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A B S T R A C T

Mechanical metamaterials have recently gathered increasing attention for their uncommon mechanical re-
sponses enabling unprecedented applications for elastic wave control. Many research efforts are driven
towards the conception of always new metamaterials’ unit cells that, due to local resonance or Bragg-
Scattering phenomena, may produce unorthodox macroscopic responses such as band-gaps, cloaking, focusing,
channeling, negative refraction, etc. To model the mechanical response of large samples made up of these base
unit cells, so-called homogenization or upscaling techniques come into play trying to establish an equivalent
continuum model describing these macroscopic metamaterials’ characteristics. A rather common approach
is to assume a priori that the target continuum model is a classical linear Cauchy continuum featuring the
macroscopic displacement as the only kinematical field. This implies that the parameters of such continuum
models (density and/or elasticity tensors) must be considered to be frequency-dependent to capture the
complex response of the considered mechanical systems in the frequency domain. These frequency-dependent
models can be useful to describe some of the aforementioned macroscopic metamaterials’ properties, yet,
they suffer some drawbacks such as featuring negative masses and/or elastic coefficients in some frequency
ranges which are close to resonance frequencies of the underlying microstructure. This implies that the
considered Cauchy continuum is not positive-definite for all the considered frequencies. In this paper, we
present a procedure, based on the definition of extra kinematical variables (with respect to displacement
alone) and through the use of the inverse Fourier transform in time, to convert a frequency-dependent model
into an enriched continuum model of the micromorphic type. All the parameters of the associated enriched
model are constant (i.e., frequency-independent) and the model itself remains positive-definite for all the
considered frequency ranges. The response of the frequency-dependent model and the associated micromorphic
model coincide in the frequency domain, in particular when looking at the dispersion curves. Moreover, the
micromorphic (frequency-independent) model results to be well defined both in time- and in the frequency-
domain, while the Cauchy (frequency-dependent) model can only exist in the frequency domain This paper
aims to build a bridge between the upscaling techniques usually found in the literature and our persuasion
that macroscopic continua of the micromorphic type should be used to model metamaterials’ response at the
macroscopic scale.

1. Introduction

1.1. A material from an engineering point of view

Using the word material, we are often referring to a solid substance (e.g., sandstone, marble, steel, iron, etc.) or a fluid substance (e.g., water, oil,
etc.) with characteristic macroscopic properties making it easily recognizable for us. For example, marble is known for its aptitude to be worked in
resistant slabs of beautiful colors that are often used to pave internal and external surfaces, steel for its stiffness which makes it irreplaceable for our
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civil and aeronautic structures, water for its transparency and purity and, like all other fluids, for its habit of taking the form of the recipient that
contains it. All these macroscopic characteristics are certainly conferred by a specific organization of small particles of different sorts (atoms) that
are arranged together in different ways (molecules). In other words, each material can be seen to have a specific discrete (or heterogeneous) nature
as soon as we look at it ‘‘close enough’’. However, knowing all details of this underlying heterogeneity often adds little value to our macroscopic
observation of the material itself. For example, knowing how the molecules of a block of marble are made up of silica, oxygen and other atoms and
how different molecules are distributed into the marble block does not really help us if we just want to cut large slices out of the block and polish
them to pave our living room. It is exactly the ability of our thought to focus uniquely on these macroscopic materials’ properties that allowed the
modern scientific method to produce systematic technological and cultural advancement: when Archimedes explained why certain solids float and
others sink (Archimedes’ principle), he did not focus his attention on the fact that both water and the solid are made of molecules, but only on
the overall interaction forces between the two materials at the macroscopic scale. On the same line, all the progress achieved in the last centuries
enabling the efficient design of civil and aeronautical structures heavily relied on the ability to focus attention only on the relevant macroscopic
materials properties (stiffness, mass, etc.).

There is mostly unanimous agreement in the scientific community about the fact that engineers must take advantage of this macroscopic way
of ‘‘observing’’ materials to design a building or an aircraft. Today, while living in the era of high computational performances and artificial
intelligence, we should not renounce to our critical thinking by stating that we should compute the dimensions of a dam by accounting for all the
mutual interactions of water and concrete molecules. Instead, we should most willingly focus our efforts to use these new tools to optimize the
dam’s shape, mass distribution, etc. so as to achieve the same result (building a dam) by using less material in view of sustainable construction. It
is even very likely that using the new computational capabilities to build a dam starting from atoms, while forgetting the achievements of classical
continuum mechanics, would not provide a result that is as reliable as the classical one. Such new computational tools can certainly push forward
the achievements of classical mechanics by enabling the exploration of more sustainable structures in a way that could not be possible otherwise.

Scientists and engineers mostly agree on the general view given here about the ‘‘macroscopic observation of materials’’.1 When an engineer
alks about a given elastic material (steel, concrete, etc.), the most relevant quantities to him are often the Young modulus, the Poisson ratio, and
he apparent mass. As a matter of fact, fixing specific values for these quantities is in some sense equivalent to choosing a specific material: the
alue of these quantities can be calculated once and for all (for example with mechanical tests in a laboratory) and subsequently used to design
tructures made up of the chosen materials. It would be hard to find an engineer stating that the elastic modulus of steel can vary depending on
he intensity of the applied load, as long as the material remains in the linear elastic regime. To be more precise, we can briefly recall what is
one in classical elasticity to describe the mechanical response of large blocks of a homogeneous material (i.e., a material in which we neglect
ts discrete structure). In classical linear elasticity, a displacement field 𝑢(𝑥, 𝑡) is introduced describing the motion of a material point 𝑥 from the
eference configuration to the current one. Each material point indeed represents a small homogeneous volume of matter that can interact with the
djacent elementary volumes in a way that is specific to each material. From the study of the equilibrium of this continuous system, one can obtain
PDE governing its motion in which the only unknown is the macroscopic displacement 𝑢 as we can see in Eq. (1). Once the values of the mass

ensity and the elastic coefficients of the desired material are chosen, solving this PDE will give information about the response (displacement and
eformation) of the material under the application of a given external load (see Section 2 for a brief summary).

.2. Metamaterials and how to model them at the engineering scale

In the last two or three decades, the classical concept of ‘‘material’’ has been revolutionized by the design and realization of materials whose
eterogeneous nature can have visible effects at the macroscopic scale. In particular, scientists and engineers purposely created materials with
rchitectured microstructures in which the vibration of the microscopic components has an important effect at the macroscopic scale. These
aterials are often called metamaterials in the sense that their mechanical response goes beyond (from the Greek ‘‘meta’’ = beyond) the one

usually shown by the more classical materials that we are used to know. The exotic dynamic metamaterials’ responses at the macroscopic scale
are indeed triggered by special vibration mechanisms taking place at the level of the architectured microstructure. We are standing in front of
something that was never observed before: the motion of the material constituents at lower scales has a non-negligible impact on the mechanical
response at the macroscopic-scale. More than this: the overall properties at the macroscopic-scale are almost completely determined by the motion
of metamaterials’ microstructure, at least for certain frequency ranges. Typical examples are metamaterials exhibiting band-gaps (frequency ranges
in which elastic waves cannot propagate) (Bilal et al., 2018; Celli et al., 2019; Liu et al., 2000; Wang et al., 2014; El Sherbiny and Placidi, 2018;
Koutsianitis et al., 2019; Goh and Kallivokas, 2019; Zhu et al., 2015; Fedele et al., 2023), cloaking (elastic waves proceed unperturbed even if
hitting the metamaterial) (Bückmann et al., 2015; Misseroni et al., 2016; Rossi et al., 2020; Misseroni et al., 2019; Norris et al., 2014), focusing (a
diffused incident wave is focused in a ray while passing inside the metamaterial) (Cummer et al., 2016; Guenneau et al., 2007), channeling (elastic
waves take patterns with specific orientations while passing into the metamaterial) (Kaina et al., 2017; Tallarico et al., 2017; Bordiga et al., 2019;
Wang et al., 2018; Miniaci et al., 2019), negative refraction (waves are reflected in unusual way when hitting an interface) (Willis, 2016; Bordiga
et al., 2019; Zhu et al., 2015; Srivastava, 2016; Lustig et al., 2019; Morini et al., 2019), and many others. Let us now repeat the same reasoning
done in the case of classical elasticity when a material point 𝑥 does not represent a homogeneous elementary volume, but indeed represents a
two-mass system of the type presented in Fig. 1.2

Metamaterials are often designed starting from a periodic repetition of building blocks like those in Fig. 1: the wanted exotic properties
e.g., macroscopic stopping of wave propagation) are obtained exploiting local resonances of the internal mass that starts vibrating at the
icroscopic-level and ‘‘traps’’ the energy of the propagating wave (the macroscopic effect of this microscopic-energy trapping is that no macroscopic
ropagation can be observed in the macroscopic metamaterial’s block). A common approach to describe the response of such metamaterials’ blocks
t the macroscopic scale is to use classical Cauchy elasticity This hypothesis implies that the ‘‘unit-cell’’ in Fig. 1 is treated as a homogeneous

1 It is clear that physicists and chemists would be more interested in the discrete nature of matter, given the smaller scales at which occur the phenomena
hey are interested in.

2 The considerations drawn here are of general nature and are not bound to specific mass/spring microstructures. The mass/spring example proposed here is
imed at exposing the main concepts in one of the forms usually found in the literature, but the same considerations could be repeated for any heterogeneous
aterial in which microscopic-motions have a non-negligible macroscopic effect.
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Fig. 1. Schematic representation of a metamaterial’s ‘‘unit-cell’’ usually found in literature: its repetitions in space along one direction give rise to a 1D macroscopic metamaterial.

‘‘black box’’ that has an ‘‘effective mass’’ and a macroscopic displacement u. This ‘‘effective mass’’ is introduced as a suitable combination of the
two original masses and depends on frequency3: as soon as the frequency approaches the resonance frequency of the internal mass, the effective
mass may become negative giving rise to evanescent waves and thus band-gap behaviors (Huang et al., 2009; Liu et al., 2000, 2005; Milton and
Willis, 2007; Shen et al., 2018; Faraci et al., 2023). An equivalent way to look at the same problem is to consider that the elastic stiffness of the
spring (instead of the mass) is frequency-dependent so that a negative macroscopic elastic stiffness can be observed in frequency ranges where
band-gaps occur (Liu et al., 2000; Fang et al., 2006; Seo et al., 2012).

An approach of this type leads to a PDE of the same type as that of classical mechanics (see Section 2) where now the density and/or elastic
moduli are not material constants anymore, but depend on frequency (Willis, 1981, 2011, 2012, 2016; Milton and Willis, 2007; Nemat-Nasser et al.,
2011; Srivastava and Willis, 2017). While this methodology can give important insight into macroscopic metamaterials’ response (description
of dispersion, band gaps, etc.) it has the main drawback that the definition of ‘‘engineering material’’, as we know it, results to be strongly
perturbed. Indeed, using this methodology we are implicitly assuming that the (meta-) material’s macroscopic properties depend on the type
(here the frequency) of the externally applied load. In other words, we cannot give a finite set of constant parameters allowing us to describe the
metamaterial’s elastic response under any applied external load. Moreover, when the motion of the internal mass becomes particularly important
(local resonance/band-gap), the macroscopic mass density and elastic stiffness may counterintuitively become negative. This is fundamentally
related to the fact that we decided a priori to neglect the presence of an additional degree of freedom, although its macroscopic effect is not
negligible (see also Huang et al., 2009). A solution to this drawback can be searched by considering continuous models allowing the presence
of additional kinematical fields (in addition to the displacement) also at the macroscopic level. This naturally leads to the introduction of the
so-called micromorphic continuum models, whose extended kinematics classically features an additional second-order tensor 𝑃 (𝑥, 𝑡) (called the
microdistortion) with respect to the simple displacement field (Fig. 2 and Mindlin (1964), Eringen (1968, 2012), Neff et al. (2014), Madeo et al.
(2015b), Ghiba et al. (2015) and Madeo et al. (2015a)). In this way, the overall macroscopic response results to be simplified with respect to
considering a detailed periodic juxtaposition of unit cells of the type in Fig. 1 and one can arrive at a model featuring constant (i.e., frequency-
independent) elastic parameters, while allowing the description of the main macroscopic metamaterials’ characteristics (dispersion, band-gaps,
etc.).

It is known that in the literature one can find extended continuum models featuring enriched constitutive behaviors while keeping the
macroscopic displacement 𝑢(𝑥, 𝑡) as the only macroscopic kinematical field. This is the case for, e.g., so-called second gradient continua (Barbagallo
et al., 2021, 2017b; Madeo et al., 2014, 2013, 2012; Sciarra et al., 2008; Madeo et al., 2008; Askes and Aifantis, 2011, 2009, 2006; Auffray et al.,
2015; Germain, 2020), or also so-called Willis materials (Muhlestein et al., 2017; Willis, 1981). Even if these models may help to account for some
effects of metamaterials’ underlying microstructure (namely dispersion of the acoustic curves), they suffer drawbacks similar to those discussed
before. More specifically, while these models may describe some dispersion (also with constant, frequency-independent coefficients), it is impossible
to describe optic curves (and thus band-gaps), without considering counterintuitive properties such as negative mass or stiffness.

In the last decades, many homogenization techniques have emerged trying to establish how to derive suitable macroscopic PDEs for mechanical
metamaterials starting from specific microscopic unit-cells (upscaling techniques) (Craster et al., 2010; Willis, 2011, 2012; Allaire, 1992; Andrianov
et al., 2008; Auriault and Boutin, 2012; Bensoussan et al., 2011; Boutin et al., 2014; Chen and Fish, 2001; Marigo and Maurel, 2016; Touboul et al.,
2020). However, since the target macroscopic model is generally chosen a priori to depend only on the displacement field, the associated parameters
(mass and/or stiffness) turn out to be frequency-dependent and may become negative for frequencies approaching the resonance frequency of the
internal mass.

Recently, so-called computational homogenization techniques have been proposed that complement these upscaling techniques to include the
possibility of letting enriched continua of the micromorphic type emerge at the macroscopic scale (Liu et al., 2021; Sridhar et al., 2016).

From our viewpoint, the micromorphic continuum structure can be postulated directly at the macroscopic scale (without trying to obtain it from
a specific microstructure) and the metamaterials’ properties specific to each metamaterial can be retrieved in a second instance by means of an
inverse approach allowing to identify the micromorphic parameters. This avoids complex descriptions and hypotheses that have to be drawn at the
microscopic-scale to achieve the desired upscaling and allows one to focus attention on the macroscopic metamaterials’ properties that one wants
to exploit at the engineering scale. However, it is not the aim of this paper to discuss how the specific examples presented here could be approached
by reproducing the corresponding dispersion curves directly at the macroscopic scale (without starting from the specific microstructures) by using,
e.g., the so-called relaxed micromorphic model. We address the interested reader to some of our previous papers for more details in this sense (Voss

3 This dependence on the frequency of the ‘‘effective mass’’ can be found explicitly via identification between the dispersion relation for the considered unit-cell
and a classical single mass–spring unit-cell (Shen et al., 2018; Huang et al., 2009). However, it can be intuitively understood that if we try to replace a two-mass
(2DOF) system with a ‘‘black box’’ having only the displacement of the outer mass as a single DOF, the latter system implicitly requires the assumption that
the average effective mass of the ‘‘black box’’ changes for different ways of vibrating of the inner mass. This results in a frequency dependence of the effective
mass. In particular, when the internal mass strongly oscillates (for frequencies close to its own resonance frequency) in counter-phase with the displacement of
the outer mass, the effective mass may become negative.
3
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Fig. 2. Schematic representation of the kinematics of a micromorphic continuum featuring an additional second-order tensor 𝑃 (the microdistortion) with respect to the macroscopic
displacement 𝑢. This extended kinematics allows us to describe affine microscopic-motions.

et al., 2023; Neff et al., 2020; d’Agostino et al., 2020, 2017; Barbagallo et al., 2017a; Rizzi et al., 2021, 2022a,b; Ramirez et al., 2023; Demore
et al., 2022; Rizzi et al., 2022c). Instead, the present paper will thoroughly show a detailed procedure that allows to construct a micromorphic-type
(frequency-independent) continuum model starting from a given frequency-dependent Cauchy model. It will be shown that the two models are fully
equivalent in the frequency domain, while only the micromorphic model results to be well defined both in the frequency and in the time domain
thanks to the time-Fourier transform.

1.3. Reconciling Cauchy frequency-dependent models and micromorphic frequency-independent models for mechanical metamaterials

In the present paper, we explicitly show how specific frequency-dependent Cauchy models in the frequency domain can be transformed into
their frequency-independent micromorphic counterparts in the time domain.

To this aim, we propose a detailed procedure allowing us to pass from a frequency-dependent model to an associated micromorphic one by
making use of suitable changes of variables and inverse partial Fourier transform. Similar arguments can also be found in Bellis and Lombard
(2019) for a specific 1D case.

The proposed procedure, which is able to ‘‘transform’’ a frequency-dependent model into its frequency-independent micromorphic counterpart
must include mechanical consistency checks to ensure that the obtained micromorphic model is physically meaningful. These consistency checks
are:

(i) existence of an action functional from which the partial differential equilibrium equations in strong form can be obtained via a least-action
principle together with consistent boundary conditions;

(ii) positive definiteness;
(iii) conservation of total energy;
(iv) Galilean invariance.

These consistency checks strongly reduce the set of possible micromorphic models that can be considered to be physically meaningful.
We show that when considering the associated micromorphic model, no elastic parameter depends on frequency anymore. In this respect, the

micromorphic model restores the classical notion of ‘‘material’’ also when metamaterials are considered: the micromorphic coefficients can be fixed
once and for all for each metamaterial and all frequencies will describe its response notwithstanding the nature of the externally applied load.4

The procedure proposed here aims at building a bridge between the frequency-dependent models usually found in the literature and our claim
according to which macroscopic continua of the micromorphic type should be used to describe metamaterials’ response at the macroscopic scale.

2. Classical elasticity: a summary on the Cauchy continuum model in the time domain and the frequency domain

Since this is widely used throughout the paper, we recall here some well-known features of classical elasticity. Specifically, we present the
process of transforming the dynamic equations of the linear elasticity problem from the time domain to the frequency domain. Subsequently,
we will perform the dispersion analysis through two different approaches: a rigorous mathematical procedure involving the space–time-Fourier
transform (or the space-Fourier transform if beginning with the associated frequency-dependent model), and a second approach employing the
commonly found technique in the literature known as the ‘‘plane wave ansatz’’ for the displacement field 𝑢.

The equilibrium equations for a classical linear elastic Cauchy continuum are

𝜌 𝑢̈ = Div 𝜎 , (1)

4 This implies also that while the frequency-dependent model can only be used formally in the time-harmonic regime, the associated micromorphic one will
ot be limited to this special case anymore.
4
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T

where 𝑢 is the displacement field, 𝜌 is the (constant) density, and 𝜎 is the symmetric Cauchy force-stress tensor. The most general linear elastic
constitutive law and the isotropic one are

𝜎 ∶= C sym∇𝑢
isotropic
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

general
𝜎 ∶= 2𝜇 sym∇𝑢 + 𝜆 tr (∇𝑢)1 , (2)

where C is the classical 4th order elasticity tensor, and 𝜆 and 𝜇 are the Lamé constants.
When restricted to the 2D case, Eq. (1) remains formally the same, but it is intended that the displacement has only two non-zero components

𝑢1, 𝑢2) which only depend on the coordinates in the plane (𝑥1, 𝑥2).

