attributed to 
the limited sample size available in this study, which could have 
favored simpler methods. 

 
• Regarding the impact of biases present in the data, for diseases 

with imbalanced sex representation, the models tended to 
reproduce this imbalance in the predictions of the testing set, 
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highlighting a common limitation associated with biases in the 
application of ML methods. 

 
• When comparing the performance of PRS with ML methods, PRS 

consistently performed at an average level. Therefore, I concluded 
that, with the available sample size, both methods are comparable 
in stratifying individuals by disease risk. However, PRS still offers 
several practical advantages over ML methods. 

 
• After implementing feature selection techniques to exclude non-

informative predictors from the models, the performance of ML 
models did not improve. This underscores the capacity of ML 
methods to achieve optimal performance, even in the presence of 
correlated features due to linkage disequilibrium. 

 
Understanding which genomic variants are considered informative for 
disease discrimination during the training process could provide significant 
insights into the underlying genetic basis of the diseases and identify 
potential targets for further investigation. Related to this, the secondary 
goal of this study was to apply explainability tools to extract the features 
considered more informative by the models. The main results of this part 
are discussed below: 
 

• The results confirmed the polygenicity of MS, as evidenced by the 
prioritized genomic features distributed across different 
chromosomes. 
 

• The prevalence of HLA gene annotations among the top genomic 
features on chromosome 6 aligns with their significance in the 
context of MS.  
 

• The highest-prioritized genomic variants were identified as 
expression or splicing quantitative trait loci (eQTL or sQTL) 
located in non-coding regions within or near genes associated 
with the immune response and MS. 
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Overall, given that ML are self-learning methods and are increasingly 
popular for clinical applications, this research provides a deeper 
understanding of how these methods learn to classify complex diseases. 
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1. Introduction 
 
1.1 Genomic data 
 
Genomic data refers to the collection of information related to an 
organism's genome. This data includes the sequence of DNA nucleotides, 
variations in the DNA sequence, and other structural elements of the 
genome. 
 
Since the first initiative aimed at sequencing the entire human genome, 
developed between 1990 and 20041, known as the Human Genome 
Project (HGP), the main challenge for geneticists has been the generation 
of genomic data. This need for more data, originated from the belief that 
important information influencing human fate, particularly human disease, 
is enclosed in DNA, promoted advancements in genomic sequencing 
technologies.  
 
Next generation sequencing (NGS) is a group of high-throughput 
sequencing technologies that can sequence millions of DNA fragments 
simultaneously. NGS technology started with the development of 
pyrosequencing and was first commercially available in 2005 as the 
454/Roche platform2. Others followed, and as a result, nowadays there 
are a diversity of NGS technologies dedicated to sequence the DNA such 
as Illumina sequencing, Ion Torrent sequencing, Nanopore sequencing 
and PacBio, among others3. These technologies have revolutionized the 
field of genomics by enabling the rapid and cost-effective sequencing of 
entire genomes.  
 
In addition to DNA sequencing techniques, genotyping arrays were 
developed in the mid-1990s using technologies such as Affymetrix's 
GeneChip and Illumina's BeadArray platforms. Genotyping arrays remain 
an essential tool in genetic research, offering a balance between cost-
effectiveness, accuracy, and throughput4. The arrays are targeted genetic 
experiments allowing the analysis of an individual's genetic variation at 
specific known positions in their genome. They are designed primarily to 
assess single nucleotide polymorphisms, although other genetic variants 
can be interpreted, providing a general overview of an individual's genetic 
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makeup5. The differences between DNA sequencing and genotyping array 
technologies are outlined in Table 1. 
 

 DNA sequencing (NGS) Genotyping arrays 

Methodology 

Determine the precise sequence 
of nucleotides in a DNA sample, 
allowing for the identification of 

known and novel genomic 
variants. 

Analyse predefined genomic 
variants across the genome 
using a microarray-based 

approach. 

Cost and 
Throughput 

While initially more expensive, 
they offer higher throughput and 
the ability to obtain information 

beyond predefined genomic 
variants, making them more 

cost-effective for certain 
applications. 

Genotyping arrays are often 
more cost-effective when 

analysing a specific set of known 
genomic variants across a large 

number of samples. They require 
less storage and are easier to 

analyse. 

Application 
Employed in a wide range of 
applications, including clinical 

and research fields. 

Commonly used in genome-wide 
association studies, and clinical 
diagnostics, where genotyping 

involves identifying known 
variants associated with specific 

traits or diseases. 

Table 1 outlines the differences between DNA sequencing (NGS) technologies 
and genotyping arrays. 

Thanks to the development and improvement of NGS and genotyping 
array technologies, the generation of genomic data has been optimized, 
leading to an exponential increase in the amount of such data. In fact, in 
recent years, there have been multiple studies generating genomic data 
from large-scale cohorts6 7. This has created a new dilemma of how to 
store, manage, integrate and analyze this wealth of information6 7. Overall, 
the advancements in genotyping and sequencing technologies have 
introduced a new era where the challenge shifts from data generation to 
data processing and analysis8. 
 
In the context of DNA, it is important to distinguish between germline, and 
somatic mutations. Germline mutations are the genetic alterations that 
occur in the reproductive cells. These mutations are passed on to offspring 
(inherited) during the process of fertilization and usually affect every cell in 
the offspring's body. Alternatively, somatic mutations are acquired 
mutations that arise in non-reproductive cells and are not inherited, usually 
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affecting cells in a localized tissue or area. In this work I focused on 
germline variability as the inherited risk of developing a disease. Germline 
information remains consistent across all endogenous cells within the 
same organism. Consequently, germline information in DNA can be 
extracted from a variety of cell tissues in the body, including saliva, using 
non-invasive techniques. 
 
 

AGCGTCGATGGAGATT Original sequence 

AGCGT------AGATT 
AGCGTAGATT Deletion 

AGCGTCGATGGAGATT 
AGCGTCGACCATTGGAGATT Insertion 

AGCGTCGATGGAGATT 
AGCGTCGCTGGAGATT 

Substitution 
(synonymous or 
nonsynonymous) 

Table 2 lists the types of small-scale mutations. 

Single nucleotide substitutions are the most well-characterized type of 
mutation, commonly referred to as single nucleotide polymorphisms (SNP) 
or single nucleotide variants (SNV). SNPs specifically refer to common 
genetic variants, while SNVs refer to all single nucleotide variants, 
including both common polymorphisms and rarer mutations. SNVs can be 
synonymous, meaning that the changes in the single nucleotide do not 
directly alter the amino acid sequence of the protein, or nonsynonymous, 
also named as missense mutations, which change the amino acid 
composition of the corresponding protein. The Single Nucleotide 
Polymorphism Database (dbSNP)9 includes the annotation of both SNPs 
and SNVs, small insertions, and deletions listed in Table 2, assigning a 
unique identifier to the variant consisting in a “rs” followed by a number as 
detailed in Table 3 in dbSNP format.  
 
Conversely, the integration and annotation of large-scale mutations 
involving large DNA segments altering the chromosomal structure, 
remains a challenging task. Primarily, these alterations are not easily 
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detected with most sequencing technologies or the subsequent analysis 
pipelines. Additionally, the identifiers assigned to complex mutations are 
less standardized. Therefore, the identification of these alterations is 
hindered by the lack of evidence and the absence of harmonized 
identifiers. 
 

Format Description Example 
Protein-
Coding 

Non-
Coding 

Protein 
format 

Based on the protein 
reference sequence 

APOE_ p.R176C 
APOE_ p.R202C Yes No 

Coding 
format 

Based on the coding 
DNA reference 

sequence 

APOE_ c.526C>T 
APOE_ c.604C>T Yes No 

Genome 
format 

Based on the whole 
DNA reference 

sequence 

GRCh37: APOE_ g.45412079C>T 
GRCh38: APOE_ g.44908822C>T Yes Yes 

dbSNP 
format 

dbSNP Reference SNP 
(rs or RefSNP) number 

rs7412 Yes Yes 

Table 3 illustrates the different variant annotation formats for single nucleotide 
substitutions located in coding regions. Columns “Protein-coding” and “Non-
coding” indicate if the annotation format allows for the representation of variants 
located in these regions, respectively. 

There are different types of genomic identifiers assigned to genomic 
mutations, and general recommendations for variant annotations exist10. 
However, different formats are used across datasets, sometimes 
complicating the pre-processing and analysis of genomic data. There are 
four main variant annotation formats described in Table 3, and each 
database uses one or several of them. The following conflicts arise when 
linking variants across datasets: 
 

• In the column “Example” of Table 3, there are several IDs using 
the same format in protein, coding, and genome format. For 
example, p.R176C and p.R202C, in the case of protein format, 
represent the same variant in different protein isoforms. In the 
coding format, c.526C>T and c.604C>T refer to the same variant 
in different transcripts of the same gene. Finally, in the genome 
format, variant annotation depends on the reference genome 
version (GRCh37 or GRCh38). 
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• Protein format and coding format do not represent variants in non-
coding regions. 

• dbSNP format only includes previously described variants. Rare 
variants are sometimes missing in this database. 

 
In this project, variant annotations from dbSNP were used, focusing on 
small-scale genomic variants, including small insertions, deletions, and 
SNVs as described in Table 2. This decision is supported by the design of 
the UK Biobank Axiom Array11, used as the primary source of genomic 
data in this study. This array is designed to capture predominantly 
common SNVs and well-known disease-causing mutations that are 
usually represented in dbSNP. Additionally, dbSNP annotation facilitates 
the annotation of genomic variants in non-coding regions.  
 
Some regions in the human genome adhere to special annotation 
conventions. This is the case of the region on chromosome 6 
corresponding to the major histocompatibility complex (MHC), known as 
the Human leukocyte antigen (HLA) in humans. Due to the high variability 
and complexity shown in this region, it has its own nomenclature system 
for different alleles. All alleles start with “HLA”, followed by the name of the 
gene and an asterisk. The first two digits after the asterisk specify the 
serologically defined allele group, and together with the third and fourth 
subsequent digits, they indicate a unique protein sequence12. As an 
example, the allele HLA-DRB1*15:01 refers to the allele group 15, and the 
specific protein 1, within the HLA-DRB1 gene. 
 
1.2 Inheritance patterns and population genomics 
 
In the 19th century, Gregor Mendel experiments with pea plants allowed 
to explain patterns of inheritance and provided a framework for 
understanding the transmission of genetic traits13. The three fundamental 
principles formulated by Gregor Mendel include: 
 

• Principle of dominance and uniformity: Alleles can be either 
dominant or recessive. An organism with at least one dominant 
allele will show the effect of the dominant allele. The principle of 
uniformity is represented in Figure 1. 
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• Principle of segregation: There are two alleles for a given trait, one 
inherited from each parent, and the alleles segregate during the 
formation of gametes. Consequently, each gamete carries only 
one allele for each gene. The principle of segregation is also 
represented in Figure 1. 

• Principle of independence assortment: Different pairs of alleles for 
different traits are inherited independently of each other. 

 
 

 
Figure 1 represents two of the Mendel’s principles, the principle of uniformity and 
the principle of segregation. The figure was obtained from reference14. ‘P’ 
corresponds to the two pure-breeding parental generations involved in a particular 
cross. ‘F1’ and ‘F2’ represent the first and second generation of the ‘P’ cross. 

Simple Mendelian inheritance help clinicians and researchers in the 
diagnose and risk prediction of some human diseases15 16. Family-based 
genetic studies, for example, involve the study of genetic variants within 
families to identify the genetic basis of various Mendelian traits and 
diseases16. While Mendel's principles have several exceptions and apply 
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only to simple Mendelian traits, understanding the Mendelian inheritance 
provides a foundation for studying more complex patterns of inheritance, 
such as those involving multiple genes (polygenic traits) and interactions 
with environmental factors17.  
 
Germline mutations accumulate over time and evolution and are submitted 
to evolutionary pressure. This means that mutations in sensitive areas of 
the genome will not result in a successful embrio, and this footprint has 
been used in evolutionary genomics to identify the areas of the genome 
which are more preserved, and therefore likely more sensitive to 
changes18 19. The initiatives sequencing large cohorts with diverse species 
and human populations boosted the knowledge on this field18 20. In this 
regard, protein-coding regions exhibit stronger evolutionary constraints 
compared to non-coding regions20. 
 
However, over the evolution there has also been the accumulation of 
genomic variants with small to medium effects, that are located in less 
sensitive areas, and are apparently benign by itself, but under certain 
circumstances related to the environment or the presence of a certain 
genomic background, become predisposing or protecting against diseases 
or conditions21. In fact, many genomic variants listed in curated databases 
as associated with human diseases are located in non-coding regions, 
without any predicted impact in the protein sequence or structure22 23. This 
trend exemplifies how the protein-coding DNA sequence alone is not 
always deterministic of what is going to be manifested in the phenotype. 
In some cases, genomic variants in non-coding regions have a regulatory 
role affecting the transmission of information to the RNA and Proteins22. In 
addition, gene transcription can be altered by epigenetic factors, which 
play an important role in regulating various cellular processes, and can be 
influenced by both, genetic and environmental factors.  
 
Within the non-coding genome, evolutionary constrained regions are 
usually associated with known regulatory elements and variants linked to 
complex human diseases20. Partially due to the regulation of gene 
expression, that depends on the interactions across various loci, for most 
of the diseases, rather than having a single strong genetic determinant, 
various genomic loci simultaneously show different degrees of association 
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with a disease or trait24 23. Consequently, using the word causality to speak 
about a mutation in the DNA sequence coding for an RNA that directly 
determines the protein structure and subsequent phenotype is a 
simplification that cannot be extrapolated to all the traits. 
 
One important property of genomic data is the presence of linkage 
disequilibrium (LD), which is associated with the phenomenon of 
recombination and affects the way DNA replicates during meiosis, as 
depicted in Figure 2. During the process of recombination, which occurs 
during the formation of gametes (sperm and egg cells), segments of DNA 
from each parent are exchanged. Recombination typically breaks down 
associations between alleles at different loci, promoting genetic diversity. 
However, genes or genetic markers that are physically close to each other 
on a chromosome are more likely to be inherited together without 
undergoing recombination. Consequently, over generations, the genetic 
variants in physical proximity tend to co-occur more frequently than 
expected by chance, leading to an elevated correlation. This complex 
interdependence among genetic variants complicates the interpretation of 
individual variant associations23. 
 

 
Figure 2 represents the process of recombination in (a) and the subsequent 
representation in gametes in (b). Linkage disequilibrium originates from the 
tendency of nearby genomic regions to be inherited together, despite 
recombination. The figure is based on this reference25. 
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Population genomics is the field of study that tries to disentangle the 
complexity of the human genome above described by analyzing genomic 
information from many individuals to study patterns of genetic variation 
within and between populations.  
 
One example is genomic imputation, a widely used method in population 
genomics to infer missing genotypes. As previously noted, genotyping 
arrays can only capture a predefined set of genomic variants. Additionally, 
genotyping arrays and NGS generate missing values due to technical 
limitations. To address these issues, the combination of genetic principles, 
such as LD, available reference panels, computational advancements, 
and statistical algorithms has made genomic imputation a viable and 
widely used approach in genomics research. It allows researchers to infer 
and predict genotypes at unobserved variants, contributing to a more 
complete view of the genomic landscape. Tools such as IMPUTE526 and 
BEAGLE27 can impute missing variants based on population-specific 
reference panels.  
 
Nevertheless, there are several regions of the genome where general 
imputation estimates are inaccurate, and custom imputation approaches 
are needed. An example is the region on chromosome 6 corresponding to 
the HLA complex, considered the most variable (polymorphic) region of 
the human genome28. The complex structure in this region often requires 
the use of specific methods for imputation, such as SNP2HLA29, HIBAG30 
or HLA*IMP31. 
 
In recent decades, population genomics has also made advances in the 
genomic characterization of diseases, largely due to the improvement in 
genomic technologies, the increase in the available genomic data, and the 
emergence of genome-wide association studies (GWAS)23. GWAS are 
based on the analysis of genetic variants across the entire genome of 
many individuals to identify associations between specific genetic markers 
and particular traits or diseases23. This tool has been used to identify 
genetic variants that contribute to the risk of complex diseases, with small 
to large effects. The number of associated genomic variants with human 
conditions reported by GWAS is expected to grow as sample sizes 
increase in the future.  
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There are several steps in the GWAS analysis, including the collection of 
samples from large cohorts, genotyping using arrays or DNA sequencing 
techniques, quality control of the genomic data, imputation of missing 
genomic variants, conducting the statistical test for association in the 
discovery cohort, and finally, seeking an independent replication with a 
validation cohort. The primary output of GWAS analysis, known as 
summary statistics, consists in a list of p-values, effect sizes and their 
directions associated to the tested genomic variants with respect to the 
phenotype of interest.  
 
While the utility of GWAS is undeniable, there are several limitations 
associated with the use of this technique. First, the presence of LD makes 
it challenging to identify the exact causal variant. In this regard, GWAS 
report blocks of correlated SNVs in LD that have a statistically significant 
association with the trait of interest, rather than single SNVs. Therefore, 
this can lead to false positives and false negatives when a genomic variant 
is in LD with a causal variant, and the associated signal is attributed to the 
non-causal variant in LD. Related to this, the findings from GWAS in one 
population may not easily generalize to other populations due to 
differences in LD patterns. 
 
Researchers often use fine-mapping tools to try to address issues derived 
from LD and find the causal SNVs in GWAS signals. There are several 
fine-mapping approaches based on Bayesian models, including 
CAVIAR32, FINEMAP33, PAINTOR34 and SuSIE35. However, the set of 
genomic variants selected by Bayesian models is not always consistent 
across methods23. 
 
Another approach is the conditional association analysis. In this method, 
the genetic variant that shows the most significant association with the trait 
of interest in the initial GWAS analysis, named as lead variant, is added 
as a covariate in genotype-phenotype regression models, while the 
association between the trait and other variants in the region is evaluated. 
If additional variants in the region still show significant associations after 
conditioning on the lead variant, this suggests that multiple, distinct genetic 
effects contribute to the trait of interest23. 
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Despite of the available tools, prioritizing the causal SNV over highly 
correlated SNVs in LD using fine-mapping methods is challenging. In this 
context, including diverse ethnicities in GWAS can enhance the fine-
mapping task. This is because the differences in LD structure among 
ancestries could aid in limiting the size of LD blocks associated with a 
certain phenotype. Therefore, initiatives aimed to increase the diversity in 
GWAS discovery cohorts have the potential to facilitate the identification 
of new causal SNVs in the future23.  
 
The multiple testing problem is another limitation affecting GWAS that 
arises from the vast number of statistical tests conducted simultaneously 
across the entire genome. This problem is related to the type I error rate, 
as the more tests conducted, the higher probability of obtaining false 
positives by chance exists. This problem is particularly present in GWAS 
of complex diseases, that tend to have many SNVs with small effects 
contributing to the disease, and some SNVs with an effect size close to 
the threshold may be overestimated. The gold standard for addressing 
false discoveries in GWAS is to compare the effect sizes of SNVs between 
the discovery cohort and an independent replication cohort23.  
 
Finally, in GWAS, associations between SNVs and the phenotype are 
commonly tested using linear regression models for continuous 
phenotypes, or logistic regression models for binary phenotypes. 
Therefore, while GWAS is effective in uncovering the main effects of 
genomic variants within LD blocks concerning a particular condition, it is 
less suited for detecting interactions between genomic variants, commonly 
referred to as gene-gene interactions or epistasis influencing disease risk. 
To address this limitation, several statistical methods have been 
developed to discover non-Mendelian disease transmission involving 
genomic interactions36. Methods such as multifactor dimensionality 
reduction (MDR)37 38, AprioriGWAS39, fpgrowth40 41, several Bayesian 
methods42, and machine learning methods36 offer this possibility. 
 
In population genomics, the most popular statistical approach used to 
quantify the genomic predisposition of individuals to develop a trait or 
disease is the polygenic risk score (PRS). The assumption behind this 
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method is, rather than focusing on the exact causal signal in the DNA 
associated with the disease, consider the sum of many genetic effects 
independently associated with the condition. In its core equation, PRS is 
calculated with a weighted sum of the effects sizes obtained from GWAS 
summary statistics. Summing all these effects across the genome gives a 
score indicating the risk propensity to a disease.  
 
There are several methods for computing PRS, one of them being 
clumping and thresholding (C+T). This method is implemented by 
selecting the SNVs with increasing p-value thresholds of association with 
the trait, and reducing the number of correlated SNVs in LD through 
clumping43 44. As an example, PRSice2 is a package that enables PRS 
calculation using the C+T method45.  
 
PRS has been extensively used in many studies, demonstrating its ability 
to extract disease risk propensity scores from diverse cohorts and 
conditions46 47 48 49. However, a limitation still exists, as PRS are not 
designed to detect complex patterns and epistatic events between 
genomic variants associated with a disease or condition. 
 
GWAS results are updated regularly in databases such as the GWAS 
Catalog50 and dbGAP51, providing the summary statistics required for the 
PRS calculation. In addition, ClinVar52 and DisGeNET53 represent publicly 
accessible databases that compile data regarding genetic variants and 
their connections to human traits and diseases, obtained from a diverse 
range of sources, including published GWAS studies. 
 