2.1. Dispersion analysis through the space–time-Fourier transform

The dispersion analysis addresses a highly specific problem associated to the physical relevant dynamic initial value problem for the linear
elasticity system. In fact, the problem of primary physical interest takes the form:

given (𝑓, 𝑔, ℎ, 𝑢0, 𝑣0) in a
suitable space of functions,
find 𝑢 solving

𝜌 𝑢̈ − Div
[

C sym∇𝑢
]

= 𝑓 in 𝛺 × (0, 𝑇 ]

𝑢|𝛤𝐷 = 𝑔 on 𝛤𝐷 × [0, 𝑇 ]

𝜎 𝑛|𝛤𝑁 = ℎ on 𝛤𝑁 × [0, 𝑇 ]

𝑢(0, ⋅) = 𝑢0, 𝑢̇(0, ⋅) = 𝑣0 in 𝛺 × {0}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3)

where 𝛺 represents a domain in R3 with a boundary 𝜕𝛺 that is divided into two complementary parts: 𝛤𝑁 and 𝛤𝐷, on which Neumann and
Dirichlet boundary conditions can be respectively applied. The initial data are denoted by 𝑢0 and 𝑣0. In contrast, the dispersion analysis exclusively
addresses the bulk problem across the full space–time R3 × R and, for this reason, can only be representative of the response of infinite media.
As a result, the information conveyed by the dispersion relations is limited, as it overlooks various aspects that characterize the specific problem
under consideration, such as boundary and initial conditions. Consequently, as we will elaborate further, there exist multiple non-equivalent (they
can show different behaviors such as differences in aspects like the conservation of total energy) models in the time domain yielding the same
frequency-dependent model (through the time-Fourier transform).

In current literature, the use of the Fourier transform is often replaced by the adoption of the plane-wave ansatz, i.e. considering 𝑢(𝑥, 𝑡) =
𝜓 𝑒𝑖(⟨𝑥,𝑞⟩−𝜔 𝑡) where 𝜓 ∈ R3 (or its partial representations as 𝑢(𝑥, 𝑡) = 𝜑(𝑥) 𝑒− 𝑖 𝜔 𝑡 or 𝑢(𝑥, 𝑡) = 𝜙(𝑡) 𝑒𝑖⟨𝑥,𝑞⟩). Although this latter approach is formally
equivalent to the space–time-Fourier approach when dealing with the dispersion analysis, it presents several inconveniences.5 In this paper, we
adopt the Fourier transform formalism if not differently specified. The space–time-Fourier transform 𝑥,𝑡 ∶ 𝐿2(R3

𝑥 ×R𝑡) ←←←←←→ 𝐿2(R3
𝑞 ×R𝜔), is introduced

such that

𝑢(𝑥, 𝑡) ←←←←←→ 𝑢̂(𝑞, 𝜔) ∶= 𝑥,𝑡[𝑢](𝑞, 𝜔) ∶=
1

(2𝜋)2 ∫𝑡∈R ∫𝑥∈R3
𝑢(𝑥, 𝑡) 𝑒𝑖(⟨𝑞,𝑥⟩−𝜔 𝑡) 𝑑𝑥 𝑑𝑡. (4)

he new variables 𝜔 and 𝑞 = [𝑘1, 𝑘2, 𝑘3]T, whose norm is denoted by |𝑞| = 𝑘 =
√

𝑘21 + 𝑘
2
2 + 𝑘

3
2, are respectively the frequency and the wavevector

(and 𝑘 the wavenumber).
Applying 𝑥,𝑡 to the bulk equation (1) we obtain

𝑥,𝑡
[

𝜌 𝑢̈ − Div
[

Csym∇𝑢
]]

= − 𝜌𝜔2 𝑢̂(𝑞, 𝜔) +
(

C sym(𝑢̂(𝑞, 𝜔)⊗ 𝑞)
)

𝑞 = 0. (5)

Let us define the linear operator A(𝜔, 𝑞, 𝜌,C) ∶ R3 → R3 as

A(𝜔, 𝑞, 𝜌,C) 𝑢̂ ∶= − 𝜌𝜔2 𝑢̂ +
(

C sym(𝑢̂ ⊗ 𝑞)
)

𝑞. (6)

The matrix representation of A(𝜔, 𝑞, 𝜌,C) is known as dispersion matrix.6 As it is well known, in order to obtain non-trivial solutions of
A(𝜔, 𝑞, 𝜌,C) 𝑢̂(𝑞, 𝜔) = 0, it is necessary to search for values of 𝜔 (as functions of 𝑞) such that:

det A(𝜔, 𝑞, 𝜌,C) = 0. (7)

Considering 𝜌 and C to be known (fixing the material), the roots 𝜔 = 𝜔(𝑞) (or 𝑞 = 𝑞(𝜔)) of Eq. (7) are known as dispersion curves of the material.

2.2. Dispersion analysis through the space–time plane wave ansatz

The algebraic problems in (7) can also be derived introducing the monochromatic plane-wave ansatz for the displacement field 𝑢 i.e. setting

𝑢(𝑥, 𝑡) = 𝜓 𝑒𝑖(⟨𝑞,𝑥⟩−𝜔 𝑡) (8)

where 𝜓 ∈ R3 is the amplitude vector. Substituting the ansatz (8) in the equilibrium equations (1), we formally obtain the same family of algebraic
problems, namely A(𝜔, 𝑞, 𝜌,C)𝜓 = 0 which thus implies Eq. (7) for the search of dispersion curves.

5 For instance, in the expression 𝜓 𝑒𝑖(⟨𝑥,𝑞⟩−𝜔 𝑡), the Fourier variables (𝑞, 𝜔) are introduced alongside the space–time variables (𝑥, 𝑡), leading to a lack of clear
separation between these two domains. The Fourier transform resolves this issue, enabling the proper introduction of functions that depend solely on one of the
four pairs of variables: (𝑥, 𝑡), (𝑥, 𝜔), (𝑞, 𝑡), and (𝑞, 𝜔). Moreover, the primary advantage of employing the Fourier transform lies in the flexibility it offers, as it
allows to consider a broader range of functions beyond the specific structure of monochromatic plane waves.

6 If we define a linear map D ∶ R3 → R3 via D 𝑢̂ = C sym (𝑢̂ ⊗ 𝑞) 𝑞, the matrix representation of D is known as the acoustic tensor.
5
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Fig. 3. Dispersion curves for a classical 2D isotropic Cauchy model in which the following values for the parameters have been used: 𝜌 = 900 kg∕m3, 𝜆 = 2898 Pa, 𝜇 = 262 Pa.
Given that the sole kinematic variable at play is the displacement field 𝑢, the resultant dispersion curves are exclusively acoustic. Furthermore, the linearity exhibited by the
elationships 𝜔p(𝑘) and 𝜔s(𝑘) implies that the model is non-dispersive.

.3. Linear elasticity in the frequency domain (dispersion curves through the subsequent application of time and space-Fourier transform)

Let us consider the linear elastic problem in the full space–time

𝜌 𝑢̈ − Div[C sym∇𝑢] = 0 (9)

where 𝑢 ∶ R3
𝑥 ×R𝑡 → R3 is the displacement field. To derive a solution for Eq. (9), we can break it down into a parameterized collection of simpler

roblems using the time-Fourier transform 𝑡. This transform is defined as follows:

𝑡 ∶ 𝐿2(R𝑥 × R𝑡) ←←←←←→ 𝐿2(R𝑥 × R𝜔), 𝑢(𝑥, 𝑡) ←←←←←→ 𝑢̂(𝑥, 𝜔) ∶= 𝑡[𝑢](𝑥, 𝜔) ∶=
1

√

2𝜋 ∫𝑡∈R
𝑢(𝑥, 𝑡) 𝑒− 𝑖 𝜔 𝑡 𝑑𝑡.

hroughout this section and the remainder of the paper, whenever we need to emphasize the distinction between the time domain R in the domain
f definition of the time-Fourier transform and the R in the codomain, we will denote them as R𝑡 and R𝜔, respectively. The same will be done for the

R3
𝑥 and R3

𝑞 for the space-Fourier transform. The advantage of the time-Fourier transform is related to the fact that it ‘‘converts’’ (as a consequence
of the integration by parts)7 derivatives in polynomial factors, i.e. for example

𝑢̈(𝑥, 𝑡) ←←←←←→ 𝑡[𝑢̈](𝑥, 𝜔) = −𝜔2 𝑡[𝑢](𝑥, 𝜔) = −𝜔2 𝑢̂(𝑥, 𝜔).

To make the notation lighter from now on, we will simply write 𝑢̂ instead of 𝑢̂(𝑥, 𝜔) when this does not create confusion. In this way, applying 𝑡
o Eq. (9) leads to a family (parameterized by 𝜔) of PDEs

− 𝜌𝜔2 𝑢̂ − Div[C sym∇𝑢̂] = 0. (11)

q.s (11) are referred to as the ‘‘linear elasticity problem in the frequency domain’’ and are often the starting point for frequency-dependent models
sually found in the literature to describe metamaterial responses when letting 𝜌 or C to be frequency-dependent. Concerning the dispersion analysis
ssociated to Eq. (11), we explicitly remark that we can obtain the family of algebraic problems det A(𝜔, 𝑞, 𝜌,C) = 0, equivalent to Eq. (7), also
onsidering the model in the frequency domain (11) and subsequently applying the space-Fourier transform

𝑥 ∶ 𝐿2(R3
𝑥 × R𝜔) ←←←←←→ 𝐿2(R3

𝑞 × R𝜔), 𝑢̂(𝑥, 𝜔) ←←←←←→ 𝑢̂(𝑞, 𝜔) ∶= 𝑥[𝑢̂](𝑞, 𝜔) ∶=
1

(2𝜋)
3
2
∫𝑥∈R3

𝑢̂(𝑥, 𝜔) 𝑒𝑖 ⟨𝑞,𝑥⟩ 𝑑𝑥 (12)

o8 𝑢̂(𝑥, 𝜔). In other words, we have that 𝑥,𝑡 = 𝑥◦𝑡 = 𝑡◦𝑥. The same family of algebraic problems can be also derived via the space-plane-wave
nsatz for the displacement 𝑢̂(𝑥, 𝜔).

.3.1. Dispersion curves for 2D isotropic Cauchy media
When the accounted medium is isotropic, i.e. C sym(𝑢̂ ⊗ 𝑞) = 2𝜇 sym(𝑢̂ ⊗ 𝑞)+𝜆 ⟨1, sym(𝑢̂ ⊗ 𝑞)⟩1, remarking that ⟨1, sym(𝑢̂ ⊗ 𝑞)⟩ = tr (sym(𝑢̂ ⊗ 𝑞)) =

r (𝑢̂ ⊗ 𝑞) = ⟨𝑢̂, 𝑞⟩, we see that tr (𝑢̂ ⊗ 𝑞)1 𝑞 = ⟨𝑢̂, 𝑞⟩ 𝑞 = (𝑞 ⊗ 𝑞) 𝑢̂, and

sym(𝑢̂ ⊗ 𝑞) 𝑞 = 1
2

(

𝑢̂ ⊗ 𝑞 + 𝑞 ⊗ 𝑢̂
)

𝑞 = tr (𝑞 ⊗ 𝑞)
⏟⏞⏞⏟⏞⏞⏟

𝑘2

𝑢̂ + ⟨𝑢̂, 𝑞⟩ 𝑞 = 𝑘2 𝑢̂ + (𝑞 ⊗ 𝑞) 𝑢̂. (13)

7 Indeed,

𝑡[𝑢̇](𝑥, 𝜔) = ∫R
𝑢̇(𝑥, 𝑡) 𝑒− 𝑖 𝜔 𝑡 𝑑𝑡 = ∫R

[ 𝑑
𝑑𝑡

(

𝑢(𝑥, 𝑡) 𝑒− 𝑖 𝜔 𝑡
)

− 𝑢(𝑥, 𝑡) 𝑑
𝑑𝑡
𝑒− 𝑖 𝜔 𝑡

]

𝑑𝑡 =

=0 because 𝑢∈𝐿2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑢(𝑥, 𝑡) 𝑒− 𝑖 𝜔 𝑡|

|

+∞
−∞ −∫R

− 𝑖 𝜔 𝑢(𝑥, 𝑡) 𝑒− 𝑖 𝜔 𝑡 𝑑𝑡

= 𝑖 𝜔∫R
𝑢(𝑥, 𝑡) 𝑒− 𝑖 𝜔 𝑡 𝑑𝑡 = 𝑖 𝜔𝑡[𝑢](𝑥, 𝜔). (10)

8 By an abuse of notation, we employ the same symbol, 𝑢̂ without specifying its argument, to represent the three images 𝑥,𝑡[𝑢], 𝑥[𝑢] and 𝑡[𝑢], when no
confusion can arise.
6
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Eq. (7) then simplifies as

det
(

− 𝜌𝜔2 1 + 𝜇 𝑘2 1 + (𝜇 + 𝜆) 𝑞 ⊗ 𝑞
)

= 0, 𝑞 = (𝑘1, 𝑘2, 𝑘3). (14)

onsidering now the 2D isotropic case, we obtain

det
(

− 𝜌𝜔2 + 𝜇 𝑘2 + (𝜇 + 𝜆) 𝑘21 (𝜇 + 𝜆) 𝑘1 𝑘2
(𝜇 + 𝜆) 𝑘1 𝑘2 − 𝜌𝜔2 + 𝜇 𝑘2 + (𝜇 + 𝜆) 𝑘22

)

= 𝜇 (𝜆 + 2𝜇) 𝑘4 − 𝜌𝜔2 𝑘2 (𝜆 + 3𝜇) + 𝜌2 𝜔4 = 0,

i.e. Eq. (7) gives rise to a polynomial that is bi-quadratic both in 𝑘2 and 𝜔2. The polynomial (7) can be equivalently solved in terms of both 𝜔(𝑘)
and 𝑘(𝜔) giving equivalent but inverse relations. The roots of Eq. (7) in terms of 𝑘(𝜔) are:

𝑘p ∶=
1
𝐶p

𝜔 = ±
√

𝜌
𝜆 + 2𝜇

𝜔 𝑘s ∶=
1
𝐶s

𝜔 = ±
√

𝜌
𝜇
𝜔 , (15)

here 𝑘p is a solution associated with the propagation of pressure waves, while 𝑘s with the propagation of shear waves. In Fig. 3 it is possible to
ee the plot of the dispersion relations (15), i.e., the dispersion curves of an isotropic Cauchy continuum, for specific values of the parameters. The
quivalent but inverse relations 𝜔(𝑘) have a more complex expression and will not be shown here. Here 𝐶p and 𝐶s are the speed of propagation of
ressure and shear waves, respectively. It is highlighted that, since we have chosen an isotropic constitutive law, the dispersion relations depend
ust on the wavenumber 𝑘 and not on the direction of propagation since the response of the material must be the same regardless the direction.

Summary: Equivalent techniques for the dispersion analysis for classical linear elasticity

1. Through the space–time-Fourier transform:

Applying 𝑥,𝑡 to 𝜌 𝑢̈ = Div 𝜎 we obtain the family of algebraic problems A(𝜔, 𝑞, 𝜌,C) 𝑢̂ = 0. To obtain non trivial solutions, we need to look
for the couples (𝜔, 𝑞) such that the characteristic polynomial is vanishing:

det A(𝜔, 𝑞, 𝜌,C) = 0.

The roots 𝑘(𝜔) of the characteristic polynomial, for the 2D-isotropic case, give the dispersion curves:

𝑘p ∶=
1
𝐶p

𝜔 = ±
√

𝜌
𝜆 + 2𝜇

𝜔 , 𝑘s ∶=
1
𝐶s

𝜔 = ±
√

𝜌
𝜇
𝜔 .

2. Through the space–time plane wave ansatz:

Setting 𝑢(𝑥, 𝑡) = 𝜓 𝑒𝑖(⟨𝑞,𝑥⟩−𝜔 𝑡), inserting it into the bulk equation 𝜌 𝑢̈ = Div 𝜎 we obtain the same family of algebraic problems A(𝜔, 𝑞, 𝜌,C)𝜓 =
0 ⟹ det A(𝜔, 𝑞, 𝜌,C) = 0, whose roots are the dispersion curves. The constant amplitude vector 𝜓 takes formally the role that 𝑢̂ had in
the space–time-Fourier approach.

3. Through the space-Fourier transform of the elasticity model in the frequency domain:

Starting from linear elasticity written in the frequency domain

− 𝜌𝜔2 𝑢̂ − Div[C sym∇𝑢̂] = 0 (17)

the dispersion relations A(𝜔, 𝑞, 𝜌,C) 𝑢̂ = 0 ⟹ det A(𝜔, 𝑞, 𝜌,C) = 0 can be also obtained by applying the space-Fourier transform 𝑥 to Eq.
(17).

4. Through the space-plane wave ansatz applied to the elasticity model in the frequency domain:

Setting 𝑢̂(𝑥, 𝜔) = 𝜓(𝜔) 𝑒𝑖 ⟨𝑥,𝑞⟩ and inserting it into − 𝜌𝜔2 𝜓 − Div[C sym∇𝜓] = 0 we obtain again the dispersion relations from

A(𝜔, 𝑞, 𝜌,C)𝜓 = 0 ⟹ det A(𝜔, 𝑞, 𝜌,C) = 0.

Conclusion: These techniques for dispersion analysis are equivalent when the goal is to derive the dispersion curves.

2.3.2. Passing from the frequency domain to the time domain through inverse time-Fourier transform
Since it will be at the basis of the new procedure presented in this paper to transform a frequency dependent model into an enriched model, we

briefly illustrate here how it is possible to pass from the frequency domain to the time domain by making use of the inverse time-Fourier transform
for classical linear elasticity. Starting from

− 𝜌𝜔2 𝑢̂ − Div[C sym∇𝑢̂] = 0 (18)

nd remarking that −1
𝑡 [−𝜔2 𝑢̂] = 𝑢̈, applying −1

𝑡 to both sides of the previous equation we obtain

− 𝜌𝜔2 𝑢̂ − Div[C sym∇𝑢̂] = 0
−1
𝑡

⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ −1
𝑡

[

−𝜌𝜔2 𝑢̂ − Div[C sym∇𝑢̂]
]

= −1
𝑡 [0]

⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝜌 𝑢̈ − Div[C sym∇𝑢] = 0.
7
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Summary: linear elasticity in the frequency domain and its time domain counterpart

Linear elasticity in the frequency domain:

− 𝜌𝜔2 𝑢̂ = Div
[

C sym∇𝑢̂
]

Time domain counterpart:

The action functional associated to the model in the time domain obtained from the model in the frequency domain through the inverse
time-Fourier transform is

 = ∬
𝛺×[0,𝑇 ]

1
2
𝜌 ⟨𝑢̇, 𝑢̇⟩

⏟⏞⏞⏟⏞⏞⏟
K - kinetic

energy density

− 1
2
⟨C sym∇𝑢, sym∇𝑢⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 .

The equilibrium equations in 𝛺 are: 𝜌 𝑢̈ − Div
[

C sym∇𝑢
]

= 0 ,

and the Neumann boundary conditions on 𝜕𝛺 × [0, 𝑇 ] are: (C sym∇𝑢) 𝑛 = 0.