Overall, GWAS and PRS serve as valuable resources for gaining insights 
into the spectrum of genomic variants linked to specific medical conditions. 
Yet, GWAS and PRS are limited in their ability to account for the 
synergistic effects caused by various genomic loci and lack specificity due 
to LD. Consequently, selecting genetic determinants for follow-up in 
laboratory and clinical studies remains a challenge, and some of the 
mechanisms in which predisposing and protective genetic alterations 
contribute to complex diseases are still unknown.  
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1.3 Machine learning and deep learning methods 
 
Machine learning (ML) and deep learning (DL) are subfields of artificial 
intelligence (AI) that focus on the development of algorithms and models 
that enable computers to learn and make predictions or decisions without 
being explicitly programmed for a particular task. ML is a broader concept 
that includes various techniques where systems learn from data and 
improve their performance on a specific task over time, and DL is a subset 
of ML that focuses on neural networks with multiple layers (deep neural 
networks). The emergence of big data has facilitated the application of 
these methods, contributing to their increasing popularity in a wide range 
of fields, including population genomics54. 
 
Training is the phase during which the ML model learns, meaning the 
weights or coefficients of the model are adjusted based on the training 
data. Testing is the phase when the model is evaluated, making 
predictions on new unseen data that should be representative of the target 
population, also known as testing data. Overfitting is a concept in ML and 
statistics where a model learns the training data too well, capturing biases 
and random fluctuations rather than just the underlying patterns 
associated with the trait of interest. This can lead to a model that performs 
very well on the training data but fails to generalize effectively, resulting in 
poor performances on testing data. One measure to avoid overfitting is 
implementing a proper strategy to divide samples during the training and 
testing steps.  
 
In order to train and test ML models, the usual practice is to divide samples 
in training, validation, and test sets. The samples in the training set are 
used to train ML models. Samples in the validation and test sets are used 
to test the model in the process of selecting the best parameters 
(hyperparameter selection), and in the final evaluation, respectively. There 
are several strategies to split samples, and usually several rounds of 
training, validation, and testing are required to try different combination of 
parameters (hyperparameter configurations) until reaching the optimum 
model. K-fold cross-validation (CV) is a robust splitting approach to train 
models that consists in splitting the sample size in K folds, using K-1 folds 
for training and validation, and the remaining fold for testing. The training 
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and testing are repeated as many times as the number of folds, using a 
different fold for testing in each iteration.  
 
Nested cross-validation (nested CV) is an adaptation of the K-fold CV that 
consists in setting one outer loop and one inner loop of CV. This strategy 
has proven to be useful in reducing overfitting and correctly estimate the 
variance of the models55. In this approach, the CV in the inner loop is 
performed on the training set of the outer loop and is used to select the 
optimum hyperparameter configuration. Conversely, the CV in the outer 
loop is used to train the final model with the selected hyperparameter 
configuration obtained from the inner loop, and to test the model with the 
remaining test set that has not been used for hyperparameter selection or 
training the model. Iterating over different folds in the inner and outer loop 
allows for the use of different samples in training, validation, and testing in 
each iteration, optimizing the use of all the available samples. At the end, 
nested CV generate as many final models as number of folds in the outer 
loop. A representation of the nested CV used in this study is provided in 
Figure 3. 
 

 
Figure 3 represents the nested CV approach used in this work, which consists in 
10-fold CV for the inner loop, and 5-fold CV for the outer loop. 

When the final model has been trained and predictions on the test set give 
optimum results, an additional measure to ensure there is no overfitting 
and that the model generalizes well is to test the model on an external 
validation dataset from an independent cohort not used in training or 
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testing. Assessing the model's performance on external validation 
datasets provides a better understanding of its generalization capabilities. 
 
There is a diversity of ML methods that differ in the learning strategies and 
architectures employed to learn from data and make predictions. In the 
following lines, I describe the different ML methods used in this work: 
 

1.4.1 Logistic Regression (LR)  
LR models the probability using the sigmoid function, defined in 
Figure 4(a). The linear combination x is defined with the formula 
in Figure 4(b) where b0 is the bias or intercept term, and b1, …, bn 

are the coefficients associated with the input features. The model 
is trained by optimizing the coefficients to minimize the negative 
log-likelihood or the cost function. This optimization process 
typically employs algorithms such as large-scale bound-
constrained optimization (lbfgs)56 57, stochastic average gradient 
(SAG)58, or stochastic average gradient accelerated (SAGA)59. 
The decision boundary, which separates regions corresponding to 
class 1 and class 0, is determined by the threshold of the logistic 
function. This threshold creates an hyperplane in the feature 
space as shown in Figure 4(c). 
 

 
Figure 4 illustrates the formulas constituting the logistic function in parts (a) and 
(b), along with a representation of the hyperplane in (c). 
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Tree-based Ensemble Methods 
Ensemble methods combine the predictions of multiple individual models 
to create a more robust and accurate predictive model. Three ensemble 
ML methods that combine multiple decision trees to make predictions were 
used in this study:  
 

1.4.2 Gradient-Boosted Decision Trees (GB)  
GB is an ensemble learning method that combines the power of 
decision trees and boosting algorithms60. The ensemble technique 
implies that multiple weak classifiers, in this case shallow decision 
trees, are combined to create a stronger predictive model. The 
boosting algorithm involves the sequential training of weak 
models, giving more weight to misclassified instances in each 
iteration. Subsequent models focus on correcting errors made by 
the previous ones. The final prediction is made by aggregating the 
predictions of all weak learners in the ensemble. The GB process 
is shown in Figure 5. 
 

 
Figure 5 illustrates the working principle of GB, demonstrating the sequential 
addition of weak classifiers and the gradual reduction of errors. 
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1.4.3 Random Forest (RF)  
In RF61, multiple independent decision trees are built in parallel 
with different subsets of the data. The final prediction is then an 
aggregation of the predictions of all individual trees. For each 
feature under consideration at a split point in the decision tree, RF 
selects the optimal split point. 
 
1.4.4 Extremely Randomized Trees (ET)  
ET is very similar with RF, with the difference that, for each feature 
under consideration at a split point in the decision tree, the 
random, instead of the optimal split, is applied62. This introduces 
additional randomness and reduces the variance of the model, 
making ET less sensitive to noise in training data compared with 
RF. 
 
The process of RF and ET is represented in Figure 6. In summary, 
GB, RF, and ET are all ensemble tree-based methods. However, 
there are some key differences between these methods:  

• GB trains decision trees sequentially, where each 
subsequent tree is built to correct the mistakes made by 
the previous trees.  

• ET is similar to RF in building multiple decision trees in 
parallel. However, it differs in the way it selects the 
splitting points in the decision tree. ET randomly selects 
splitting points, while RF applies the optimal split. 
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Figure 6 illustrates the working principle of RF and ET. 

 
Deep learning methods (DL) 
DL methods process input data through multiple layers of interconnected 
nodes, applying activation functions and adjusting weights during training 
to learn and make predictions on various tasks. The term "deep" refers to 
the depth of the network, which allows it to automatically learn 
hierarchical representations of data63.  
 

1.4.5 Feedforward Networks (FFN) 
FFN falls under the category of DL methods. The following 
aspects are key characteristics of this method: 
 

• Regarding the architecture, FFN begins with an input 
layer where each node represents one of the features of 
the input data, as represented in Figure 7 with yellow 
nodes. The following are one or more hidden layers 
represented in Figure 7 as grey nodes. Each hidden layer 
consists in a variable number of nodes that are connected 
to all the nodes in the adjacent layers. The final layer, also 
known as output layer, produces the network’s output and 
is represented in Figure 7 with a red node. The number of 
nodes in the output layer depends on the nature of the 
task. In the case of this study, where I used FFN as binary 
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classifiers, there is a single node in the output layer 
providing the raw logits, which are subsequently 
converted to probabilities with the sigmoid function. These 
probabilities indicate the strength of association with the 
binary class. 
 

• The concepts of "width" and "depth" are terminologies that 
refer to different aspects of the network architecture. 
Width refers to the number of nodes in a single layer, and 
depth refers to the number of layers in the network, 
including the input and output layers. Increasing width and 
depth in FFN is associated with more capacity to capture 
complex patterns in the data. However, it also requires 
more computational resources and is prone to issues like 
vanishing gradients and overfitting. In my work, I tried 
different values of width and depth in the hyperparameter 
selection step until reaching the optimum hyperparameter 
configuration. 
 

• Nodes in the same hidden layer are independent of each 
other. Each node in a hidden layer receives inputs of all 
the nodes in the previous layer and produces outputs to 
all the nodes in the next layer.  The operation that 
happens inside each node consists in a dot product, also 
referred to as a weighted sum, and an activation function 
that transform the input into a non-linear output. There are 
several activation functions, in my work I used the leaky 
rectified linear unit (leaky ReLU).  

 
• Forward propagation is the information flow from the input 

layer through hidden layers, to the output layer. The loss 
function measures the difference between the predicted 
outputs and the actual target values. There are various 
loss functions, and the one I used in this study is the 
binary cross entropy with logits loss 
(BCEWithLogitsLoss). 
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• During backward propagation, the weights are adjusted 
based on the average outputs of the loss function, and the 
optimizer algorithm adjusts the weights accordingly. In this 
work I used the Adam optimizer, which was set to work 
with different learning rates during hyperparameter 
selection.  

 
• During training, forward and backward propagation are 

repeated multiple times, and the goal is to minimize the 
results of the loss function. An epoch corresponds to one 
round where the entire dataset goes through forward and 
backward propagation. If the number of epochs is set too 
small, the model may not learn the representations in the 
data and, therefore, will provide poor predictions. 
Conversely, if the number of epochs is set too large, the 
model risks overfitting. In my work, I tried different number 
of epochs in the hyperparameter selection step. 

 
By iterating through the training data and updating the weights, 
the FFN gradually learns to make better predictions and 
generalizes to new, unseen data. 

 

 
Figure 7 represents the architecture of the FFN employed in this study. 
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1.4.6 Convolutional Neural Networks (CNN) 
CNN also fall under the category of DL methods. There are three 
types of layers in a CNN, as depicted in Figure 8: 
 

• In convolutional layers, filters (kernels) are employed to 
create feature maps. The convolution process involves 
applying a kernel to values within a sliding window, 
represented as blue squares in Figure 8, steps 1) and 3). 
Kernels begin randomly and learn during training by 
tuning their weights in the convolution step. Each channel 
in the convolutional layer correspond to a feature map 
generated by a single kernel, highlighting a specific 
pattern or feature present in the data. In the case of 
images, for example, kernels work as filters that extract 
features, such as objects, from different regions. During 
convolution, deeper into the model, the ideal scenario is 
to increase the number of channels (feature maps) and 
decrease the number of features. This makes the 
representations increasingly abstract, and each layer has 
a higher receptive field (see more of the image) as we go 
deeper into the model. 
 

• After convolution, a downsampling step (in this work, 
“pooling”) is usually added to decrease the number of 
features in each channel, averaging the values in a 
window, depicted as green squares in Figure 8, steps 2) 
and 4). This is because convolution increases the 
dimensionality very quick, and in this context, pooling 
serves to control the dimensionality of the data and detect 
relevant features in a spatial area. Therefore, in pooling 
layers, the goal is to reduce dimensionality and increase 
the size of the receptive field. 
 

• CNN layers are designed to generate feature maps rather 
than making predictions. In this study, CNN models were 
created adding two steps of convolution and pooling 
before the FFN, responsible for generating the final output 
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and making predictions. As a result, the final layers of the 
CNN adopt the architecture previously described for the 
FFN, illustrated in Figure 7. The representations obtained 
from the convolution and pooling steps are flattened and 
serve as input to the FFN input layers. 
 

 
Figure 8 illustrates the architecture of the one-dimensional CNN used in this study. 

 
In summary, the main difference between FFN and CNN is that, 
in the case of FFN, there is a one-to-one mapping between a 
feature and an input unit. However, this approach is not always 
robust. For instance, in image processing, focusing on individual 
pixels may not be optimal. Instead, it is more effective to use a 
CNN to increase the receptive field and group pixels that together 
form a specific component, such as a nose, an ear, or an eye in a 
facial image. This grouping allows the network to map these 
composite features into a single unit, enhancing its ability to 
recognize meaningful patterns in the data. 

 
As input variables, ML methods can accept a list of genomic variants 
without any prior assumptions about the genetic contribution to the traits. 
The methods themselves calculate the importance of these variants during 
the learning step. In this regard, the genomic patterns of correctly 
classified individuals learned by different ML methods in the training step 
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can provide valuable information about the effects of genomic variants and 
foster the discovery of distinct genomic profiles associated with diseases 
or conditions. This is because one important aspect of ML is their ability to 
detect interactions and complex patterns in the data64 36 65. Also, in clinical 
diagnostic processes, it is important to understand which features 
contribute to the model's output and the associated biological pathways. 
Therefore, when using ML models to address sensitive problems, the use 
of black-box models with a lack of transparency can be problematic, and 
is important to identify the rules that lead the model to achieve correct or 
optimum performance. 
 
A possible solution to this limitation is the Explainable AI (XAI), which is a 
field in data science that aims to improve the understanding of AI models, 
including ML models, by using different interpretability algorithms66 67 68.  
The use of XAI methods in ML may reveal genomic variants involved in 
complex patterns and epistatic events. In this respect, the application of 
XAI in FFN and RF, has been used to detect interactions between gene 
loci, as well as between gene loci and environmental factors related to 
disease status69 70. For this work, I selected ML methods that allow the 
application of XAI techniques. 
 
One of the main limitations of self-learning methods such as ML is that, 
given that these methods learn from data, they tend to reproduce biases 
present in the training data in the test dataset. This poses a problem if ML 
models make decisions entirely based on biases rather than relevant 
features. For instance, it has been reported that AI systems tend to 
reproduce racial and gender imbalances when trained with real-world 
data71. In this respect, it is important to detect these trends and apply 
appropriate balancing strategies in the training data to ensure an equal 
representation of different groups when possible.   
 
Another limitation of self-learning methods, especially DL, is the 
requirement for large datasets in order to train the models to be robust. 
The storage of health-care data, such as genomic data, is protected under 
specific privacy clauses, and the distribution of such data is not always 
possible. A potential solution to this limitation could be federated learning 
(FL), which is a ML approach that enables training models across multiple 
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decentralized devices without exchanging raw data72. In traditional ML, 
data is typically collected and centralized in a single location for model 
training. However, FL takes a different approach by allowing model 
training to occur locally on individual devices. This is done by sending local 
model updates to a central server, which aggregates the updates and then 
sends back the updated model to the devices. This process is repeated 
multiple times until the model converges. FL is a relatively new technique, 
and its application in building models with genomic data is just beginning 
to gain traction72 73 74.  
 
There are several challenges associated with the application of FL. First 
of all, FL typically require high traffic between the devices and the central 
server, which can be a bottleneck in some applications75. Also, FL is not 
immune to privacy attacks. For example, an attacker could try to infer 
information about the data on a device by analyzing the local model 
updates76. Additionally, FL can be challenging to implement when the data 
on the devices is heterogeneous77. Although I did not use FL in my work, 
I describe this method here as it will be relevant in the future perspectives 
of ML methods developed in the final discussion. 
 
1.4 Description of the diseases under study 
 
Complex diseases are a diverse group of conditions that often pose 
challenges in accurate diagnosis due to their phenotypic heterogeneity. 
Affected individuals may exhibit a wide range of symptoms and varying 
disease severity, leading to frequent misdiagnoses. Therefore, the 
identification of robust biomarkers becomes crucial in facilitating early 
detection and appropriate clinical treatment from the onset of initial 
symptoms in these diseases. In this regard, genomic data has emerged 
as a promising tool in advancing methods for disease detection and 
treatment of complex diseases.  
 
In the context of genetics, complex diseases or conditions arise from the 
combined effects of multiple genomic variants and genes, are influenced 
significantly by both the physical and the social environment, and display 
non-Mendelian inheritance patterns. As a result, the task of finding 
genomic factors that contribute to the predisposition or protection against 
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these diseases is not trivial. It often requires the use of large cohorts with 
comprehensive genomic information at high density to obtain statistically 
significant results.  
 
The complex diseases used in this study belong to the ICD-10 categories 
“F” (Mental, Behavioral and Neurodevelopmental disorders) and “G” 
(Diseases of the nervous system) with over 900 cases identified in UK 
Biobank (UKB). 
 

1.5.1 Multiple sclerosis (MS) 
 
Multiple sclerosis (MS) is a chronic inflammatory and 
neurodegenerative disease of the central nervous system. It is 
also considered an autoimmune condition where the immune 
system attacks the myelin sheath, which is the layer that 
surrounds and protects the nerve cells. This disease can cause a 
wide range of symptoms such as fatigue, limited vision and 
mobility problems, among others. Each person with the condition 
is affected differently. MS affects 2.8 million people worldwide and 
is more common in Caucasian populations. The mean age of 
onset is between 20 to 30 years, approximately affecting three 
females for every one male, with a sex bias also in clinical 
course78.  
 
The aetiology of the disease is multifactorial, involving many 
genes, predominantly immune system genes. In fact, MS is 
considered a highly polygenic disease, and genomic variants in 
the HLA region, located on chromosome 6, have the strongest 
signal in GWAS studies79 80.  Additionally, environmental factors 
such as vitamin D deficiency have also been associated with the 
disease81. In recent years, several studies have provided 
evidence of Epstein-Barr virus (EBV) infection predisposing to 
MS82 83 84 85. EBV may cause MS through the reprogramming of 
latently infected B lymphocytes and the chronic presentation of 
viral antigens, which trigger autoreactivity through molecular 
mimicry of the Epstein-Barr nuclear antigen 1 viral protein and the 
GlialCAM human endogenous protein86 87. Despite all the 
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advancements made in research, there is no cure for the disease, 
and current treatments are directed towards improving recovery 
from attacks88. 
 
The International Multiple Sclerosis Genetics Consortium 
(IMSGC) is a research collaboration composed of members from 
academic institutions and research centers worldwide dedicated 
to studying the genetic factors that contribute to MS susceptibility 
and progression. IMSGC has identified many genetic regions 
contributing to MS susceptibility applying GWAS on large cohorts 
89 90 80. IMSGC also performed the largest GWAS meta-analysis 
on MS to date91, analyzing data from 47,429 people with MS and 
68,374 control subjects, and they established a reference map of 
the genetic architecture of MS that includes 200 autosomal 
susceptibility variants outside the HLA region, one chromosome X 
variant, and 32 variants within the extended HLA region. These 
studies provided evidence for a polygenic component to the 
genetics of MS, and the presence of a cumulative effect of multiple 
genetic variants scattered across the genome, each contributing 
only a modest individual effect. However, while GWAS studies 
have identified many genomic loci associated with MS, the 
functional relevance of some of these loci remains to be fully 
elucidated.  
 
PRS has been used in MS demonstrating its utility in 
understanding MS susceptibility, severity, and prediction. A recent 
study conducted PRS analysis on MS to assess the associations 
of the genomic background with both disease status and severity 
in cohorts of European descent. The study found that individuals 
within the top 10% of PRS were at greater than five-fold increased 
risk of developing MS in UKB92. Also, the inclusion of PRS in 
clinical risk models increased the risk discrimination by 13% to 
26% over models based only on conventional risk factors. 
Conversely, another study demonstrated that the PRS developed 
for MS using an European population performed poorly in 
predicting MS risk within the South Asian-ancestry population, 
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highlighting the importance of developing population-specific 
PRS93. 
 
In another study, authors aimed to identify genetic loci linked to 
the progression of disability in individuals with MS by applying ML 
methods94. To achieve this, the authors used RF and gradient 
boosting machine (GBM) models, alongside a mixed-effect ML 
platform. This hybrid approach merged the strengths of RF and 
GBM, incorporating generalized mixed-effects regression trees. 
The primary goal was to effectively identify individuals with MS 
who were prone to experiencing a deterioration in their condition 
in the future, and obtain the genomic profiles captured by the ML 
methods that enhanced the identification of cases. The 
investigation focused into 208 well-established loci related with 
disease progression and extracted genetic decision rules from the 
ensemble models. Finally, the study pointed to seven genetic loci 
that displayed an association with an elevated risk of MS disability 
worsening. 
 
Regarding the application of DL methods in MS risk prediction, a 
recent study95 used an artificial neural network (ANN) model, 
which is a subcategory of DL methods that includes FFNs. The 
authors aimed to predict MS risk using genetic data from 401 MS 
patients and 390 healthy subjects. The locally interpretable model-
agnostic explanation (LIME) was used to explain model 
predictions. 
 
The epistatic events among genomic variants associated with MS 
have been studied in several works. Researchers in a published 
work96 used a penalized regression incorporating elastic net with 
a stability selection method by iterative subsampling to detect 
potential interactions of loci associated with MS risk. This 
approach identified new association loci for MS predisposition. 
Alternatively, researchers in a recent publication97 used an 
approach called association rule mining (ARM) applied to 
individuals with MS and controls to discover genomic patterns 
amongst the known MS risk variants. They aimed to uncover 
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patterns of gene-gene and gene-environment interactions 
associated with MS risk. Researchers concluded that certain 
combinations of MS risk variants are linked to an increased risk of 
developing the disease. 
 
1.5.2 Alzheimer’s disease (AD) 
 
Alzheimer’s disease (AD) is a neurodegenerative condition and 
the most common form of dementia. It is characterized by 
symptoms such as memory loss, language deficits, disorientation, 
mood changes, and in advanced stages provokes the loss of body 
functions and death98. AD is found in about 1 in 8 people aged 65 
to 74, reaching almost half of people over 85 years old 98. From 
the first official report of AD until 1977, the diagnosis of the disease 
was reserved for individuals between the ages of 45 and 65 who 
developed symptoms of dementia99. Nowadays, these cases 
roughly represent 5% of the total diagnosed AD and are named 
early onset Alzheimer’s disease (EOAD)100. With the general 
increase in life expectancy, the disease has become more 
prevalent in the population above 65 years old, representing 
around 95% of the total AD cases, termed late onset Alzheimer’s 
disease (LOAD)101. Although there are differences in the age at 
onset, progression time and genetic background, a similar 
pathological process is observed in both forms of the disease102. 
 
At the pathophysiological level, AD is defined by the accumulation 
of anomalous folded Amyloid beta protein outside neurons and the 
abnormal aggregation of the Tau protein inside cells103. These two 
events lead to the loss of neurons and synapses in the cerebral 
cortex and certain subcortical regions, promoting the cognitive 
impairments perceived in AD patients103. The altered biological 
pathways causing AD are not yet fully understood, and the 
disease still has no cure. 
 
In the case of LOAD, heritability is estimated to be around 58% to 
79%104. LOAD appears to have a polygenic nature, with genetic 
risk being predominantly influenced by APOE, acting on top of a 
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highly polygenic background105 106. In this regard, GWAS focused 
on AD have identified more than 30 different susceptibility loci that 
are associated with the disease in European populations107 108 109 
110 111. Genes in these loci play roles in Amyloid and Tau 
pathways, lipid-related processes, immune response, and 
microglial function. 
 
PRS have been applied to AD, stratifying by the major APOE risk 
alleles, showing to be significant predictors of age-specific risk for 
the disease 112 113 114. In this context, PRS could be used to detect 
asymptomatic individuals with the greatest probability of 
developing AD in the near future. It is worth to note that despite 
the elevated occurrence of AD in individuals of African and 
Hispanic ancestry relative to those of European or Asian ancestry, 
the majority of GWAS studies have been conducted within 
European populations, leading to potential biases in PRS49. 
 
ML classifiers have been previously used to classify AD using 
genotyping data. Authors in a published work115 examined the 
application of six different ML methods, including RF, to predict 
the risk of LOAD using genomic data from the Alzheimer's 
Disease Neuroimaging Initiative (ADNI) cohort. The research 
systematically compared various ML models and found that the 
best-performing models achieved around 0.72 Area Under the 
Receiver Operating Characteristic Curve (AUC-ROC), indicating 
their potential for predicting LOAD risk. Another study contrasted 
different ML methods and proposed enhancing prediction by 
adding markers from misclassified samples116.  
 
There are also published works using DL methods with genomic 
data to classify individuals with AD. A recent study, for example, 
tried to address the problem of the limited population 
representativity by creating a DL-based framework designed to 
enhance the accuracy of genetic risk prediction by incorporating 
data from diverse populations117. The method, named as DisPred, 
employs two key components: a disentangling autoencoder 
approach to separate the influence of ancestry from the 
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representation of specific phenotypes, and an ensemble modeling 
approach, to combine predictions derived from the disentangled 
latent representation and the original data. Authors evaluated 
DisPred's performance by predicting the risk of AD in a multi-
ethnic cohort consisting of both AD cases and controls. The 
results outperformed the ones obtained with existing models, 
especially in minority populations and for individuals with mixed 
ancestry. 
 
An example of XAI tools applied to DL models in AD is in a 
published method called "c-Diadem118, a DL classifier that uses 
pathway constraints in a multimodal neural network to identify 
potential genetic markers for AD. This tool incorporates genetic 
data and KEGG pathway constraints to predict the presence of 
AD, mild cognitive impairment (MCI), as well as cognitively normal 
(CN) individuals. The c-Diadem model reached an accuracy of 
0.69 and an AUC-ROC of 0.70 in the test dataset. The SHapley 
Additive exPlanations (SHAP) scores were used to identify 
specific genes and genetic variants that had a significant impact 
on the model's predictions. Also, authors in another work119 
proposed DeepGAMI, an interpretable DL model designed to 
improve genotype based phenotype prediction. DeepGAMI was 
trained using genotype and gene expression data in the context 
of brain disorders. Additionally, it used integrated gradients for 
model interpretability. 
 
Another example of XAI applied to DL is the explainable 
variational autoencoder (E-VAE) classifier model as proposed in 
a published work120. Authors in this work applied E-VAE on 
genomic data from the health and retirement study (HRS) to 
classify AD and related dementias (ADRD) and controls without 
dementia, achieving a predictive accuracy of 0.71 in the HRS 
dataset. They also tested the model in an independent cohort 
(ROSMAP), reaching an accuracy of 0.62. In addition, they 
provided insights into the biological mechanisms of ADRD through 
interpretable latent features extracted from the models using a 
linear decoder approach. 
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Regarding the detection of epistatic events in AD, researchers in 
ADNI consortia developed a computational tool called GenEpi121, 
designed to identify gene-gene interactions associated with 
complex traits using a ML approach. GenEpi employs a two-stage 
modeling workflow to identify both within-gene and cross-gene 
epistasis. The tool adopts two-element combinatorial encoding 
when producing features and constructs prediction models using 
L1-regularized regression with stability selection. The study 
emphasizes the significance of uncovering epistasis for 
understanding the complex pathogenesis of AD. Also, 
VariantSpark, a ML approach to GWAS, and BitEpi, designed for 
uncovering epistatic events122 were used by authors in a recently 
published study123. The goal was to uncover AD-associated 
genetic variants and interactions in two separate cohorts, ADNI 
and UKB. By considering significant epistatic interactions in their 
analysis, they were able to explain 10.41% more of the variation 
in AD compared to the LR method, that does not specifically 
account for interactions. 
 
1.5.3 Schizophrenia (SC) 
 
Schizophrenia (SC) is a mental disorder in which affected patients 
experience hallucinations, delusions, extremely disordered 
thinking and behaviour that impairs daily functioning and, in some 
cases, can be disabling. A review of studies published between 
1980 and 2000 found that the lifetime prevalence of SC and 
related disorders is about 5.5 per 1,000 of individuals, but there 
was a significant variability across geographical regions124. The 
pathophysiological mechanisms behind SC are yet not fully 
understood. Neuroimaging studies have shown that the brain is 
fundamentally affected in the illness, with widespread structural 
gray and white matter involvement, functionally abnormal cortical 
and subcortical information processing, and neurometabolic 
dysregulation present in patients125. Studies have identified 
several candidate genes that may be associated with an 
increased risk of SC126. Additionally, genetic predisposition to SC 
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has been associated with an increased use of cannabis127. 
However, more research is needed to fully understand the genetic 
and biological mechanisms underlying SC. 
 
Several studies applied PRS to distinct SC symptoms and 
treatment responses128 129 47. A study revealed that individuals 
possessing elevated PRS for SC displayed limited response 
enhancements under antipsychotic drug treatment. 
Consequently, the genetic predisposition indicated by the PRS 
could serve as a prognostic biomarker for treatment48. Also, other 
studies have shown that the PRS for SC may be linked to 
heterogeneity in cognitive performance130 131. Cardiovascular 
disease is a major cause of excess mortality in people with SC. In 
this regard, a high PRS for SC is associated with cardiac 
impairments132. Overall, these studies suggest that PRS may be 
useful in predicting the prognostic of SC, including treatment 
response, cognitive, and cardiac impairments. 
 
Several works applied ML for the genetic prediction of SC133. The 
researchers in a published study134 used a support vector 
machines (SVM) approach to classify individuals with SC from 
controls in a large cohort. They compared the accuracy of the 
SVM-based approach with the traditional PRS method. The study 
aimed to determine if SVM are effective for identifying nonlinear 
genetic effects, such as interactions between genes. The findings 
revealed that PRS achieved better classification accuracy than 
both linear and nonlinear SVM. Additionally, researchers noticed 
that nonlinear SVM were more accurate than linear SVM when 
dealing with a high number of genetic variants. Despite the better 
performance of PRS, authors proposed that nonlinear SVM could 
be a useful tool for making predictions based on genetic 
interactions. 
 
In a recent study135, authors introduced a SVM ensemble for 
classifying individuals with SC and healthy controls, using both 
functional magnetic resonance imaging (fMRI) and genomic data. 
The method was evaluated with 40 subjects (20 patients and 20 



Dottorato di ricerca in Genetica e Biologia Molecolare 

 Pag. 47  

controls) using a validated leave-one-out approach. The best 
classification accuracy was obtained with the model combining 
fMRI and SNP information reaching 0.87. Even though the cohort 
used in this study was small and results should be interpreted 
cautiously, the authors concluded that combining genetic and 
fMRI data yields higher accuracy than using each data type 
separately. Other studies reached similar conclusions when 
combining neuroimaging and genomic data in DL models to 
classify individuals with SC136 137. 
 
The authors of a published work138 developed GenNet, a DL 
framework for predicting phenotypes from genetic variants. They 
applied neural network structures that are interpretable, 
incorporating biological knowledge from public databases, 
resulting in networks with connections that mimic molecular 
interactions. GenNet suggested potential associations of novel 
genes with SC, and pointed to biological pathways that could be 
implicated in SC. 
 
Authors in another study139 presented a stepwise DL technique 
with multi-precision data (SLEM), an approach for investigating 
the role of SNP combinations in the development of SC by 
focusing on intermediate molecular and cellular functions. SLEM 
initially constructs core networks using limited but accurate 
multilevel assay data. Subsequently, it refines the weights of 
intermediate interactions using a larger but less precise dataset 
from public GWAS data. This method is aimed to offer insights into 
the epistatic genetic factors contributing to SC. 
 
1.5.4 Parkinson’s disease (PD) 
 
Parkinson’s disease (PD) is characterized by both motor and non-
motor symptoms. Motor symptoms include tremors, bradykinesia 
(slowness of movement), rigidity, and postural instability. Non-
motor symptoms include neuropsychiatric features, speech 
disorders, and sleep disturbances140. PD is twice more frequent in 
males with respect to females141, and is diagnosed based on 
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clinical criteria, as there are no molecular test for the diagnosis of 
the disease140. The specific presentation of rest tremor, 
bradykinesia, rigidity, and loss of postural reflexes are used to 
differentiate PD from related parkinsonian disorders. However, 
given the lack of specific molecular biomarkers for PD, and the 
high similarity with other parkinsonian disorders, there is a risk of 
misdiagnosis140. At the pathophysiological level, PD is associated 
with the loss of dopaminergic neurons in the substantia nigra of 
the brain142, but the exact molecular mechanisms triggering PD 
are not fully understood. 
 
Several GWAS have been conducted for PD143 144 145, and at least 
90 independent risk variants have been identified that explain 
around 16% to 36% of the heritable risk of PD146. Mutations in the 
SNCA gene, which encodes Alpha-synuclein, are the most 
common genetic risk factor of PD147.  
 
PRS applied to PD have shown poor ability to predict the 
development of PD in healthy individuals146 148 149 150. These 
studies concluded that, with the current available data, meaningful 
PRS-based prognosis of PD at an individual level is not feasible 
yet.  
 
Authors in a recent work151 developed a two-stage quality-based 
sampling using RF for the selection and prioritization of SNPs 
obtained from GWAS in PD. The proposed method separated first 
SNPs into informative and irrelevant groups based on the GWAS 
p-values. When building the RF model, the SNP subspace for 
each tree was composed only of SNPs from the informative sub-
groups. The proposed model identified 25 SNPs with a potential 
association with PD. 
 
In a recent study152, authors combined GWAS with ML techniques 
to enhance the understanding and prediction of PD. They initially 
employed correlation and GWAS analyses to identify the top 
demographic and genetic factors associated with the disease. 
Subsequently, the authors applied ANN, LR, RF and SVM 
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methods for predicting PD risk, using XAI methods on these 
models to assess the predictive power of individual genomic input 
features. Following this approach, the authors identified new loci 
potentially associated with PD. 
 
In order to detect genomic interactions associated with PD, the 
previously described ML approach applied to AD, GenEpi, was 
also applied on a PD dataset consisting of 5,540 cases and 5,862 
controls153. GenEpi identified significant SNP-SNP interactions 
with effects on PD risk at five independent genomic loci, including 
seven PD-associated genes (GAK, TMEM175, SNCA, PLEKHM1, 
CRHR1, MAPT and NSF).  

 
Overall, the application of ML methods to identify individuals with complex 
diseases based on genomic data, capturing genomic patterns including 
interactions associated with these diseases, has gained popularity in 
recent years. However, a limitation is that the published works on this topic 
are relatively recent, and there are not yet many studies in this field. 
Additionally, some of the studies referenced in the previous lines used 
relatively small sample sizes in the analysis (fewer than 1,000 cases), 
which makes it challenging to draw generalizable conclusions. 
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2. Objectives 
 
Machine Learning (ML) methods have demonstrated to be powerful tools 
in detecting complex patterns, including interactions and non-linear 
relationships in the data. In this work, I hypothesised that these methods 
could offer advantages in tasks such as detecting genomic patterns 
associated with complex diseases. This is because traditional tools, like 
GWAS and PRS, are typically designed to capture linear additive 
associations and may miss synergistic effects in the data. In addition, as 
ML models learn from the data, I was interested in evaluating the effect of 
different properties of genomic data on model performance.    
 
ML methods were applied for the purpose of classifying individuals with 
multiple sclerosis (MS), Alzheimer’s disease (AD), schizophrenia (SC), 
and Parkinson’s disease (PD) in comparison to non-affected controls 
sourced from the UK Biobank (UKB) using data from genotyping arrays. 
 
The primary objective of this study was to assess the variability and 
robustness of ML techniques in predicting complex diseases using 
genomic data. This is relevant because ML methods are sensitive to 
biases in the data, and their results may vary depending on the data used 
during training, the design of the model, the strategy used for training, and 
the hyperparameter space, among other reasons. Also, genomic variants 
inherently exhibit correlation due to linkage disequilibrium (LD), which may 
impact model performance. In addition, I compared the performance of ML 
models to the PRS. In summary, the primary goal of this study include: 
 

• Evaluating models and investigating performance differences 
among ML methods and diseases. 

• Assessing the influence of potential biases in the model 
predictions. 

• Comparing the performance of ML methods with PRS. 
• Implementation of feature selection techniques. 

 
The secondary goal of this study is to apply explainability (XAI) tools to the 
ML models to extract information about the prioritized features that 
contributed the most in the classification task, pointing to predisposing or 
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protective genomic variants in the diseases under study. The secondary 
goal of this study include: 
 

• Analysing the consistency of feature rankings across ML 
methods. 

• Identifying the most informative genomic variants based on 
rankings generated by ML methods. 

• Reporting the synergies among the prioritized genomic variants. 
 
After exploring these aspects, I aim to provide insights into the 
considerations to take into account when using ML methods with genomic 
data for disease classification. 
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3. Results 
 
3.1 Performance of the models 
 
The first section of results involves the evaluation of the performance of 
ML methods, exploring their ability to classify cases and controls, as well 
as the variability observed across different folds, methods, and diseases. 
 
Table 4 (a) and (b) show the evaluation metrics for models constructed 
with MS and AD, respectively. The mean and standard deviation of 
different evaluation metrics across the five folds in the outer loop of the 
nested CV are provided. The mean performance scores for both diseases 
typically ranged around 0.6 and 0.7, with few exceptions. Notably, FFN 
and CNN methods exhibited the least stable performance, as evidenced 
by the highest standard deviation across folds. In the case of AD, GB 
method performed similarly to CNN and FFN with low mean performances, 
while GB demonstrated relatively good performance in MS.  
 

 
Table 4 comprises two independent tables showing the mean and standard 
deviation of evaluation metric values across the five folds in the outer loop of the 
nested CV. The evaluation metrics represented in the table include balanced 
accuracy, specificity, sensitivity, and AUC-ROC. For each column, the color scale 
ranges from darker to lighter, indicating better to worse performance, respectively. 
(a) presents results corresponding to MS, while (b) presents results corresponding 
to AD. 
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In both diseases, LR method exhibited low values of standard deviation 
and displayed consistent results across various evaluation metrics. ET and 
RF closely approached LR's performance in the context of AD. In general, 
sensitivity stood out as the evaluation metric with the least favourable 
results in terms of mean and standard deviation, indicating that models 
face more challenges in classifying the positive class than the negative 
class, as evidenced by the comparison with specificity.   
 
Table 5 (a) and (b) show the evaluation metrics for models constructed 
using SC and PD, respectively. The mean performance scores for both 
diseases typically range from 0.5 to 0.6. In both diseases, CNN exhibited 
a large difference between the prediction of the positive and negative 
class, with the highest specificity values, hovering around 0.6, 
corresponding to the prediction of the negative class, and the lowest 
sensitivity values, around 0.4, corresponding to the prediction of the 
positive class. Conversely, in the case of PD, the FFN method displayed 
an opposite trend, with sensitivity having the highest value and specificity 
the lowest value across ML methods. In the SC models, performance 
appears to be almost random, with evaluation metrics close to 0.5, making 
it challenging to draw conclusions. In models constructed in PD, the LR 
method demonstrated a balance between reduced variability and relatively 
good performance, making it appear to be the most effective method. 
 

 
Table 5 has the same structure as Table 4, with (a) representing results 
corresponding to SC and (b) representing results corresponding to PD. 
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These findings emphasize the variability in the performance of ML 
methods when tested across various diseases. In particular, DL models 
(FFN and CNN) exhibited significant instability, showing substantial 
differences in specificity and sensitivity, along with a high standard 
deviation across folds. In contrast, LR appeared to be the method with the 
most consistent performance across the positive and negative class and 
different diseases. 
 
For the diseases with greater performance, MS and AD, an external 
validation dataset was employed as an extra test set to evaluate the 
model's generalization performance. In the case of MS, I obtained access 
to two different cohorts from the International Multiple Sclerosis Genetics 
Consortium (IMSGC). I analysed these two cohorts, namely IMSGC MS 
and IMSGC MSRD, independently since they represented different 
populations, United Kingdom (UK) and United States (US), respectively. 
The data from these datasets was structured in family trios and therefore, 
I could only use one MS case for each affected family to evaluate models. 
Consequently, only sensitivity is depicted in Figure 9.  
 
Similarly to the UKB cohort, FFN and CNN methods exhibited notable 
variability across folds in the US cohort, and CNN method in the UK cohort. 
The sensitivity in IMSGC test sets did not show lower values compared to 
the UKB test sets, supporting the model's ability to generalize from UKB 
data to other MS datasets. Interestingly, in the IMSGC MS cohort, which 
is formed with individuals from the UK, the sensitivity was better than that 
in UKB for all methods except for CNN (as shown in Figure 9(a)), and a 
better sensitivity was observed with GB in the IMSGC MSRD cohort as 
well (as shown in Figure 9(b)). This could be attributed to the more precise 
and specific selection of diagnosed MS cases in a dedicated study, such 
as the one conducted by IMSGC154, in contrast to the strategy employed 
in UKB, where individuals were selected using general clinical records. 
Additionally, the greater similarity between UKB and IMSGC MS, both 
formed by subjects from the UK, may explain the significant differences 
found in all the ML methods except for CNN in this IMSGC cohort. 
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Figure 9 shows the sensitivity values of the five folds in the outer loop resulting 
from training the models with the UKB cohort, and testing the models in the dbGAP 
(in green) and UKB (in yellow) cohorts. In (a), the results are shown for the IMSGC 
MS cohort, and in (b), for the IMSGC MSRD cohort. The significance of the 
differences between IMSGC and UKB cohorts was assessed using a Wilcoxon 
rank-sum test.  

In the case of AD, the ADNI dataset was employed as the validation set, 
comprising a cohort of individuals from the US. This dataset included 
cases and controls, and the balanced accuracy metric was employed to 
evaluate the models. No discernible differences in accuracy emerged 
when comparing the UKB test set and the ADNI dataset, as illustrated in 
Figure 10. These results underscore the model's ability to generalize 
across diverse populations, from the UKB (representing the UK 
population) to ADNI (representing the US population) and dismisses 
concerns about potential overfitting. 
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Figure 10 shows the values of balanced accuracy in the five folds of the outer loop, 
resulting from training the models with the UKB cohort, and testing the models in 
the ADNI (in green) and UKB (in yellow) cohorts. 

 
3.2 Influence of potential biases in the model predictions 
 
In the second section of the results, I evaluated the impact of other 
variables apart from genomic features, such as age at first diagnosis and 
sex, on the performance of the models. The goal was to check if model 
predictions were biased with respect to any of these two variables. 
 
Figure 11 illustrates the differences in the age at the first diagnosis 
between true positives (TP), defined as samples correctly classified as 
positives by all ML methods, and false negatives (FN), defined as samples 
classified as false negatives by at least one ML method. As noted in the 
Methods section 5.1, 3% of the total AD cases had the category of early 
onset Alzheimer’s disease (EOAD) in UKB. In this regard, in Figure 11(b) 
no significant differences in the age at the first diagnosis were observed 
between true positives and false negatives in AD. Therefore, I dismissed 
the possibility that EOAD significantly contributed to the number of FN, 
resulting in a negative impact on the performance of the AD models. 
 
In the case of MS and PD (Figure 11 (a) and (d), respectively), no 
significant differences were observed in the age at the first diagnosis for 
FN or TP. In SC, an earlier age at the first diagnosis was reported in true 
positive females compared with false negative females (Figure 11(c)). It is 
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worth mentioning that the age of individuals at the first disease report may 
have potential biases in UKB, as clinical records are incomplete for some 
participants. Consequently, the statistically significant results found in SC 
females indicate a trend that should be corroborated with other dedicated 
studies.  

 

 
Figure 11 illustrates the differences in the age of individuals at the first report of the 
disease in the UKB clinical records. TP corresponds to individuals with the disease 
who were correctly classified as having the disease by all ML methods, while FN 
corresponds to individuals with the disease who were incorrectly classified by at 
least one method. The significance of the differences between TP and FN was 
assessed using a t-test. The plots in (a), (b), (c), and (d) represent the results for 
MS, AD, SC, and PD, respectively. 