Consistency checks of the model in the time domain:

positive-definiteness ✓ (but does not allow for band-gaps) energy conservation ✓ infinitesimal Galilean invariance (IGI) ✓

extended infinitesimal Galilean invariance (EIGI) ✓

3. A simple Cauchy model with frequency-dependent density and its enriched frequency-independent counterpart

In the frequency domain, we have the option to tackle a fresh set of problems, wherein the inertia and elastic tensors are functions of the
frequency9 𝜔. This entails considering the parameterized family of PDE systems

− 𝜌(𝜔)𝜔2 𝑢̂ − Div[C̃(𝜔) sym∇𝑢̂] = 0, ∀𝜔 ∈ R, (19)

where 𝜌 ∶ Dom 𝜌 ⊂ R ←←←←←→ R and C̃ ∶ Dom C̃ ⊂ R ←←←←←→ Sym+ (Sym(3),Sym(3)) and where Sym+ (Sym(3),Sym(3)) is the space of positive definite fourth
order elasticity tensors.

In this section, we will study the case in which only the density 𝜌 is a function of the frequency, reserving more general cases for subsequent
paragraphs. Therefore, we consider the parameterized family of PDE systems in the frequency domain,

− 𝜌(𝜔)𝜔2 𝑢̂ = Div
[

C sym∇𝑢̂
]

with 𝜌(𝜔) = 𝜌
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

and Dom 𝜌 = R ⧵
{

±
√

𝑎
𝑏

}

, (20)

here 𝑏 and 𝑐 are dimensionless coefficients, and 𝑎 has the dimension of s−2. Note that lim𝜔→0 𝜌(𝜔) = 𝜌, which means that the density approaches
the classical value in the long-wave limit. It must be underlined that the choice of the function 𝜌(𝜔) in Eq. (20) cannot be completely arbitrary and
that expressions of this type can be often found in the literature when considering ‘‘unit cells’’ like those in Fig. 1 (Milton and Seppecher, 2012;
Huang et al., 2009; Shen et al., 2018). The procedure to derive the dispersion curves for the frequency-dependent model is formally the same as
the one presented in Section 2 and is summarized in Appendix A for this particular case. The assumed dependence of the inertia 𝜌 on the frequency
𝜔 implies that the determinant of the associated acoustic tensor will now be a rational fraction with respect to 𝜔. When solved in terms of 𝑘, the
dispersion relations for the frequency-dependent density model (for an isotropic medium) read

𝑘p =

√

√

√

√

𝜌𝜔2
(

𝑎 + 𝜔2
(

𝑐2 − 𝑏
))

(𝜆 + 2𝜇)
(

𝑎 − 𝑏𝜔2
) = 𝜔

√

𝜌
𝜆 + 2𝜇

(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

, (21)

𝑘s =

√

√

√

√

𝜌𝜔2
(

𝑎 + 𝜔2
(

𝑐2 − 𝑏
))

𝜇
(

𝑎 − 𝑏𝜔2
) = 𝜔

√

𝜌
𝜇

(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

,

where 𝑘p and 𝑘s represent the wavenumber for pressure and shear waves, respectively. A solution in terms of 𝜔(𝑘) could also be explicitly computed
but has a more complex expression and will not be shown here, while a plot of these relations is reported in Fig. 4.

We can see that the relation between 𝑘 and 𝜔 is no longer linear as for the dispersion relations (15) of the classical (non-frequency-dependent)
Cauchy model, which means that the dispersion curves issued from Eq. (21) are then able to account for dispersion and for band-gaps (the argument
of the square root can become negative, thus triggering evanescent waves which stop propagation).

9 Frequency-dependent densities (elastic tensors) result from the attempt to reduce the degrees of freedom of systems with complex kinematics by means of
pscaling (homogenization) procedures (see e.g. Huang et al. (2009) and references there cited). For example, each unit cell of the 1D system presented in Fig. 1
ould naturally have 2 degrees of freedom. Instead, the classical approach is to replace the true unit cell with a « homogenized » cell which only considers the
isplacement of an « equivalent » single mass as the only degree of freedom. Consequently, this hypothesis requires adjustments in the average effective mass
elastic tensor) to accommodate different modes of vibration of the inner spring–mass system. These adjustments result in frequency-dependent homogenized
8

aterial properties.
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Fig. 4. Dispersion curves for the 𝜌(𝜔) model in which the following values for the parameters have been used: 𝜌 = 900 kg∕m3, 𝜆 = 2898 Pa, 𝜇 = 262 Pa, 𝑎 = 0.697 1∕s2, 𝑏 = 1.089,
and 𝑐 = 1. The curves for the frequency-dependent model and the corresponding enriched model (Fig. 5) coincide. However, while the enriched model remains positive-definite in
the band-gap region, the frequency-dependent one does not. In this plot we also report the dispersion curves for the classical Cauchy model (dashed lines) already presented in
Fig. 3. In correspondence of the band-gap interval (

√

𝑎∕𝑏,
√

𝑎∕(𝑏−𝑐2 )) the frequency-dependent mass density function 𝜌 attains negative values.

3.1. Time domain models associated to the presented frequency-dependent model

In this section, we demonstrate how, starting from a frequency dependent model in the frequency domain, we can derive various models in
the time domain via suitable changes of variables and the use of the inverse time-Fourier transform. It is clear that, since our procedure is based
on the introduction of auxiliary variables, this choice cannot be unique, thus implying the possibility of different time-dependent models. If one
only considers the introduction of auxiliary variables to transform a frequency-dependent model into a frequency-independent micromorphic-type
model, one could thus end up with a large number of models in the time domain.

However, admissible macroscopic models in the time-domain must be mechanically consistent, so that from the many possible models one
should select only those satisfying the following minimal requirements:

1. existence of an action functional,
2. positive definiteness of the action functional,
3. Conservation of the total energy (if the observed system is conservative),
4. Galilean invariance.

As a matter of fact, points (1) and (2) automatically imply that no creation of energy occurs in the considered mechanical system (thermodynamic
consistency), while point (3) is a check that the candidate model does not have internal flows, since the conservation of the total energy must be
always satisfied when considering non-dissipative systems. Finally point (4) guarantees that the elastic energy does not change when changing the
observer.

A macroscopic model in the time domain which verifies the aforementioned four properties can thus safely be considered to be well posed from a
mechanical point of view. Imposing (1) and (2) drastically restricts the number of possible emerging models in the time domain. Indeed, it becomes
quite difficult to identify auxiliary variables that give rise to suitable action functionals that are also positive-definite. However, the imposition of
(1) and (2) is not sufficient to isolate a unique consistent macro-model. Imposing (3) ulteriorly restricts the set of possible macro-models, allowing
to unveil models’ imprecisions that would remain otherwise undetected. Imposing (4) is necessary and further reduces the number of possible
models in the time domain.

We will show that all these models in the time domain yield the same frequency-dependent model when subjected to the time-Fourier transform.
Indeed, one could argue that those models in the time domain are equivalent because they yield the same dispersion relations through 𝑥,𝑡 when
examined across the entire space–time R3 ×R, and because the well-posedness of one implies the well-posedness of the others. However, they may
also exhibit distinct behaviors, such as differences in infinitesimal Galilean invariance or the conservation of total energy. This section is devoted
to the exploration of these issues.

In particular, for the proposed frequency-dependent model (20), we will derive two different PDE systems in the time domain using two distinct
changes of variables and subsequently applying −1

𝑥,𝑡 . The first model corresponds to a fourth-order system with only the displacement as unknown
field, while the second one corresponds to a second-order system with extra degrees of freedom with respect to the displacement alone.

We will investigate Galilean invariance and the conservation of total energy for both of them, demonstrating that the first one fails to meet
both requirements, whereas the second one addresses the issue of total energy conservation but still does not satisfy the infinitesimal Galilean
principle.10 To address this issue related to Galilean invariance, we will subsequently propose other enriched models so as to finally achieve an
enriched time-dependent model that addresses all needed physical requirements (see Section 4).

10 This is a well-established fact that, in general, geometrically linear models do not satisfy the Galilean invariance principle (as formulated in the general
non-linear framework). Nevertheless, an invariance condition can be derived ‘‘linearizing’’ the Galilean principle as demonstrated in Appendix B.
9
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3.1.1. First attempt: a higher order model
The first attempt is to derive a time-dependent model from the frequency-dependent model (20) directly applying an inverse Fourier transform

(as done in 2.3.2 for classical linear elasticity in the time domain). Starting from (20) we obtain11

−𝜌 𝜔2 𝑢̂ − 𝜌 𝑐2 𝜔2

𝑎 − 𝑏𝜔2
𝜔2 𝑢̂ = Div

[

C sym∇𝑢̂
]

, ∀𝜔 ∈ R ⧵
{

±
√

𝑎
𝑏

}

(22)

⟺ −(𝑎 − 𝑏𝜔2)𝜌 𝜔2 𝑢̂ − 𝜌 𝑐2 𝜔4 𝑢̂ = (𝑎 − 𝑏𝜔2)Div
[

C sym∇𝑢̂
]

, ∀𝜔 ∈ R ⧵
{

±
√

𝑎
𝑏

}

(23)

⟺ −𝑎 𝜌𝜔2 𝑢̂ + 𝑏 𝜌𝜔4 𝑢̂ − 𝜌 𝑐2 𝜔4 𝑢̂ = (𝑎 − 𝑏𝜔2)Div
[

C sym∇𝑢̂
]

, ∀𝜔 ∈ R ⧵
{

±
√

𝑎
𝑏

}

⇝ −1
𝑡

[

−𝑎 𝜌𝜔2 𝑢̂ + 𝑏 𝜌𝜔4 𝑢̂ − 𝜌 𝑐2 𝜔4 𝑢̂
]

= −1
𝑡

[

(𝑎 − 𝑏𝜔2)Div
[

C sym∇𝑢̂
]]

, ∀𝜔 ∈ R ⧵
{

±
√

𝑎
𝑏

}

⟺ 𝑎 𝜌 𝑢̈ + 𝑏 𝜌 ̈̈𝑢 − 𝑐2𝜌 ̈̈𝑢 = 𝑎Div
[

C sym∇𝑢
]

+ 𝑏Div
[

C sym∇𝑢̈
]

. (24)

Later in this discussion, we will show explicitly that higher-order models (higher than 2) involving highest derivatives with respect to time can
exhibit undesirable behaviors, such as failing to conserve the total energy of the system (even if they involve only even-order derivatives). One
potential solution to this issue involves the introduction of supplementary kinematical fields as we will show in the paragraph 3.1.2.

3.1.1.1. Existence of an action functional and positive-definiteness. The action functional associated with the equilibrium equation (24) is

 = ∬𝛺×[0,𝑇 ]

1
2
(

𝑎 𝜌 ⟨𝑢̇, 𝑢̇⟩ + (𝑐2 − 𝑏) 𝜌 ⟨𝑢̈, 𝑢̈⟩ + 𝑏 ⟨C sym∇𝑢̇, sym∇𝑢̇⟩
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

− 1
2
𝑎 ⟨C sym∇𝑢, sym∇𝑢⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥 , (25)

where for positive definiteness it is required that

𝑎 > 0 , eig(C) > 0 , 𝜌 > 0 , 𝑏 ≥ 0 , 𝑐2 > 𝑏 , (26)

where eig(C) > 0 means that the eigenvalues of C are required to be greater than zero. We underline that if the positive-definiteness condition
𝑐2 > 𝑏 is respected, the band-gap loses its upper bound, preventing the possibilities of having optic branches, so the model written in the time
domain retains the same limits in terms of positive-definiteness as it was the case for the frequency-dependent model. We also emphasize that the
action functional (25) allows for a true time-dependent variable 𝑢(𝑥, 𝑡) that abandons the frequency domain where the original frequency-dependent
equilibrium equation (20) is defined. The associated (Neumann) boundary conditions are

(𝑎C sym∇𝑢 + 𝑏C sym∇𝑢̈)𝑛 = 0 . (27)

3.1.1.2. Energy conservation. To ensure that the enriched model is conservative, we have to guarantee that

d
d𝑡 ∫𝛺

𝐸(𝑢̇, 𝑢̈,∇𝑢̇,∇𝑢) d𝑥 = ∫𝛺
d
d𝑡

[𝐾(𝑢̇, 𝑢̈,∇𝑢̇) +𝑊 (∇𝑢)] d𝑥 = 0 , (28)

where 𝛺 is the considered domain. Substituting the expressions of 𝐾 and 𝑊 from Eq. (25) into Eq. (28) we compute

∫𝛺
d𝐸
d𝑡

d𝑥 =∫𝛺
𝑎 𝜌 ⟨𝑢̈, 𝑢̇⟩ + (𝑐2 − 𝑏)𝜌 ⟨ ̇̈𝑢, 𝑢̈⟩ + 𝑏 ⟨C sym∇𝑢̈, sym∇𝑢̇⟩ + 𝑎 ⟨C sym∇𝑢, sym∇𝑢̇⟩ d𝑥

=∫𝛺
𝑎 𝜌 ⟨𝑢̈, 𝑢̇⟩ + d

d𝑡
((𝑐2 − 𝑏)𝜌 ⟨ ̇̈𝑢, 𝑢̇⟩) − (𝑐2 − 𝑏)𝜌 ⟨ ̈̈𝑢, 𝑢̇⟩ + div [(𝑏C sym∇𝑢̈)T𝑢̇] (29)

− ⟨Div [𝑏C sym∇𝑢̈], 𝑢̇⟩ + div [(𝑎C sym∇𝑢)T𝑢̇] − ⟨Div [𝑎C sym∇𝑢], 𝑢̇⟩ d𝑥.

inally, using the divergence theorem, we can write

∫𝛺
d𝐸
d𝑡

d𝑥 = ∫𝛺
⟨𝑎 𝜌 𝑢̈ − 𝑎Div [C sym∇𝑢] − (𝑐2 − 𝑏)𝜌 ̈̈𝑢 − 𝑏Div [C sym∇𝑢̈], 𝑢̇⟩ d𝑥 (30)

+ ∫𝜕𝛺
⟨(𝑎C sym∇𝑢 + 𝑏C sym∇𝑢̈)𝑛, 𝑢̇⟩ d𝑠 + (𝑐2 − 𝑏) 𝜌 𝑑

𝑑𝑡 ∫𝛺
⟨
̇̈𝑢, 𝑢̇⟩ d𝑥 .

he first term in Eq. (30) vanishes because of the equilibrium equations (24), the second term vanishes because of the boundary conditions (27),
hile the last term (𝑐2 − 𝑏) 𝜌 𝑑

𝑑𝑡 ⟨
̇̈𝑢, 𝑢̇⟩𝐿2(𝛺) will in general be non-zero, causing that the model does not conserve energy.

.1.1.3. Infinitesimal Galilean invariance. As a last check, it is necessary to assess whether the model respects infinitesimal Galilean invariance,
hich requires the invariance of the equilibrium equations Eq. (24) with respect to the following extended infinitesimal Galilean transformation

𝑢 → 𝑢 = 𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡), 𝐴̈(𝑡) = 0 and 𝑟̈(𝑡) = 0 , for all 𝐴 ∈ 𝐶2(R, so(3)) , 𝑟 ∈ 𝐶2(R,R3) . (31)

11 The equivalence stated in Eq. (24) remains valid even when considering 𝜔 ∈ R. This is due to the nature of the Fourier transform as an integral transform,
where its value at a specific point is defined up to a subset of measure zero. This means that, when starting from the time-domain model (24), one can choose
if eliminating eventual roots 𝜔 ∈

{

±
√

𝑎
}

in the associated frequency-domain model or not.
10

𝑏
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We now substitute 𝑢 with 𝑢 from Eq. (31) in Eq. (24)

𝑎 𝜌 𝑢̈ − (𝑐2 − 𝑏)𝜌 ̈̈𝑢 − 𝑏Div
[

C sym∇𝑢̈
]

= 𝑎Div
[

C sym∇𝑢
]

, (32)

⇒ 𝑎 𝜌 d2

d𝑡2
(𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)) − (𝑐2 − 𝑏)𝜌 d4

d𝑡4
(𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)) (33)

− 𝑏Div
[

C sym∇ d2

d𝑡2
(𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡))

]

= 𝑎Div
[

C sym∇(𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡))
]

⇒ 𝑎 𝜌 𝑢̈ − (𝑐2 − 𝑏)𝜌 ̈̈𝑢 − 𝑏Div
[

C sym∇𝑢̈
]

= 𝑎Div
[

C sym∇𝑢
]

, (34)

where we also observe that sym∇(𝐴(𝑡)𝑥) = sym𝐴(𝑡) = 0. As can be seen by comparing Eqs. (24) and (34), it is possible to see that they exactly
match, making them invariant with respect to extended infinitesimal Galilean transformations (for further details see Appendix B.1).

Summary: Direct time domain counterpart of the 𝜌(𝜔) model

Original frequency-dependent model (frequency domain):

− 𝜌(𝜔)𝜔2 𝑢̂ = Div
[

C sym∇𝑢̂
]

with 𝜌(𝜔) = 𝜌
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

, (𝑎 > 0, 𝑏 ≥ 0, 𝑐2 > 𝑏)

Time domain counterpart of the 𝜌(𝜔) model:

The action functional associated to the time domain model obtained from the original frequency-dependent model through the inverse
time-Fourier transform is

 = ∬
𝛺×[0,𝑇 ]

1
2
(

𝑎 𝜌 ⟨𝑢̇, 𝑢̇⟩ + (𝑐2 − 𝑏) 𝜌 ⟨𝑢̈, 𝑢̈⟩ + 𝑏 ⟨C sym∇𝑢̇, sym∇𝑢̇⟩
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

− 1
2
𝑎 ⟨C sym∇𝑢, sym∇𝑢⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 .

The equilibrium equations in 𝛺 are: 𝑎 𝜌 𝑢̈ − 𝑎Div
[

C sym∇𝑢
]

− (𝑐2 − 𝑏)𝜌 ̈̈𝑢 − 𝑏Div
[

C sym∇𝑢̈
]

= 0 ,

and the Neumann boundary conditions on 𝜕𝛺 × [0, 𝑇 ] are: (𝑎C sym∇𝑢 + 𝑏C sym∇𝑢̈) 𝑛 = 0 .

Consistency checks of the model in the time domain:

positive-definiteness � (yes, but does not allow for band-gaps) energy conservation ✗ infinitesimal Galilean invariance (IGI) ✓

extended infinitesimal Galilean invariance (EIGI) ✓

(Note that considering 𝑏 = 0 is permitted but does not restore energy conservation.)

Remark 3.1. The problem with energy conservation is related to the appearance of 𝑢̈ in the action functional. The last two authors vividly
emember a comment of the late Gérard Maugin at a conference in Cisterna di Latina (Italy) in 2014 pointing into the same direction.

.1.2. Second attempt: an associated enriched model, its formulation and positive-definiteness conditions
Let us consider again the frequency-dependent Cauchy model from Eq. (20):

− 𝜌
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

𝜔2 𝑢̂ = Div
[

C sym∇𝑢̂
]

with 𝜔 ≠ ±
√

𝑎
𝑏
. (35)

Our objective is to present a procedure that enables the construction of a frequency-independent enriched model. This model yields the same
𝜔−parameterized family of differential equations in the frequency domain as in Eq. (35), simultaneously resolving concerns pertaining to energy
conservation. To illustrate, in the context of the aforementioned problem, we will incorporate an extra kinematical field 𝑣 ∶ R3

𝑥 × (R𝜔 ⧵ {±
√

𝑎∕𝑏}) ⊂
3
𝑥 × R𝜔 → R3 in the frequency domain as

𝑣(𝑥, 𝜔) ∶= 𝑐 𝜔2

𝑎 − 𝑏𝜔2
𝑢̂(𝑥, 𝜔). (36)

By substituting Eq. (36) into Eq. (22) we arrive at the family of systems parameterized by 𝜔

⎧

⎪

⎨

⎪

⎩

− 𝜌
(

𝜔2 𝑢̂ + 𝑐 𝜔2 𝑣
)

= Div
[

C sym∇𝑢̂
]

,

𝑣 ∶= 𝑐 𝜔2

𝑎 − 𝑏𝜔2
𝑢̂ ,

∀𝜔 ∈ R ⧵
{

±
√

𝑎
𝑏

}

(37)

giving
{

− 𝜌
(

𝜔2 𝑢̂ + 𝑐 𝜔2 𝑣
)

= Div
[

C sym∇𝑢̂
]

,

𝑎 𝑣 − 𝑏𝜔2 𝑣 = 𝑐 𝜔2 𝑢̂ ,
∀𝜔 ∈ R ⧵

{

±
√

𝑎
𝑏

}

(38)

and applying the inverse time-Fourier transform −1
𝑡 we finally obtain the coupled system (same remark as in footnote 11)

{

𝜌 (𝑢̈ + 𝑐 𝑣̈) = Div
[

C sym∇𝑢
]

,
(39)
11

𝑐 𝑢̈ + 𝑏 𝑣̈ + 𝑎 𝑣 = 0,
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where 𝑣 has the dimension of a displacement. This is a second order system of PDEs. We have thus replaced the frequency-dependent Cauchy
problem in the frequency domain (Eq. (35)) with an extended continuum model in the time domain (Eq. (39)), in which all material parameters
are constants that do not depend on frequency. In particular, just the even powers of 𝜔 are allowed in order to avoid imaginary contributions
applying the inverse Fourier transform. Other constraints on the admissible expressions for 𝜌(𝜔) are given by energy conservation arguments that
will be discussed later (see Section 3.1.2.2).

3.1.2.1. Existence of an action functional and positive-definiteness. The action functional associated with the equilibrium equations (39) is

 = ∬𝛺×[0,𝑇 ]

1
2
𝜌 (⟨𝑢̇, 𝑢̇⟩ + 2 𝑐 ⟨𝑢̇, 𝑣̇⟩ + 𝑏 ⟨𝑣̇, 𝑣̇⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

− 1
2
(⟨C sym∇𝑢, sym∇𝑢⟩ + 𝜌 𝑎 ⟨𝑣, 𝑣⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 , (40)

here for positive definiteness it is required that

𝑎 > 0 , eig(C) > 0 , 𝜌 > 0 , 𝑏 > 0 , 𝑐2 < 𝑏 , (41)

here eig(C) > 0 means that the eigenvalues of C are required to be greater than zero. Positive definiteness conditions are of primary importance,
nd their validity should always be guaranteed when choosing numerical values for the material parameters. Indeed, when considering elastic
roblems, the existence of an action functional behind the observed phenomenon together with the requirement of its positive-definiteness
uarantees that no creation of energy can occur, thus ensuring the respect of the second principle of thermodynamics. This implies, in other
ords, that so-called « passivity » in the parlance of Srivastava (2015) is automatically satisfied.

However, these crucial conditions of positive-definiteness are often disregarded when dealing with frequency-dependent models.
The associated homogeneous Neumann boundary conditions on 𝜕𝛺 are now

𝜎 𝑛 = 0 , with 𝜎 = C sym∇𝑢 , (42)

here 𝑛 is the normal to the boundary 𝜕𝛺. We highlight that these boundary conditions together with the PDEs (39) can be systematically derived
y requiring the minimization of the action  in Eq. (40).

Since the frequency-dependent model contains the frequency 𝜔 as a parameter in the PDEs (35), positive-definiteness must be checked for each
requency value. In particular, we can say that the Cauchy frequency-dependent model is positive-definite for 𝜔 = 𝜔0 if

𝜌(𝜔0) > 0 and eig(C) > 0 . (43)

e remark that the condition (43)1 is violated by the originary frequency-dependent model when a bang-gap region occurs, starting from a local
esonance frequency.

.1.2.2. Energy conservation. Once the enriched continuum (39) in time domain corresponding to the given frequency-dependent model (35) is
stablished, energy conservation must be checked to finally validate the choice of the expression of 𝜌(𝜔). Indeed, if a given expression of 𝜌(𝜔) gives
ise to an enriched model whose energy is not conserved, this implies that the chosen 𝜌(𝜔) is not physically acceptable. To ensure that the enriched
odel is conservative, we have to guarantee that

d
d𝑡 ∫𝛺

𝐸(𝑢̇, 𝑣̇,∇𝑢, 𝑣) d𝑥 = ∫𝛺
d
d𝑡

[𝐾(𝑢̇, 𝑣̇) +𝑊 (∇𝑢, 𝑣)] d𝑥 = 0 , (44)

here 𝛺 is the considered domain. Substituting the expressions of 𝐾 and 𝑊 from Eq. (40) into Eq. (44) we compute

∫𝛺
d𝐸
d𝑡

d𝑥 =∫𝛺
𝜌 ⟨𝑢̈, 𝑢̇⟩ + 𝑐 𝜌 ⟨𝑢̈, 𝑣̇⟩ + 𝑐 𝜌 ⟨𝑢̇, 𝑣̈⟩ + 𝜌 𝑏 ⟨𝑣̈, 𝑣̇⟩ + ⟨𝜎, sym∇𝑢̇⟩ + 𝜌 𝑎 ⟨𝑣, 𝑣̇⟩ d𝑥

=∫𝛺
𝜌 ⟨𝑢̈ + 𝑐 𝑣̈, 𝑢̇⟩ + 𝜌 ⟨𝑐 𝑢̈ + 𝑏 𝑣̇ + 𝑎 𝑣, 𝑣̇⟩ + div(𝜎T 𝑢̇) − ⟨Div𝜎, 𝑢̇⟩ d𝑥 (45)

=∫𝛺
⟨𝜌 (𝑢̈ + 𝑐 𝑣̈) − Div 𝜎, 𝑢̇⟩ + div

(

𝜎T 𝑢̇
)

+ ⟨𝜌 (𝑎 𝑣 + 𝑐 𝑢̈ + 𝑏 𝑣̈) , 𝑣̇⟩ d𝑥 = 0 .

hanks to the equilibrium equations (39), the energy rate (45) becomes

d
d𝑡 ∫𝛺

𝐸 d𝑥 = ∫𝛺
div

(

𝜎T 𝑢̇
)

d𝑥 = ∫𝜕𝛺
⟨(𝜎 𝑛) , 𝑢̇⟩ d𝑠 = 0 , (46)

hich is automatically always satisfied thanks to the homogeneous boundary conditions required in Eq. (42).
It is clear that if a different expression for 𝜌(𝜔) was chosen in Eq. (35), that would give rise to a different enriched model (40) which could

xhibit a non-trivial condition in order to satisfy the energy conservation requirement. This implies that the chosen form of 𝜌(𝜔) must be selected
arefully.

.1.2.3. Infinitesimal Galilean invariance. As a last check, it is necessary to assess whether the model respects infinitesimal Galilean invariance,
hich requires the invariance of the equilibrium equations Eq. (39) with respect to the following extended infinitesimal Galilean transformation

cf. Appendix B)

𝑢 → 𝑢 = 𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡) , 𝑣→ 𝑣 = 𝑣 + 𝐴(𝑡)𝑥 + 𝑟(𝑡) , 𝐴̈(𝑡) = 0 , 𝑟̈(𝑡) = 0 , (47)

here 𝐴(𝑡) ∈ so(3) is a skew-symmetric matrix while 𝑟(𝑡) ∈ R3 is a vector. For the sake of clarity, we report below again the equilibrium
quations (39)

{

𝜌 (𝑢̈ + 𝑐 𝑣̈) − Div
[

C sym∇𝑢
]

= 0 ,
(48)
12
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We now substitute 𝑢 and 𝑣 with 𝑢 and 𝑣 from Eq. (47), respectively, in Eq. (48)

⎧

⎪

⎨

⎪

⎩

𝜌
(

𝑢̈ + 𝑐 𝑣̈
)

− Div
[

C sym∇𝑢
]

= 0 ,

𝑐 𝑢̈ + 𝑏 𝑣̈ + 𝑎 𝑣 = 0 ,

⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌
(

𝑢̈ + d2
d𝑡2 (𝐴(𝑡)𝑥) +

d2
d𝑡2 𝑟(𝑡) + 𝑐

(

𝑣̈ + d2
d𝑡2 (𝐴(𝑡)𝑥) +

d2
d𝑡2 𝑟(𝑡)

))

−Div
[

C sym∇ (𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡))
]

= 0 ,

𝑐
(

𝑢̈ + d2
d𝑡2 (𝐴(𝑡)𝑥) +

d2
d𝑡2 𝑟(𝑡)

)

+ 𝑏
(

𝑣̈ + d2
d𝑡2 (𝐴(𝑡)𝑥) +

d2
d𝑡2 𝑟̈(𝑡)

)

+ 𝑎 (𝑣 + 𝐴(𝑡)𝑥 + 𝑟̈(𝑡)) = 0 .

⇒

{

𝜌 (𝑢̈ + 𝑐 𝑣̈) − Div
[

C sym∇𝑢
]

= 0 ,
𝑐 𝑢̈ + 𝑏 𝑣̈ + 𝑎 (𝑣 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)) = 0 .

(49)

Comparing Eqs. (48) and (49), it is possible to see that the second equation has an extra term 𝐴(𝑡)𝑥 + 𝑟(𝑡), such that the enriched model is not
invariant with respect to extended infinitesimal Galilean transformations. Also the simpler infinitesimal Galilean invariance (IGI) is not satisfied
(see Appendix B).

To avoid this problem, in Section 4 we will show how the frequency-dependent density Cauchy model (35) can be modified simply by moving
the function of the frequency from the left to the right side of the equation as

− 𝜌
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

𝜔2 𝑢̂ = Div
[

C sym∇𝑢̂
]

⟺ − 𝜌𝜔2 𝑢̂ = Div
[(

𝑓 − 𝑐2

𝑎 − 𝑏̃ 𝜔2

)

C sym∇𝑢̂
]

, (50)

here 𝑓 = 1 + 𝑐2

𝑎 . The correspondence between the two formulations is then given by

(

1 + 𝑐2

𝑎
− 𝑐2

𝑎 − 𝑏̃ 𝜔2

)−1
= 𝑎2 − 𝑎 𝑏̃ 𝜔2

𝑎2 − 𝑎 𝑏̃ 𝜔2 − 𝑏̃ 𝑐2 𝜔2
= 1 + 𝑏̃ 𝑐2 𝜔2

𝑎2 − 𝑏̃(𝑎 + 𝑐2)𝜔2
= 1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2
. (51)

3.1.2.4. Procedure to obtain the dispersion relations for an enriched model. Here, we briefly show the procedure to obtain the dispersion relations
for a 2D enriched model with more degrees of freedom than just the displacement field. As done previously, one way to proceed is to apply the
space-Fourier transform 𝑥 to both equations

− 𝜌
(

𝜔2 𝑢̂ (𝑥, 𝜔) + 𝑐 𝜔2 𝑣 (𝑥, 𝜔)
)

= Div
[

C sym∇𝑢̂ (𝑥, 𝜔)
]

, 𝑣 (𝑥, 𝜔) = 𝑐 𝜔2

𝑎 − 𝑏𝜔2
𝑢̂ (𝑥, 𝜔) , (52)

his gives

− 𝜌
(

𝜔2 𝑢̂ (𝑞, 𝜔) + 𝑐 𝜔2 𝑣 (𝑞, 𝜔)
)

= −
[

C sym(𝑢̂ (𝑞, 𝜔)⊗ 𝑞)
]

𝑞 , 𝑣 (𝑞, 𝜔) = 𝑐 𝜔2

𝑎 − 𝑏𝜔2
𝑢̂ (𝑞, 𝜔) , (53)

and hence

− 𝜌𝜔2
(

1 + 𝑐 𝑐 𝜔2

𝑎 − 𝑏𝜔2

)

𝑢̂ = −
[

C sym(𝑢̂ ⊗ 𝑞)
]

𝑞 , 𝑣 = 𝑐 𝜔2

𝑎 − 𝑏𝜔2
𝑢̂ . (54)

ow, the first equation of (54)1 can be rewritten with the help of a linear map A(𝜔, 𝑞, 𝜌,C, 𝑎, 𝑏, 𝑐) ∶ R3 → R3

A(𝜔, 𝑞, 𝜌,C, 𝑎, 𝑏, 𝑐) 𝑢̂ ∶= − 𝜌𝜔2
(

1 + 𝑐 𝑐 𝜔2

𝑎 − 𝑏𝜔2

)

1 +
[

C sym(𝑢̂ ⊗ 𝑞)
]

𝑞 (55)

and the corresponding algebraic problem A(𝜔, 𝑞, 𝜌,C, 𝑎, 𝑏, 𝑐) 𝑢̂ = 0 admits non trivial solutions if and only if

det [A(𝜔, 𝑞, 𝜌,C, 𝑎, 𝑏, 𝑐)] = 0 . (56)

The solutions of Eqs. (56) can be evaluated in terms of 𝑘(𝜔) and they read (considering only the positive roots)

𝑘p =

√

√

√

√

𝜌𝜔2
(

𝑎 + 𝜔2
(

𝑐2 − 𝑏
))

(𝜆 + 2𝜇)
(

𝑎 − 𝑏𝜔2
) , 𝑘s =

√

√

√

√

𝜌𝜔2
(

𝑎 + 𝜔2
(

𝑐2 − 𝑏
))

𝜇
(

𝑎 − 𝑏𝜔2
) . (57)

The solution 𝑘p is associated with the propagation of pressure waves, while 𝑘s is associated with the propagation of shear waves. By direct
comparison of Eq. (57) with Eq. (21), it is possible to see that the dispersion curves of the enriched model coincide with those stemming from
the original frequency-dependent model. In Fig. 5 it is possible to see the plot for specific values of parameters. Also in this case, the dispersion
relations can be obtained formally from the frequency-dependent model introducing the space-plane-wave ansatz

𝑢̂(𝑥, 𝜔) = 𝜉(𝜔) 𝑒𝑖 ⟨𝑥,𝑞⟩ and 𝑣(𝑥, 𝜔) = 𝜁 (𝜔) 𝑒𝑖 ⟨𝑥,𝑞⟩ (58)

or directly from (39) by introducing the space–time-plane-wave ansatz

𝑢(𝑥, 𝑡) = 𝜓 𝑒𝑖(⟨𝑞,𝑥⟩−𝜔 𝑡) and 𝑣(𝑥, 𝑡) = 𝜂 𝑒𝑖(⟨𝑞,𝑥⟩−𝜔 𝑡). (59)
13
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Fig. 5. Dispersion curves for the isotropic class of symmetry in which the following values for the parameters have been used: 𝜌 = 900 kg∕m3, 𝜆 = 2898 Pa, 𝜇 = 262 Pa,
𝑎 = 0.697 1∕s2, 𝑏 = 1.089, and 𝑐 = 1. The curves for the frequency-dependent model (Fig. 4) and the corresponding enriched model coincide. However, while the enriched model
remains positive-definite in the band-gap region, the frequency-dependent one does not since 𝜌(𝜔) < 0.

3.1.2.5. Relations between the frequency-dependent model and the enriched equivalent model. While a classical Cauchy model with frequency-
independent parameters gives rise to two linear dispersion relations (see Fig. 3), enriched continuum models result in additional dispersion modes
(see Eq. (57) and Fig. 5) while having all their parameters to be frequency independent. When letting the parameters be frequency-dependent, also
a Cauchy model can exhibit dispersion and band-gaps (see Eq. (21) and Fig. 5). We comment here about the fact that the dispersion curves obtained
with the frequency-dependent model in Eq. (20) and the ones obtained from the enriched model in Eq. (39) coincide and that the enriched model
is always positive-definite, while the frequency-dependent model loses positive-definiteness in the band-gap region. From Eq. (20), it is possible to
calculate the frequencies such that

𝜌→ ∞ ⟺ 𝜔 = ±
√

𝑎
𝑏
, 𝜌 = 0 ⟺ 𝜔 = ±

√

𝑎
𝑏 − 𝑐2

, (60)

hen compared to the associated enriched model, these frequencies correspond to the cut-off frequencies of the optic curves and the asymptotes
f the acoustic curves, respectively (see Fig. 5). In particular, the cut-off frequencies can be obtained from Eq. (62) by setting 𝑘p, 𝑘s = 0, while the
symptotes (𝑘p, 𝑘s → ∞) can be computed by setting the denominator of (57) to zero.

It can also be checked that, in the frequency-dependent model’s band-gap range, the effective density 𝜌(𝜔) is negative and this makes the speed
f propagation (which is also frequency-dependent) imaginary

𝑘p = 𝜔

√

𝜌(𝜔)
𝜆 + 2𝜇

= 𝜔

√

−|𝜌(𝜔)|
𝜆 + 2𝜇

= 𝑖 𝜔

√

|𝜌(𝜔)|
𝜆 + 2𝜇

, 𝜔 ∈
(√

𝑎
𝑏
,
√

𝑎
𝑏 − 𝑐2

)

, (61)

𝑘s = 𝜔

√

𝜌(𝜔)
𝜇

= 𝜔

√

−|𝜌(𝜔)|
𝜇

= 𝑖 𝜔

√

|𝜌(𝜔)|
𝜇

,

here 𝑘p and 𝑘s represent the wavenumber for pressure and shear waves, respectively. Given the negative value of 𝜌 (𝜔), the frequency-dependent
model is not positive-definite in the band-gap region.

In the same frequency interval, the wavenumber for the enriched model is also imaginary, but this time, because of the interpretation of the
parameters 𝑎, 𝑏, and 𝑐 as material parameters, it retains the positive-definiteness

𝑘p =

√

√

√

√

𝜌𝜔2
(

𝑎 + 𝜔2
(

𝑐2 − 𝑏
))

(𝜆 + 2𝜇)
(

𝑎 − 𝑏𝜔2
) = 𝑖 𝜔

√

𝜌
|

|

|

|

|

(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

|

|

|

|

|

1
𝜆 + 2𝜇

, 𝜔 ∈
(√

𝑎
𝑏
,
√

𝑎
𝑏 − 𝑐2

)

, (62)

𝑘s =

√

√

√

√

𝜌𝜔2
(

𝑎 + 𝜔2
(

𝑐2 − 𝑏
))

𝜇
(

𝑎 − 𝑏𝜔2
) = 𝑖 𝜔

√

𝜌
|

|

|

|

|

(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

|

|

|

|

|

1
𝜇
,

and the imaginary wavenumber can be directly associated with the triggering of evanescent waves.
14
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Summary: micromorphic enriched model stemming from the 𝜌(𝜔) frequency-dependent model

Original frequency-dependent model (frequency domain):

− 𝜌(𝜔)𝜔2 𝑢̂ = Div
[

C sym∇𝑢̂
]

with 𝜌(𝜔) = 𝜌
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

, (𝑎 > 0, 𝑏 > 0, 𝑐2 < 𝑏) Introduction of the new variable:

𝑣(𝑥, 𝜔) ∶= 𝑐 𝜔2

𝑎 − 𝑏𝜔2
𝑢̂(𝑥, 𝜔).