In addition to the genomic features, the binary sex feature was used in the 
models. This feature is especially relevant in diseases with sex imbalance, 
such as MS, reported to be three times more frequent in females with 
respect males78 155, and PD, which is twice more frequent in males with 
respect to females141. A similar imbalance of females to males is present 
in the UKB cohort for both diseases, as indicated in Table 15 of the 
Methods section 5.1. 
 
Figure 12 and Figure 13 display the percentage of samples that were 
correctly classified by 0, 1, 2, 3, 4, 5, or 6 methods, including GB, ET, RF, 
LR, FFN and CNN methods, considering all samples and stratifying by the 
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variable sex. In the figures, I will stress the numbers of the yellow bars, 
indicating the percentage of samples that were correctly classified as true 
positives or true negatives by the six ML methods. These samples likely 
contain the most representative predisposing or protective features of the 
disease, as they were correctly classified by all methods. 
 

 
Figure 12 shows the percentage of cases and controls that were correctly classified 
by 0 to 6 ML methods in all samples, females, and males. The plots in (a) and (b) 
represent the cases and controls in MS, respectively. The plots in (c) and (d) 
represent the cases and controls in AD, respectively. 

 

 
Figure 13 follows the same structure as Figure 12. The plots in (a) and (b) 
represent the cases and controls in SC, respectively. The plots in (c) and (d) 
represent de cases and controls in PD, respectively. 
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For MS, a sex bias was observed, with a higher percentage of cases 
consistently predicted by the six methods in females compared to males 
(Figure 12(a), yellow bars) and a higher percentage of controls 
consistently predicted by the six methods in males compared with females 
(Figure 12(b), yellow bars). In PD, the opposite sex-dependent trends are 
observed with males correctly classified as having the disease showing 
more agreement across methods compared to females (Figure 13(c), 
yellow bars), and females correctly classified as controls showing more 
agreement across methods compared to males (Figure 13(d), yellow 
bars). For SC there was not a clear enrichment in the percentage of 
samples correctly classified by the six methods represented in Figure 
13(a) and Figure 13(b), and the influence of the sex variable, even if not 
as evident, was inferred to follow a pattern similar to PD. Contrarily, for 
AD, the six methods consistently correctly classified around 40% of 
samples as cases (Figure 12(c)) or controls (Figure 12(d)) without any 
significant difference between females and males. These results suggest 
that, even if there were differences in the evaluation metrics when using 
different ML methods in AD (see Table 4(b)), around 40% of the individuals 
were consistently classified as true positives or true negatives by all 
methods.  
 
Notably, the diseases showing the highest difference between females 
and males in Figure 12 (a) and (b), and Figure 13 (c) and (d), MS and PD, 
were also the ones with the highest sex bias among cases in the UKB 
cohort. This may indicate that the bias in the classification is caused by 
the overrepresentation of one sex with respect to the other in the cases of 
the training set. To investigate this further, different models were built for 
females and males independently, using the same sample size, and the 
results of the five folds in the outer loop of the nested CV were compared. 
DL methods were excluded from these comparisons because they 
exhibited high variability across folds, making it difficult to draw any 
conclusions. The goal was to check if females or males showed better 
predictions when using independent models for each sex, thus removing 
the variability introduced by the sex feature. The comparison of the 
specificity and sensitivity is shown in Figure 14 and in Table 6. In Figure 
14, the green dots represent the results of specificity and sensitivity in the 
original model, which considered both females and males. The 
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performance of models constructed independently for females and males 
are indicated by yellow and blue dots, respectively. 
 
The first observation is the considerable variability across folds in the 
independent models for each sex, likely caused by the reduction in the 
number of samples in training and testing, making generalization more 
challenging and unstable. Partly due to the high variability across folds, 
the performance of models independently built for each sex did not 
surpass that of models constructed with both sexes in any case. Instead, 
as depicted in Figure 14, the performance in the original models was 
higher compared to the female and male models in some instances, and 
the variability across folds was visibly lower in most cases.  
 

 
Figure 14 depicts dot plots illustrating the differences in sensitivity and specificity 
between the original models and models built exclusively for females and males. 
Figures (a) and (b) represent the values of sensitivity and specificity in MS, 
respectively. Figures (c) and (d) represent the values of sensitivity and specificity 
in PD, respectively. The significance of the differences across original models and 
independent models built for each sex was assessed with a Wilcoxon rank-sum 
test. 

The specificity of GB male models was higher than GB female models in 
MS (Figure 14(b)). For the rest of the comparisons, no significant 
differences between females and males were observed, although MS 
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female models generally showed less standard deviation across folds 
compared with MS males, as observed in the values of standard deviation 
of balanced accuracy coloured darker represented in Table 6(a). Despite 
these differences, there is not sufficient evidence to support the idea that 
one sex is better predicted than the other, or that the performance 
improved in the independent models built for each sex compared to the 
original ones. 
 

 
Table 6 comprises two separate tables showing the mean and standard deviation 
of evaluation metric values across the five folds in the outer loop of the nested CV 
for the models independently built for each sex. (a) shows the results for MS, and 
(b) shows the results for PD. For each column, the color scale ranges from darker 
to lighter, indicating better to worse performance, respectively. 

In addition, to assess the importance of the sex feature in the classification 
among all diseases, I compared models using only the sex feature with the 
original models including both, sex and genomic features. The results in 
Figure 15 (a), (c) and (d) demonstrate that the sensitivity in MS, SC and 
PD, depicted in green, is higher in the models using only the sex feature 
(dots in the figure) compared with the original models (triangles in the 
figure), but at the expense of having lower specificity in the case of MS 
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and PD. In SC and PD, it appears that the sex feature plays a primary role 
in the classification, while the genomic variants exhibit less predictive 
power. This can be observed from the nearly overlapping estimates 
represented with triangles and dots in Figure 15 (c) and (d) for SC and PD, 
respectively. In the UKB cohort, the male-to-female ratio is approximately 
1.40 for SC, which is lower than the approximately 1.69 ratio for PD (refer 
to Table 15 in the Methods section 5.1). Even so, the poor performance of 
SC in models with genomic features, indicating low predictiveness of 
genomic variants for this disease, could reinforce the predominant use of 
the sex feature for the SC classification. Contrarily in AD, both sensitivity 
and specificity were higher in the original models that included genomic 
features compared to the models only based on the binary class sex. This 
is illustrated by triangles being higher than dots in Figure 15(b), 
demonstrating a moderated influence of the sex feature and highlighting 
the predictiveness of the genomic features in AD. 
 
 

 
Figure 15 illustrates the comparison of sensitivity and specificity between the 
original models (triangles in the plot) and models constructed solely with the sex 
feature (dots in the plot). Diseases MS, AD, SC, and PD are individually 
represented in (a), (b), (c), and (d), respectively.  
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These results support the notion that in diseases exhibiting a sex bias, 
where one sex is more prevalent compared to the other, the sex feature is 
an informative predictor that, in some cases where genomic features have 
low predictiveness, it may significantly contribute to the predictions.  
 
 
3.3 Comparison of machine learning methods with polygenic 
risk score 
 
In the third section of the results, I compared the results of ML methods 
with polygenic risk score (PRS), which is the most common tool used in 
population genomics to predict disease risk based on genomic 
information. PRS estimates an individual's genetic liability to a disease by 
aggregating the effects of many common genetic variants associated with 
the condition. The calculation of PRS is based on linear regression models 
and follows a different approach compared to ML methods. PRS works 
under the assumption that the weights for each allele, obtained from 
GWAS summary statistics, are static, independent, and not modified by 
other genetic or environmental factors. In contrast, in ML methods, the 
effect of each allele is estimated during training, where these methods 
learn patterns in the data to make predictions. Therefore, with ML 
methods, fewer assumptions about the nature of the genetic effects being 
modelled are made.  
 
To facilitate the comparison, I used the same samples in the PRS for 
adjusting the model and testing the results as those selected for the final 
ML models, corresponding to the outer loop of the nested CV with 5 folds. 
Therefore, for each fold, the same individuals were compared in the PRS 
and the ML models. It is important to note that there is no specific 
maximum number of genomic variants that can be used in PRS models. 
This is different from ML methods, where dimensionality issues arise when 
there are a large number of features relative to the number of samples156 
8. Consequently, I conducted the experiment twice. First, I used all the 
genomic variants that had successfully passed the quality filters present in 
both the UKB array and GWAS summary statistics, resulting in PRS ALL 
models. Second, I limited the analysis to the disease-related variants that 
were employed in the ML models, creating PRS RED models. The aim 
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was to evaluate how the performance of PRS models changed when using 
the entire set of genomic variants present in the genotyping arrays, as 
opposed to the reduced set of disease-related genomic variants employed 
in the ML models. However, the approach used for the calculation of PRS 
is designed to give better results when including many SNVs, even if these 
are not associated with the trait at a statistically significant p-value43. 
Therefore, in this work PRS RED models were used to compare with ML 
models but do not adhere to the best practices for the PRS calculation. 
 
The genomic variants used in the PRS models are visualized in Figure 16, 
along with the p-values that represent the statistical significance of the 
association between each SNV and the disease. These p-values were 
obtained from the GWAS summary statistics used in the PRS calculation. 
Genomic variants included in the ML and PRS RED models are highlighted 
in green. The Manhattan plots reveal peaks corresponding to hotspots of 
genomic variants with notably low p-values on chromosome 6 for MS and 
chromosome 19 for AD. In this regard, it is well-documented in the 
literature the association of the loci coding for the HLA genes on 
chromosome 6 with MS157, as well as the association of the APOE region 
on chromosome 19 with AD158. P-values obtained from GWAS in SC and 
PD were lower than in the other diseases, with SC displaying the lowest 
p-values. The low p-values, which indicate a weak association between 
the SNVs and the disease, reinforces the challenges previously 
encountered when attempting to classify SC and PD with ML methods. 
 



Dottorato di ricerca in Genetica e Biologia Molecolare 

 Pag. 65  

 
Figure 16 displays the Manhattan plots corresponding to the p-values from the 
GWAS summary statistics used in the PRS calculation. In green, the SNVs used 
in the PRS RED models, also used in the ML models, are highlighted. The blue 
and red horizontal lines indicate the thresholds of 1e-5 and 5e-8, respectively, 
related to the p-values estimating the association with the disease. Results for MS, 
AD, SC, and PD are presented in (a), (b), (c) and (d), respectively.  

Results of the best PRS models for each fold selected after the p-value 
thresholding are shown in Table 7 for MS and AD, and in Table 8 for SC 
and PD. Among all the disease models, PRS models applied to AD had 
the highest “PRS.R2” scores, indicating the greatest variance explained 
by the genomic variants, and the lowest p-values (Table 7(b)), followed by 
MS (Table 7(a)), PD (Table 8(b)), and SC (Table 8(a)), respectively. This 
decreasing trend in performance across the different diseases matches 
the results previously exposed in the Results section 3.1 with ML methods. 
Regarding the variance explained by the covariates including the sex 
feature, represented in the column “Null.R2”, MS followed by SC and PD 
showed the highest influence of the covariates in the prediction, in some 
cases exceeding the amount of variance explained by the genomic 
variants indicated in column “PRS.R2”. As explored in the previous 
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section, these results could be partially explained by the sex imbalance 
present in these diseases. 
 

 
Table 7 consists of two separate tables showing the statistics obtained for each 
PRS model and fold using the same samples as in ML methods in (a) for MS and 
(b) for AD. Columns “Full.R2”, “PRS.R2”, and “Null.R2” represent the observed 
phenotypic variance explained by the full model including SNVs and covariates, 
only by the SNVs, and only by the covariates, respectively. Column “P” refers to 
the empirical p-value of the best model fit calculated with the comparison of 
randomly shuffling the phenotype and repeating the analysis 10,000 times. The 
“Threshold” column indicates the p-value threshold in which the genomic variants 
were selected for the inclusion in the best model, and column “Num_SNP” 
represents the number of genomic variants included with this threshold. 

For MS (Table 7(a)), PRS ALL models explained a greater amount of 
genomic variability when compared to the PRS RED models, as indicated 
by the higher values of “PRS.R2” and lower p-values. Therefore, in the 
case of MS, there appears to be a benefit in considering all the variants 
present in the array for the PRS calculation. In this regard, four out of five 
folds of PRS ALL models had a threshold of one in MS, meaning that all 
the SNVs present in the UKB array (target data) and the GWAS summary 
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statistics (base data) were selected as informative (Table 7(a)). In fact, 
PRS ALL models built for MS were the ones with the largest number of 
SNVs in the final models by far after applying C+T, as indicated in the 
column “Num_SNP”, highlighting the polygenic nature of this disease. 
 

 
Table 8 follows the same structure and variables as Table 7. Comprises two 
separate tables showing the statistics obtained for each PRS model and fold in (a) 
for SC and (b) for PD. 

Unlike ML, PRS do not return probabilities of the disease, or the class 
associated with each subject. Instead, PRS scores are continuous values 
whose theoretical range is variable and increases with the number of 
SNVs included in the model. Therefore, PRS scores from different models 
containing different numbers of SNVs cannot be directly compared. In 
other words, PRS is a tool for disease risk stratification, and the ML models 
employed in this work are classifiers. To convert PRS scores into predicted 
classes, the regular practice is to set a cut-off using percentiles, for 
instance with the upper 99th and lower 50th to identify individuals at high or 
low risk for the disease as predicted positives and predicted negatives.  
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Figure 17 and Figure 18 show the quantile plots with the values and 
confidence intervals of the odds ratio (OR) for each range of PRS 
percentiles for PRS RED and for PRS ALL, respectively. A good indicator 
of PRS performance is observing increasing values of OR with higher 
percentiles, indicating that higher PRS scores are correlated with a higher 
prevalence of the disease. MS, AD and PD show this increasing trend in 
Figure 17 and Figure 18 . In SC, the increment of OR with the percentiles 
is almost inexistent, especially in PRS ALL, where OR values are quite 
constant. As expected, these results correlate with the p-values of the 
model fit previously reported in Table 7 and Table 8. For the subsequent 
analysis, the percentile range of PRS (99,100] will be considered to 
determine individuals at the highest risk of developing the disease, and 
therefore, predicted positives. 
 

 
Figure 17 shows the quantile plots of PRS RED models for MS, AD, SC, and PD 
in (a), (b), (c) and (d), respectively. 
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Figure 18 shows the quantile plots of PRS ALL models for MS, AD, SC, and PD in 
(a), (b), (c) and (d), respectively. 

In my work I applied percentiles to the probabilities obtained with ML 
methods to compare their performance with PRS. For all the methods, I 
calculated the relative risk (RR) and OR by considering individuals in the 
upper 99th percentile as those predicted to have the disease. Details on 
the formulas used for RR and OR calculations are provided in the Methods 
section 5.4. For each fold, the 99th percentile was equivalent to 165, 166, 
163, and 167 individuals in MS, AD, SC and PD, respectively. The total 
number of individuals with the disease in each fold was, 404, 498, 197 and 
625, in MS, AD, SC and PD, respectively. Values of RR and OR higher 
than one indicated a higher proportion of individuals with the disease in 
the upper 99th percentile. Specifically, a RR of 2 indicates that individuals 
in the upper 99th percentile are twice as likely to develop the disease 
compared to the rest of individuals in lower percentiles.  
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Table 9 comprises two tables showing the mean and standard deviation of the 
relative risk (RR) and odds ratio (OR) across the samples used in the five folds. 
The formulas used in the calculation of RR and OR are provided in the Methods 
section 5.4. RR and OR were calculated considering as positives the samples 
ranked within the top 99th percentile with the best scores or probabilities. In the 
case of ML methods, the cutoff of probability 0.5, which is the default in these 
methods, was also considered to define positives and calculate the RR and OR 
and is represented in additional columns. Results for MS and AD are presented in 
tables (a) and (b), respectively. For each column, the color scale ranges from 
darker to lighter, indicating better to worse performance, respectively. 
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Table 10 consists of two tables with the same structure and variables as Table 9, 
for SC in (a) and PD in (b). 

The mean and standard deviation of RR and OR across the five folds are 
provided in Table 9 for MS and AD, and in Table 10 for SC and PD. For 
ML methods, results are similar as the ones obtained for the general 
evaluation metrics presented in Table 4 and Table 5, with LR doing 
relatively well across diseases, and RF, ET and LR showing the best 
performance in AD.  
 
In agreement with the results previously discussed in Table 7(a) for MS, 
RR and OR in PRS ALL were better than in PRS RED, and PRS ALL was 
among the top three best methods for this disease after LR and FFN as 
shown in Table 9(a). Consequently, LR and FFN proved to be more 
effective at stratifying the risk of MS, even when using a reduced number 
of features, which, in the case of PRS RED, did not offer as much support. 
Contrarily in AD, PRS RED had greater RR and OR with less standard 
deviation across folds compared with PRS ALL, and both PRS models had 
average performance when compared with the other ML methods, as 
shown in Table 9(b).  
 
For SC, PRS RED performed better than PRS ALL and was within the 
average performance as well, but PRS ALL showed less variability across 
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folds (see Table 10(a)). Nevertheless, as previously noted, it is difficult to 
extract any conclusions from SC models due to their poor performance. In 
fact, the mean values of RR and OR obtained with CNN and PRS ALL 
models were below one, indicating a lower proportion of cases in the 99th 
percentile with respect to the other samples with lower scores. Also, even 
though the other methods had values of RR and OR slightly higher than 
one, they exhibited high standard deviation. Consequently, for SC, the use 
of PRS did not lead to an improvement in the results obtained with ML 
methods.  
 
In PD, PRS RED had slightly lower values of RR and OR compared with 
PRS ALL but demonstrated less standard deviation across folds (see 
Table 10(b)), and both PRS approaches were among the top three 
methods with the highest RR and OR mean only after FFN.  
 
As previously exposed, PRS do not provide probabilities but instead offer 
risk scores associated with the disease, which are used to identify 
individuals at high risk and low risk. Although PRS may effectively identify 
individuals at high and low risk, they are not designed to work as binary 
classifiers. Instead, ML methods were employed as classifiers in the 
previous sections of this work, applying a cut-off of probability 0.5, which 
is the default setting used to classify samples as positives (greater than or 
equal to 0.5) or negatives (lower than 0.5). The values of RR and OR 
considering the default cut-off used in the ML classification are provided in 
Table 9 and Table 10 as well. In MS and AD, results of RR and OR based 
on the ML classification are lower with respect to considering the 99th 
percentile of samples with the highest probability as predicted positives. 
This fact suggests that the use of a cut-off of probability 0.5 in ML methods 
reduces the proportion of true positives over the false positives with 
respect to using the 99th percentile. 
 
In MS, FFN demonstrated the lowest standard deviation across folds when 
considering the top 99th percentile of samples with the highest probabilities 
as predicted positives. Using the top 99th percentile, the lowest probability 
of MS in the FFN ML classification was 0.89. Conversely, the same 
method exhibited the highest standard deviation when using the 
probability cut-off of 0.5. These results suggest that FFN displayed greater 
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robustness when setting a higher cut-off for classifying samples with MS. 
For SC and PD, no differences were observed when applying a cut-off of 
probability 0.5 or using the 99th percentile.  
 
I checked if the individuals predicted as positives over the 99th percentile 
or predicted as negatives under the 50th percentile by the PRS RED and 
PRS ALL models were also consistently classified as positives and 
negatives across the ML methods. In Figure 19, Figure 20, Figure 21, and 
Figure 22, samples classified by PRS models in MS, AD, SC, and PD, 
respectively, are represented comparing their agreement with the six ML 
methods. 
 

 
Figure 19 shows the percentage of MS and controls that were correctly classified 
by 0 to 6 ML methods in comparison with samples correctly classified (TP or TN 
labeled in green) or incorrectly classified (FN and FP labeled in red) by PRS 
models. The total number of samples is indicated above the bars for the groups 
with the highest percentage in each comparison. Plots (a) and (b) show the 
classification of MS and controls in PRS RED, respectively. Plots (c) and (d) show 
the classification of MS and controls in PRS ALL, respectively. 

In MS (Figure 19), approximately 70% to 80% of cases predicted as 
positives by PRS were also classified as positives by the six ML methods, 
as indicated by the yellow bars in Figure 19 (a) and (c). Conversely, around 
70% of the samples classified as false positives (FP) in PRS were also 



Magdalena Arnal Segura 

Pag 74  

misclassified by the six ML methods, as indicated by the dark blue bars in 
Figure 19 (b) and (d). 
 

 
Figure 20 follows the same structure as Figure 19, but for AD. 

In AD, the percentage of true positives (TP) in PRS with full agreement 
across ML methods exceeded the 90%, as indicated in the yellow bars of 
Figure 20 (a) and (c), while the percentage of true negatives (TN) in PRS 
with full agreement across ML methods was approximately 60% 
represented in the yellow bars of Figure 20 (b) and (d). Around 90% of the 
samples classified as FP in PRS were also mislabelled by the six ML 
methods (Figure 20 (b) and (d), dark blue bars). 
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Figure 21 follows the same structure as Figure 19, but for SC. 

In contrast, no specific agreement across methods was observed in SC, 
as indicated by the homogeneous percentages depicted in bars, possibly 
due to the poor results obtained in the classification for this disease (Figure 
21). In PD, around 50% of TP and 40% of TN had full agreement across 
methods (Figure 22, yellow bars). In summary, the results obtained in MS 
and AD suggest that PRS and ML models demonstrate consistent 
classification results, with not only similarities in the values of RR and OR, 
but also in the classification of specific individuals. 
 