Enriched model (time domain):

The action functional associated to the time domain model obtained from the original frequency-dependent model through the inverse
time-Fourier transform and the introduction of the additional kinematical field 𝑣 is

 = ∬
𝛺×[0,𝑇 ]

1
2
𝜌 (⟨𝑢̇, 𝑢̇⟩ + 2 𝑐 ⟨𝑢̇, 𝑣̇⟩ + 𝑏 ⟨𝑣̇, 𝑣̇⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

− 1
2
(⟨C sym∇𝑢, sym∇𝑢⟩ + 𝜌 𝑎 ⟨𝑣, 𝑣⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 .

The equilibrium equations are: 𝜌 (𝑢̈ + 𝑐 𝑣̈) = Div 𝜎 , 𝑐 𝑢̈ + 𝑏 𝑣̈ + 𝑎 𝑣 = 0 ,

and the Neumann boundary conditions on 𝜕𝛺 × [0, 𝑇 ] are: 𝜎 𝑛 = 0 with 𝜎 = C sym∇𝑢.

Consistency checks of the enriched model:

positive-definiteness ✓ energy conservation ✓ infinitesimal Galilean invariance (IGI) ✗ extended infinitesimal Galilean invariance (EIGI) ✗

4. A Cauchy model with frequency-dependent stiffness tensor and associated enriched continuum

What has been done in Section 3 with a frequency-dependent density model, can be repeated by considering a frequency-dependent elasticity
tensor as a starting point. Let us start considering the equilibrium equations in Eq. (50) for a Cauchy model in which the elasticity tensor depends
on the frequency 𝜔 as

− 𝜌 𝜔2 𝑢̂ = Div
[

C̃(𝜔) sym∇𝑢̂
]

where C̃(𝜔) =
(

𝑓 − 𝑐2

𝑎 − 𝑏̃ 𝜔2

)

C and 𝑓 = 1 + 𝑐2

𝑎
, (63)

here 𝑐 and 𝑎 are dimensionless coefficients, 𝑏̃ has the dimension of [s2]. Note that lim𝜔→0 C̃(𝜔) = C, which means that the stiffness tensor
approaches the classical value in the long-wave limit.

We explicitly remark that this frequency-dependent stiffness model is equivalent to the frequency-dependent density model of Section 3 in
the frequency domain (see Eqs. (51)). However, we will show in this section that the enriched models stemming from the frequency-dependent
elasticity tensor are Galilean invariant, while those stemming from the frequency-dependent mass density are not.

To make the expressions easier to read, we removed the ∼ from the coefficients 𝑎, 𝑏 and 𝑐 in the remainder of this section.

4.1. Formulation of the enriched model and positive-definiteness conditions: form I

Introducing an additional tensor field 𝑄̂ ∶ R3
𝑥 ×

(

R𝜔 ⧵
{

±
√

𝑎∕𝑏
})

⊂ R3
𝑥 × R𝜔 → R3×3 in the frequency domain satisfying12

C sym 𝑄̂ = − 𝑐
𝑎 − 𝑏𝜔2

C sym∇𝑢̂ , (64)

Eq. (63) can be rewritten as

⎧

⎪

⎨

⎪

⎩

−𝜌 𝜔2 𝑢̂ = Div
[(

𝑓 − 𝑐2

𝑎 − 𝑏𝜔2

)

C sym∇𝑢̂
]

,

C sym 𝑄̂ = − 𝑐
𝑎 − 𝑏𝜔2

C sym∇𝑢̂ ,
⟺

⎧

⎪

⎨

⎪

⎩

−𝜌 𝜔2 𝑢̂ = Div
[(

𝑓 − 𝑐2

𝑎 − 𝑏𝜔2

)

C sym∇𝑢̂
]

,

(𝑎 − 𝑏𝜔2) C sym 𝑄̂ = −𝑐C sym∇𝑢̂ ,
(65)

𝑡
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒
−1
𝑡

⎧

⎪

⎨

⎪

⎩

𝜌 𝑢̈ = 𝑓 Div
[

C sym∇𝑢
]

+ 𝑐 Div
[

C sym𝑄
]

,

𝑐 C sym∇𝑢 + 𝑎C sym𝑄 + 𝑏C sym 𝑄̈ = 0 ,
(66)

where 𝑄 has the dimension of ∇𝑢, i.e. is dimensionless.
We have thus replaced the frequency-dependent Cauchy problem in Eq. (63) with an extended continuum model in Eq. (66), in which all the

material parameters are constants that do not depend on frequency. It is underlined again that just even powers of 𝜔 are allowed in the choice of
the expression for C(𝜔) in order not to have imaginary contributions in the energy.

12 We only need to define the symmetric part of 𝑄̂.
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4.1.1. Existence of an action functional and positive-definiteness
The action functional associated with the PDEs system (66) is

 =∬𝛺×[0,𝑇 ]

1
2
(

𝜌 ⟨𝑢̇, 𝑢̇⟩ + 𝑏 ⟨C sym 𝑄̇, sym 𝑄̇⟩
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

(67)

− 1
2
(𝑓 ⟨C sym∇𝑢, sym∇𝑢⟩ + 2 𝑐 ⟨C sym∇𝑢, sym𝑄⟩ + 𝑎 ⟨C sym𝑄, sym𝑄⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 ,

here for positive definiteness it is required that (we remind that 𝑓 = 1 + 𝑐2

𝑎 )

𝑎 > 0 , eig(C) > 0 , 𝜌 > 0 , 𝑏 > 0 . (68)

he associated homogeneous Neumann boundary conditions are

(𝑓 𝜎 + 𝑐C sym𝑄) 𝑛 = 0 , (69)

here 𝜎 = C sym∇𝑢 and 𝑛 is the normal to the boundary.
Given the fact that the frequency-dependent model (63) contains the frequency 𝜔 as a parameter, positive-definiteness must be checked for all

alues of 𝜔. In particular, we can say that the Cauchy frequency-dependent model is positive-definite at 𝜔0 if

𝜌 > 0 and eig(C̃(𝜔0)) > 0 . (70)

.1.2. Energy conservation
To ensure that the resulting model is conservative, we have to guarantee that

d
d𝑡 ∫𝛺

𝐸(𝑢̇, 𝑄̇,∇𝑢,𝑄) d𝑥 = ∫𝛺
d
d𝑡

[𝐾(𝑢̇, 𝑣̇) +𝑊 (∇𝑢,𝑄)] d𝑥 = 0 , (71)

here 𝛺 is the considered domain. With 𝜎 = C sym∇𝑢, we compute

∫𝛺
d𝐸
d𝑡

d𝑥 =∫𝛺
𝜌 ⟨𝑢̈, 𝑢̇⟩ + 𝑏 ⟨C sym 𝑄̈, sym 𝑄̇⟩ + 𝑓 ⟨𝜎, sym∇𝑢̇⟩

+ 𝑐 ⟨C sym∇𝑢̇, sym𝑄⟩ + 𝑐 ⟨C sym∇𝑢, sym 𝑄̇⟩ + 𝑎 ⟨C sym𝑄, sym 𝑄̇⟩ d𝑥

=∫𝛺
𝜌 ⟨𝑢̈, 𝑢̇⟩ + ⟨𝑏C sym 𝑄̈ + 𝑐 C sym∇𝑢 + 𝑎C sym𝑄, 𝑄̇⟩ (72)

+ 𝑓 div(𝜎T 𝑢̇) − 𝑓 ⟨Div𝜎, 𝑢̇⟩ + 𝑐 div([C sym𝑄]T 𝑢̇) − 𝑐 ⟨Div[C sym𝑄], 𝑢̇⟩ d𝑥

=∫𝛺
⟨𝜌 𝑢̈ − 𝑓 Div 𝜎 − 𝑐 Div

[

C sym𝑄
]

, 𝑢̇⟩ + div
(

𝜎T 𝑢̇
)

+ div
(

𝑐 [C sym𝑄]T 𝑢̇
)

+ ⟨𝑐C sym∇𝑢 + 𝑎C sym𝑄 + 𝑏C sym 𝑄̈, 𝑄̇⟩ d𝑥 = 0 .

Thanks to the equilibrium equations (66), the condition (72) becomes

d
d𝑡 ∫𝛺

𝐸 d𝑥 = ∫𝛺
𝑓 div

(

𝜎T 𝑢̇
)

+ div
(

𝑐 [C sym𝑄]T 𝑢̇
)

d𝑥 = ∫𝜕𝛺
⟨(𝑓 𝜎 + 𝑐 C sym𝑄) 𝑛, 𝑢̇⟩ d𝑠 = 0 (73)

hich is automatically always satisfied thanks to the homogeneous boundary conditions required in Eq. (69).

.1.3. Infinitesimal Galilean invariance
As a last check, it is necessary to assess whether the model respects Galilean invariance, which requires the invariance of the equilibrium

quations Eq. (66) with respect to the following extended infinitesimal Galilean transformation (cf. Appendix B)

𝑢→ 𝑢 = 𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡) , 𝑄→ 𝑄 = 𝑄 + 𝐴(𝑡) , 𝐴̈(𝑡) = 0, 𝑟̈(𝑡) = 0 , (74)

here 𝐴(𝑡) ∈ so(3) is a skew-symmetric matrix while 𝑟(𝑡) ∈ R3 is a vector. For the sake of clarity, we report below the equilibrium equations (66)
{

𝜌 𝑢̈ = 𝑓 Div
[

C sym∇𝑢
]

+ 𝑐 Div
[

C sym𝑄
]

,
𝑐C sym∇𝑢 + 𝑎C sym𝑄 + 𝑏C sym 𝑄̈ = 0 .

(75)

We now substitute 𝑢 and 𝑄 with 𝑢 and 𝑄 from Eq. (74), respectively, in Eq. (75)

⎧

⎪

⎨

⎪

⎩

𝜌 𝑢̈ = 𝑓 Div
[

C sym∇𝑢
]

+ 𝑐 Div
[

C sym𝑄
]

,

𝑐C sym∇𝑢 + 𝑎C sym𝑄 + 𝑏C sym 𝑄̈ = 0 .

⇒

⎧

⎪

⎪

⎨

⎪

⎪

𝜌
(

𝑢̈ + d2
d𝑡2 (𝐴(𝑡)𝑥) +

d2
d𝑡2 𝑟(𝑡)

)

=

𝑓 Div
[

C sym∇ (𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡))
]

+ 𝑐 Div
[

C sym (𝑄 + 𝐴(𝑡))
]

,

𝑐 C sym∇ (𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)) + 𝑎C sym (𝑄 + 𝐴(𝑡)) + 𝑏C sym
(

𝑄̈ + d 𝐴(𝑡)
)

= 0 .
16
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⇒

{

𝜌 𝑢̈ = 𝑓 Div
[

C sym∇𝑢
]

+ 𝑐 Div
[

C sym𝑄
]

,
𝑐C sym∇𝑢 + 𝑎C sym𝑄 + 𝑏C sym 𝑄̈ = 0 .

(76)

Comparing Eqs. (75) and (76), it is possible to see that they exactly match, making them invariant with respect to extended infinitesimal Galilean
transformations.

4.2. Relations between the frequency-dependent model and the equivalent enriched model: form I

The dispersion curves obtained with the frequency-dependent model in Eq. (63) are also obtained from the enriched model in Eq. (66) which
also posses the extra root 𝜔 =

√

𝑎∕𝑏 (where as always we are only considering the positive roots). However, the non trivial solution in terms of the
kinematic fields 𝑢 and 𝑄 associated with this extra root is

𝑢1 = 0 , 𝑢2 = 0 , 𝑄11 = 𝑄22

(

2𝜇
𝜆 + 2𝜇

− 1
)

, 𝑄12 = 0 , for 𝜔 =
√

𝑎
𝑏
. (77)

Since 𝑢1 = 𝑢2 = 0, this solution corresponds to a trivial one in the frequency-dependent model (63), and cannot be associated with a dispersion
curve. Moreover, as long as a finite domain is taken into account and it is guaranteed that 𝑢 ≠ 0 in some subset of the domain, this extra solution
vanishes.

We explicitly remark that the enriched models obtained with the procedure presented in this paper may sometimes show additional constant
roots in the dispersion diagrams compared to the frequency-dependent models for those frequencies at which the original frequency-dependent
model is not well-defined (here 𝜔 =

√

𝑎∕𝑏). These extra roots may account for special behaviors such as local resonances that could not be caught
in the frequency-dependent model. Those singularity values of the frequency-dependent model, e.g. frequencies that make the density (or stiffness)
vanishing or infinite, correspond to additional constant roots 𝜔(𝑘) that can appear in the associated enriched model.13

From Eq. (63), it is possible to calculate the frequencies such that

𝜔 = ±
√

𝑎
𝑏

⟺ C̃ → ∞ , 𝜔 = ± 𝑎
√

𝑏
(

𝑎 + 𝑐2
)

⟺ C̃ = 0 , (78)

here these frequencies correspond to the cut-off frequency of the optic curves and the asymptote of the acoustic curves, respectively (see Fig. 6).

Summary: micromorphic enriched model stemming from the C(𝜔) frequency-dependent model. Form I

Original frequency-dependent model (frequency domain):

−𝜌𝜔2 𝑢̂ = Div
[

C̃(𝜔) sym∇𝑢̂
]

with C̃(𝜔) =
(

𝑓 − 𝑐2

𝑎 − 𝑏𝜔2

)

C (𝑎 > 0, 𝑏 > 0)

Introduction of the new variable: C sym 𝑄̂ = − 𝑐
𝑎 − 𝑏𝜔2

C sym∇𝑢̂ .

Enriched model (time domain):

the action functional associated to the time domain model obtained from the original frequency-dependent model through the inverse
time-Fourier transform and the introduction of the additional kinematical field 𝑄 is

 = ∬
𝛺×[0,𝑇 ]

1
2
(

𝜌 ⟨𝑢̇, 𝑢̇⟩ + 𝑏 ⟨C sym 𝑄̇, sym 𝑄̇⟩
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

− 1
2
(𝑓 ⟨C sym∇𝑢, sym∇𝑢⟩ + 2 𝑐 ⟨C sym∇𝑢, sym𝑄⟩ + 𝑎 ⟨C sym𝑄, sym𝑄⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 .

The equilibrium equations are: 𝜌 𝑢̈ = 𝑓 Div 𝜎 + 𝑐 Div 𝜏, 𝑐 𝜎 + 𝑎 𝜏 + 𝑏 𝜏 = 0 ,

and the Neumann boundary conditions on 𝜕𝛺 × [0, 𝑇 ] are: (𝑓 𝜎 + 𝑐 𝜏) 𝑛 = 0 ,
with 𝜎 = C sym∇𝑢 , 𝜏 = C sym𝑄.

Consistency checks of the model in the time domain:

positive-definiteness ✓ energy conservation ✓ infinitesimal Galilean invariance (IGI) ✓ extended infinitesimal Galilean invariance (EIGI) ✓

13 We remarked that these extra constant roots, when present, only involve a contribution to the solution for the micro-distortion and not for the displacement.
n other words, the solution for the macro-displacement is never affected by the presence of such extra constant roots. This points to the fact that such constant
oots might be related to some micro-scale resonances that do not affect the overall macroscopic displacement 𝑢 (for example resonance of the internal mass
𝑚2 in Fig. 1 which does not provoke a movement of the external mass 𝑚1). Given that 𝑢 is the only kinematical field of the frequency-dependent model, such

icro-resonances, although possible, can be only caught by the enriched model.
17
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Fig. 6. Dispersion curves for an isotropic class of symmetry in which the following values for the parameters have been used: 𝜌 = 900 kg∕m3, 𝜆 = 2898 Pa, 𝜇 = 262 Pa, 𝑎 = 0.089,
𝑏 = 0.011s2, and 𝑐 = 1. The curves for the frequency-dependent model are also reproduced by the corresponding enriched model, although the enriched model has the additional
solution 𝜔 =

√

𝑎∕𝑏. While the enriched model remains positive-definite in the band-gap region, the frequency-dependent one does not.

4.3. Formulation and positive-definiteness conditions: form II

We can introduce the additional kinematic field 𝑤̂ ∶ R3
𝑥 ×

(

R𝜔 ⧵
{

±
√

𝑎∕𝑏
})

⊂ R3
𝑥 × R𝜔 → R3 in the frequency domain such that

Div
[

C sym∇𝑤̂
]

∶= − 𝑐
𝑎 − 𝑏𝜔2

Div
[

C sym∇𝑢̂
]

. (79)

In this way, we obtain

⎧

⎪

⎨

⎪

⎩

− 𝜌 𝜔2𝑢̂ = Div
[(

𝑓 − 𝑐2

𝑎 − 𝑏𝜔2

)

C sym∇𝑢̂
]

,

Div
[

C sym∇𝑤̂
]

∶= − 𝑐
𝑎 − 𝑏𝜔2

Div
[

C sym∇𝑢̂
]

,
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒

⎧

⎪

⎨

⎪

⎩

− 𝜌 𝜔2𝑢̂ = Div
[

𝑓 C sym∇𝑢̂ + 𝑐 C sym∇𝑤̂
]

,

(𝑎 − 𝑏𝜔2)Div
[

C sym∇𝑤̂
]

+ 𝑐 Div
[

C sym∇𝑢̂
]

= 0 ,
(80)

𝑡
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒
−1
𝑡

⎧

⎪

⎨

⎪

⎩

𝜌 𝑢̈ − Div
[

C sym (𝑓 ∇𝑢 + 𝑐∇𝑤)
]

= 0 ,

Div
[

C sym (𝑎∇𝑤 + 𝑏∇𝑤̈ + 𝑐∇𝑢)
]

= 0 ,
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒

⎧

⎪

⎨

⎪

⎩

𝜌 𝑢̈ − Div [𝑓 𝜎 + 𝑐 𝜏] = 0 ,

Div [𝑎 𝜏 + 𝑏 𝜏 + 𝑐 𝜎] = 0 ,
(81)

where 𝜎 = C sym∇𝑢 and 𝜏 = C sym∇𝑤.

4.3.1. Existence of an action functional and positive-definiteness
The associated resulting functional is

 = ∬𝛺×[0,𝑇 ]

1
2
(𝜌 ⟨𝑢̇, 𝑢̇⟩ + 𝑏 ⟨C sym∇𝑤̇, sym∇𝑤̇⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

(82)

− 1
2
(⟨𝑓 C sym∇𝑢, sym∇𝑢⟩ + 2 ⟨𝑐C sym∇𝑢, sym∇𝑤⟩ + ⟨𝑎C sym∇𝑤, sym∇𝑤⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 , (83)

where for positive definiteness it is required that (we remind that 𝑓 = 1 + 𝑐2

𝑎 )

𝑎 > 0 , eig(C) > 0 , 𝜌 > 0 , 𝑏 > 0 . (84)

The associated homogeneous Neumann boundary conditions are

(𝑓 𝜎 + 𝑐 𝜏) 𝑛 = 0 , (𝑐 𝜎 + 𝑎 𝜏 + 𝑏 𝜏) 𝑛 = 0 . (85)

where 𝑛 is the normal on the boundary.

4.3.2. Energy conservation
To ensure that the resulting model is conservative, we have to guarantee that

d 𝐸(𝑢̇,∇𝑤̇,∇𝑢,∇𝑤) d𝑥 = d [𝐾(𝑢̇,∇𝑤̇) +𝑊 (∇𝑢,∇𝑤)] d𝑥 = 0 , (86)
18
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where 𝛺 is the domain.

∫𝛺
d𝐸
d𝑡

d𝑥 =∫𝛺
𝜌 ⟨𝑢̈, 𝑢̇⟩ + 𝑏 ⟨C sym∇𝑤̈, sym∇𝑤̇⟩ + 𝑓 ⟨C sym∇𝑢, sym∇𝑢̇⟩

+ 𝑐 ⟨C sym∇𝑢, sym∇𝑤̇⟩ + 𝑐 ⟨C sym∇𝑢̇, sym∇𝑤⟩ + 𝑎 ⟨C sym∇𝑣, sym∇𝑤̇⟩ d𝑥

=∫𝛺
𝜌 ⟨𝑢̈, 𝑢̇⟩ + 𝑏 ⟨𝜏, sym∇𝑤̇⟩ + 𝑓 ⟨𝜎, sym∇𝑢̇⟩

+ 𝑐 ⟨𝜎, sym∇𝑤̇⟩ + 𝑐 ⟨sym∇𝑢̇, 𝜏⟩ + 𝑎 ⟨𝜏, sym∇𝑤̇⟩ d𝑥 (87)

=∫𝛺
⟨𝜌 𝑢̈ − Div [𝑓 𝜎 + 𝑐 𝜏] , 𝑢̇⟩ + div

[(

𝑓 𝜎T + 𝑐 𝜏T
)

𝑢̇
]

− ⟨Div [𝑐 𝜎 + 𝑎 𝜏 + 𝑏 𝜏] , 𝑤̇⟩ + div
[(

𝑐 𝜎T + 𝑎 𝜏T + 𝑏 𝜏T
)

𝑤̇
]

d𝑥 = 0 ,

where again, 𝜎 = C sym∇𝑢 and 𝜏 = C sym∇𝑤. Thanks to the equilibrium equations (81), the condition (87) becomes

d
d𝑡 ∫𝛺

𝐸 d𝑥 =∫𝛺
div

[(

𝑓 𝜎T + 𝑐 𝜏T
)

𝑢̇ +
(

𝑐 𝜎T + 𝑎 𝜏T + 𝑏 𝜏T
)

𝑤̇
]

d𝑥 (88)

=∫𝜕𝛺
⟨(𝑓 𝜎 + 𝑐 𝜏) 𝑛, 𝑢̇⟩ + ⟨(𝑐 𝜎 + 𝑎 𝜏 + 𝑏 𝜏) 𝑛, 𝑤̇⟩ ds = 0 ,

hich is automatically always satisfied thanks to the homogeneous boundary conditions reported in Eq. (85).

.3.3. Infinitesimal Galilean invariance

As a last check, it is necessary to assess whether the model respects Galilean invariance, which requires the invariance of the equilibrium
quations Eq. (81) with respect to the following extended infinitesimal Galilean transformation (cf. Appendix B)

𝑢→ 𝑢 = 𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡) , 𝑤→ 𝑤 = 𝑤 + 𝐴(𝑡)𝑥 + 𝑟(𝑡) , 𝐴̈(𝑡) = 0, 𝑟̈(𝑡) = 0 , (89)

where 𝐴(𝑡) ∈ so(3) is a skew-symmetric matrix while 𝑟(𝑡) ∈ R3 is a vector. For the sake of clarity, we report below the equilibrium equations (81)

⎧

⎪

⎨

⎪

⎩

𝜌 𝑢̈ − Div
[

C sym (𝑓 ∇𝑢 + 𝑐∇𝑤)
]

= 0 ,

Div
[

C sym (𝑎∇𝑤 + 𝑏∇𝑤̈ + 𝑐∇𝑢)
]

= 0 .
(90)

We now substitute 𝑢 and 𝑤 with 𝑢 and 𝑤 from Eq. (89), respectively, in Eq. (90)

⎧

⎪

⎨

⎪

⎩

𝜌 𝑢̈ − Div
[

C sym
(

𝑓 ∇𝑢 + 𝑐∇𝑤
)

]

= 0 ,

Div
[

C sym
(

𝑎∇𝑤 + 𝑏∇𝑤̈ + 𝑐∇𝑢
)

]

= 0 ,

⇒

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜌
(

𝑢̈ + d2
d𝑡2 (𝐴(𝑡)𝑥) +

d2
d𝑡2 𝑟(𝑡)

)

− Div
[

C sym
(

𝑓 ∇
(

𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)
)

+𝑐∇
(

𝑣 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)
) )]

= 0 ,

Div
[

C sym
(

𝑎∇
(

𝑣 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)
)

+ 𝑏∇
(

𝑤̈ + d2
d𝑡2 (𝐴(𝑡)𝑥) +

d2
d𝑡2 (𝑟(𝑡))

)

+𝑐∇
(

𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)
) )]

= 0 .

⇒

{

𝜌 𝑢̈ − Div
[

C sym (𝑓 ∇𝑢 + 𝑐∇𝑤)
]

= 0 ,
Div

[

C sym (𝑎∇𝑣 + 𝑏∇𝑤̈ + 𝑐∇𝑢)
]

= 0 .
(91)

Comparing Eqs. (90) and (91), it is possible to see that the two sets of equations coincide, making the enriched model invariant with respect to
extended infinitesimal Galilean transformations.

4.4. Relations between the frequency-dependent model and the equivalent enriched model: form II

The curves for the frequency-dependent model Eq. (63) are also reproduced by the corresponding enriched model Eq. (81), although the enriched
model has the additional solution 𝑘 = 0. The presence of this extra root does not affect the overall metamaterial response and is associated with
19
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the fact that the auxiliary variable in Eq. (80) is introduced through its divergence. It is possible to combine the model presented in Section 3 and
Section 4, and the calculations are shown in Appendix C for the sake of brevity (see Fig. 7).

Summary: micromorphic enriched model stemming from the C(𝜔) frequency-dependent model. Form II

Original frequency-dependent model (frequency domain):

−𝜌𝜔2 𝑢̂ = Div
[

C̃(𝜔) sym∇𝑢̂
]

with C̃(𝜔) =
(

𝑓 − 𝑐2

𝑎 − 𝑏𝜔2

)

C (𝑎 > 0, 𝑏 > 0)

Introduction of the new variable: Div
[

C sym∇𝑤̂
]

∶= − 𝑐
𝑎 − 𝑏𝜔2

Div
[

C sym∇𝑢̂
]

.

Enriched model (time domain):

The action functional associated to the time domain model obtained from the original frequency-dependent model through the inverse
time-Fourier transform and the introduction of the additional kinematical field 𝑣 is

 = ∬
𝛺×[0,𝑇 ]

1
2
(𝜌 ⟨𝑢̇, 𝑢̇⟩ + 𝑏 ⟨C sym∇𝑤̇, sym∇𝑤̇⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

− 1
2
(⟨𝑓 C sym∇𝑢, sym∇𝑢⟩ + 2 ⟨𝑐C sym∇𝑢, sym∇𝑤⟩ + ⟨𝑎C sym∇𝑤, sym∇𝑤⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 .

The equilibrium equations are: 𝜌 𝑢̈ − Div [𝑓 𝜎 + 𝑐 𝜏] = 0 , Div [𝑎 𝜏 + 𝑏 𝜏 + 𝑐 𝜎] = 0 ,

and the Neumann boundary conditions on 𝜕𝛺 × [0, 𝑇 ] are:

(𝑓 𝜎 + 𝑐 𝜏) 𝑛 = 0 , (𝑐 𝜎 + 𝑎 𝜏 + 𝑏 𝜏) 𝑛 = 0 with 𝜎 = C sym∇𝑢 , 𝜏 = C sym∇𝑤.

Consistency checks of the model in the time domain:

positive-definiteness ✓ energy conservation ✓ infinitesimal Galilean invariance (IGI) ✓ extended infinitesimal Galilean invariance (EIGI) ✓

5. An example from the literature

We consider the following 1D example (see Shen et al. (2018)) with both a frequency-dependent effective density14 𝜌(𝜔) and Young modulus
𝐸(𝜔)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌(𝜔) =
𝑚1 + 𝑚2
𝐴𝐿

(

1 +
𝑚2
2 𝜔

2

(

𝑚1 + 𝑚2
) (

𝑘2 − 𝑚2𝜔2
)

)

,

𝐸(𝜔) = 𝐸0

(

1 − 𝜔2

4
𝑚1 + 𝑚2
𝑘1

(

1 +
𝑚2
2 𝜔

2

(𝑚1 + 𝑚2)
(

𝑘2 − 𝑚2 𝜔2
)

))

,

(92)

with additional material constants 𝐴,𝐿,𝑚1, 𝑚2, 𝑘1, 𝑘2 > 0. The accounted bulk equation is

− 𝜌(𝜔)𝜔2 𝑢̂1 = 𝐸(𝜔) 𝑢̂1,11 , (93)

which after substituting 𝜌(𝜔) and 𝐸(𝜔) becomes

−
𝑚1 + 𝑚2
𝐴𝐿

(

1 +
𝑚2
2 𝜔

2

(

𝑚1 + 𝑚2
) (

𝑘2 − 𝑚2 𝜔2
)

)

𝜔2 𝑢̂1 = 𝐸0

(

1 − 𝜔2

4
𝑚1 + 𝑚2
𝑘1

(

1 +
𝑚2
2 𝜔

2

(𝑚1 + 𝑚2)
(

𝑘2 − 𝑚2 𝜔2
)

))

𝑢̂1,11 . (94)

14 The identical effective mass 𝑀eff (𝜔) = 𝑚1 + 𝑚2 + 𝑚2
2 𝜔

2

𝑘2−𝑚2 𝜔2 can also be found in Fedele et al. (2023) eq.(2.21) describing the same spring-interconnected
mass-in-mass cell lattices.
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F
p

5

Fig. 7. Dispersion curves for an isotropic class of symmetry in which the following values for the parameters have been used: 𝜌 = 900 kg∕m3, 𝜆 = 2898 Pa, 𝜇 = 262 Pa, 𝑎 = 0.089,
𝑏 = 0.011s2, and 𝑐 = 1. The curves for the frequency-dependent model are also reproduced by the corresponding enriched model coincide, although the enriched model has the
additional solution 𝑘 = 0. While the enriched model remains positive-definite in the band-gap region, the frequency-dependent one does not.

This model is positive-definite if both the frequency-dependent Young modulus 𝐸 and the density 𝜌 are positive:

𝜌 > 0 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔2 < 𝑘2
𝑚2
,

or

𝜔2 > 𝑘2
𝑚1+𝑚2
𝑚1 𝑚2

.

,

𝐸 > 0 ∶ 𝑘2
𝑚2

< 𝜔2 <
4𝑘1𝑚2+𝑘2(𝑚1+𝑚2)+

√

2𝑘2𝑚1𝑚2(𝑘2−4𝑘1)+𝑚2
2(4𝑘1+𝑘2)

2+𝑘22𝑚
2
1

2𝑚1𝑚2
,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌 > 0

and

𝐸 > 0

∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔2 <
4𝑘1𝑚2+𝑘2(𝑚1+𝑚2)−

√

2𝑘2𝑚1𝑚2(𝑘2−4𝑘1)+𝑚2
2(4𝑘1+𝑘2)

2+𝑘22𝑚
2
1

2𝑚1𝑚2
,

or

𝑘2
𝑚1+𝑚2
𝑚1 𝑚2

< 𝜔2 <
4𝑘1𝑚2+𝑘2(𝑚1+𝑚2)+

√

2𝑘2𝑚1𝑚2(𝑘2−4𝑘1)+𝑚2
2(4𝑘1+𝑘2)

2+𝑘22𝑚
2
1

2𝑚1𝑚2
,

(95)

where particular emphasis is put on the fact that 𝜔 ≠
√

𝑘2∕𝑚2 in order to have a finite density and Young modulus. The domain of positive-definiteness
in Eq. (95) is represented in Fig. 8. Developing we obtain

− 𝜌0 𝜔
2 𝑢̂1 = 𝐸0

(

𝑡 −
𝑞2

𝑟 − 𝑠𝜔2
− ℎ𝜔2

)

𝑢̂1,11 , (96)

where

𝜌0 =
𝑚1 + 𝑚2
𝐴𝐿

, 𝑟 =
𝑚1 𝑞2

𝑚2
, 𝑠 =

𝑚2
1 𝑞

2

𝑘2(𝑚1 + 𝑚2)
, 𝑡 =

𝑚1 + 𝑚2
𝑚1

, ℎ =
𝑚1 + 𝑚2
4𝑘1

. (97)

or the mass-in-mass lattice model (92) the dimensionless parameter 𝑞 is not necessary and can be chosen arbitrarily. However, we keep the
arameter nevertheless in order to build a more complete associated enriched model.

.1. Formulation and positive-definiteness conditions

Introducing the additional kinematic field 𝑣1 ∶ R𝑥 ×
(

R𝜔 ⧵
{

±
√

𝑟∕𝑠
})

⊂ R𝑥 × R𝜔 → R in the frequency domain such that

𝑣1,11 = −
𝑞

𝑟 − 𝑠𝜔2
𝑢̂1,11 , (98)

we establish the following:

⎧

⎪

⎨

⎪

⎩

− 𝜌0 𝜔2 𝑢̂1 = 𝐸0

(

𝑡 −
𝑞2

𝑟 − 𝑠𝜔2
− ℎ𝜔2

)

𝑢̂1,11 ,

𝑣1,11 = −
𝑞

𝑟 − 𝑠𝜔2
𝑢̂1,11 ,

⟺

⎧

⎪

⎨

⎪

⎩

− 𝜌0 𝜔2 𝑢̂1 = 𝐸0
(

𝑡 − ℎ𝜔2) 𝑢̂1,11 + 𝐸0 𝑞 𝑣1,11 ,

𝑟 𝑣1,11 − 𝑠𝜔2 𝑣1,11 + 𝑞 𝑢̂1,11 = 0 ,
(99)

Hence, utilizing the inverse time-Fourier transform −1
𝑡 , Eq. (99) entails

𝜌0 𝑢̈1 = 𝐸0
(

𝑡 𝑢1,11 + ℎ 𝑢̈1,11 + 𝑞 𝑣1,11
)

, 𝑟 𝑣1,11 + 𝑠 𝑣̈1,11 + 𝑞 𝑢1,11 = 0 , (100)
21

where 𝑣 has the dimension of a displacement.
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Fig. 8. Dispersion curves plot: the solid black lines are the dispersion curves. The region where only the frequency-dependent Young modulus 𝐸 is positive is yellow. The region
where only the frequency-dependent density 𝜌 is positive is light blue. The region where the frequency-dependent Young modulus 𝐸 and the density 𝜌 are both positive is in
green. The black dashed lines are the asymptotes/cut-off. The light blue dot-dashed curve represents the values of the density 𝜌 while changing the frequency and the brown
dotted curve represents the values of the Young modulus 𝐸 while changing the frequency. The blue dashed line represents the extra imaginary dispersion curve which correspond
to 𝑘 = 0. The values used for the parameters are 𝑘1 = 1, 𝑘2 = 1, 𝑚1 = 2, 𝑚2 = 1, 𝐸0 = 1, 𝐴 = 1, and 𝐿 = 1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

5.1.1. Existence of an action functional and positive-definiteness
Setting 𝛺 = [0, 𝐿], the associated action functional is

 = ∫

𝑇

0 ∫

𝐿

0

1
2
𝜌0

(

𝑢̇21 +
𝐸0
𝜌0

(ℎ 𝑢̇21,1 + 𝑠 𝑣̇
2
1,1)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

−
𝐸0
2

(

𝑡 𝑢21,1 + 2𝑞 𝑢1,1 𝑣1,1 + 𝑟 𝑣21,1
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 , (101)

where for positive definiteness it is required that

𝜌0 > 0 , 𝐸0 > 0 , 𝑠 > 0 , ℎ > 0 , 𝑟 > 0 , 𝑞2 < 𝑟 𝑡 . (102)

The associated homogeneous Neumann boundary conditions are

𝐸0
(

𝑡 𝑢1,1 + ℎ 𝑢̈1,1 + 𝑞 𝑣1,1
)

= 0 , 𝐸0
(

𝑟 𝑣1,1 + 𝑠 𝑣̈1,1 + 𝑞 𝑢1,1
)

= 0 . (103)

5.1.2. Energy conservation
To ensure that the resulting model is conservative, we have to guarantee that

d
d𝑡 ∫

𝐿

0
𝐸(𝑢̇1, 𝑢̇1,1, 𝑣̇1,1, 𝑢1,1, 𝑣1,1) d𝑥 = ∫

𝐿

0

d
d𝑡

[

𝐾(𝑢̇1, 𝑢̇1,1, 𝑣̇1,1) +𝑊 (𝑢1,1, 𝑣1,1)
]

d𝑥 = 0 . (104)

∫

𝐿

0

d𝐸
d𝑡

d𝑥 =∫

𝐿

0
𝜌0

(

𝑢̈1 𝑢̇1 +
𝐸0
𝜌0

(ℎ 𝑢̈1,1 𝑢̇1,1 + 𝑠 𝑣̈1,1 𝑣̇1,1)
)

+ 𝐸0
(

𝑡 𝑢1,1 𝑢̇1,1 + 𝑞 𝑢1,1 𝑣̇1,1 + 𝑞 𝑢̇1,1 𝑣1,1 + 𝑟 𝑣1,1 𝑣̇1,1
)

d𝑥 (105)

=∫

𝐿

0
𝜌0 𝑢̈1 𝑢̇1 + 𝐸0 ℎ

[

(

𝑢̈1,1 𝑢̇1
)

,1 − 𝑢̈1,11 𝑢̇1
]

+ 𝐸0 𝑠
[

(

𝑣̈1,1 𝑣̇1
)

,1 − 𝑣̈1,11 𝑣̇1
]

+ 𝐸0 𝑡
[

(

𝑢1,1 𝑢̇1
)

,1 − 𝑢1,11 𝑢̇1
]

+ 𝐸0 𝑞
[

(

𝑣1,1 𝑢̇1
)

,1 − 𝑣1,11 𝑢̇1
]

+ 𝐸0 𝑞
[

(

𝑢1,1 𝑣̇1
)

,1 − 𝑢1,11 𝑣̇1
]

+ 𝐸0 𝑟
[

(

𝑣1,1 𝑣̇1
)

,1 − 𝑣1,11 𝑣̇1
]

d𝑥

=∫

𝐿

0

[

𝜌0 𝑢̈1 − 𝐸0
(

ℎ 𝑢̈1,11 + 𝑡 𝑢1,11 + 𝑞 𝑣1,11
)]

𝑢̇1 − 𝐸0
(

𝑠 𝑣̈1,11 + 𝑞 𝑢1,11 + 𝑟 𝑣1,11
)

+ 𝐸0
[(

ℎ 𝑢̈1,11 + 𝑡 𝑢1,11 + 𝑞 𝑣1,11
)

𝑢̇1 +
(

𝑠 𝑣̈1,11 + 𝑞 𝑢1,11 + 𝑟 𝑣1,11
)

𝑣̇1
]

,1 d𝑥 = 0 .

Thanks to the equilibrium equations (100), the condition (105) becomes

d
d𝑡 ∫

𝐿

0
𝐸 d𝑥 = ∫

𝐿

0
𝐸0

[(

ℎ 𝑢̈1,11 + 𝑡 𝑢1,11 + 𝑞 𝑣1,11
)

𝑢̇1 +
(

𝑠 𝑣̈1,11 + 𝑞 𝑢1,11 + 𝑟 𝑣1,11
)

𝑣̇1
]

,1 d𝑥 (106)

= 𝐸0
(

ℎ 𝑢̈1,11 + 𝑡 𝑢1,11 + 𝑞 𝑣1,11
)

𝑢̇1
|

|

|

(𝐿,⋅)
(0,⋅) + 𝐸0

(

𝑠 𝑣̈1,11 + 𝑞 𝑢1,11 + 𝑟 𝑣1,11
)

𝑣̇1
|

|

|

(𝐿,⋅)
(0,⋅) = 0 ,

which is automatically always satisfied thanks to the boundary conditions required in Eq. (103) in the case of zero externals surface traction.
22
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5.1.3. Infinitesimal Galilean invariance
With arguments similar to that presented in Sections 3.1.2.3, 4.1.3, and 4.3.3, it is easy to check that Eqs. (100) are extended infinitesimal

Galilean invariant (EIGI).