 
Figure 22 follows the same structure as Figure 19, but for PD. 
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Overall, the results presented in this section suggest that, with the 
evaluation based on percentiles, the performance of PRS is similar to that 
of the ML models. Yet, PRS is still the preferred method to be used in 
population genomics to stratify individuals with the genetic risk for a 
disease. In this regard, PRS offer several advantages compared with ML 
methods. The strengths and weaknesses of these methods will be further 
elaborated upon in the discussion. 
 
3.4 Implementation of feature selection techniques 
 
In this study I employed curated databases of disease-related variants to 
select the predictors for the ML models. However, these databases 
contain genomic variants from diverse studies conducted in various 
human populations, some of which may not be informative in the UKB 
cohort. Furthermore, certain genomic variants used as features in models 
are highly correlated due to LD, with a potential negative impact in the 
performance of models. To address this, I used feature selection 
techniques such as recursive feature elimination (RFE) and recursive 
feature elimination with cross-validation (RFECV) aiming to identify a 
subset of features with the potential to enhance model performance.  
 
Because of the considerable variability observed across folds in DL 
methods, which could potentially compromise the robustness of the 
comparisons, the feature selection techniques were exclusively applied to 
the other ML methods. In addition, given the predominant influence of the 
sex feature in PD and SC models, along with the suboptimal performance 
observed in these diseases in prior results, the analysis in this section will 
focus only on MS and AD. 
 
In Figure 23 I show that in MS and AD there are no significant differences 
in sensitivity or specificity when comparing models after applying RFECV 
and RFE with the original models. In the case of the GB and LR methods 
applied to AD, there seems to be a slight improvement in specificity using 
RFE and RFECV compared with the original analysis (see Figure 23 (d)). 
Although the significance lied between a p-value of 0.05 and 0.1 according 
to a Wilcoxon signed-rank test. 
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Figure 23 shows dot plots with the values of sensitivity and specificity in the original 
models, and the models after feature selection with RFECV and RFE. Sensitivity 
and specificity in MS are represented in plots (a) and (b), respectively. Sensitivity 
and specificity in AD are represented in plots (c) and (d), respectively. 

In Table 11(a) I show that, in the case of MS, 74% to 88% of samples were 
classified with the same class using the features in the original analysis, 
RFE and RFECV. Notably, the value is particularly high for AD (see Table 
11(b)) where, except for the GB method, around 93% of samples were 
classified with the same class using different sets of features. These 
results align with the similarity in performance observed in Figure 23, 
indicating that the original models, RFE and RFECV lead to the same 
prediction for the majority of samples. 
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Table 11 comprises two tables showing, for each ML method, from left to right, the 
percentage of samples that were classified with the same class in the original 
models and models after feature selection, the distinct methods used for feature 
selection, the number of features in folds from one to five after feature selection, 
and the number of features selected from one to five times in different folds. In (a), 
the table corresponds to MS. In (b), the table corresponds to AD, and the values 
in red correspond to the SNV rs429358, selected across all folds and methods in 
AD. 

The number of features selected with RFE and RFECV in each fold is 
presented in Table 11 under the columns “features foldx”. With few 
exceptions, in MS (Table 11(a)), the number of features selected by 
RFECV and RFE in each fold exceeded that in AD (Table 11(b)). 
Interestingly, for AD, RFECV selected only one SNV in eight folds (Table 
11(b) highlighted in red). As noted in the column labelled “n features 5 
times”, 12 to 125 features were consistently selected across the five folds 
with the feature selection methods in MS, while AD had only 1 to 5 features 
selected.  
 
In AD, the variant rs429358 (Table 11(b) highlighted in red) was the one 
consistently chosen across all folds using various feature selection 
techniques and ML methods, and it was the only feature selected in the 
eight different folds following RFECV selection. rs429358 is a SNV with 
the minor and major alleles being (C) and (T) respectively. This variant is 
located on chromosome 19 in the Apolipoprotein E (APOE) gene, and the 
allele (C) is one of the most extensively studied factors associated with AD 
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risk and dementia159 showing an additive risk pattern. The fact that RFECV 
proposed models with the variant rs429358 alone in the case of AD, 
without any noticeable impact on model performance, suggests that the 
majority of predictions were entirely influenced by this variant in the original 
models. 
 
To support this assumption, in Table 12 the allele frequency (AF) and the 
percentage of individuals with the rs429358 (C) allele present in the 
heterozygous or homozygous form are represented in “AF (C)”, “% (C;T)” 
and “% (C;C)” columns, respectively. The differences between controls, 
individuals with AD, individuals that were correctly classified as true 
positives across all ML methods (yellow bars in Figure 12(c)), and as true 
positives across ML and PRS methods (yellow bars in Figure 20 (a) and 
(c)) were explored. In controls, the AF of rs429358 (C) was 0.147 which is 
similar to the expected in the European population (1000 Genomes 
Europe C=0.155, as obtained from dbSNP9). In addition, the percentage 
of individuals with (C;C) alleles was very low (2%). Comparatively in 
individuals with AD, the presence of rs429358 (C) was more than the 
double than in controls.  
 
AD individuals that were classified as true positives across all ML methods 
were 64% (C;T) and 36% (C;C) in Table 12, and with the exception of three 
AD subjects, all of them had at least one copy of the rs429358 (C) allele. 
In contrast, when looking at the AD individuals that were consistently 
classified as AD across ML and PRS methods, all of them had at least one 
rs429358 (C) allele, 91% of them had (C;C) alleles, while 9% had (C;T) 
alleles. Therefore, the AD individuals with the highest risk of developing 
the disease according to PRS and ML methods seem to match those 
having the (C;C) alleles, following a predicted additive risk pattern where 
individuals with (C;C) alleles have more chances of developing the 
disease than individuals with (C;T) alleles, and individuals with (T;T) 
alleles are likely to be classified as controls. With these results, I 
demonstrated that the models constructed for AD predominantly relied on 
a single SNV, in this case rs429358 (C), and that the high consistency 
observed in the classification of individuals across different methods for 
this disease is primarily attributed to this variant. 
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Table 12 shows, in columns from left to right, the allele frequency of the rs429358 
(C) minor allele, the percentage of individuals with the heterozygous form of the 
allele (C;T), and the percentage of individuals with the two copies of the minor 
allele (C;C). In rows from top to bottom, there are controls, individuals with AD, AD 
that were correctly classified by the six ML methods, and AD that were correctly 
classified by the six ML methods and PRS. For each column, the color scale ranges 
from darker to lighter, indicating higher to lower values, respectively. 

In the case of MS, the HLA variant HLA-A*02:01 was the only genomic 
variant consistently selected across different folds and methods. However, 
I discarded the possibility that in MS the models relied only on this variant 
for making the predictions. This conclusion is supported by the fact that 
the number of features used in the models after feature selection was 
never just one in MS; instead, it ranged from 20 to 341 features, 
suggesting the presence of polygenicity. 
 
As shown in Figure 23, the reduction in the number of features after using 
feature selection tools did not lead to a significant increase in performance. 
However, it was observed that reducing the number of features with RFE 
and RFECV had the effect of decreasing the number of correlated features 
due to LD. This trend is represented in Figure 24, where the Spearman 
rank correlation coefficient between the number of selected SNVs and the 
number of correlated pairs of SNVs with an |r| > 0.7 is presented for each 
ML method and feature selection technique. The correlation coefficients 
consistently exceeded 0.9, indicating a very strong correlation, with only 
few exceptions. For instance, in MS, the correlation was r=0.77 for RFECV 
and r=0.8 for RFE, which still indicated the presence of strong correlation. 
In the case of GB models applied to AD, a correlation of 0.56 was 
observed. However, this value is probably caused by the skewness in the 
number of features selected in AD with GB, with one or five features being 
selected in four out of five folds with RFECV and RFE, respectively (see 
Table 11). Overall, RFE and RFECV tools applied to ML models, which 
selected a reduced number of predictors with fewer correlated pairs as 

AF (C) % (C;T) % (C;C) 
Controls 0.147 25.34 1.99

AD 0.394 48.96 14.94

TP across ML 0.678 63.73 35.97

TP across ML and PRS 0.955 8.94 91.06
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illustrated in Figure 24, did not demonstrate a substantial decrease or 
enhancement in performance in Figure 23. These results suggest that the 
presence of correlation among the genomic variants did not significantly 
impact the model's performance. 
 

 
Figure 24 displays the relationship between the number of selected features and 
the number of correlated pairs of features after the application of feature selection 
tools. The plots are divided into MS and AD represented in (a) and (b) respectively. 
The correlation coefficients were calculated using Spearman correlation. 

 
3.5 Variability in feature ranks 
 
In the fifth section of the results, I applied explainability tools to extract the 
importance of the features assigned by the models. The goal was to 
compare the ranking of features across methods and check if genomic 
variants were ranked similarly, demonstrating consistent attribution of 
importance. To proceed with the use of explainability tools, I focused only 
on MS. AD was excluded from these analysis because, as demonstrated 
in the previous section, the classification for this disease heavily relied on 
a single SNV.  
 
The plots in Figure 25 and Figure 26 are made by ranking the genomic 
features according to the importance assigned by the ML methods, and 
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comparing the ranking of genomic variants made by different methods and 
folds using Pearson correlation coefficients. These plots serve to 
represent the variability in the importance scores assigned to features and 
to assess whether models consistently ranked genomic variants in the 
same manner. 
 
In Figure 25, the pairwise correlation of feature rankings obtained with 
different DL methods, XAI methods and folds is depicted. Different colours 
are assigned to the labels for each combination of fold and DL method. A 
clear distinction is noticeable between FFN and CNN, represented as two 
separate branches in the dendrogram, showing that the primary 
differences in the rankings are attributed to the choice of DL method. 
Higher correlations are observed across the folds in FFN, indicated by 
green labels and the lower red triangle in Figure 25, in comparison to the 
CNN folds. Feature ranks exhibited strong positive correlation, nearly 
reaching one, across the four XAI methods (layer Integrated gradients 
(LIG), layer deeplift (DE), saliency maps (SM) and guided 
backpropagation (GBP)), when applied to the same fold and DL method, 
as indicated by the five labels of the same colour always grouped together 
in the dendrogram, and the intense red small triangles distributed across 
the diagonal in the plot.  
 
In Figure 26, the correlation across ML methods, including DL methods, is 
presented. Given the high similarity observed across different XAI 
methods applied to the same fold and DL method in Figure 25, only the 
LIG method was used to represent de ranks of DL methods for 
comparisons with the other ML methods. In Figure 26, different colours are 
assigned to labels depending on the ML method. A clear distinction 
emerges between the tree-based methods (GB, ET, and RF), coloured 
with green labels, and the other methods, as indicated by the intense red 
triangle in the lower part of the figure. Therefore, tree-based ML methods 
appear to rank variants in a similar manner. Conversely, LR and CNN 
exhibited more variability and less correlation across folds, even showing 
instances of negative correlation in some folds in comparison to the other 
tree-based methods and FFN, indicated by the blue squares in Figure 26. 
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These results evidence that tree-based methods exhibited relative low 
variability in the way they assigned importance measures to features. In 
contrast, LR and CNN exhibited unique feature ranking patterns across 
different folds, although it's worth noting that in the case of LR, this 
variability did not significantly affect the overall performance, as LR 
performed relatively well and had low standard deviation in the evaluation 
metrics across folds (refer to Table 4(a)). 
 

 
Figure 25 shows the pairwise Pearson correlation coefficients of the ranking of 
features obtained with layer integrated gradients (LIG), layer deeplift (DE), saliency 
maps (SM) and guided backpropagation (GBP) applied to CNN depicted with warm 
colors in labels, and FFN depicted with green colors in labels. The clustering in the 
dendrogram is made with Euclidean distances and ward-D2. 
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Figure 26 shows the pairwise Pearson correlation coefficients of the ranking of 
features obtained with different ML methods. LIG is used for DL methods. The 
clustering in the dendrogram is made with Euclidean distances and ward-D2. 

 
3.6 Prioritized genomic variants in multiple sclerosis 
 
As mentioned in previous sections, one of the advantages of using ML 
methods is that the attribution of importance to features is flexible and 
follows different approaches depending on the algorithm or architecture 
employed in the models during training. For this reason, after applying 
explainability tools, I was interested in identifying the genomic features that 
were considered most relevant for classifying MS and controls in the UKB 
cohort using the different methods.  
 
The genomic variants were ranked with ordinal numbers, with values close 
to one representing higher importance. In total, there were 136 genomic 
variants that were among the top 10% with the best rank at least in one 
ML method, with 50 of them present on chromosome 6. From now on I will 
refer to them as prioritized variants. The enrichment of more than a third 
of the prioritized variants on chromosome 6 is consistent with the 
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previously reported MS hotspot in this chromosome, as obtained from the 
GWAS summary statistics used in the PRS calculation (refer to Figure 
16(a)).  
 
In Figure 27, I represented a circos plot with a heatmap depicting the ranks 
and respective locations of all the genomic variants used as features in 
MS. The genomic variants that were prioritized in at least one method are 
annotated with the name, excluding variants in chromosome 6. Due to the 
high density of prioritized genomic variants in chromosome 6, I depicted 
this chromosome independently in Figure 28, along with the names of the 
highest-ranked variants and the pairwise LD. 
 
The heatmaps in Figure 27 and Figure 28 illustrate the substantial 
variability of ranks assigned to genomic variants, often displaying diverse 
colours corresponding to ranks obtained using different ML methods. 
Using AlphaMissense160, a tool based on AlphaFold that predicts the 
impact of SNVs on the protein structure, missense variants were 
annotated with their predicted effects: ambiguous, likely benign, or likely 
pathogenic. Notably, all missense variants used as features in the MS 
models were annotated as likely benign, which aligns with the polygenic 
nature of MS, wherein the cumulative effect of numerous small genetic 
effects across the genome predisposes or protects against the disease161. 
Alternatively, most of the SNVs were predicted to have an effect in 
expression (eQTL) or splicing (sQTL) as annotated using GTEx and 
highlighted with purple colour in the labels of the SNVs in Figure 27 and 
Figure 28. 
 
Three prioritized variants were missense SNVs, highlighted with green 
labels in Figure 27: rs6897932 located in the IL7R gene of chromosome 
5, rs763361 located in the CD226 gene of chromosome 18, and rs5771069 
located in the IL17REL gene of chromosome 22. The IL7R gene encodes 
the interleukin-7 receptor, involved in the development and function of T 
cells. CD226, on the other hand, encodes a glycoprotein also known as 
DNAX accessory molecule-1 (DNAM-1), which plays a role in the 
regulation of T cell activation and the immune response. In addition to MS, 
genetic variants in IL7R and CD226 have been associated with other 
autoimmune diseases, such as type 1 diabetes and rheumatoid arthritis162 
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163 164 165. Notably, there was an absence of prioritized missense variants 
in chromosome 6. 
 

 
Figure 27: Circos plot representing all the genomic features used in the MS models 
distributed across the genome. The heatmap indicates the ranks of the features as 
assigned by each ML method, with values close to one in red indicating higher 
importance. The variants that were prioritized by at least one method are indicated 
with their names. The names of the SNVs are colored in purple if they are 
annotated with an eQTL or sQTL in at least one tissue in GTEx. The labels of 
missense SNVs with annotated QTLs are colored in green. The labels of 
chromosome 6 were excluded due to the high density of prioritized genomic 
variants in this chromosome.  

The top ten best-ranked genomic features in chromosome 6 were 
determined by summing the ranks obtained with the six ML methods and 
are labelled in Figure 28. HLA-DRB1*15:01 is in close proximity to other 
prioritized HLA variants, HLA-DRB1*03:01 and HLA-DRB5*Null, 
collectively pointing to a well-documented MS-related locus in the 
cytoband 6p21.32 166. However, HLA-DRB1*15:01 and HLA-DRB5*Null 
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exhibited a strong LD (r2=0.93), making it challenging to distinguish 
between these HLA types in terms of their association with the disease. In 
fact, the two variants located in the 6p21.32 cytoband show similar LD 
patterns with other genomic features, as shown in Figure 28. HLA-C*04:01 
and rs2524089 are located in the 6p21.33 cytoband. HLA-A*02:01, and 
rs2523393 situated in the HLA-F gene, both belong to the 6p22.1 
cytoband. Finally, the variants rs17119, rs10806425 and rs17066096 are 
found in cytobands 6p23, 6q15 and 6q23.3, respectively, with the last two 
situated in the long arm of the chromosome. Therefore, there is not only 
one location in chromosome 6 associated with MS, instead, the top ten 
risk loci are widely distributed. 
 

 
Figure 28: The heatmap on the left represents the ranks of all the features on 
chromosome 6 as assigned by each ML method, with values close to one in red 
indicating higher importance. The top ten best-ranked genomic variants on this 
chromosome are labeled with their corresponding names. Labels in purple indicate 
the presence of QTLs in at least one tissue in GTEx. The heatmap on the right 
indicates the presence and strength of LD between pairs of genomic variants.  



Magdalena Arnal Segura 

Pag 88  

Among the top genomic features in chromosome 6 there were five HLA 
types: HLA-A*02:01, HLA-C*04:01, HLA-DRB5*Null, HLA-DRB1*15:01 
and HLA-DRB1*03:01. Additionally, the SNV rs2523393, located in HLA-
F, was identified as an eQTL and sQTL for this gene. Furthermore, the 
SNV rs2524089, an intron variant in LINC02571, was recognized as an 
eQTL and sQTL for the genes HLA-B, HLA-C, and HLA-E. In this regard, 
the prevalence of HLA gene annotations among the top genomic features 
on chromosome 6 highlights their significance in the context of MS. 
 
The top ten best-ranked genomic features across all chromosomes 
obtained by summing the ranks from the six methods are listed in Table 
13. This table mirrors the information presented in Figure 27 and Figure 
28, highlighting the variability in rankings across methods, and 
demonstrating that none of the top ten genomic features consistently 
earned the status of prioritized variant (highlighted in red) across all 
methods. Some of the genomic variants annotated in Figure 27 and Figure 
28, which did not rank among the top ten in Table 13 and were not 
previously mentioned in the text, showed evidence from other studies 
supporting their association with MS. Nevertheless, given the extensive 
number of prioritized variants in this disease, I only delved into the top 
ones in greater detail in the following lines. 
 
When considering all chromosomes, the highest-ranked genomic variant 
was HLA-A*02:01 on chromosome 6. In the UKB cohort, HLA-A*02:01 was 
more frequent in controls compared to individuals with MS, with a Fisher 
test p-value of 2.43E-19. This observation aligns with its reported 
protective effect against MS in the literature167 168 . HLA-A*02:01 was also 
recurrently selected across all folds and methods with the RFE and 
RFECV techniques in the previous section “3.4 Implementation of feature 
selection techniques”, emphasizing the relevance of this variant for 
predicting MS outcomes in the UKB cohort. The HLA-A gene belongs to 
the MHC class I, a group of cell surface proteins that play a crucial role in 
the immune system, recognizing intracellular pathogens and 
distinguishing between self and non-self cells. It is worth noting that the 
most significant genetic factor associated with MS, as reported in the 
literature, is HLA-DRB1*15:01169, a predisposing HLA variant belonging to 
the MHC class II. In the UKB cohort, HLA-DRB1*15:01 exhibited the most 
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significant differences in allele frequency between individuals with MS and 
controls, with a Fisher test p-value of 2.77E-101, being more prevalent in 
cases than controls, consistent with its predisposing role. However, when 
considering rankings across all chromosomes, this variant was ranked 
23rd and, therefore, does not appear in the top ten in Table 13. 
 
The SNVs rs7665090 and rs2248359 listed in Table 13 are located 
downstream and upstream of the genes MANBA and CYP24A1, 
respectively. Specifically, rs7665090 serves as both an sQTL and eQTL 
for MANBA, while rs2248359 functions as an eQTL for CYP24A1. MANBA 
is an exoglycosidase found in the lysosome and is present in immune 
system pathways. Notably, the variant rs7665090 has been linked to a 
reduction in MANBA transcript expression and enzymatic activity, along 
with the occurrence of neurological abnormalities and recurrent 
infections170. On the other hand, the CYP24A1 gene encodes a protein 
involved in the catabolism of the active form of vitamin D. There is genetic 
and epidemiological evidence suggesting that vitamin D insufficiency 
contributes to MS. In this regard, the expression of CYP24A1 and other 
genes associated with MS risk in peripheral blood indicates a response to 
vitamin D and showed different expression patterns in individuals with MS 
compared to controls in a published study171.  
 
The SNV rs180515 is situated in the 3’ UTR of RPS6KB1. This SNV is 
also annotated as both an eQTL and sQTL for RPS6KB1. This gene is 
actively involved in immune response pathways, particularly in the IL-4 
signalling pathway, which has been associated with the progression of MS 
in several studies172 173 174 175. Moreover, another study revealed an 
upregulation of RPS6KB1 transcript expression in whole blood samples 
from Iranian patients with MS when compared to healthy controls176. 
 