5.2. Relations between the frequency-dependent model and the enriched equivalent model

The dispersion curves associated with the equilibrium equations (94), or equivalently of Eq. (100) are reported in Fig. 8. The system (100) has
an extra imaginary dispersion curve which corresponds to 𝑘 = 0 (blue dashed line).

Summary: enriched model stemming from a frequency-dependent example from the literature

Original frequency-dependent model (frequency domain):

−𝜌(𝜔)𝜔2 𝑢̂1 = 𝐸(𝜔) 𝑢̂1,11 with

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌(𝜔) =
𝑚1 + 𝑚2
𝐴𝐿

(

1 +
𝑚2
2 𝜔

2

(

𝑚1 + 𝑚2
) (

𝑘2 − 𝑚2𝜔2
)

)

𝐸(𝜔) = 𝐸0

(

1 − 𝜔2

4
𝑚1 + 𝑚2
𝑘1

(

1 +
𝑚2
2 𝜔

2

(𝑚1 + 𝑚2)
(

𝑘2 − 𝑚2 𝜔2
)

))

Introduction of the new variable: 𝑣1,11(𝑥, 𝜔) = −
𝑞

𝑟 − 𝑠𝜔2
𝑢̂1,11(𝑥, 𝜔) .

Enriched model (time domain): the action functional associated to the time domain model obtained from the original
frequency-dependent model through the inverse time-Fourier transform and the introduction of the additional kinematical field 𝑣 is

 =

𝑇

∫
0

𝐿

∫
0

1
2
𝜌0

(

𝑢̇21 +
𝐸0
𝜌0

(ℎ 𝑢̇21,1 + 𝑠 𝑣̇
2
1,1)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

−
𝐸0
2

(

𝑡 𝑢21,1 + 2𝑞 𝑢1,1 𝑣1,1 + 𝑟 𝑣21,1
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 .

The equilibrium equations are: 𝜌0 𝑢̈1 = 𝐸0
(

𝑡 𝑢1,11 + ℎ 𝑢̈1,11 + 𝑞 𝑣1,11
)

, 𝑟 𝑣1,11 + 𝑠 𝑣̈1,11 + 𝑞 𝑢1,11 = 0 ,

and the Neumann boundary conditions on {0, 𝐿} × [0, 𝑇 ] are:

𝐸0
(

𝑡 𝑢1,1 + ℎ 𝑢̈1,1 + 𝑞 𝑣1,1
)

= 0 , 𝐸0
(

𝑟 𝑣1,1 + 𝑠 𝑣̈1,1 + 𝑞 𝑢1,1
)

= 0.

Consistency checks of the model in the time domain:

positive-definiteness ✓ energy conservation ✓ infinitesimal Galilean invariance (IGI) ✓ extended infinitesimal Galilean invariance (EIGI) ✓

6. Conclusions

In the present paper, we have shown an explicit procedure allowing to transform specific frequency-dependent Cauchy continuum models into
their frequency-independent micromorphic counterparts. While frequency-dependent models fail to respect positive definiteness in those frequency
ranges which are close to local-resonance frequencies of the internal masses, their micromorphic counterpart remains positive-definite in the whole
range of the considered frequencies. Moreover, consistency checks of the obtained micromorphic models on (i) existence of an action functional,
(ii) total energy conservation, and (iii) Galilean invariance are performed so as to guarantee their physical grounds. The proposed procedure will
be extended to wavenumber-dependent models in forthcoming papers to show how more and more complex enriched continua can be generated
to describe larger classes of metamaterials by keeping a reasonably low number of constitutive material parameters.
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Appendix A. Dispersion analysis of the 𝝆(𝝎) model

A.1. Dispersion relations obtained through the space-Fourier transform

In order to derive the dispersion relations of the considered model, let us apply the space-Fourier transform 𝑥 to both sides of Eq. (20). This
gives15

− 𝜌
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

𝜔2 𝑢̂(𝑥, 𝜔) = −
[

C sym
(

𝑢̂(𝑞, 𝜔)⊗ 𝑞
)]

𝑞, 𝜔 ∈ R ⧵
{

±
√

𝑎
𝑏

}

, (108)

hich can be rewritten as a family (a perturbation problem) of non-linear eigenvalue problems with respect to 𝑞 ∈ R3 i.e. for every 𝑞 ∈ R3 we look
for the 𝜔 (as then functions of 𝑞) such that there exist non-trivial solutions 𝑢̂(𝑞, 𝜔) ∈ R3 satisfying

A(𝜔, 𝑞, 𝜌,C) 𝑢̂(𝑞, 𝜔) = − 𝜌
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

𝜔2 𝑢̂(𝑞, 𝜔) +
[

C sym(𝑢̂(𝑞, 𝜔)⊗ 𝑞)
]

𝑞 = 0. (109)

he stated algebraic problem admits non-trivial solutions if and only if

det A(𝜔, 𝑞, 𝜌,C) = 0. (110)

ccounting for an isotropic medium, Eq. (110) gives

det
(

− 𝜌
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

𝜔2 1 + 𝜇 𝑘2 1 + (𝜇 + 𝜆) 𝑞 ⊗ 𝑞
)

= 0, 𝜔 ∈ R ⧵
{

±
√

𝑎
𝑏

}

, (111)

onsidering now the 2D case, we obtain

det

⎛

⎜

⎜

⎜

⎝

− 𝜌𝜔2
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

+ 𝜇 𝑘2 + (𝜇 + 𝜆) 𝑘21 (𝜇 + 𝜆) 𝑘1 𝑘2

(𝜇 + 𝜆) 𝑘1 𝑘2 − 𝜌𝜔2
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

+ 𝜇 𝑘2 + (𝜇 + 𝜆) 𝑘22

⎞

⎟

⎟

⎟

⎠

(112)

= 𝜌2 𝜔4
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)2
− 𝜌𝜔2

(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

(3𝜇 + 𝜆) 𝑘2 + 𝜇 (2𝜇 + 𝜆) 𝑘4. (113)

Solving with respect to 𝑘2 we obtain

𝑘2 = 𝜌𝜔2
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

) (3𝜇 + 𝜆) ±
√

(3𝜇 + 𝜆)2 − 4𝜇 (2𝜇 + 𝜆)

2𝜇 (2𝜇 + 𝜆)
(114)

iving the two roots

𝑘2p =
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

𝜌𝜔2

2𝜇 + 𝜆
and 𝑘2s =

(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

𝜌𝜔2

𝜇
. (115)

y taking the positive square root from this, we obtain (𝑘p, 𝑘s) as in Eq. (21).

.2. Dispersion relations obtained through the space-plane wave ansatz

As we have seen previously, we can obtain the dispersion relations starting from the model in the frequency domain by setting
(𝑥, 𝜔) = 𝜓(𝜔) 𝑒𝑖 ⟨𝑥,𝑞⟩ and inserting it into equation Eq. (108)

− 𝜌
(

1 + 𝑐2 𝜔2

𝑎 − 𝑏𝜔2

)

𝜔2 𝜓 𝑒𝑖 ⟨𝑥,𝑞⟩ = −
[

C sym(𝜓 ⊗ 𝑞)
]

𝑞 𝑒𝑖 ⟨𝑥,𝑞⟩, 𝜔 ∈ R ⧵
{

±
√

𝑎
𝑏

}

. (116)

Simplifying the 𝑒𝑖 ⟨𝑥,𝑞⟩ factor we finally obtain A(𝜔, 𝑞, 𝜌,C)𝜓 = 0, giving the same algebraic problems det A(𝜔, 𝑞, 𝜌,C) = 0 as Eq. (110).

15 Indeed,
𝑥

[

∇𝑥 𝑢̂(𝑥, 𝜔)
]

= 𝑖 𝑞 ⊗ 𝑢̂(𝑞, 𝜔) and 𝑥
[

Div𝑥
[

C sym∇𝑥𝑢̂(𝑥, 𝜔)
]

]

= −
(

C sym
(

𝑞 ⊗ 𝑢̂(𝑞, 𝜔)
)

)

𝑞 , (107)
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Appendix B. Galilean invariance

The Galilean transformation formulates the transformation of coordinates between two reference frames which only differ by a steady motion. In
the setting of nonlinear elasticity where the deformation mapping 𝜑∶𝛺 → R3 describes the material in its current state, the corresponding Galilean
transformation reads as

𝜑→ 𝜑 = 𝑅𝜑 + 𝑟(𝑡) , 𝑟̈(𝑡) = 0 , for all 𝑅 ∈ SO(3) , 𝑟 ∈ 𝐶2(R;R3) . (117)

n the hyperelastic framework with an energy density function 𝑊 ∶GL+(3) → R, the equilibrium equation for nonlinear elasticity is

𝜌 𝜑̈ = Div S1(∇𝜑) = DivD𝑊 (∇𝜑) , (118)

where 𝑆1(∇𝜑) = D𝑊 (∇𝜑) is the first Piola–Kirchhoff stress tensor. All objective16 hyperelastic energy functions are Galilean invariant, i.e. the
corresponding equilibrium equation transform as follows

𝜌 𝜑̈ = DivD𝑊 (∇𝜑) ⟺ 𝜌 d2

d𝑡2
[

𝑅𝜑 + 𝑟(𝑡)
]

= DivD𝑊 (∇[𝑅𝜑 + 𝑟(𝑡)]) ⟺ 𝜌 (𝑅 𝜑̈ + 𝑟̈(𝑡)) = DivD𝑊 (𝑅∇𝜑) (119)

⟺ 𝜌𝑅 𝜑̈ = Div
[

𝑅D𝑊 (∇𝜑)
]

⟺ 𝑅 (𝜌 𝜑̈) = 𝑅DivD𝑊 (∇𝜑) ⟺ 𝜌 𝜑̈ = DivD𝑊 (∇𝜑)

such that the form of the equations remains the same (form-invariance).

B.1. Infinitesimal Galilean invariance

Although it is not customary, linear elasticity can be written as well in terms of the deformation 𝜑. For this, we define the quadratic energy
density

𝑊lin(∇𝜑) =
1
2
⟨C sym(∇𝜑 − 1) , sym(∇𝜑 − 1)⟩ , C∶ Sym(3) → Sym(3),

𝜌 𝜑̈ = DivD𝑊lin(∇𝜑) = Div
[

C sym(∇𝜑 − 1)
]

. (120)

It is then clear that the linearized equation of motion (120) does not remain invariant under the transformation presented in (117), since
𝑊lin(𝑅∇𝜑) ≠ 𝑊lin(∇𝜑) (Münch and Neff, 2018). For example,

sym(𝑅∇𝜑 − 1) ≠ 𝑅 sym(∇𝜑 − 1) . (121)

Therefore, in the process of linearizing equation (118), one cannot expect invariance of the response under the transformation (117). Let us therefore
turn to the equilibrium equation for linear elasticity of motion in the traditional displacement form

𝜌 𝑢̈ = Div 𝜎 , 𝜎 = Csym∇𝑢 , C∶ Sym(3) → Sym(3) (122)

with the displacement 𝑢(𝑥, 𝑡) = 𝜑(𝑥, 𝑡)−𝑥(𝑡) where 𝜎 ∈ Sym(3) is the symmetric Cauchy force stress tensor. Now, we need to infer the corresponding
invariances by due linearization. Since any orthogonal matrix 𝑅 ∈ SO(3) can be written as

𝑅 = exp(𝐴) = 1 + 𝐴 +… with 𝐴 ∈ so(3) , (123)

t is possible to transform the Galilean invariance in nonlinear elasticity (117) into a corresponding statement for small strains by dropping
igher-order terms

𝜑(𝑥, 𝑡) = 𝑅𝜑(𝑥, 𝑡) + 𝑟(𝑡)

⟺ 𝑥(𝑡) + 𝑢(𝑥, 𝑡) = (1 + 𝐴 +…)(𝑥(𝑡) + 𝑢(𝑥, 𝑡)) + 𝑟(𝑡) (124)

⟺ 𝑥(𝑡) + 𝑢(𝑥, 𝑡) = 𝑥(𝑡) + 𝑢(𝑥, 𝑡) + 𝐴𝑥(𝑡) + 𝐴𝑢(𝑥, 𝑡) + 𝑟(𝑡) +…

⟺ 𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝐴𝑥(𝑡) + 𝑟(𝑡) +… ,

with some constant skew-symmetric matrix 𝐴 ∈ so(3). Thus we arrive at, what we call, infinitesimal Galilean transformations

𝑢 → 𝑢 = 𝑢 + 𝐴𝑥 + 𝑟(𝑡), 𝑟̈(𝑡) = 0 , for all 𝐴 ∈ so(3) , 𝑟 ∈ 𝐶2(R,R3) . (IGI)

Indeed, linear elasticity (120) is infinitesimal Galilean invariant (IGI) because of the following identifications

∇𝑢 = ∇
(

𝑢 + 𝐴𝑥 + 𝑟(𝑡)
)

= ∇𝑢 + 𝐴 , sym∇𝑢 = sym∇
(

𝑢 + 𝐴𝑥 + 𝑟(𝑡)
)

= sym(∇𝑢 + 𝐴) = sym∇𝑢 , 𝑢̈ = d2

d𝑡2
[

𝑢 + 𝐴𝑥 + 𝑟(𝑡)
]

= 𝑢̈ + 𝑟̈(𝑡) = 𝑢̈ . (125)

For an enriched kinematic variable 𝑃 ∶ 𝛺 × R ⊂ R3 × R → R3×3 without a unit, e.g. appearing as microdistortion in micromorphic models
r microrotation in Cosserat models, we assume the same transformation behavior as for the displacement gradient (125)1, we must therefore
onsider

𝑃 → 𝑃 = 𝑃 + 𝐴 , for all 𝐴 ∈ so(3) . (126)

Then it holds for the expressions used in these models, e.g.

sym𝑃 = sym(𝑃 + 𝐴) = sym𝑃 , 𝑃̈ = d2

d𝑡2
[

𝑃 + 𝐴
]

= 𝑃 . (127)

16 An energy function is called objective (or frame-indifferent) if 𝑊 (𝑅𝐹 ) = 𝑊 (𝐹 ) for all 𝐹 ∈ GL+(3) and 𝑅 ∈ SO(3).
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On the other hand, for an enriched kinematic variable 𝑣 ∶ 𝛺 × R ⊂ R3 × R → R3 whose unit is meter (as the displacement 𝑢(𝑥, 𝑡) itself) which is
used in this work, we also require the same transformation as for the displacement, i.e.

𝑣→ 𝑣 = 𝑣 + 𝐴𝑥 + 𝑟(𝑡), 𝑟̈(𝑡) = 0 , for all 𝐴 ∈ so(3) , 𝑟 ∈ 𝐶2(R;R3) . (128)

Indeed, linear classical generalized continuum models (Cosserat, micromorphic, second gradient, etc.) satisfy infinitesimal Galilean invariance in
this sense.

B.2. Extended infinitesimal Galilean invariance

We note that in linear elasticity, it is possible to generalize the infinitesimal Galilean invariance by extending the constant matrix 𝐴 to a function
𝐴 ∈ 𝐶2(R; so(3)) with 𝐴̈(𝑡) = 0. Thus we introduce the novel concept of extended infinitesimal Galilean transformations

𝑢 → 𝑢 = 𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡) ,

𝑃 → 𝑃 = 𝑃 + 𝐴(𝑡) ,
𝐴̈(𝑡) = 0, 𝑟̈(𝑡) = 0 , for all 𝐴 ∈ 𝐶2(R; so(3)) , 𝑟 ∈ 𝐶2(R;R3) . (EIGI)

Again, linear elasticity is extended infinitesimal Galilean invariant (EIGI) because of the following identifications

∇𝑢 = ∇ (𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)) = ∇𝑢 + 𝐴(𝑡) , sym∇𝑢 = sym∇ (𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)) = sym(∇𝑢 + 𝐴(𝑡)) = sym∇𝑢 , (129)

𝑢̈ = d2

d𝑡2
[𝑢 + 𝐴(𝑡)𝑥 + 𝑟(𝑡)] = 𝑢̈ + 𝐴̈(𝑡)𝑥 + 𝑟̈(𝑡) = 𝑢̈ .

We note that all linear classical generalized continuum models also satisfy this extended infinitesimal Galilean invariance. However, there is no
equivalent geometrically condition using 𝑄(𝑡) ∈ SO(3) in the nonlinear case. Nevertheless, it seems reasonable to us to ask for all linear enriched
continuum models to also ensure extended infinitesimal Galilean invariance if used as a homogenized surrogate model because the underlying
microstructured linear Cauchy model always satisfies this new invariance condition. It is therefore this condition (EIGI) that we check in the main
body of this paper.

Appendix C. A Cauchy model with uncoupled frequency-dependent stiffness tensor and density and associated enriched continuum

We present here the derivation of an enriched model stemming from a Cauchy model in which both the density and the elastic tensor are
frequency-dependent. Let us start considering the equilibrium equations in the frequency domain for a Cauchy model in which the density and the
stiffness tensor depend on the frequency 𝜔 as

− 𝜌(𝜔)𝜔2 𝑢̂ = Div
[

C(𝜔) sym∇𝑢̂
]

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌(𝜔) =
(

𝑓5(𝑎1, 𝑏1, 𝑎2, 𝑏2) − 𝑓6(𝑎1, 𝑏1, 𝑎2, 𝑏2)𝜔2

𝑓7(𝑎1, 𝑏1, 𝑎2, 𝑏2) − 𝑓8(𝑎1, 𝑏1, 𝑎2, 𝑏2)𝜔2

)

𝜌 ,

C(𝜔) =
(

𝑓1(𝑎1, 𝑏1, 𝑎2, 𝑏2) + 𝑓2(𝑎1, 𝑏1, 𝑎2, 𝑏2)𝜔2

𝑓3(𝑎1, 𝑏1, 𝑎2, 𝑏2) + 𝑓4(𝑎1, 𝑏1, 𝑎2, 𝑏2)𝜔2

)

C ,
(130)

where {𝑓𝑖(𝑎1, 𝑏1, 𝑎2, 𝑏2)}8𝑖=1 are suitable functions and we must guarantee that lim𝜔→0 C(𝜔) = C and lim𝜔→0 𝜌(𝜔) = 𝜌. This model can be seen as a
combination of the two models presented in Sections 3 and 4.