The variants rs1800693, rs2283792, and rs7200786, are located within the 
intronic regions of the genes TNFRSF1A, MAPK1, and CLEC16A, 
respectively. The SNV rs1800693 functions as both an eQTL and sQTL 
for TNFRSF1A. This gene encodes a member of the TNF receptor 
superfamily of proteins and is known to play a role in regulating the 
immune system and the initiation of inflammatory reactions177. Also, 
rs1800693 has been consistently linked to MS in various studies and is 
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hypothesized to influence the magnitude of monocyte responses to TNF-
α stimulation178 179. The SNV rs2283792 serves as an eQTL for MAPK1, 
which is linked to MS due to its involvement in the MAPK pathways. 
Notably, studies have shown that the overactivity of the MAPK ERK 
pathway in microglia can indirectly lead to demyelination, a defining 
characteristic of MS180. The SNV rs7200786 is both an eQTL and sQTL 
for CLEC16A. SNVs in the CLEC16A gene, specifically within its intronic 
regions, were some of the earliest non-HLA genetic variants to be 
established as having an association with MS181 182. These SNVs have 
also been linked to other autoimmune diseases such as type 1 diabetes, 
rheumatoid arthritis, and primary biliary cirrhosis182. 
 
In the seventh position of Table 13 there is rs11586238, which is situated 
in an intergenic region on chromosome 1. This SNV serves as an eQTL 
for the CD101 gene, which encodes a protein expressed on various 
immune cell populations. While the connection between CD101 and MS 
remains unclear, it's worth noting that the transcripts of this gene have 
been observed to be upregulated in monozygotic twins with prodromal 
MS183. 
 
Regarding the remaining SNVs in Table 13, specifically rs2255214, an 
intronic variant in the ILDR1 gene, and rs4285028, located in the 3' UTR 
of the SLC15A2 gene, I was unable to find published works indicating their 
molecular association with MS in the literature.  
 

 
Table 13 lists the top ten best-ranked genomic features across all methods with 
the corresponding ranks assigned by each ML method. The values of the 
prioritized ranks are highlighted in red. 

Overall, these results remark the polygenicity of MS and the variability in 
the assigned feature ranks across different methods. The majority of the 
highest-prioritized variants were identified as eQTL or sQTL located in 

dbSNP ID Gene Chromosome LR Rank GB Rank ET Rank RF Rank FFN Rank CNN Rank Sum of Ranks
HLA-A*02:01 HLA-A chr6 1 9 8 8 12 46 1
rs2255214 ILDR1 chr3 10 17 15 13 1 56 2
rs7665090 MANBA chr4 16 5 112 18 32 54 3
rs180515 RPS6KB1 chr17 27 12 29 58 29 92 4
rs1800693 TNFRSF1A chr12 35 93 36 29 3 68 5
rs2248359 CYP24A1 chr20 18 6 126 64 4 49 6
rs11586238 chr1 4 82 35 54 48 127 7
rs2283792 MAPK1 chr22 78 48 113 99 23 9 8
rs7200786 CLEC16A chr16 17 27 17 30 42 239 9
rs4285028 SLC15A2 chr3 22 13 144 34 6 156 10
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non-coding regions within or near genes associated with the immune 
response and MS. This observation supports the notion that the risk of MS 
is primarily influenced by many subtle alterations in gene regulation that 
gradually accumulate over time, eventually driving the system into a 
pathological state, instead of missense variants that would have a major 
predicted impact on protein structure.  
 
Several SNVs were prioritized by the models but were not annotated as 
missense variants, eQTLs, or sQTLs affecting relevant genes. This could 
be partially attributed to the presence of LD, which results in highly 
correlated genotypes for variants located close together. While this 
correlation among features confers similar predictive power in the models, 
it does not necessarily imply that each individual variant is relevant to MS; 
it only indicates that at least one of the genomic variants in LD might be. It 
is important to note that prioritizing genomic variants on chromosome 6 
associated with MS is challenging. This is because, in addition to the 
presence of LD, a large amount of these variants are located near the 
MHC class I and class II genes, considered the most polymorphic region 
in the human genome28.  These difficulties will be further developed in the 
discussion.  
 
3.7 Synergies among the prioritized genomic variants in 
multiple sclerosis 
 
In this study, I tried to identify the synergistic effects that exist among the 
prioritized genomic features. This is because the ML methods I used, with 
the exception of LR, have the ability to capture complex patterns involving 
interactions.  
 
To explore this, I tested all the possible pairwise interactions among the 
genomic features prioritized by each model independently, and used an 
harmonic mean p-value (HMP) cut-off of less than 0.01 to select 
statistically significant interactions. More details on the methods employed 
for the statistical test of interactions can be found in the section 5.5 of the 
Methods. I excluded interactions where the pair of genomic features 
exhibited correlation due to LD, with an r2 greater than 0.2, as well as 
interactions involving different types of genomic features, such as the 
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combination of SNV and an HLA type. This decision is based on the fact 
that HLA types were imputed based on SNVs located on chromosome 6, 
and therefore, the two types of features are potentially confounded. 
 
After identifying the most significant interactions, I mapped them into 
single proteins or protein complexes, thereby adding molecular 
annotations to these interactions. Figure 29 represents the types of 
interactions with molecular annotations in red, while those without 
annotations are shown in blue. It is important to note that the interactions 
without molecular annotations do not necessarily lack a molecular context. 
Conversely, these interactions may be part of indirect synergies where the 
proteins do not directly interact in complexes, and as a result, went 
unnoticed using the approach I employed. 
 
 

 
Figure 29 exemplifies the different scenarios in which the interactions between 
genomic variants are characterized with molecular annotations (in red), and those 
interactions lacking molecular annotations (in blue). 

In Figure 30, I present the number of significant pairwise interactions 
between genomic variants for each method, highlighting those with 
molecular annotations in red. Among the prioritized genomic variants, 
there were twelve significant pairwise interactions for ET, making it the 
method with the highest number of interactions. LR followed with nine 
interactions, FFN with seven, GB with five, and CNN with two. There were 
no interactions found among the prioritized variants with RF. 
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Surprisingly, LR, which is not explicitly designed to capture interaction 
patterns, was the second method in terms of the number of interactions 
among the prioritized variants. This is likely because, in the case of LR, 
the individual predictive effects of the genomic features involved in the 
interactions were still big regardless of any synergistic effects. 
Consequently, these features were probably prioritized due to their 
independent predictive power.  
 
 
 

 
Figure 30 shows the number of significant pairs of interactions selected for each 
ML method using an HMP lower than 0.01. The interactions with molecular 
annotations are highlighted in red. 

There were three interactions with molecular annotations highlighted in red 
in Figure 30. One of these interactions was identified by ET, involving the 
SNVs rs6903608 and rs3130299, both located in intergenic regions in the 
6p21.32 cytoband. The other two interactions were detected by LR, and 
both involved the SNV rs760293, an intron variant in BAG6 gene in 
cytoband 6p21.33, interacting with rs615672 and rs3135363, two 
intergenic SNVs in 6p21.32. Notably, rs615672 and rs3135363 exhibit 
moderate LD, with a r2 of 0.36. Therefore, it is unclear whether the two 
interactions detected in LR are entirely independent.  
 
Interestingly, all the SNVs involved in the interactions with molecular 
annotations were located at cytoband 6p21.3, which, as noted in the 
previous section, is the strongest MS susceptibility locus identified 
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genome-wide. Additionally, these SNVs were predicted to act as eQTL 
and sQTL for many other genes, especially HLA genes. However, with the 
exception of one SNV, rs760293 in the BAG6 gene, the remaining SNVs 
involved in the interactions with molecular annotations were located in 
intergenic regions, and establishing the link of these intergenic genomic 
variants with the regulation of gene expression and splicing is particularly 
challenging. In this context, even if those variants were annotated with 
QTLs, it is important to clarify that these annotations may result from being 
in LD with other variants located in regulatory regions of disease-related 
genes.  
 
In Figure 31 I represented all the genes potentially involved in interactions 
at the protein level based on the molecular annotations associated with 
the three pairs of SNVs described earlier. All these genes were situated 
on chromosome 6, and nearly half of the annotations were linked to genes 
from the HLA family. Furthermore, there were annotations of complement 
factor genes, including C4A, C4B, and CFB, which are also part of immune 
system pathways. 
 

 
Figure 31 shows the genes involved in the interactions with molecular annotations. 
In yellow and in green, interactions found among the prioritized genomic variants 
by ET and LR are depicted, respectively. The y-axis indicates the number of 
different interacting pairs of genomic variants. 

In summary, the strategy I employed to select interactions among the 
prioritized variants did not reveal a significant enrichment of statistically 
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significant interactions in GB, RF, FFN or CNN methods compared to LR, 
which is not designed to capture epistatic events among predictors. 
Among these methods, ET had the highest number of statistically 
significant interactions among the prioritized predictors. However, based 
on the results obtained, I lack sufficient evidence to demonstrate that tree-
based methods or DL methods prioritized variants due to their involvement 
in epistasis, and that these interactions conferred an advantage over LR 
in the classification.  
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4. Discussion 
 
In this work I investigated different aspects concerning the application of 
ML methods for predicting complex diseases based on genomic features. 
It is important to acknowledge that assessing genomic predisposition to 
complex diseases, which do not adhere to classic Mendelian inheritance 
patterns, present challenges. In this regard, ML methods have the ability 
to identify complex relationships in the data, and higher order interactions, 
that the traditional statistical methods may overlook. Consequently, I 
hypothesized that these tools could perform well at classifying individuals 
with complex diseases. 
 
A general rule in ML methods is that increasing sample size enhances 
model reliability184 185. For that reason, I selected four complex diseases 
for the analysis —multiple sclerosis (MS), Alzheimer’s disease (AD), 
schizophrenia (SC), and Parkinson’s disease (PD)—from the UKB, each 
with over 900 cases. 
 
Evaluation of the performance of ML models 
The performance of models was evaluated and compared across folds, 
methods, and diseases. Lower variability across folds is often desirable in 
ML analyses, as it suggests more stable and reliable performance of the 
models. Notably, DL methods exhibited the highest variability in 
performance. This could be attributed to the relatively modest sample size 
employed in this study, posing challenges for generalization, especially 
when leveraging the deeper connections inherent in DL models. Related 
to this, several studies have suggested that traditional ML methods tend 
to outperform DL methods when dealing with small sample sizes184 186.  
 
Genomic variants located in proximity are usually correlated due to LD. 
Therefore, I hypothesized that the spatial representation of genomic 
variants and the use of convolutional layers in CNN may help to 
disentangle the information present in hot spots with highly correlated 
features. However, the inclusion of information on chromosome and 
position in CNN models did not seem to improve the results compared to 
other ML models. 
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Another important limitation of DL methods is that, using the same input 
dimensions, they take longer times to run compared to the other ML 
methods, even when employing graphics processing units (GPUs), which 
are frequently used to reduce computational times. Also, the flexibility of 
DL methods comes with an elevated number of tuneable parameters, 
making hyperparameter selection complex. In this work, I used the grid 
search approach for hyperparameter tuning, which involves defining a set 
of values for each hyperparameter and testing all possible combinations. 
While this method is exhaustive and often identifies optimal 
hyperparameter sets, it is computationally expensive, especially with a 
large hyperparameter space, and time-consuming when applied to DL 
methods. Therefore, for the purpose of efficiency, simple ML methods, 
excluding DL methods, are likely more suitable for disease classification 
with sample sizes similar to this study. Nevertheless, it is important to 
stress that these observations could be context-specific and may not apply 
universally in all cases. 
 
Conversely, LR exhibited stable performance across folds and diseases, 
and was consistently positioned among the top-performing methods. LR 
is known for its relatively simple algorithm and ease of implementation. 
The popularity of LR stems, also, from its ability to perform well with only 
one or two tuned hyperparameters63. In addition, the marginal effects 
estimates, which are defined as the impact of small changes in specific 
predictors on the probability of the outcome variable, are less influenced 
by the limitations of a small sample size in LR187.  Nevertheless, regression 
models such as LR, by default, are designed to detect linear additive 
associations, preventing them from capturing interactions between any 
two input variables. In this respect, this limitation did not seem to 
negatively impact the results of the current work.  
 
Methodologically, tree-based ensemble methods (GB, ET, and RF) differ 
in how they introduce randomness during tree construction and in how 
they combine the predictions of individual trees. These variations may lead 
to differences in their performance. In this study, for example, tree-based 
ensemble methods exhibited variability in evaluation metrics within and 
across diseases. In AD, RF demonstrated the best performance in the 
comparison across methods, followed by ET, while GB ranked as the 
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second-worst method. Conversely in MS, GB was the second-best method 
after LR, and outperformed RF and ET. This variability is a factor that 
should be considered when choosing the ML methods to test in the 
studies.  
 
In addition, tree-based ensemble methods have been shown to work 
better with tabular data and with small sample sizes in other studies, 
whereas DL methods performed better on structured data with larger 
sample sizes188. This is also observed in the current study using tabular 
data, where GB, ET and RF generally showed to be more stable and have 
better evaluation metrics compared with FFN. 
 
When comparing across diseases, AD exhibited the best classification 
results, with balanced accuracy values ranging from 0.63 to 0.69, followed 
by MS with values from 0.61 to 0.64. Conversely, the performance of the 
other diseases, SC and PD, fell below balanced accuracy values of 0.6 
across all methods. These differences in predictiveness may be attributed 
to various factors. Notably, SC had the smallest sample size of cases in 
UKB, with 988 cases compared to the 2020, 2490, and 3126 in MS, AD, 
and PD, respectively. Additionally, SC and PD are diseases difficult to 
diagnose due to several factors. The complexity and heterogeneity of 
symptoms, the overlapping nature of symptoms with other conditions, and 
the challenges associated with distinguishing SC and PD from coexisting 
conditions contribute to the difficulty of an accurate diagnosis189 190. This 
may result in subjects being misdiagnosed and incorrectly tagged as 
cases, negatively influencing the ability of ML models to discover 
generalizable genomic patterns associated with these diseases. 
Stratifying PD and SC subjects based on different symptoms and disease 
courses, with diagnoses from experts, instead of grouping all subjects into 
the same disease category obtained from clinical records, may help 
reduce heterogeneity and improve the results presented here. However, 
for stratifying individuals within the same disease, ideally, a larger sample 
size and an accurate diagnosis would be required. 
 
As described in the introduction, overfitting is a common problem when 
using ML methods. In this work I used nested CV in order to prevent 
overfitting, which has been proven to give good results in other studies55. 
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Importantly, the higher the ratio of features to sample size, the more likely 
it is that a model will fit the noise in the data instead of capturing the 
underlying patterns associated with the disease, and consequently, there 
is a higher risk of overfitting156 8. Also, higher dimensionality significantly 
increases computation times. These facts support the decision I made to 
include in the ML models only the genomic features reported to be 
associated with the disease in curated databases, rather than using all the 
genomic variants in the genotyping array. Alternatively, dimensionality 
reduction techniques, such as principal component analysis, can be used 
to decrease the number of features. However, when applying these 
techniques, the original features are transformed into a new set of 
variables, making it impossible to trace back the individual effect of each 
genomic variant. This limitation would have prevented the subsequent 
application of XAI tools to rank variants by importance, and the 
prioritization of the most informative genomic features in the classification. 
 
To ensure that the models did not exhibit major overfitting, an external 
validation was performed on diseases with the best performance, MS and 
AD, using datasets obtained from independent studies. The models were 
tested on cohorts with individuals from the United States (US) and the 
United Kingdom (UK).  
 
For MS, the performance in the external validation cohorts was either 
equivalent or superior to that in the UKB cohort. In the IMSGC MS cohort 
comprising individuals from UK, sensitivity was even better than in the 
UKB cohort with all methods, except for the CNN method, which showed 
high variability across folds. As discussed in the results, this may indicate 
that individuals with MS were more accurately diagnosed in the study 
conducted by the IMSGC, which was a MS dedicated study154. This 
advantage is likely enhanced with the IMSGC MS cohort, given that 
together with the UKB cohort used for training, both cohorts comprised 
individuals from UK.  
 
Regarding AD, the performance of ML models did not worsen when tested 
on individuals from US in ADNI, demonstrating the ability of the AD models 
to generalize to cohorts with US population. Nevertheless, caution should 
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be taken when interpreting the AD results, as ML models heavily relied on 
a single SNV for making predictions. 
 
Overall, the results on the external validation datasets were positive as 
they not only demonstrated that the performance did not worsen in other 
cohorts, but also, in some tests with the IMSGC cohorts the performance 
was better. However, as noted in the results, the evaluation in the IMSGC 
dataset was incomplete, as only the positive class could be tested due to 
the nature of the IMSGC study. 
 
Influence of the variable sex in the model predictions 
As the sex feature was recognized as a relevant factor influencing the 
outcome and progression of some of the diseases under study141 155 191 
192, I was interested in determining if models performed better in predicting 
one sex over the other, particularly for diseases showing the highest sex 
bias, MS and PD. In this context, when using the same sample size and 
independent models for females and males, males with MS exhibited 
greater specificity than females with the GB method. However, no 
significant differences were observed between both sexes in the remaining 
combinations of disease and ML methods, hindering the formulation of 
conclusive findings.  
 
In addition, to assess the significance of the variable sex in the decisions 
made by the models, I constructed models only using the sex feature and 
compared the results with the original models. Upon doing so, I observed 
that for diseases with the lowest genomic predictiveness, such as PD and 
SC, the classification was predominantly influenced by the sex feature. In 
this study, where I aimed to evaluate the predictive power of genomic 
variants for complex diseases, this fact may lead to confusion, as in PD 
and SC, the genomic features appeared to have a low influence on the 
decisions made by the models. 
 
Comparison of ML methods with PRS 
Another relevant aspect of using ML methods is to investigate how they 
compare to PRS, which is the most widely used tool in population 
genomics to quantify an individual's genetic predisposition to a disease 
based on multiple genomic variants. Despite being applied to solve similar 
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problems, PRS differ from ML methods in several aspects, one of them 
being the approach for attributing importance to the genomic features. 
PRS are computed using statistical methods, specifically a linear additive 
model that involves summing the effect sizes of multiple genomic variants 
associated with the disease of interest. In the case of PRS, the weights 
assigned to genomic variants are derived from GWAS summary statistics. 
In contrast, in ML methods, the importance assigned to genomic variants 
is defined during training.  
 
In this study, the p-values assigned to genomic variants for the PRS 
calculation, indicating the significance of their association with the disease, 
and sourced from GWAS summary statistics, were generally lower in AD 
and MS compared to SC and PD, suggesting a stronger genetic risk 
association in the former two diseases. Therefore, the statistics derived 
from independent GWAS studies aligned with the different performances 
observed across diseases with ML methods in the UKB cohort. 
 
When comparing performances at the 99th percentile with individuals 
ranked based on the continuous values quantifying disease risk, PRS 
consistently demonstrated average performance compared with the other 
methods, but never clearly reached the best performance. In the case of 
MS, for example, PRS ALL models including all the genomic variants in 
the array had a mean value of RR equal to 4.0, compared to the best 
performing method, FFN, which had an RR of 4.1, also achieving the 
lowest standard deviation across folds. 
 
In fact, the case of FFN in MS is particularly interesting because, contrary 
to the results obtained at the 99th percentile, it was the method exhibiting 
the highest variability across folds when considering the default cut-off of 
probability 0.5 to classify cases and controls. This fact indicates that FFN 
was more robust at classifying MS individuals with the highest probabilities 
to develop the disease. As suggested in the Results section 3.3, setting a 
flexible cut-off for classifying cases and controls, instead of using the 
default cut-off of 0.5, may, in some cases, reduce the variability found in 
FFN. 
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Once the performance across different methods was compared, and the 
conclusion was drawn that PRS was comparable to ML methods, the 
question arises of whether to select one method over the other. In this 
context, there are several advantages and disadvantages summarized in 
Table 14 and discussed in the following lines. 
 
Firstly, PRS are limited to capturing only linear relations with the disease, 
as its core algorithm is a linear additive model. In contrast, ML methods, 
with the exception of LR, can capture complex interactions and 
nonlinearities. This ability could be especially valuable for detecting 
synergisms between genomic variants that may go unnoticed with PRS. 
Additionally, in the case of ML, the interpretability of the model is more 
flexible compared to PRS. This is because PRS provide a risk score based 
on a set of genomic variants with their associated weights obtained from 
GWAS summary statistics, and these weights remain unmodified. 
However, as mentioned earlier, ML have the capacity to learn from the 
data in the training set and refine the weights assigned to genomic 
variants. Finally, ML methods can produce a variety of outputs including 
the predicted class for each individual and its associated probability. As 
probabilities are easy to interpret and range from 0 to 1, the classification 
of the same individual can be directly compared across methods and 
experiments. In contrast, PRS themselves are not classifiers, and their 
output is a single numerical score for each individual, representing the 
cumulative genetic risk for a specific trait or disease. However, this score 
alone cannot be compared across different PRS studies, and the risk of 
individuals developing the disease is typically interpreted using quantiles, 
with the highest PRS values indicating higher genetic predisposition to the 
disease44. 
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PRS ML 

It captures linear relations with the 
disease and does not search for 

genomic interactions 

Have the ability to capture complex 
genomic patterns 

The interpretability of the model 
depends on the GWAS summary 

statistics 

The interpretability of the model can 
be more flexible 

A risk score is a relative value and 
cannot be directly compared across 

different models 

Models output probabilities that can 
be directly compared with the 

output of other models and 
methods 

There is no need for a large dataset 
with individualized genomic data to 

build the models. Only GWAS 
summary statistics are required 

Large datasets with individualized 
genomic data are needed to build 

robust models 

You can use as many genomic 
variants as you want 

Using too many features is 
problematic; a pre-filter is required 

to avoid dimensionality issues 

It takes a short time to run Some models take a long time to 
run, especially DL models 

PRS models typically exhibit stable 
performance, with their 

performance falling within the 
average range when compared 

across other methods 

The performance varies across ML 
methods depending on the context 

in which they are applied 

Table 14 lists the advantages (in green) and disadvantages (in red) when using 
PRS or ML methods. 

Conversely, several reasons can explain why PRS is the most widely used 
tool for disease risk stratification among the scientific community working 
on population genomics and has not been replaced by ML methods yet. 
One of the most important advantages of PRS is that there is no need to 
access large datasets with individualized genomic data to build the 
models. This is because PRS require GWAS summary statistics instead 
of individualized genomic data, and summary statistics are typically 
anonymized to protect the privacy and confidentiality of the study 
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participants. Therefore, there is no need to restrict access to such data 
with specific privacy and legal clauses, facilitating their public availability6. 
Additionally, in PRS there are no limits to the number of genetic variants 
to include in the models, as the scores of the variants are calculated as 
weighted counts of thousands of risk variants identified in GWAS. 
Therefore, some of the problems associated with the dimensionality of the 
data in ML are resolved in PRS. For example, the computation times of 
PRS will generally be reasonable regardless of the number of genomic 
variants used for the calculations due to its relatively simple core algorithm. 
This fact makes PRS accessible to scientists who do not have access to 
high-performance computing (HPC) platforms or computer servers with 
high capacities. Finally, PRS fell within the average performance when 
compared across methods and diseases. In contrast, the performance of 
ML methods was more variable, especially across tree-based ML and DL 
methods. It is worth noting that, apart from the methods used in this work, 
there is an extensive list of other ML methods that could be employed as 
classifiers, but it was not feasible to test all of them during my project. The 
uncertainty regarding the best ML method to use to solve a particular 
problem creates the necessity of testing several methods in the same 
study, adding complexity to the process of analysing the data. In this 
regard, PRS represents a safe choice in most of the cases, without the 
requirement of testing different methods, and with the support given by 
years of usage and published studies. 
 
Implementation of feature selection techniques 
In this study I employed different feature selection tools, specifically two 
recursive feature elimination methods, RFE and RFECV. The objective of 
testing these tools was to assess whether there exists a subset of 
predictors that could enhance the model’s performance. Given that I chose 
genomic variants linked to the disease from curated databases to be 
predictors in the models, it is possible that some of these variants may not 
be informative for classifying individuals in the UKB cohort. As a result, the 
inclusion of non-informative features might introduce noise and impede the 
accurate classification of individuals. 
 
Furthermore, some of the genomic predictors exhibited strong correlation 
due to LD, and the high correlation among multiple variants poses 
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challenges in identifying the specific variants associated with a disease or 
trait. In regression models, the incorporation of two or more features with 
a high degree of correlation is known as multicollinearity. For methods 
based on regression models, such as LR, multicollinearity can make it 
challenging to accurately estimate the true coefficients of the features193, 
affecting the stability and robustness of the model. In this context, the use 
of RFE and RFECV tools is recommended. In the case of ensemble tree-
based methods such as GB, ET, and RF models, even though these 
methods are more robust to feature redundancy, the presence of large 
groups of correlated features in the training data can generate misleading 
feature rankings194. Consequently, the use of RFE and RFECV could help 
optimize the attribution of importance to features. Finally, in DL, the direct 
application of recursive feature elimination techniques is less common. 
This is because DL models often have a large number of parameters and 
can learn intricate hierarchical representations, making feature selection 
less of a concern195 196. Given this circumstance and considering the high 
variability in the performance of DL methods across folds, I did not apply 
RFE and RFECV to these methods. 
 
After applying RFE and RFECV, the number of features in the models 
decreased to varying extents, along with a reduction in the number of 
correlated features. Interestingly, there were no significant changes in the 
performance of the models after feature selection. The absence of 
performance improvement, despite the reduction in correlated features, 
suggests that the LD present among genomic variants did not have a 
major impact on the performance of the original models. This robustness 
towards LD was particularly unexpected for the LR method. As previously 
noted, methods based on regression models are typically unstable in the 
presence of multicollinearity. However, in this work, LR exhibited low 
variability across folds in the original models and showed no apparent 
improvement after the application of feature selection techniques. 
 
In addition, the models developed for AD predominantly relied on a specific 
SNV, namely rs429358, for making predictions. After the application of 
RFECV techniques, some models exclusively depended on this genomic 
variant for classification, with no significant impact on performance. In fact, 
the strong consistency observed in classifying individuals with AD across 
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different methods was primarily due to the presence and influence of the 
rs429358 variant. Located on chromosome 19 in the Apolipoprotein E 
(APOE) gene, the allele (C) of rs429358  is one of the most extensively 
reported factors associated with AD risk and dementia, exhibiting an 
additive risk pattern159. In this regard, the recurrent selection of rs429358 
across methods and folds, which also has substantial supporting evidence 
of an association with AD risk in the literature, over other variants in strong 
LD such as rs4420638 (r2=0.708) and rs769449 (r2=0.743) with less 
disease evidence, underscores the capability of RFE and RFECV to 
discern genomic variants with the most significant links to the disease, 
despite the presence of feature correlations. 
 
The strong association between rs429358 (C) in APOE and the disease 
might overshadow the contributions of other weaker genetic risk factors in 
the AD models. Related to this, when trying to account for additional 
genomic variants conferring small risk effects to AD, it is a common 
practice to exclude the APOE region from GWAS and PRS calculations, 
treating the APOE locus as an independent factor or covariate108 197 198.  
 
In contrast, for MS, there was a recurrent selection of the HLA variant HLA-
A*02:01 across all folds and methods. However, none of the models 
entirely depended on this variant for predictions, as was the case with 
rs429358 in AD, supporting the presence of polygenicity in MS. 
 
Interpretability of the models 
As recurrently noted throughout the text, one of the advantages of using 
ML methods is that these methods are designed to learn patterns from the 
training data to make predictions. Unlike traditional statistical methods that 
often require assumptions about the underlying data distribution and rely 
on explicit statistical tests, ML models operate in a data-driven manner, 
and they can capture complex patterns and relationships. 
 
In this study, I explored the variability in the ranking of genomic features 
assigned by different ML models for MS, a disease identified as having 
high polygenicity in previous analyses. The results clearly distinguished 
ensemble tree-based methods from the rest. The similarity in the rankings 
of features in tree-based methods could be explained by the use of the 
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same core algorithm, which are decision trees. Tree-based methods were 
also characterized by showing low variability in the ranking of variants 
across folds. On the other hand, there was a clear distinction between the 
two DL methods, FFN and CNN, with the former showing more stability 
and the latter showing high variability in feature ranks across folds. LR 
showed high variability in ranks across folds as well, with some folds 
clustering with CNN folds and showing negative correlation with the rest 
of the methods. For LR, the presence of multicollinearity might contribute 
to the high variability in the feature coefficients193. However, among the 
MS classifiers, LR generally demonstrated the lowest variability in 
performance across folds. Considering these findings, it appears that 
multicollinearity in LR may adversely affect the stability of feature 
coefficients without significantly impacting the performance of models.  
 
The diversity in the ranking of features across methods and folds 
underscores the complexity of polygenic diseases, were genomic signals 
associated with the condition have multiple interpretations. Additionally, as 
previously noted, the presence of LD likely contributes to the instability of 
the importance assigned to the genomic predictors194. In this context, 
extracting general rules, such as a unique prioritization of features that 
applies to all methods, becomes challenging.  
 
The next question after ranking genomic features was which individual 
variants were positioned in the top ranks, and therefore, were more 
informative to classify individuals with MS and healthy controls. Generally, 
the top genomic variants were located near genes involved in the immune 
response or associated with MS. In addition, most of these variants were 
annotated in GTEx as eQTLs or sQTLs to these genes in at least one 
tissue. However, QTL approaches can be influenced by LD as well, as any 
non-causal variant in high LD with a truly causal variant will likely show a 
statistical association with similar effects. Therefore, eQTL and sQTL 
annotation do not automatically imply that the variant is responsible for the 
differences in expression or splicing23. Also, QTLs are dependent on 
tissue, cell type, and cell state, and not all the tissues or cell types are 
equally represented in GTEx. The lack of equal representation hinders the 
discovery of QTLs across specific cellular contexts23. Consequently, QTL 
annotations should be considered as a guide rather than the ground truth.  
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Overall, in MS there were 16 different missense variants, also named as 
nonsynonymous variants, among the 362 genomic predictors, from which, 
only 3 were prioritized by at least one method. The remaining SNVs were 
synonymous variants, with no direct impact on the amino acid sequence 
of any protein. As explained in the Results section 3.6, this aligns with a 
polygenic and complex disease like MS, where the sum of many small 
effects across the genome is associated with the disease. In fact, there is 
currently no evidence for rare, high-impact disease variants in MS161. 
 
There was an enrichment of HLA gene annotations among the prioritized 
genomic variants in chromosome 6. Among the prioritized HLA genes, 
HLA-A, HLA-B, HLA-C, HLA-E and HLA-F belong to the MHC class I. MHC 
class I molecules are found on the cell surface of almost all nucleated cells 
in humans and are responsible of presenting peptide fragments of 
intracellular proteins to cytotoxic T cells (CD8+). This presentation triggers 
an immediate immune response when a specific non-self antigen is 
detected. MHC class I molecules play a central role in immune surveillance 
by presenting intracellular peptides to cytotoxic T cells, allowing the 
immune system to detect and eliminate infected or abnormal cells. 
 
In contrast, the prioritized HLA genes HLA-DRB1 and HLA-DRB5 belong 
to the MHC class II, which is typically found only on professional antigen-
presenting cells such as dendritic cells, mononuclear phagocytes, some 
endothelial cells, thymic epithelial cells, and B cells. The extracellular 
proteins are phagocytosed by these professional antigen-presenting cells, 
digested in lysosomes, and the resulting peptide fragments are loaded 
onto MHC class II molecules, which are then presented on the cell surface. 
MHC class II molecules primarily interact with immune cells, such as T 
helper cells (CD4+), and the presented peptide regulates how T cells 
respond to an infection. Therefore, MHC class II molecules are central to 
the immune system's ability to recognize and respond to antigens derived 
from extracellular pathogens, and they are critical for the activation of 
helper T cells, which coordinate and regulate various aspects of the 
adaptive immune response. 
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The region around HLA-DRB1 consistently appears in the scientific 
literature as being the most strongly associated with MS, also involving 
other MHC class II genes.  Specifically, the HLA variant HLA-DRB1*15:01 
is the strongest genetic determinant of MS, as defined in the literature169 
166 97 199. However, in the current study, the most consistently prioritized 
genomic variant in MS was HLA-A*02:01, which belongs to the MHC class 
I. Notably, there is evidence of the independent association of HLA-
A*02:01 and HLA-DRB1*15:01 with MS80 167 168, with the former 
considered protective and the latter predisposing to the disease. In this 
regard, the results in this study, showing prioritized variants affecting HLA 
genes from both MHC class I and class II, are consistent with findings from 
other studies that indicate alterations in both types of cell surface proteins 
in MS, involving different types of immune response and immune cells200. 
However, the strong LD present among HLA variants, such as the one 
observed between HLA-DRB1*15:01 and HLA-DRB5*Null, complicates 
the use of fine mapping methods to identify the exact causal variants in 
MS. In conclusion, caution should be exercised when interpreting the list 
of prioritized genomic variants reported in this study, and results should be 
validated with other sources.   
 
In the case of MS, the well-known region strongly associated with the 
disease in the vicinity of HLA-DRB1*15:01 on chromosome 6 did not seem 
to overshadow the relevance of other variants located on different 
chromosomes. Consistent with this observation is the fact that, when 
exploring the genomic variants with the top 10 sum of ranks, only HLA-
A*02:01 belonged to chromosome 6, and it was not in strong LD with HLA-
DRB1*15:01. Genomic variants near genes such as MAPK1 in 
chromosome 22, CYP24A1 in chromosome 20, RPS6KB1 in chromosome 
17, CLEC16A in chromosome 16, TNFRSF1A in chromosome 12 and 
MANBA in chromosome 4 were among the top 10 prioritized genomic 
variants, highlighting the distribution of prioritized genomic features across 
different chromosomes.  
 
Given the polygenicity observed in MS, it is natural to hypothesize that 
certain genomic variants were prioritized due to the presence of epistasis 
among them. Despite the challenges associated with the complexity of 
chromosome 6, the most polymorphic region of the human genome, and 
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the presence of strong LD between HLA variants, other studies have 
reported some epistasis, typically involving the HLA-DRB1*15:01 
haplotype and other HLA variants91 201.  
 
In this work, I calculated the number of pairwise interactions among the 
prioritized features by each method in MS. Unfortunately, the results in this 
section were contradictory. ET was the method reporting the highest 
number of significant pairwise interactions across all ML methods with 12, 
followed by LR with 9. However, LR is not specifically designed to account 
for interactions between predictors. In this respect, the interactions 
obtained in LR were likely formed by genomic variants that had a strong 
individual association with the disease regardless of the presence of 
interactions65. In addition, in the case of RF, a method that has been used 
in other works to detect epistasis70 202, interactions were missing among 
their prioritized variants. 
 
Patterns captured by ML methods often lack associated biological 
mechanisms that could be related with the phenotype of interest36. For that 
reason, I added molecular annotations to the interactions to try to provide 
a possible molecular context in which these interactions may intervene. As 
a result, all the interactions with molecular annotations were located on 
chromosome 6, and half of the gene annotations specifically involved the 
HLA family and complement factor genes. This fact is consistent with MS 
being an autoimmune disease with an important role of HLA variants. 
Nevertheless, the reliability of the reported interactions with molecular 
annotations is difficult to assess due to the previously described reasons, 
and because the genomic variants involved in the interactions were eQTLs 
and sQTLs to many genes, complicating the interpretation of the molecular 
connections. 
 
Limitations and ethical considerations of the study 
It is important to clarify that modifying any of the parameters in this study, 
such as employing different ML methods, selecting different genomic 
features, or applying ML methods to other diseases, could potentially alter 
some of the conclusions drawn here. Indeed, one of the weaknesses of 
the self-learning methods studied in this work is their variability when 
certain conditions in the analysis are changed. Despite this limitation, ML 
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methods have proven to be powerful and efficient in various everyday 
applications, and properly applied with sufficient data, the advantages of 
these methods are undeniable. Therefore, the primary value of this work 
lies in highlighting general considerations for choosing and applying ML 
models in disease risk classification analyses using genomic data. 
 
Several limitations have been encountered during the pursuit of the 
objectives of this work:  
 

• The primary limitation is the restricted sample size. In the duration 
of this project, I encountered challenges in obtaining access to 
datasets with individualized genomic data. This is because the 
process of accessing such datasets is complex and involves 
several legal and privacy verification steps, requiring collaboration 
with the legal teams from both hosting and requesting institutions. 
Repositories like dbGAP51 and EGA203 host individualized human 
genomic and phenotypic data from various studies. In order to 
have access to the datasets, I had to comply with the terms 
outlined in the data transfer agreements. However, EGA provides 
limited guidance to scientists on the data request process; 
instead, they provide an email address with the contact 
information of the data owners for direct inquiries. Requests are 
initiated by sending an email expressing interest in accessing a 
specific dataset on EGA. Ideally, this email should initiate the 
communication between data owners and requesters, eventually 
leading to the exchange of the signed data access agreement. 
However, I found that direct communication with data owners was 
not always successful. Standardizing the legal clauses for data 
access and monitoring the responsiveness of researchers who 
own the data could potentially increase the sample sizes used in 
other studies. As a result, this could enhance the research in the 
application of ML models that require large amounts of genomic 
data to reach optimum performance.  

 
• Gaining access to datasets does not guarantee the utility of the 

data, as datasets can be submitted to repositories without quality 
checks204, highlighting an unresolved issue in the scientific 
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community. In this context, the low quality of data may result in 
poorer performance of ML models205. Another limitation is that the 
integration of diverse sequencing and genotyping technologies 
requires the inclusion of a step to homogenize and normalize the 
data, potentially creating batch effects that could introduce biases 
in the results. In this regard, the FAIR principles, defined as 
Findability, Accessibility, Interoperability, and Reusability, have 
emerged in recent years as a framework to ensure that scientific 
data is not only discoverable but also easily accessible, enabling 
interoperability across diverse platforms and systems206. 

 
• Rare and low-frequency variants (MAF < 0.05) are not included as 

features in the models due to several reasons. One reason for this 
exclusion is associated with the genotyping technology. Removing 
rare variants is a standard quality control step when working with 
genotyping arrays, as with this technology rare variants are 
susceptible to have an elevated false positive rate207. The other 
reason is that the insufficient genetic variation in rare variants can 
pose challenges in associating these specific locus with observed 
differences in traits or outcomes, because there is not enough 
diversity in the training set to extract any generalizable patterns208.  

 
Several ethical considerations are associated with studies using genomic 
data for similar applications as the one in this work: 
 

• Privacy and informed consent are essential, as genomic data is 
highly sensitive and unique to individuals. Concerns exist about 
the potential use of this data for re-identification, leading to privacy 
breaches. Ensuring informed consent, explaining the risks, and 
providing clear information about how genomic data will be used 
are important ethical considerations. In this regard, compliance 
with relevant data protection and privacy regulations, such as the 
general data protection regulation (GDPR) for the European Union 
members, and the health insurance portability and accountability 
act (HIPAA) in the United States, is crucial for the ethical use of 
genomic data209. Following these directives, at the Istituto Italiano 
di Tecnologia (IIT), where the current study was conducted, it is 
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compulsory for all scientists working on sensitive data to take a 
course on GDPR. 
 

• Safeguarding genomic data from unauthorized access, breaches, 
or misuse is essential. In relation to my work, the informatics team 
in the IIT implemented robust security measures to ensure the 
data protection of the genomic datasets used in this study. These 
measures are critical to maintaining trust in the use of ML 
methods210. 
 

• Determining who owns genomic data and who has control over its 
use is a complex ethical issue211. Clear policies should address 
issues of data ownership, access, and control, and individuals 
should be informed about how their data will be used. In addition, 
there should be a consent for the secondary use of the data, as 
individuals may have provided their genomic data for a specific 
purpose, but ML methods may involve secondary use of the data 
for different purposes. Regarding the datasets used in the current 
study, all the specifications concerning the use and ownership of 
the data were listed in the data transfer agreement required to be 
signed by both, the hosting and requesting institutions. 
 

• Biases in genomic data can result in unfair and discriminatory 
outcomes of ML models71. Ensuring inclusivity in the training data 
and addressing biases in algorithms are essential to avoid 
perpetuating health disparities. In this respect, there is a general 
overrepresentation of studies with individuals of white European 
ancestry compared to other populations. If this is not considered 
when designing ML experiments, the predictive models may lead 
to inaccurate discoveries across underrepresented populations212. 
For example, the results in this study are likely to be more 
effectively extrapolated to white individuals from the UK, as in the 
UKB, other ethnicities were underrepresented. 
 

• ML models can be complex and challenging to interpret. The lack 
of transparency may raise ethical concerns, especially when 
making decisions that impact individuals' health213. For that 
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reason, in this study I also focused on the interpretability of the 
models, choosing methods that, rather than being a black box, 
allow the application of XAI methods. 

 
• The use of genomic data for disease classification may lead to 

stigmatization or discrimination based on genetic information. It is 
essential to consider the potential social and psychological impact 
of the predictive models on vulnerable individuals and 
communities209. In this work, I built models attempting to classify 
individuals with complex diseases from healthy controls. Given 
that individuals were anonymized, the results of this work have 
value in the context of research. However, the application of these 
models could also help in the diagnosis of complex diseases in 
the medical practice. In this context, the misuse of these tools 
could enhance the discrimination against individuals based on 
their genomic predisposition to develop a serious disease. Also, it 
may have a negative psychological impact on healthy individuals 
who receive information about their high probabilities of 
developing a disease with no cure. 
 

• Some of the categories used to stratify the population in this study 
are discriminatory to minorities or for reasons of race. For 
example, the binary classification of sex is currently under 
discussion in the scientific community, as it can be discriminatory 
for transgender and non-binary individuals. Consequently, there is 
a need for a more inclusive classification of individuals who do not 
conform to traditional gender norms in scientific studies214. 
Additionally, the use of the term “Caucasian” to describe 
individuals with the white race is currently being questioned215. 
This term was originally invented by anthropologists who 
categorized humans into racial groups and created theories about 
white superiority in the 18th century. Despite of its origins, this 
term is still widely used to categorize white individuals, even in 
important databases such as UKB. 
 

Future perspectives 
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Adherence to ethical guidelines and the maintenance of transparency are 
essential for the responsible use of ML methods with genomic data as 
disease classifiers. For future perspectives on the application of ML 
methods with genomic data, it is necessary to consider the previously 
described limitations and ethical concerns.  
 
Some of the challenges associated with the use of self-learning methods 
on genomic data, such as sample size and privacy concerns, could 
potentially be addressed in the future by implementing federated learning 
(FL) techniques72. Even though FL is a relatively new tool, and research 
on the requirements to effectively run these processes is still in its early-
stages, future advancements in this field will likely result in promising 
achievements.  
 
In conclusion, with the reduction in genome sequencing costs and 
improvements in sequencing technologies, the volume of genomic data is 
expected to continue increasing in the coming years. Simultaneously, the 
rise in computational capacities and advancements in existing ML 
methods are likely to foster exciting discoveries in the field of population 
genomics. However, these promising developments should be 
accompanied by a careful consideration of the ethical concerns mentioned 
earlier to ensure the responsible and ethical use of these methods for the 
collective benefit.  
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5. Methods 
 
5.1 Inclusion and exclusion criteria 
 
For this work, I used information from individuals in the UK Biobank (UKB). 
The UK Biobank Axiom Array11, a custom-designed array manufactured 
by Affymetrix, was the source of genomic data. This array contains nearly 
820,000 genetic markers, including SNVs, and small insertion-deletion 
polymorphisms (indels). 
 