C.1. Formulation of the enriched model and positive-definiteness conditions: form I

Starting from Eq. (130) and by moving the dependency on 𝜔 to the right side of the equation, we can equivalently write

− 𝜌𝜔2 𝑢̂ = Div
[(

𝑓 −
(𝑎1 − 𝑏1 𝜔2 − 1) + (𝑎2 − 𝑏2 𝜔2 − 1)

(𝑎1 − 𝑏1 𝜔2)(𝑎2 − 𝑏2 𝜔2) − 1

)

C sym∇𝑢̂
]

, (131)

where 𝑓 = 1+ 𝑎1+𝑎2−2
𝑎1 𝑎2−1

. If we now introduce two additional tensor fields 𝑃 ∶ Dom𝑃 ⊂ R3
𝑥 ×R𝜔 → R3×3 and 𝑄̂ ∶ Dom 𝑄̂ ⊂ R3

𝑥 ×R𝜔 → R3×3, Eq. (131)
an be rewritten as17

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−𝜌𝜔2 𝑢̂ = Div
[(

𝑓 −
(𝑎1 − 𝑏1 𝜔2 − 1) + (𝑎2 − 𝑏2 𝜔2 − 1)

(𝑎1 − 𝑏1 𝜔2)(𝑎2 − 𝑏2 𝜔2) − 1

)

C sym∇𝑢
]

,

C sym𝑃 = −
𝑎2 − 𝑏2 𝜔2 − 1

(𝑎1 − 𝑏1 𝜔2)(𝑎2 − 𝑏2 𝜔2) − 1
C sym∇𝑢̂ ,

C sym 𝑄̂ = −
𝑎1 − 𝑏1 𝜔2 − 1

(𝑎1 − 𝑏1 𝜔2)(𝑎2 − 𝑏2 𝜔2) − 1
C sym∇𝑢̂ ,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−𝜌𝜔2 𝑢̂ = Div
[

𝑓 C sym∇𝑢̂ + C sym𝑃 + C sym 𝑄̂
]

,

C sym𝑃 = − 1
𝑎1 − 𝑏1 𝜔2

C
(

sym∇𝑢̂ + sym 𝑄̂
)

,

C sym 𝑄̂ = − 1
𝑎2 − 𝑏2 𝜔2

C
(

sym∇𝑢̂ + sym𝑃
)

,

17 Also, in this case, we only need to define the symmetric part of 𝑃 and 𝑄.
26



European Journal of Mechanics / A Solids 106 (2024) 105269G. Rizzi et al.

w

T

C

w

w

C

G

𝑡
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒
−1
𝑡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌 𝑢̈ = Div
[

𝑓 C sym∇𝑢 + C sym𝑃 + C sym𝑄
]

,

𝑎1 C sym𝑃 + 𝑏1 C sym𝑃 + C sym∇𝑢 + C sym𝑄 = 0 ,

𝑎2 C sym𝑄 + 𝑏2 C sym 𝑄̈ + C sym∇𝑢 + C sym𝑃 = 0 .

(132)

We have thus obtained from the frequency-dependent Cauchy problem in Eq. (131) an extended continuum model in Eq. (132), in which all elastic
parameters are material constants that do not depend on frequency.

C.1.1. Existence of an action functional and positive-definiteness
The associated resulting action functional is

 =∬𝛺×[0,𝑇 ]

1
2

(

𝜌 ⟨𝑢̇, 𝑢̇⟩ + 𝑏1 ⟨C sym 𝑃̇ , sym 𝑃̇ ⟩ + 𝑏2 ⟨C sym 𝑄̇, sym 𝑄̇⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

− 𝑓 ⟨C sym∇𝑢, sym∇𝑢⟩ + 𝑎1 ⟨C sym𝑃 , sym𝑃 ⟩ + 𝑎2 ⟨C sym𝑄, sym𝑄⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

W - strain energy density

(133)

+2 ⟨C sym∇𝑢, sym𝑃 ⟩ + 2 ⟨C sym∇𝑢, sym𝑄⟩ + 2 ⟨C sym𝑃 , sym𝑄⟩
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 ,

here for positive definiteness it is required that

𝑎1 > 0 , 𝑏1 > 0 , 𝑎2 > 0 , 𝑏2 > 0 , 𝑎1 𝑎2 > 0 , eig(C) > 0 , 𝜌 > 0 . (134)

he associated homogeneous Neumann boundary conditions are

(𝑓 C sym∇𝑢 + C sym𝑃 + C sym𝑄) 𝑛 = 0 . (135)

.1.2. Energy conservation
To ensure that the resulting model is conservative, we have to guarantee that

d
d𝑡 ∫𝛺

𝐸(𝑢̇, 𝑃̇ , 𝑄̇,∇𝑢, 𝑃 ,𝑄) d𝑥 = ∫𝛺
d
d𝑡

[

𝐾(𝑢̇, 𝑃̇ , 𝑄̇) +𝑊 (∇𝑢, 𝑃 ,𝑄)
]

d𝑥 = 0 , (136)

here 𝛺 is the considered domain. With 𝜎 = C sym∇𝑢, 𝜏 = C sym𝑃 , 𝜂 = C sym𝑄 and similar to Eqs. (45) and (72), we compute

∫𝛺
d𝐸
d𝑡

d𝑥 =∫𝛺
𝜌 ⟨𝑢̈, 𝑢̇⟩ + 𝑏1⟨C sym𝑃 , sym 𝑃̇ ⟩ + 𝑏2⟨C sym 𝑄̈, sym 𝑄̇⟩

+ 𝑓 ⟨C sym∇𝑢, sym∇𝑢̇⟩ + 𝑎1⟨C sym𝑃 , sym 𝑃̇ ⟩ + 𝑎2⟨C sym𝑄, sym 𝑄̇⟩

+ ⟨C sym∇𝑢, sym 𝑃̇ ⟩ + ⟨C sym∇𝑢, sym 𝑄̇⟩ + ⟨C sym𝑃 , sym 𝑄̇⟩

+ ⟨C sym∇𝑢̇, sym𝑃 ⟩ + ⟨C sym∇𝑢̇, sym𝑄⟩ + ⟨C sym 𝑃̇ , sym𝑄⟩ d𝑥 (137)

=∫𝛺
𝜌 ⟨𝑢̈, 𝑢̇⟩ + 𝑏1⟨𝜏, sym 𝑃̇ ⟩ + 𝑏2⟨𝜂̈, sym 𝑄̇⟩ + 𝑓 ⟨𝜎, sym∇𝑢̇⟩ + 𝑎1⟨𝜏, sym 𝑃̇ ⟩ + 𝑎2⟨𝜂, sym 𝑄̇⟩

+ ⟨𝜎, sym 𝑃̇ ⟩ + ⟨𝜎, sym 𝑄̇⟩ + ⟨𝜏, sym 𝑄̇⟩ + ⟨𝜏, sym∇𝑢̇⟩ + ⟨𝜂, sym∇𝑢̇⟩ + ⟨𝜂, sym 𝑃̇ ⟩ d𝑥

=∫𝛺
⟨𝜌 𝑢̈ − 𝑓 Div 𝜎 − Div 𝜏 − Div 𝜂, 𝑢̇⟩ + div

[

(𝑓 𝜎 + 𝜏 + 𝜂)T𝑢̇
]

+ ⟨𝑎1 𝜏 + 𝑏1 𝜏 + 𝜎 + 𝜂, 𝑃̇ ⟩ + ⟨𝑎2 𝜂 + 𝑏2 𝜂̈ + 𝜎 + 𝜏, 𝑄̇⟩ d𝑥 = 0 .

Thanks to the equilibrium equations (132), the condition (137) becomes

d
d𝑡 ∫𝛺

𝐸 d𝑥 = ∫𝛺
div

[

(𝜎 + 𝜏 + 𝜂)T𝑢̇
]

d𝑥 = ∫𝜕𝛺
⟨(𝑓 𝜎 + 𝜏 + 𝜂)𝑛, 𝑢̇⟩ d𝑠 = 0 . (138)

hich is automatically always satisfied thanks to the homogeneous boundary conditions reported in Eq. (135).

.1.3. Infinitesimal Galilean invariance
With arguments similar to that presented in Sections 3.1.2.3, 4.1.3, and 4.3.3, it is easy to check that Eqs. (132) are extended infinitesimal
27

alilean invariant.
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𝑏
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o

Fig. 9. Dispersion curves in which the following values for the parameters have been used: 𝜌 = 900 kg∕m3, 𝜆 = 2898 Pa, 𝜇 = 262 Pa, 𝑎1 = 0.079, 𝑏1 = 0.0071 s2, 𝑎2 = 47.36,
2 = 13.97 s2. The curves for the frequency-dependent model are also reproduced by the corresponding enriched model, although the enriched model has two additional constant
olutions (green lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

.2. Relations between the frequency-dependent model and the equivalent enriched model: form I

In this case it is possible to see from the Fig. 9 that this model has two cut-offs frequencies and two asymptotes frequencies giving the possibility
f creating two separate band-gaps. Their expressions are

cut-offs ∶ 𝜔1 =

√

√

√

√

√

𝛽b −
√

𝛽2b − 4𝛽a𝛽c
2𝛽a

, 𝜔2 =

√

√

√

√

√

𝛽b +
√

𝛽2b − 4𝛽a𝛽c
2𝛽a

, (139)

asymptotes ∶ 𝜔3 =

√

√

√

√

√

𝛾b −
√

𝛾2b − 4𝛾a𝛾c
2𝛾a

, 𝜔4 =

√

√

√

√

√

𝛾b +
√

𝛾2b − 4𝛾a𝛾c
2𝛾a

, (140)

where
𝛽a = 𝑏1 𝑏2 , 𝛽b = 𝑎2 𝑏1 + 𝑎1 𝑏2 , 𝛽c = 𝑎1 𝑎2 − 1 , 𝛾a = (𝑎1 + 𝑎2 + 𝑎1𝑎2 − 3)𝑏1𝑏2 ,

𝛾b = (𝑎2 + 𝑎1𝑎2 − 3)𝑎2𝑏1 + (𝑎1 + 𝑎1𝑎2 − 3)𝑎1𝑏2 + 𝑏1 + 𝑏2 , 𝛾c = (𝑎1𝑎2 − 1)2 .
(141)

The curves for the frequency-dependent model Eq. (130) are also reproduced by the corresponding enriched model Eq. (132), although the
enriched model has the additional solutions which are also singularity values for the original frequency-dependent model.

C.3. Formulation of the enriched model and positive-definiteness conditions: form II

If we now introduce two additional vector-valued fields 𝑣 ∶ Dom 𝑣 ⊂ R3
𝑥 × R𝜔 → R3 as well as 𝑤̂ ∶ Dom 𝑤̂ ⊂ R3

𝑥 × R𝜔 → R3, Eq. (131) can be
rewritten as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− 𝜌𝜔2 𝑢̂ = Div
[(

𝑓 −
(𝑎1 − 𝑏1 𝜔2 − 1) + (𝑎2 − 𝑏2 𝜔2 − 1)

(𝑎1 − 𝑏1 𝜔2)(𝑎2 − 𝑏2 𝜔2) − 1

)

C sym∇𝑢̂
]

,

Div
[

C sym∇𝑣
]

= −
𝑎2 − 𝑏2 𝜔2 − 1

(𝑎1 − 𝑏1 𝜔2)(𝑎2 − 𝑏2 𝜔2) − 1
Div

[

C sym∇𝑢̂
]

,

Div
[

C sym∇𝑤̂
]

= −
𝑎1 − 𝑏1 𝜔2 − 1

(𝑎1 − 𝑏1 𝜔2)(𝑎2 − 𝑏2 𝜔2) − 1
Div

[

C sym∇𝑢̂
]

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 𝜌𝜔2 𝑢̂ = Div
[

𝑓 C sym∇𝑢̂ + C sym∇𝑣 + C sym∇𝑤̂
]

,

Div
[

C sym∇𝑣
]

= − 1
𝑎1 − 𝑏1 𝜔2

Div
[

C
(

sym∇𝑢̂ + sym∇𝑤̂
)]

,

Div
[

C sym∇𝑤̂
]

= − 1
𝑎2 − 𝑏2 𝜔2

Div
[

C
(

sym∇𝑢̂ + sym∇𝑣
)]

.

−1
𝑡

⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒
𝑡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌 𝑢̈ = Div
[

𝑓 C sym∇𝑢 + C sym∇𝑣 + C sym∇𝑤
]

,

Div
[

𝑎1 C sym∇𝑣 + 𝑏1 C sym∇𝑣̈ + C sym∇𝑢 + C sym∇𝑤
]

= 0 ,

Div
[

𝑎2 C sym∇𝑤 + 𝑏2 C sym∇𝑤̈ + C sym∇𝑢 + C sym∇𝑣
]

= 0 ,

(142)

where 𝑣 and 𝑤 have the dimension of a displacement. We have thus obtained from the frequency-dependent Cauchy problem in Eq. (131) an
28

extended continuum model in Eqs. (142), in which all elastic parameters are material constants that do not depend on frequency.
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w

C.3.1. Existence of an action functional and positive-definiteness
The associated resulting action functional is

 =∬𝛺×[0,𝑇 ]

1
2
(𝜌 ⟨𝑢̇, 𝑢̇⟩ + 𝑏1⟨C sym∇𝑣̇, sym∇𝑣̇⟩ + 𝑏2⟨C sym∇𝑤̇, sym∇𝑤̇⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
K - kinetic energy density

− 1
2

(

𝑓 ⟨C sym∇𝑢, sym∇𝑢⟩ + 𝑎1 ⟨C sym∇𝑣, sym∇𝑣⟩ + 𝑎2 ⟨C sym∇𝑤, sym∇𝑤⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

(143)

+2 ⟨C sym∇𝑢, sym∇𝑣⟩ + 2 ⟨C sym∇𝑢, sym∇𝑤⟩ + 2 ⟨C sym∇𝑣, sym∇𝑤⟩
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W - strain energy density

d𝑥d𝑡 ,

where for positive definiteness it is required that

𝑎1 > 0 , 𝑏1 > 0 , 𝑎2 > 0 , 𝑏2 > 0 , 𝑎1 𝑎2 > 0 , eig(C) > 0 , 𝜌 > 0 . (144)

The associated homogeneous Neumann boundary conditions are

(𝑓 C sym∇𝑢 + C sym∇𝑣 + C sym∇𝑤) 𝑛 = 0 ,

(

𝑎1 C sym∇𝑣 + 𝑏1 C sym∇𝑣̈ + C sym∇𝑢 + C sym∇𝑤
)

𝑛 = 0 , (145)
(

𝑎2 C sym∇𝑤 + 𝑏2 C sym∇𝑤̈ + C sym∇𝑢 + C sym∇𝑣
)

𝑛 = 0 .

C.3.2. Energy conservation
To ensure that the resulting model is conservative, we have to guarantee that

d
d𝑡 ∫𝛺

𝐸(𝑢̇,∇𝑣̇,∇𝑤̇,∇𝑢,∇𝑣,∇𝑤) d𝑥 = ∫𝛺
d
d𝑡

[𝐾(𝑢̇,∇𝑣̇,∇𝑤̇) +𝑊 (∇𝑢,∇𝑣,∇𝑤)] d𝑥 = 0 , (146)

here 𝛺 is the considered domain. With 𝜎 = C sym∇𝑢, 𝜏 = C sym∇𝑣, 𝜂 = C sym∇𝑤 and similar to Eq. (137), we compute

∫𝛺
d𝐸
d𝑡

d𝑥 =∫𝛺
𝜌 ⟨𝑢̈, 𝑢̇⟩ + 𝑏1⟨C sym∇𝑣̈, sym∇𝑣̇⟩ + 𝑏2⟨C sym∇𝑤̈, sym∇𝑤̇⟩

+ 𝑓 ⟨C sym∇𝑢, sym∇𝑢̇⟩ + 𝑎1⟨C sym∇𝑣, sym∇𝑣̇⟩ + 𝑎2⟨C sym∇𝑤, sym∇𝑤̇⟩

+ ⟨C sym∇𝑢, sym∇𝑣̇⟩ + ⟨C sym∇𝑢, sym∇𝑤̇⟩ + ⟨C sym∇𝑣, sym∇𝑤̇⟩

+ ⟨C sym∇𝑢̇, sym∇𝑣⟩ + ⟨C sym∇𝑢̇, sym∇𝑤⟩ + ⟨C sym∇𝑣̇, sym∇𝑤⟩ d𝑥d𝑡

=∫𝛺
𝜌 ⟨𝑢̈, 𝑢̇⟩ + 𝑏1⟨𝜏, sym∇𝑣̇⟩ + 𝑏2⟨𝜂̈, sym∇𝑤̇⟩ + 𝑓 ⟨𝜎, sym∇𝑢̇⟩ + 𝑎1⟨𝜏, sym∇𝑣̇⟩ (147)

+ 𝑎2⟨𝜂, sym∇𝑤̇⟩ + ⟨𝜎, sym∇𝑣̇⟩ + ⟨𝜎, sym∇𝑤̇⟩ + ⟨𝜏, sym∇𝑤̇⟩ + ⟨𝜏, sym∇𝑢̇⟩

+ ⟨𝜂, sym∇𝑢̇⟩ + ⟨𝜂, sym∇𝑣̇⟩ d𝑥

=∫𝛺
⟨𝜌 𝑢̈ − 𝑓 Div 𝜎 − Div 𝜏 − Div 𝜂, 𝑢̇⟩ + div

[

(𝑓 𝜎 + 𝜏 + 𝜂)T𝑢̇
]

− ⟨Div
[

𝑎1 𝜏 + 𝑏1 𝜏 + 𝜎 + 𝜂
]

, 𝑣̇⟩ + div
[

(𝑎1 𝜏 + 𝑏1 𝜏 + 𝜎 + 𝜂)T𝑣̇
]

− ⟨Div
[

𝑎2 𝜂 + 𝑏2 𝜂̈ + 𝜎 + 𝜏
]

, 𝑤̇⟩ + div
[

(𝑎2 𝜂 + 𝑏2 𝜂̈ + 𝜎 + 𝜏)T𝑤̇
]

d𝑥 = 0 .

Thanks to the equilibrium equations (142), the condition (147) becomes
d
d𝑡 ∫𝛺

𝐸 d𝑥 =∫𝛺
div

[

(𝑓 𝜎 + 𝜏 + 𝜂)T𝑢̇
]

+ div
[

(𝑎1 𝜏 + 𝑏1 𝜏 + 𝜎 + 𝜂)T𝑣̇
]

+ div
[

(𝑎2 𝜂 + 𝑏2 𝜂̈ + 𝜎 + 𝜏)T𝑤̇
]

d𝑥

=∫𝜕𝛺
⟨(𝑓 𝜎 + 𝜏 + 𝜂) 𝑛, 𝑢̇⟩ + ⟨(𝑎1 𝜏 + 𝑏1 𝜏 + 𝜎 + 𝜂) 𝑛, 𝑣̇⟩ + ⟨(𝑎2 𝜂 + 𝑏2 𝜂̈ + 𝜎 + 𝜏) 𝑛, 𝑤̇⟩ d𝑠 = 0 . (148)

which is automatically always satisfied thanks to the homogeneous boundary conditions reported in Eq. (145).

C.3.3. Infinitesimal Galilean invariance
With arguments similar to that presented in Sections 3.1.2.3, 4.1.3, and 4.3.3, it is easy to check that Eqs. (142) are extended infinitesimal

Galilean invariant (EIGI).

C.4. Relations between the frequency-dependent model and the equivalent enriched model: form II

It can be seen in Fig. 10 that this model (142) is also able to reproduce the curves produced by the frequency-dependent one Eq. (130) with
all their properties, it posses an additional solution, namely 𝑘 = 0, but it does not possess the extra constant roots in 𝜔 of the model Eq. (132).
29
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Fig. 10. Dispersion curves in which the following values for the parameters have been used: 𝜌 = 900 kg∕m3, 𝜆 = 2898 Pa, 𝜇 = 262 Pa, 𝑎1 = 0.079, 𝑏1 = 0.0071 s2, 𝑎2 = 47.36,
𝑏2 = 13.97 s2. The curves for the frequency-dependent model are also reproduced by the corresponding enriched model, although the enriched model has the additional solution
𝑘 = 0.
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