The inclusion criteria used to select cases and controls in UKB were as 
follows: 

• MS: Subjects with the ICD-10 code G35 in primary care data, 
hospital inpatient data, or mortality data. 

• AD: Subjects with the ICD-10 code G30.9 in primary care data, 
hospital inpatient data, or mortality data. 78 subjects (3% of the 
total AD) had less than 65 years old and therefore, were probable 
EOAD. I decided to include the probable EOAD in the analysis 
under the premise that the models may be able to correctly 
classify them as AD, as both EOAD and LOAD share some 
genetic determinants. In any case, the age at first report was 
explored to evaluate potential biases in age among the true 
positives and false negatives as classified by the models. 

• SC: Subjects with the ICD-10 code F20.9 in primary care data, 
hospital inpatient data, or mortality data. 

• PD: Subjects with the ICD-10 code G20 in primary care data, 
hospital inpatient data, or mortality data. 

• Controls: Subjects who are more than 75 years old and do not 
have any disease of the nervous system or mental, behavioral, 
and neurodevelopmental disorders (ICD-10 categories G00-G99 
and F01-F99). 

 
The exclusion criteria applied to subjects in UKB were as follows: 

• Subjects without any clinical information. 
• Subjects with more than one of the studied diseases. 
• Genetic ethnic grouping not Caucasian (UKB Field ID 22006). 
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• Recommended genomic analysis exclusions due to poor 
heterozygosity/missingness (UKB Field ID 22010). 

• Individuals with high heterozygosity rate (after correcting for 
ancestry) or high missing rates (UKB field ID 22018). 

• Individuals with sex chromosome aneuploidy (UKB field ID 
22019). 

• Outliers for heterozygosity or missing rate (UKB field ID 22027). 
• From the genetically related individuals, only one subject 

(preferentially with the disease) was included in the analysis (UKB 
field ID 22011). 

 
 

 Cases Controls 

 Female Male Female Male 

MS 1443 577 42154 37695 

AD 1357 1133 42154 37691 

PD 1161 1965 42146 37692 

SC 411 577 42157 37698 

Table 15 shows the distribution of individuals from UKB employed in this study, 
across diseases and sexes, after applying the selection criteria. Diseases MS and 
PD are highlighted in green, indicating the most pronounced sex imbalance. 

The ADNI dataset (adni.loni.usc.edu)216 was used as an external validation 
dataset for AD. In this study I used the genomic data coming from whole-
genome sequence (WGS) at high coverage. The inclusion criteria used to 
select cases and controls in ADNI were as follows: 

• AD: Individuals with probable or possible diagnosis of AD (field 
name: DXAPP) and dementia due to AD (field name: DXDDUE) 
or mild cognitive impairement (MCI) due to AD (field name: 
DXMDUE). 

• Controls: Individuals without MCI or dementia (field name: 
DIAGNOSIS), without probable or possible diagnosis of AD (field 
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name: DXAPP), without dementia due to AD (field name: 
DXDDUE) and without MCI due to AD (field name: DXMDUE). 

 
The exclusion criteria applied to subjects in ADNI were as follows: 

• Individuals without WGS data available. 
• Individuals with missing data in the demographic variables sex 

and year of birth (field names: PTGENDER and PTDOBYY). 
• Individuals with missing values in the examination date (field 

name: EXAMDATE). 
• Individuals with less than 75 years old. 

 
 Cases Controls 

 Female Male Female Male 

ADNI 17 39 17 20 

Table 16 shows the distribution of individuals in the ADNI dataset after applying 
the selection criteria. 

I used the genotyping data from Affymetrix GeneChip® Human Mapping 
500K arrays generated by the International Multiple Sclerosis Genetics 
Consortium (IMSGC) and available in dbGAP under the accession ID 
“phs000139.v1.p1” as external validation dataset for MS. The dataset 
consisted in two cohorts: named as “multiple sclerosis” (IMSGC MS), 
which included trio families recruited from across the UK, and “multiple 
sclerosis and related disorders” (IMSGC MSRD), comprising trio families 
recruited from across the US. Approximately 4% of the subjects in the 
latter cohort were diagnosed with clinically isolated syndrome (CIS) at the 
time of enrolment into the study. Additional information regarding the 
selection of participants can be found in the supplementary appendix of 
the original paper154. The inclusion criteria I used to select cases in the 
IMSGC dataset were as follows: 

• Subjects with MS (variable name: AFFECTION_STATUS). 
• Only one individual per family was included.  

 
The exclusion criteria applied to subjects in the IMSGC dataset were as 
follows: 
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• The data consisted in family trios. Consequently, controls were 
excluded from the analysis as they had at least one relative with 
MS. 

• Subjects with more than 20% of missing genotypes were also 
excluded. 

 

 Cases 

 Female Male 

IMSGC MS 363 122 

IMSGC MSRD 357 108 

Table 17 shows the distribution of individuals in the IMSGC dataset after applying 
the selection criteria. In the case of IMSGC, two cohorts were available, IMSGC 
MS corresponding to individuals from the UK, and IMSGC MSRD corresponding 
to individuals from the US. 

 
5.2 Pre-processing of genomic data 
 
ML methods were employed to classify cases and controls using a set of 
genomic variants as features in the models. These genomic variants, were 
reported in ClinVar52 with at least one level of review status or reported in 
DisGeNet53 within the curated dataset. A binary feature indicating sex was 
also included in the models. When an HLA gene was associated with the 
disease, the imputed HLA variants for this gene obtained from UKB (UKB 
Field ID 22182) were included as predictors. The numbers of predictors 
used in each disease are shown in Table 18. 
 
Genetic variants were encoded as 0, 1, 2 and 3 corresponding to missing 
value, the absence of the variant, the presence of the variant in one copy, 
and the presence of the variant in two copies, respectively, assuming an 
additive model. Genomic variants with the same values in all samples 
(monomorphic predictors) were excluded from the analysis. 
 
PLINK217 was used to apply an initial quality control and to pre-process the 
genomic raw data. SNVs with a Hardy-Weinberg equilibrium p-value 
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(“HWE” in PLINK) lower than 1e-8, minor allele frequency (“MAF” in 
PLINK) lower than 0.05, missingness per marker (“geno” in PLINK) higher 
than 0.2, and samples with missingness per individual (“mind” in PLINK) 
higher than 0.2, were excluded. Additionally, PLINK was employed to 
compute the linkage disequilibrium (LD) statistics between genomic 
variants. 
 
 

 MS AD SC PD 

Features 
by type 

309 SNVs 
53 HLA 
1 sex 

167 SNVs 
2 HLA 
1 sex 

136 SNVs 
32 HLA 
1 sex 

64 SNVs 
2 HLA 
1 sex 

Total 
features 363 170 169 67 

Table 18 indicates the number of features of each type used in the models for each 
disease. 

In genotyping arrays and WGS, missing values are not randomly 
distributed, and specific tools can be used for the imputation218 219. The 
pipeline for imputing missing values involved several steps, and only the 
genomic variants that were already present in the array but had missing 
genotypes in some samples (less than 20% of samples after QC filters) 
were imputed. The pre-processing of genomic files was performed using 
PLINK and bcftools220, which included tasks such as strand flipping, 
genome build, and ID conversion. Haplotype phasing was performed using 
SHAPEIT4221, while IMPUTE526 was employed for genomic imputation. 
The reference files for genomic imputation were obtained from the 1000 
genomes phase3222. Imputed genotypes with less than 80% probability 
were considered as missing, and imputed genomic variants with a quality 
score lower than 0.90 were excluded from further analysis. In an attempt 
to impute the HLA genes, HIBAG30 was applied to the dataset sourced 
from dbGAP phs000139.v1.p1 (GeneChip® Human Mapping 500K 
arrays). However, the quality of HLA imputation in this dataset did not meet 
the desired standards, and consequently, the imputed HLA types were not 
included in the analysis for the dbGAP dataset. 
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5.3 Machine learning models 
 
Nested cross-validation (nested CV) was applied with 10 folds in the inner 
loop and 5 folds in the outer loop to select the optimum hyperparameter 
configuration and obtain an estimate of the model's generalization 
performance. For the hyperparameter selection, the grid search approach 
was employed, and the 10 evaluation scores obtained for each 
hyperparameter configuration in the inner loop were used to select the 
optimum hyperparameter configuration. The hyperparameter 
configurations were ranked in decreasing order using the mean of 
balanced accuracy across the 10 inner folds. From the top 10 
hyperparameter configurations with higher values of balanced accuracy 
mean, the hyperparameter configuration with the highest value of 
sensitivity minus the standard deviation of sensitivity across the 10 folds 
was selected. For each fold in the outer loop, the selected hyperparameter 
configuration in the inner loop was applied in the outer loop using 80% of 
balanced samples for training and 20% of samples for testing. The strategy 
of nested CV used in this study is represented in Figure 3 in the 
Introduction section 1.3. The ML methods used, along with the 
corresponding hyperparameters considered in the grid search, are listed 
in Table 19. 
 
The architecture of FFN with the list of fixed and tuned parameters used 
in this study is represented in Figure 7 in the Introduction section 1.3. The 
architecture of the CNN used in this study is represented in Figure 8 in the 
Introduction section 1.3. The convolutional block in the CNN employed 
three matrices as input channels. Matrix A represented the presence of 
genomic variants, like the matrices used in the other ML methods. Matrix 
B and matrix C represented the chromosome and position of the genomic 
variants, respectively. The sex variable was encoded in matrix A, with a 
value of 1 for females and 2 for males, while it was 0 in matrix B, and the 
lowest genomic position minus one in matrix C. The values in the three 
matrices were converted to the range of -1 to 1. Genomic variants were 
ordered by chromosome and position to represent their location over the 
entire genome. 
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Python 
library Hyperparameters 

Gradient- 
Boosted 
Decision 

Trees (GB) 

scikit-learn, 
GradientBoostin

gClassifier 

• n_estimators (70, 80, 90, 100)  
• learning_rate (0.0001, 0.001, 0.01, 

0.1, 1.0) 
• subsample (0.5, 0.7, 1.0) 
• max_depth (7, 9, 10, 12, 14) 
• loss ('log_loss', 'exponential’) 
• balance (50, 60, 70) 
• sampling ('ENN', 'random', 

'SMOTE_ENN', 'SMOTE_random') 

Extremely 
Randomized 
Trees (ET) 

scikit-learn, 
ExtraTreesClass

ifier 

• n_estimators (50, 60, 70, 80, 100) 
• min_samples_split (2, 5, 8) 
• min_samples_leaf (1, 2, 5) 
• max_depth (None) 
• balance (50, 60, 70) 
• sampling ('ENN', 'random', 

'SMOTE_ENN', 'SMOTE_random') 
Random 

Forest (RF) 

scikit-learn, 
RandomForestCl

assifier 

Logistic 
Regression 

(LR) 

scikit-learn, 
LogisticRegressi

on 

• solver ('newton-cg', 'liblinear', 'sag', 
'saga’) 

• creg (0.00001, 0.0001, 0.001, 0.01, 
1, 10, 100) 

• balance (50, 60, 70) 
• sampling ('ENN', 'random', 

'SMOTE_ENN', 'SMOTE_random') 

Feedforward 
networks 

(FFN) 
PyTorch • number of epochs (300, 400, 500) 

• learning rate (0.0001, 0.001, 0.01) 
• drop-out (0.1, 0.2, 0.4) 
• number of units nUnits (100, 200) 
• number of layers nLayers (1, 2, 3) 
• balance (50, 60, 70) 
• sampling ('ENN', 'SMOTE_ENN') 

Convolutional 
Neural 

Networks 
(CNN) 

PyTorch 

Table 19 showing the ML methods used in this study, along with the corresponding 
python libraries and functions used to build the models, as well as the tested 
hyperparamaters. 
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In addition to the hyperparameters related to the configuration of the ML 
methods above listed, other parameters associated with balancing and 
sampling strategies were tested. Varying degrees of class imbalance were 
used during training, where the number of cases remained constant, while 
the number of controls varied according to the following proportions:  

• 50% cases and 50% of controls 
• 40% cases and 60% controls 
• 30% cases and 70% controls 

 
As for the sampling strategies, four different approaches were tested: 

• Random undersampling (random) 
• Edited nearest neighbour undersampling (ENN) 
• SMOTE oversampling 20% of cases + random undersampling 

(SMOTE_random) 
• SMOTE oversampling 20% of cases + edited nearest neighbour 

undersampling (SMOTE_ENN) 
 
The final hyperparameter configurations selected for each fold, method 
and disease are listed in Table 20 for MS and AD, and in Table 21 for SC 
and PD. The class imbalances 40%/60% and 30%/70% did not appear to 
confer any advantage to the model performance, as all the final 
hyperparameter configurations exhibited a class imbalance of 50%/50%. 
As for SMOTE oversampling, it was only selected in some of the 
hyperparameter configurations of DL methods. 
 



Magdalena Arnal Segura 

Pag 124  

 
Table 20 lists the hyperparameters selected for the final models in MS and AD. The 
five folds correspond to the outer loop of the nested CV. The parameters listed for 
GB, in order, are: n_estimators, learning_rate, subsample, max_depth, loss, 
balancing, and sampling. The parameters listed for ET and RF, in order, are: 
n_estimators, min_samples_split, min_samples_leaf, max_depth, balancing, and 
sampling. The parameters listed for LR, in order, are: solver, C, balancing, and 
sampling. The parameters listed for FFN and CNN, in order, are: number of 
epochs, learning rate, dropout probability, number of units, number of layers, 
sampling, and balancing. 
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Table 21 lists the hyperparameters selected for the final models in SC and PD, 
following the same structure as in Table 20. 

The number of samples for each disease across the testing, validation, 
and training sets are as follows: 
 

• MS: Testing (404 cases, 15970 controls); Validation (162 cases, 
6388 controls); Training (1616 cases). 

• AD: Testing (498 cases, 15969 controls); Validation (200 cases, 
6387 controls); Training (1992 cases). 

• SC: Testing (198 cases, 15971 controls); Validation (79 cases, 
6389 controls); Training (790 cases). 

• PD: Testing (625 cases, 15968 controls); Validation (251 cases, 
6387 controls); Training (2250 cases). 

 
The number of controls in the training sets varied and depended on the 
imbalance rate. The final evaluation performance for each method was 
obtained from the outer loop in the nested CV. This was done by 
calculating the mean and standard deviation across the five different folds.  
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Feature selection methods were used to identify a subset of predictors that 
could potentially enhance the performance of the models. Recursive 
feature elimination (RFE) was implemented using the 
sklearn.feature_selection.RFE function in Python. Different number of 
features were tested using the sklearn.model_selection.GridSearchCV 
function, with 20, 50, 100, 150, 200, and 250 for MS, and 5, 20, 50, 100 
and 150 for AD. Additionally, recursive feature elimination with cross-
validation (RFECV) was implemented using the 
sklearn.feature_selection.RFECV function. In RFE and RFECV, balanced 
accuracy was used as the scoring function. 
 
5.4 Polygenic risk score 
 
PRSice-2 was used to calculate the polygenic risk score (PRS)45 for the 
disease of interest. PLINK files from UKB were used as target data. The 
summary statistics used as the base data were downloaded from the 
NHGRI-EBI GWAS Catalog50 on 25/05/2023 for the studies 
GCST00553189 related to MS and GCST007511111 to AD. Summary 
statistics for SC were obtained from dbGaP at 
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number 
phs000021.v3.p2223. Summary statistics for PD were obtained from the 
International Parkinson Disease Genomics Consortium (IPDGC) 
resources page (https://pdgenetics.org/resources)146.  
 
PRS was calculated using the average effect size function and considering 
an additive model for regression. PRS calculation was combined with p-
value thresholding using the C+T (clumping + thresholding) method43. 
Following this approach, PRS was calculated several times comprising 
SNVs with increasing GWAS p-value thresholds, and the most predictive 
PRS was used for the final PRS calculation.  
 
Genomic variants in the base data were filtered to exclude multi-allelic 
SNVs. Discrepancies caused by inverted effect alleles were resolved, and 
each rsID was linked to a single nucleotide change. The sex variable and 
the first 10 principal components (PC) available for researchers to 
download from UKB (UKB field ID 22009) were added as covariates in the 
PRS models.  
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PRS were calculated five times for each disease, including in the 
regression model the same samples used in the outer loop of the nested 
CV used for training the final ML models. The aim was to compare the 
performance of PRS with ML using the same samples for fitting and 
evaluation in each fold. I ran the experiment twice: first, using all the 
genomic variants present in the target and base data (PRS_ALL; 6007, 
234084, 48197, 265035 variants after clumping for MS, AD, SC, and PD, 
respectively), and second, the disease related variants used in the ML 
models (PRS_RED; 78, 72, 42, 48 variants after clumping for MS, AD, SC, 
and PD, respectively). To convert PRS into binary categories, a threshold 
was established to distinguish the individuals with high risk to the disease. 
Individuals with a PRS above the 99th percentile were classified as high 
risk (positives)44. Similarly, the 99th percentile was applied to the 
probabilities obtained from ML models to classify high-risk individuals and 
to compare the results with the PRS models. The relative risk (RR) and 
odds ratio (OR) were used to evaluate the models, with the formulas 
provided below: 
 

𝑅𝑅 =
𝑃!!"#/(𝑃!!"# +	𝑁!!"#)

𝑃$/(𝑃$ +𝑁$)  

 

𝑂𝑅 =
𝑃!!"#/	𝑁!!"#

𝑃$	/	𝑁$  

 
Where P99th and N99th represent the number of positives (individuals with 
the disease) and negatives (controls) present in the top 99th percentile with 
the highest PRS, or probabilities in the case of ML methods. P’ and N’ 

represent the number of positives and negatives present in the samples 
that were not in in the top 99th percentile. 
 
5.5 Explainability methods applied to machine learning 
models 
 
The importance measures assigned to the features in the classification 
were obtained through various approaches depending on the ML method. 
For the tree-based ensemble ML methods such as GB, ET and RF, feature 
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importance metrics were obtained from model statistics. In the case of LR, 
the coefficients of the features in the decision function were used. In DL 
methods, specifically FFN and CNN, importance metrics were derived 
using layer integrated gradients (LIG)224, layer deeplift (DE)225, saliency 
maps (SM)226 and guided backpropagation (GBP)227. These methods 
provide a score for each sample and feature, and the resulting matrices 
share the same dimensions as the input matrices. To obtain a single 
importance value for each feature, the median of the absolute values of 
attributes was calculated for cases and controls, and both values were 
summed for each feature. In the case of CNN, this process was repeated 
for each matrix, and the resulting values from the three matrices were 
summed. To address the fact that the importance measures were obtained 
using different approaches, and consequently, had a different range of 
values, the predictors were ranked from the highest importance to the 
lowest importance using consecutive ordinal numbers for each method 
and fold. 
 
The prioritization of genomic features was performed in the fold with the 
highest balanced accuracy for each ML method. The top 10% of the best-
ranked features in each method were selected as the prioritized genomic 
variants indicating a stronger association with the disease. To add 
information on the predicted pathogenic effect of missense mutations to 
the protein, AlphaMissense was employed160. To incorporate information 
regarding the impact of SNVs on RNA expression and splicing, data on 
expression quantitative trait loci (eQTL) and splicing quantitative trait loci 
(sQTL) from the GTEx database were used. 
 
With the aim of detecting pairwise interactions among the prioritized 
genomic variants, I used a full generalized lineal model (GLM) considering 
two genomic variants as independent variables with their individual effect 
and interaction to classify cases and controls, as well as a reduced GLM 
with the same variables but considering only the individual effect of each 
genomic variant without the interaction term to classify both classes. An 
analysis of deviance between the full GLM and reduced GLM, comparing 
the reduction in deviance with a chi-squared test was performed. The 
same test was applied 100 times, randomly selecting 1800 MS and 
controls in each iteration. The asymptotically exact harmonic mean p-
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value (HMP) was used to summarize the p-values obtained across the 
iterations and correct for multiple comparisons. A HMP < 0.01 was 
employed to select significant pairwise interactions. 
 
 

Abbreviations Full description 

P-P 

The genomic variants with an annotated protein-protein 
interaction are both missense variants located in the 
transcripts coding for the proteins involved in the 
interaction. These are designated as direct interactions. 

P-E 

One genomic variant involved in the interaction is a 
missense variant located in the transcript of the protein, 
and the other affects the gene expression of the other 
protein involved in the interaction. 

P-S 

One genomic variant involved in the interaction is a 
missense variant located in the transcript of the protein, 
and the other affects the splicing of the transcript coding 
for the other protein involved in the interaction. 

E-E 
Both genomic variants with the annotated interaction 
affect the gene expression of the proteins involved in the 
interaction. 

S-S 
Both genomic variants with the annotated interaction 
affect the splicing of transcripts coding for the proteins 
involved in the interaction. 

E-S 
The genomic variants with the annotated interaction 
affect the spicing in one case and the gene expression in 
the other case, of the proteins involved in the interaction. 

Table 22 lists the different types of interactions with molecular annotations. 

The significant pairwise interactions involving the prioritized genomic 
variants were characterized with molecular annotations. The 
experimental-validated human protein-protein interactions were sourced 
from the Integrated Interactions Database228. Interactions of variants 
affecting genes coding for proteins involved in protein-protein interactions 
were characterized with the corresponding molecular annotations. 
Interactions of variants involving the same gene coding for the same 
protein were also characterized with molecular annotations. Table 22 
describes the different types of interactions with molecular annotations. 
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